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Abstract

Multi-hop question answering (QA) remains
challenging, as solutions must reliably in-
tegrate and reconcile evidence from mul-
tiple sources without succumbing to error
propagation. While large language models
(LLMs) have achieved substantial improve-
ments via chain-of-thought (CoT) prompt-
ing and retrieval-augmented generation, these
methods typically adopt a forward-only work-
flow—early mistakes persist throughout infer-
ence, and contradictions discovered later can-
not systematically trigger re-evaluation. To
address this limitation, we present ReAgent,
a reversible multi-agent reasoning framework.
Specifically, ReAgent enables agents to back-
track to earlier valid states when conflicts arise,
thereby isolating and rectifying flawed assump-
tions before they undermine subsequent rea-
soning. Our approach combines explicit lo-
cal and global rollback protocols with modular
role specialization, resulting in a flexible and
error-tolerant pipeline. Empirical evaluation on
three multi-hop QA benchmarks demonstrates
consistent performance gains of approximately
6% over forward-only baselines, in addition to
enhanced interpretability. These findings high-
light the value of non-monotonic, backtracking-
driven inference in complex QA scenarios and
point to broader implications for multi-agent
collaboration in knowledge-intensive tasks.!

1 Introduction

Multi-hop question answering (QA) is a central
challenge in natural language processing (NLP),
demanding the ability to gather and integrate evi-
dence across multiple documents, database entries,
or knowledge-graph nodes before converging on
a single correct answer (Yang et al., 2018; Welbl
et al., 2018; Ho et al., 2020). Benchmarks such
as HotpotQA (Yang et al., 2018) and 2WikiMul-
tiHopQA (Ho et al., 2020) highlight the intricate

'Our anonymous code is available at https://anonymou
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Figure 1: Comparison of multi-hop reasoning strate-
gies. Chain-of-Thought (CoT) and Multi-Agent Sys-
tems (MAS) typically adopt a forward-driven reason-
ing pipeline without rollback mechanisms, which could
generate the wrong answer due to error accumulation.
In contrast, our proposed ReAgent introduces explicit
backtracking mechanisms that enable the system to cor-
rect errors during reasoning, resulting in a more accurate
and reliable answer.

nature of multi-hop inference, where each reason-
ing step can involve partial retrieval, validation,
and synthesis of new information. A core difficulty
lies in the system’s vulnerability to early mistakes:
if an incorrect inference is made at an initial hop,
subsequent steps often propagate this error and
undermine the final outcome, rendering it contra-
dictory or simply wrong (Inoue et al., 2020; Bo
et al., 2024; Yang et al., 2024c). This phenomenon
has motivated extensive research into chaining in-
termediate inferences and exploring ways to detect,
isolate, or rectify problematic conclusions.

Recent large language models (LLMs) exhibit
promising results on multi-hop QA, frequently us-
ing either explicit Chain-of-Thought (CoT) prompt-
ing (Wang et al., 2023) (Figure 1, left) or retrieval-
augmented generation (Das et al., 2018; Long et al.,
2019; Gao et al., 2023; Liu et al., 2023; Yang et al.,
2024b, 2025a). These methods facilitate a step-
wise approach, encouraging transparency in how
each intermediate fact is reached. Nonetheless,
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they typically rely on a forward-driven reasoning
pipeline that does not proactively examine or cor-
rect previously accepted statements. In practice,
once a model commits an erroneous partial infer-
ence may not reevaluate it unless given targeted
prompts to do so (Puerto et al., 2023; Huang et al.,
2024). This unidirectional paradigm is problematic
when later-discovered evidence or reasoning paths
contradict prior assumptions, as the system lacks
a structured mechanism to revise and propagate
corrections. Although incremental improvements
have been proposed, the absence of robust back-
tracking or rollback still limits their reliability and
interpretability (Doyle, 1979; Bo et al., 2024).

A growing body of work in multi-agent collabo-
ration (Figure 1, middle) offers an alternative per-
spective, assigning specialized components distinct
roles in retrieval, validation, conflict detection, and
results assembly (Zhao et al., 2024; Parhizkar et al.,
2020; Ke et al., 2024). Approaches such as COP-
PER (Bo et al., 2024) and LongAgent (Zhao et al.,
2024) distribute the QA task among multiple LLM-
based agents that communicate via message pass-
ing, thereby providing greater modularity and a
clearer division of labor. By cross-verifying evi-
dence, each agent can potentially identify suspi-
cious partial solutions. However, even these de-
signs often lack a systematic strategy to revert
to an earlier, valid state once a global contradic-
tion emerges. Such a reversal capability is non-
trivial, as it introduces synchronization complexi-
ties among the agents and raises questions about
how to detect, prioritize, and handle contradictory
or low-confidence information in a large-scale col-
laborative setting (He et al., 2021).

In this paper, we propose ReAgent, a reversible
multi-agent collaborative reasoning framework for
multi-hop QA (Figure 1, right). Our method intro-
duces explicit backtracking protocols into a multi-
layer architecture that addresses both the granular
aspects of local error correction and the broader
system-wide consistency checks. ReAgent allevi-
ates error accumulation in forward-only strategies
by incorporating fine-grained conflict-detection
cues at each step and using a flexible error-
correction loop that can revert and iteratively refine
intermediate inferences. Our design is inspired by
multi-agent systems with reflective capabilities (Bo
et al., 2024; Huang et al., 2024), but we go further
by defining how local versus global backtracking
unfolds, how to manage concurrency issues when
parallel agents must revert their states, and how to

integrate trust signals derived from each agent’s
past reliability (Puerto et al., 2023; Parhizkar et al.,
2020). While the addition of reversible reason-
ing raises legitimate questions about computational
overhead and concurrency, our findings show that
these challenges can be mitigated by careful co-
ordination at the supervisory level. Experiments
on three public multi-hop QA benchmarks demon-
strate that ReAgent improves final-answer accuracy
while enhancing interpretability, and even outper-
forms several advanced reasoning models despite
it built on a lightweight, non-reasoning foundation.

Our contributions are threefold: (1) we propose
a multi-agent QA framework that supports both
local and global backtracking to correct mistakes
in situ; (2) we design a hybrid retrieval mechanism
that integrates textual and graph-based evidence;
and (3) We empirically demonstrate the effective-
ness of ReAgent, achieving an average accuracy
gain of approximately 6% over the strongest base-
lines, while improving robustness and transparency
compared to forward-only methods.

2 Related Work

Prompting and Iterative Reasoning. Large Lan-
guage Models (LLMs) can tackle complex tasks us-
ing chain-of-thought (CoT) prompting(Yang et al.,
2024a, 2025b), which promotes step-by-step rea-
soning and improves performance in arithmetic,
commonsense, and symbolic tasks (Wei et al.,
2022). Accuracy further improves with self-
consistency, which samples multiple reasoning
paths and selects the majority answer (Wang et al.,
2023). To reduce manual prompt design, auto-
matic methods such as APE generate and evalu-
ate prompts via LLMs themselves, treating prompt
creation as a search task (Zhou et al., 2023). It-
erative frameworks like ReAct combine reason-
ing with tool use to refine answers (Yao et al.,
2023), while Reflexion and Self-Refine add feed-
back loops where the model critiques and revises
its outputs (Shinn et al., 2023; Madaan et al., 2023).
Prompting has also extended to multimodal inputs;
for instance, Multimodal-CoT integrates visual and
textual information into a joint reasoning trace to
generate the final answer (Zhang et al., 2023).

Multi-Agent Collaboration, Debate, and Scala-
bility. Recent work investigates multi-agent sys-
tems where multiple LLMs collaborate or compete
toward shared goals. CAMEL assigns roles (e.g.,
“user” and “assistant”) to agents that communicate
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Figure 2: The overall architecture of the ReAgent. The given question is processed through the Execution Layer,
which involves question decomposition, evidence retrieval, verification, and is ultimately integrated to generate the
final answer (blue line). The Supervisor Layer and Interaction Layer are responsible for monitoring, regulation, and
communication. The ReAgent framework includes both local and global backtracking mechanisms (red boxes),
triggered by the Verifier Agent (Ay) and Supervisor Agent (Ag), respectively.

via dialogue to decompose tasks (Li et al., 2023).
Role specialization and consensus mechanisms en-
hance robustness. Debate-based methods push this
further, with agents arguing opposing views and a
judge—human or model—selecting the best solu-
tion (Khan et al., 2024; Xiong et al., 2023). Such
adversarial exchanges promote correctness, though
dominant agents can bias results without capable
judges. As agent counts grow, coordination be-
comes a bottleneck. Efficient structures like hierar-
chical controllers and learned protocols are needed
to manage scalability and communication overhead
(Li et al., 2023; Xiong et al., 2023).

3 Preliminary

Multi-Hop QA Setup. Multi-hop QA tasks aim to
answer a query () by integrating evidence £ from
multiple sources through a series of reasoning steps,
where each hop contributes partial information to-
ward the final answer. In a typical forward-only
pipeline, the process can be formalized as: Q) —
{e1,ea,...,ex} — inferred statement(s) —
Final Answer, where {ej,eo,..., e} C & repre-
sents a potentially large pool of evidence, each e;
denotes evidence used at the i-th step of the reason-
ing chain.

Non-Monotonic Backtracking. Our notion of
backtracking is a non-monotonic extension of the
typical multi-hop QA process. We introduce a re-
versible reasoning mechanism that allows both lo-
cal and global backtracking.

* Local Correction: An agent can revise its own
inference when it detects internal conflict or re-

ceives contradictory evidence from other agents.

* Global Rollback: A supervisor coordinates roll-
back across agents when inconsistencies span
multiple agents, restoring the system to a previ-
ously consistent state.

4 ReAgent: Reversible Multi-Agent
Reasoning Architecture

Figure 2 presents the overall architecture of our
proposed ReAgent, organized into three layers: 1)
Execution Layer, responsible for decomposing
the input question () into multiple sub-questions,
retrieving relevant evidence respectively, validat-
ing intermediate results, and integrating them to
generate the final answer Ay;,q;; 2) Supervisor
Layer, responsible for high-level regulation, coor-
dinating conflict resolution and managing global
backtracking; and 3) Interaction Layer, respon-
sible for maintaining the concurrency model and
communication protocols.

The core of the architecture is a hierarchical
backtracking mechanism, consisting of local back-
tracking, which resolves internal contradictions
within each agent, and global backtracking, which
handles contradictions spanning multiple agents.
To support this, ReAgent maintains knowledge
sets at each time step ¢. Specifically, given a set
of agents A = {4, Ao, ..., A,}, each agent A;
holds a local knowledge set ®f, containing its pro-
posed assertions, retrieved evidence, or intermedi-
ate inferences, while the system maintains a global
knowledge set ®' = |JI'_; P!, representing the set
of global statements under consideration at time ¢.
The design explicitly supports non-monotonic up-



dates: newly introduced statements can be revoked
if they lead to logical conflicts or are superseded
by contradictory evidence. The specific prompts of
each kind of agent are provided in Appendix A.

4.1 Execution Layer Agents

The Execution Layer hosts four types of agents that
address fundamental QA sub-tasks, each maintain-
ing its local knowledge ®;.
Question-Decomposer Agent (Ag). Given a com-
plex input question (), this agent breaks it into a
set of sub-questions for subsequent retrieval and
verification: Ag : Q@ — {q1,...,¢m}. The de-
composition is broadcast to other base-layer agents.
Retriever Agent (Ar). Upon receiving a sub-
question ¢;, Ap issues parallel sparse and dense
queries over the corpus, merges the hits with
reciprocal-rank fusion, and retains the top-M pas-
sages as the evidence set £ = ey, ..., eps. If back-
tracking invalidates any e; € F, only the associ-
ated q; is re-queried, leaving the rest unchanged.
Verifier Agent (Ay/). Performs local consistency
checks. Given a new evidence set F, it verifies
coherence with its current knowledge ®,. If con-
flicts arise, it triggers local backtracking to revert
to a consistent state or signals higher-level agents
for broader resolution. Concretely, Ay may invoke
BacktrackLocal(AV, r) if it detects inconsisten-
cies in assertions introduced after node 7.
Answer-Assembler Agent (A 4). Gathers partial
answers (and verified evidence) to synthesize a
final answer. Given the local inferences from A,
Ag, and Ay, the agent combines them to generate
the final answer A 41, represented as:

Afinal = AA((PQv (va (EV)a

where ®¢, ®r and @y denotes the knowledge set
from the respective agents. Any detected contradic-
tion spanning multiple agents triggers escalation to
the supervisory layer.

4.2 Supervisory Layer Agents

The supervisory layer oversees system-wide strate-
gies, especially when contradictory goals or incon-
sistent states appear across multiple agents that
cannot be resolved by a single agent itself.

Controller Agent (Ac). Regulates high-level
strategies by monitoring game-theoretic signals
or meta-rules. If a certain rule is deemed sub-
optimal or unsafe, Ac can override it or enforce
mode switches. For instance, it may issue a

challenge(y) to examine a crucial assertion ¢
from multiple agents’ perspectives or override local
decisions if they jeopardize overall consistency.
Supervisor Agent (Ag). Coordinates multi-agent
conflicts spanning multiple knowledge sets or criti-
cal shared assumptions. If a conflict persists af-
ter local backtracking and escalation from A 4,
the agent determines whether partial or holistic
rollback is required. Specifically, when a system-
wide contradiction is found, Ag identifies a mini-
mal conflict set ¥ such that SAT (V) = false but
SAT(¥’) = true for any proper subset ¥/ C .
The supervisor then triggers a backtracking opera-
tion that eliminates or modifies W.

4.3 Interaction Layer

The Interaction Layer is responsible for storing
knowledge sets from each interaction round, as
well as maintaining the concurrency model and
communication protocols.

Persistent Log. Stores the local knowledge sets
®; and global knowledge set ® from all interac-
tion rounds to support backtracking and serve as a
historical evidence repository.

Temporal Tracker. Records the chronological se-
quence of messages and actions, enabling agents
to reference previous steps accurately. Specifically,
the system can use temporal operators such as Uy
to denote that ¢ must hold in every future state,
and O to indicate that a proposition ¢ might be-
come true at some future point. These temporal
constraints assist in specifying persistent axioms or
potential triggers for backtracking conditions.
Messaging Channel. Achieves communication
across agents for exchanging updates, signaling
conflicts, and broadcasting intermediate conclu-
sions. Specifically, atomic events msg(y) are typed
as assert, inform, reject, or challenge. These
updates can occur simultaneously, and a composite
event model merges parallel messages. Further-
more, a shared concurrency mechanism processes
simultaneous actions, ensuring that conflicts aris-
ing from concurrent assertions are escalated to the
supervisory layer.

4.4 Conflict Management and Backtracking

This part formalizes how the system detects con-
tradictions and reverts to consistent states. At each
time ¢, the set of all accepted assertions is . A
conflict occurs if ®¢ entails both ¢ and —¢ for some
proposition ¢, meaning SAT(®?) fails. To resolve
the issue, the system follows a two-level approach:



Local Backtracking. Each agent A; maintains a
backtracking graph LBG;, which logs states ® at
selected checkpoints r. If an internal contradiction
Conflict; (®!) is detected by Ay, local backtrack-
ing is performed to revert A; to a prior consistent
node r < t:

BacktrackLocal(4;, r) : ! — ®7.

After the local rollback, the agent re-evaluates
newly arriving evidence.

Global Backtracking. When contradictions span
multiple agents, the Ag identifies a minimum con-
flict set of assertions that must be revised. A global
backtracking operation: BacktrackGlobal(Ut, r)
reverts all agents from time ¢ to r. The system
discards any statements introduced between r + 1
and ¢, restoring consistency. If the conflict cannot
be removed even after a global rollback, the Con-
troller might enforce strategic overrides or disclaim
an answer. The corresponding algorithm is detailed
in Appendix E.

5 Experiments

5.1 Experimental Setup

We evaluate ReAgent on three widely used,
knowledge-intensive multi-hop QA benchmarks:
HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2022). We compare ReAgent against three
main groups of baselines: (1) standard LLMs,
(2) dedicated reasoning models, and (3) agent-
based models. Experimental results demonstrate
that ReAgent consistently outperforms all baseline
groups and is particularly effective in solving tasks
that require iteratively corrected reasoning.
Datasets. HotpotQA is a large-scale, open-domain
dataset that explicitly promotes multi-hop reason-
ing by requiring the integration of information
across multiple full-length Wikipedia passages.
2WikiMultiHopQA selects distinct Wikipedia do-
mains for each question, focusing on evaluating
the model’s multi-hop inference over different re-
sources rather than one document. Musique is a
challenging dataset requiring model’s ability to rea-
son over multiple dispread sentences. Following
previous work (Trivedi et al., 2023; Press et al.,
2023; Gutiérrez et al., 2024), we utilize 1000 ran-
dom samples from each validation set and corre-
sponding texts as the knowledge base.

Baselines. We meticulously categorize diverse
models into different groups to compare their ca-

pabilities in multi-hop QA. (1) Regular Mod-
els: We select non-reasoning models in this group.
The models include: Llama-4 2, Qwen-2.5 (Yang
et al., 2024a) series, DeepSeek-V3-2024-03 (Liu
et al., 2024), Genmini-1.5-Flash-2024-09 (Gemini
et al., 2023), Gemini-2.0-flash-2025-02 (Gemini
et al., 2023), GPT-4o-latest (Hurst et al., 2024),
GPT-4.1 (Meta Al 2024), GPT-40 with CoT (Wei
et al., 2023). (2) Reasoning Models: This
group includes several strong reasoning baselines
for comparison. The models include: Qwen-3-
Thinking (Qwen3, 2025) in 32B and 253B size,
DeepSeek-R1 (DeepSeek-Al, 2025), Gemini-2.5-
pro (Google DeepMind, 2025), O1 (OpenAl, 2024),
and O3 (OpenAl, 2025). (3) Agentic Models.
Chain-of-Agents (CoA) (Zhang et al., 2024), Hip-
PRAG (Gutiérrez et al., 2025), KAG (Liang et al.,
2024), and our method. To compare fairly, we em-
ploy GPT-40 as the backbone for both COT and
Agentic Models.

Implementation. For large-scale LLMs (e.g.,
DeepSeek-V3, the Gemini family, GPT-40, and
Qwen-3-235B), we access the models via API. For
the medium-sized LLMs, we use their official open-
source repositories. The temperature is set to 0.3
to ensure deterministic outputs, while other param-
eters follow their default settings. ReAgent is im-
plemented using GPT-40 as the backbone model.
Specifically, we set the temperature to 0.8 for the
decomposition agent to encourage diverse reason-
ing paths, and 0.6 for all other agents. The cost
analysis for proprietary models and agentic meth-
ods is presented in Appendix B. For open-source
models, all experiments are conducted using four
A100-80G GPUs.

Maetrics. We measure Exact Match (EM) and F1
scores for the QA evaluation.

5.2 Results and Analysis

Table 1 presents the overall performance across
all datasets. ReAgent consistently outperforms
all baseline models on both EM and F1 met-
rics. Specifically, it achieves an average EM of
0.571 and an average F1 of 0.701, surpassing the
strongest baseline—knowledge-augmented GPT-
40—by 2.3% in EM and 0.8% in F1. It also outper-
forms strong reasoning models, including O1 and
03. Moreover, it also surpasses the recent agentic
models such as CoA, HippoRAG, and KAG across
all datasets. We summarize the following insights:

2https://ai.meta.com/blog/llama—4—multimoda
1-intelligence/
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Model HotpotQA 2Wiki Musique Average
EM Fl1 EM Fl1 EM Fl1 EM Fl1
Regular Models
Llama-4-Scout-17B-16E-Instruct 0.263 0.389 0.332 0.467 0.107 0.185 0.234 0.346
DeepSeek-V3 0.352 0.491 0.466 0.579 0.223 0.33 0.347 0.467
Qwen-2.5-32B-Instruct 0.372 0.509 0.557 0.663 0.159 0.273 0.363 0.482
Qwen-2.5-72B-Instruct 0.363 0.519 0.543 0.631 0.222 0.327 0.376 0.492
Gemini-1.5-Flash 0.374 0.488 0.563 0.650 0.208 0.310 0.381 0.482
Gemini-2.0-Flash 0.371 0.490 0.538 0.651 0.246 0.338 0.385 0.493
GPT-40 0.381 0.549 0.517 0.649 0.245 0.379 0.381 0.525
GPT-4.1 0.389 0.563 0.544 0.665 0.271 0.413 0.401 0.547
CoT (GPT-40) 0.408 0.531 0.558 0.638 0.272 0.360 0.413 0.509
Reasoning Models
Qwen-3-32B-Thinking 0.332 0.474 0.241 0.357 0.387 0.511 0.387 0.511
DeepSeek-R1 0.356 0.483 0.601 0.707 0.298 0416 0.418 0.535
Qwen-3-235B-A22B-Thinking 0.361 0.506 0.624 0.729 0.271 0.387 0418 0.540
Gemini-2.5-Pro 0.430 0.560 0.743 0.829 0.383 0.491 0.518 0.626
(0] 0.505 0.661 0.656 0.758 0.417 0.551 0.526 0.656
03 0.535 0.696 0.706 0.787 0.442 0.579 0.561 0.687
Agentic Models (w.GPT-40)
CoA (Zhang et al., 2024) 0.391 0.558 0.575 0.697 0.239 0.361 0.402 0.539
HippoRAG (Gutiérrez et al., 2025) 0.528 0.717 0.633 0.725 0.353 0.507 0.504 0.649
KAG (Liang et al., 2024) 0.603 0.782 0.681 0.781 0.348 0.489 0.544 0.684
ReAgent (Ours) 0.630 0.795 0.711 0.793 0.371 0.515 0.571 0.701

Table 1: Performance of different models across three multi-hop QA datasets. In each column, the highest and the
second highest performance is highlighted in red and blue ; and within each method group, the top performer is

underlined.

Agent-based and reasoning enhances perfor-
mance. Some reasoning models and agentic mod-
els have a competitive performance (such as Ol,
03, and KAG) than regular models. Notably,
ReAgent outperforms O3, one of the strongest rea-
soning models, and improves significantly over
GPT-40+CoT in both EM and F1. This suggests
that modular execution and collaboration among
agents provide a clearer advantage in complex,
multi-hop settings. While ReAgent can theoret-
ically use stronger backbones like O1 or O3, their
high cost (645$ and 5468, respectively, as shown in
Appendix B) makes them not a good option. Our
focus is to show that even with GPT-40, ReAgent
is able to beat the expensive O1 and O3.

ReAgent excels in manageable context length.
Specifically, ReAgent achieves the highest F1 score
on HotpotQA (0.795), demonstrating strong per-
formance in tasks that require structured reason-
ing over relatively short contexts. In contrast,
Gemini-2.5-Pro performs well on 2Wiki but un-
derperforms on other datasets, while O1 and O3
show stronger results on Musique but fall short on
HotpotQA. This discrepancy is partly attributed to
the increased complexity of the Musique dataset,
which involves longer contexts. While ReAgent
is built on GPT-40 and may be less optimized for

long documents than dedicated reasoning models,
its agentic design, including traceback and self-
check mechanisms, proves particularly effective in
scenarios requiring precision, stepwise planning,
and robust verification. These strengths enable
ReAgent to outperform other models on tasks like
HotpotQA, highlighting its superior general reason-
ing capabilities within manageable context lengths.

Overall, we emphasized the value of reversible
reasoning mechanisms to mitigate error propaga-
tion. Results in Table 1 align with this assumption:
even with strong models, single-pass reasoning can
fail unless the correct context is identified or re-
checked. Our method’s ability to backtrack helps
resolve contradictions, leading to more stable per-
formance in multi-hop scenarios.

5.3 Ablation Study

Effectiveness Analysis of Backtracking Mecha-
nism. We conduct an ablation study by disabling
backtracking under the same settings to verify its
importance. In this setup, the system operates
strictly forward without the ability to revert to ear-
lier intermediate states. Figure 3 compares perfor-
mance between different backbones, with and with-
out backtracking, on HotpotQA dataset. The per-
formance drop highlights the importance of back-
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Figure 3: Ablation Study on Local and Global Back-
tracking (BT): EM comparison on HotpotQA using
GPT-40 and DeepSeek-V3.

tracking in mitigating error propagation, where an
early misstep without backtracking cannot be cor-
rected, resulting in deteriorated performance. No-
tably, the DeepSeek-V3 backbone exhibits general
improvements with backtracking, demonstrating
its robustness across various settings.

Impact of Different Local Backtracking (BT)
Depth. To further analyze the impact of local back-
tracking depths (the number of steps the system is
allowed to revert), we analyze the performance of
our proposed ReAgent under different settings, as
shown in Figure 4 (left). The results show that on
two selected backbones, DeepSeek-V3 and GPT-
40, the performance of ReAgent improves as the lo-
cal backtracking depth increases, suggesting that a
deeper backtracking depth benefits the agent by en-
abling it to effectively recover from earlier reason-
ing errors. However, the benefits gradually saturate,
indicating that further increasing the backtracking
depth yields diminishing returns.

Impact of the Number of Decomposed Sub-
Questions. Figure 4 (right) demonstrates how a dif-
ferent number of decomposed sub-questions affects
performance. The results show that decomposing
the input question into multiple sub-questions sig-
nificantly improves performance. Specifically, us-
ing 3 sub-questions is the optimal trade-off choice,
with an improvement of 0.161 EM on the GPT-
40 and 0.142 EM on DeepSeek-V3 compared to
directly processing a single question. Beyond
this point, increasing the number of sub-questions
brings only marginal gains but higher costs.

6 Case Study
6.1 ReAgent Walk Through

To illustrate how recursive feedback enables robust
multi-agent reasoning, we present a case where the
system answers the question: “Which U.S. state
has a capital city whose population is
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Figure 4: Ablation Study on Backtracking Depth (left)
and Number of Decomposed Sub-Questions (right): EM
comparison on HotpotQA using GPT-40 and DeepSeek-
V3.

smaller than the state’s largest city,
given that this state hosted the 1984
Summer Olympics?”, shown in Figure 6. The ques-
tion is first decomposed by the Question Decom-
poser agent (Ag) into four sub-questions: identify-
ing the host state of the 1984 Olympics, retrieving
its capital and largest city, comparing their popula-
tions, and returning the state if the capital is smaller.
The Retriever agent (Ap) retrieves that California
hosted the 1984 Olympics, with Sacramento as its
capital and Los Angeles as its largest city. How-
ever, inconsistent population data for Sacramento
(508k vs. 1.5M) triggers a local conflict, which is
resolved by the Verifier agent (Ay) through local
backtracking—discarding the unreliable 1.5M es-
timate. In this case, the local backtracking step is
able to figure out the correct information, then the
Answer Assembler (A 4) is able to gather all the
information locally and then globally, and finally
present the final answer to be California. We
eliminate other parts when another conflict may oc-
cur, a full walk-through is presented in Appendix D.
Another case study is presented in Appendix C

6.2 Comparison with Baseline Models

To elucidate differences in reasoning dynamics, we
perform a case study comparing ReAgent with a
single-agent reasoning baseline, O3 and an agen-
tic baseline, Chain-of-Agents (CoA) (Zhang et al.,
2024) on the query “What is the name of the
fight song of the university whose main
campus is in Lawrence, Kansas and whose
branch campuses are in the Kansas City
metropolitan area?”, as illustrated in Figure 7.
The full comparison is presented in Appendix D.
The example question requires two separate hops:
(1) identifying which university satisfies the geo-
graphical constraints, and (ii) retrieving the “offi-
cial” fight-song of that school. Although seemingly



{ Question: What is the name of the

of the university whose main campus is in Lawrence, Kansas and whose branch campuses are in the Kansas City metropolitan area?

03 CoA (Chain-of-Agent) w. GPT-40

ReAgent (Ours)

Worker 1: Worker 3
(1) Scanned the text, listing

every university mentioned.

1. Identify the university described. Worker 2
The context says the university’s main

campus is in Lawrence, Kansas, with — University of Kansas

(1) Locate candidate schools (1) Patter-match location
descriptors — KU lines.

Decomposer:  Retriever 1 (Q1): University of Kansas has its Backtracking:
Decompose question  main campus in Lawrence, KS « “Kansas Song” was
into 6 sub-questions  Retriever 2 (Q2): Same university has two KC- adopted as KU's official fight

Jayhawk.” (1) Collect worker outputs: 2x'm a Jayhawk’, 1x"Unknown”. e i
3. State the answer. M (2) Adopt majority output — "Im a Jayhawk
“I'm a Jayhawk.”

(3) Emit final answer: "I'm a Jayhawk"

branch campuses in the Kansas City (2) Selected the University of ~ (2) Verifies only KU fits both ~ (2) Invoke model-internal memory — | | Q1: University area branch campuses song in 1928 (date present in
metropolitan area. Kansas paragraph. constraints. top hit = I'm a Jayhawk; secondary | | identification Retriever 3 (Q3): No other school meets both  the primary source).

» This matches the University of (3) Searched the whole chunk  (3) Search in-chunk for hit = Kansas Song (less commonly Q2: Branch-campus o ieria , KU is unique * “P’m a Jayhawk” emerged
Kansas (KU). for tokens such as * . phrases — ‘Im a dited). ) check Retriever 4 (Q4): Fight-song candidate later as a popular rally tune
2. Recall KU's official fight song. — No matches. Jayhawk’. (3) Chooses the song with higher Q3: L iy g but was never legislated as

orsif d (4) Output: Answer = Unknown (4) Output: Answer = “I’'ma  pop-culture frequency — I'm a : . the official fight song.

The University of Kansas' long- Jayhawik” Jayhawk, Q4: Fight-song Retriever 5 (Q5): Conflicting candidate
standing is titled “I'm a Manager: : (4) Return: Answer = “'m a retrieval { “Kansas Song” Final answer: “Kansas Song”

Lncorect |

Q5: Conflict detection Retriever 6 (Q6): Fight-song candidate “I'm a
Q6: Final resolution  Jayhawk”

Conflict detected m

Figure 5: Case study comparing GPT-O3 (left), CoA (middle), and ReAgent (right) on HotpotQA. The back-tracking
mechanism enhances iterative reasoning, enabling conflict detection and correction to reach the correct answer.

simple, the task hides a subtle distinction: the Uni-
versity of Kansas (KU) has both an official fight
song (“Kansas Song”, adopted in 1928) and a far
better-known rally tune (“I’'m a Jayhawk™). Cor-
rectly answering therefore hinges on (a) verifying
that KU is the only university matching the cam-
pus pattern, and (b) resolving the potential conflict
between the two candidate songs.

The reasoning model O3 (left) performs the first
hop successfully but then falls back on memorised
popularity cues, assuming that the song most famil-
iar to the public must be official.

The CoA (middle) multi-worker system executes
three independent workers and lets a manager pick
the majority vote. Worker 1 fails to locate any
fight-song information due to the chunk division.
Worker 2 repeats O3’s mistake. Worker 3 extracts
the correct answer “Kansas Song” but discards it
because it is less commonly used, and the third fails
to locate any fight-song information. The manager
simply adopts the majority answer (“I'm a Jay-
hawk’), which causes the error.

Our ReAgent (right) framework handles the
same example with six specialized retriever agents
answering the sub-questions generated by the De-
composer: (a) Q1-Q3 (entity verification). Three
agents collectively confirm that only KU satisfies
the main-campus/branch-campus constraints, elim-
inating alternative schools early. (b) Q4-Q5 (con-
flict surfacing). Independent retrieval agents sur-
face both “I'm a Jayhawk” and “Kansas Song”, trig-
gering an explicit conflict state. (c) Backtracking
(Q6). The controller reverses to Q4 and re-weights
evidence. The source for “Kansas Song” contains
the enactment year (1928) and the keyword “offi-
cial”, while “I’m a Jayhawk” is marked only as a
“rally tune”. Therefore, our model successfully
reach the correct answer “Kansas Song”. This
demonstrates that, thanks to its conflict-detection
and backtracking mechanisms, ReAgent can re-
visit earlier reasoning, resolve contradictory evi-

Question: "Which U.S. state has a capital city whose population is smaller than
the state’s largest city, given that this state hosted the 1984 Summer Olympics?"

AQ
Source 1: ..The 1984 Summer Olympics were

Question Decomposition /

primarily hosted in Los Angeles, California....
* Sub-question 1: Which U.S. state

hosted the 1984 Summer Olympics?

* Sub-question 2: What is the capital_|

city of that state, and what is the

largest city?

* Sub-question 3: Compare the

populations of the capital and the

largest city.

* Sub-question 4: Return the state

name if the capital's population is
\smaller.

AR Source 2: Capital of California is Sacramento.
Source 3: Largest city is Los Angeles.

Source 4: Sacramento population: ~ 508, 000
Source 5: Los Angeles population: ~ 3, 900, 000
Source 6: Sacramento population: ~ 1,500,000

Local Backtracking

Population of Sacramento Conflict
cannot be both 508k and 1.5M. EeTIATI Y

Otbher Local Answers...

J

Population of Sacramento:508k (%4

Global
Answer
Assemble

Local Answer Assemble Other Local Answers.

- The capital is Sacramento (population: ~ 508, 000).
- The largest city is Los Angeles (population: ~ 3, 900,
000)....

Final Answer:
California @

Figure 6: Case study: We illustrate the main steps of
how ReAgent answers a question, where local back-
tracking is highlighted to resolve a conflict.

dence, and consistently converge on the correct
knowledge-grounded answer.

7 Conclusion

In this paper, we introduced a multi-agent QA
framework, REAGENT, that incorporates back-
tracking mechanisms to mitigate error propagation
in multi-hop reasoning. Our hierarchical approach
addresses the long-standing challenge that a single
misstep during inference often invalidates the en-
tire reasoning chain. By allowing partial or global
rollback, each agent can detect and correct con-
flicting evidence, leading to more stable and inter-
pretable solutions. Experiments on three multi-hop
QA benchmarks—HotpotQA, 2WikiMultiHopQA,
and Musique—demonstrate that explicit backtrack-
ing and conflict resolution improve performance
beyond forward-only baselines, confirming the im-
portance of error revision for complex question
answering. We believe that the reversible, mod-
ular design can be extended to other knowledge-
intensive applications, laying the groundwork for
more trustworthy collaborative Al agents.



Limitations

In this paper, we present the ReAgent model for
multi-hop QA, which introduces explicit backtrack-
ing mechanisms that allow the system to correct
errors during reasoning, leading to more accurate
and reliable answers. However, this design in-
troduces certain limitations. First, the ability to
backtrack multiple times can increase the overall
inference time, potentially making the reasoning
process less efficient. Second, although ReAgent
demonstrates improved performance over selected
reasoning models, its more complex architecture
may reduce its robustness in scenarios with limited
resources or noisy inputs. In the future, we aim to
improve the design of the agents, with a particular
focus on enhancing their collaboration strategies
to further reduce error propagation and improve
reasoning efficiency.
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Appendix
A Multi-Agent Prompt Templates

A.1 Question-Decomposer Agent

Question-Decomposer Agent Prompt

Role Description: You are the Question-Decomposer Agent, specializing in breaking
down the user’s complex query into smaller, manageable sub-questions or sub-tasks.
This decomposition is crucial for multi-hop question answering and will be consumed
by downstream agents (Retriever, Verifier, etc.) in the pipeline.

Your Goals:

1. Parse the original query into logically independent or sequential sub-questions.

2. Preserve all necessary context so that other agents can retrieve relevant evidence
and validate partial answers.

3. Output your decomposition in a structured JSON format.
Example Usage:

* Original Query: “Which U.S. state has a capital city whose population is smaller
than the state’s largest city, given that this state hosted the 1984 Summer Olympics?”

¢ Decomposition:

— q1: Identify which U.S. state hosted the 1984 Summer Olympics.
— q2: Find the capital city and the largest city of that state.

— g3: Compare population sizes of the capital and largest city.

— q4: Return the state if the capital is indeed smaller.

Output Format (JSON Only):
{

"sub_questions”: [
"Sub-question 1",
"Sub-question 2",

]’
"decomposition_reasoning”: "A short textual explanation of your decomposition
process”

3

Instruction: Please ensure your final output is a valid JSON object matching the above
schema.
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A.2 Retriever Agent

Retriever Agent Prompt

Role Description: You are the Retriever Agent, responsible for fetching relevant ev-
idence from external sources (a text corpus, a knowledge graph, or both) based on
sub-questions provided by the Question-Decomposer Agent. This includes documents,
passages, knowledge graph triples, and any other data needed for multi-hop QA.

Your Goals:

1. Given a sub-question, retrieve the most relevant facts or passages.
2. Include confidence scores or other metadata if available.

3. Return your findings in a standardized JSON structure so that the Verifier and
Answer-Assembler Agents can process them.

Example Usage:
 Input Sub-question: “Which U.S. state hosted the 1984 Summer Olympics?”

¢ Retrieved Evidence (text-based):

non n,on

{ "document": "History of the Olympics", "passage":
were held primarily in Los Angeles, California." }

The 1984 Summer Olympics

Output Format (JSON Only):
{

"retrieved_evidence”: [

{
"source”: "e.g., 'Wikipedia excerpt' or 'KG triple ID'",
"content”: "string or structured data relevant to the sub-question”,
"confidence”: 0.0-1.0 (optional)

}’

"retrieval_reasoning”: "Short justification for why this evidence is relevant”

}

Instruction: Output only valid JSON, strictly matching the above schema.
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A.3 Verifier Agent

Verifier Agent Prompt

Role Description: You are the Verifier Agent, focusing on assessing consistency and
correctness of the newly retrieved evidence or intermediate inferences. You detect
contradictions or conflicts either within the new data or against the previously verified
knowledge. If necessary, you trigger local backtracking to remove or adjust statements
causing inconsistency.

Your Goals:

1. Validate whether new information is consistent with existing verified knowledge.

2. Identify contradictions and either correct them or escalate them to a higher-level
supervisor if unresolved.

3. Produce a final set of verified facts or a signal indicating a conflict.
Example Usage:

e Incoming Evidence:

"Sacramento population: 508,000" and "Sacramento population: 1,500,000"
* Detected Inconsistency:

"Sacramento cannot have two drastically different population values."
* Local Backtracking Action:

"Discard the erroneous or lower-confidence figure (1,500,000)."

Output Format (JSON Only):

{
"verified_facts”: [
"Fact 1",
"Fact 2",
]’
"conflicts_detected”: [
"Conflict 1 description, if any”,
]’
"local_backtracking_action”: "Description of any backtracking performed, or
'none" "
}

Instruction: Return only valid JSON with the fields above. Provide a concise summary
if backtracking occurs.
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A4 Answer-Assembler Agent

Answer-Assembler Agent Prompt

Role Description: You are the Answer-Assembler Agent. You gather verified facts
from the Verifier Agent and partial answers from the Decomposer and Retriever Agents.
You then synthesize a coherent, contextually relevant response, producing a final or
intermediate answer for the user. If you detect a major conflict among partial answers,
you escalate to the Supervisor Agent.

Your Goals:

1. Aggregate partial answers logically.

2. Compose a natural-language (or structured) final answer to the user’s multi-hop
query.

3. Escalate unresolvable contradictions to the Supervisor Agent if needed.
Example Usage:

¢ Partial Answers and Verified Facts:

{"hosted_1984_olympics": "California"}
{"capital": "Sacramento"}, {"largest_city": "Los Angeles"}
{"pop_sacramento": 508000}, {"pop_los_angeles": 3900000}

¢ Composed Final Answer:

"The state is California, since its capital city (Sacramento) has a popula-
tion smaller than that of Los Angeles."

Output Format (JSON Only):
{

"final_answer”: "A concise or structured answer to the main query”,
"partial_answer_synthesis": [
"Short bullet points on how partial answers were combined”
]y
"escalation_signal”: "Set to 'none' if no escalation is needed, otherwise a short
reason”

b

Instruction: Return only valid JSON. If you detect a major conflict you cannot resolve,
set "escalation_signal” to a reason for Supervisor Agent intervention.
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A.5 Supervisor Agent

Supervisor Agent Prompt

Role Description: You are the Supervisor Agent, responsible for orchestrating global
conflict resolution and global backtracking if needed. When partial answers or verified
facts across multiple agents yield irreconcilable contradictions, you identify a minimal
conflict set and roll back the entire system’s state to a previously consistent checkpoint
if local fixes fail.

Your Goals:

1. Collect escalation signals from the Answer-Assembler or Verifier Agents.

2. If local backtracking does not resolve the conflict, execute system-wide or multi-
agent rollback.

3. Provide a summary of changes, indicating which statements or partial answers are
discarded or revised.

Example Usage:

* Received Escalation: “Capital(California, Sacramento) conflicts with Capi-
tal(California, Los Angeles).”

* Global Backtracking Action: “Rollback to a state before the second capital claim
was introduced. Discard that erroneous claim from the knowledge base.”

Output Format (JSON Only):
{

"conflict_summary”: [

"Brief descriptions of contradictory sets”
1,
"global_backtracking_decision”: "Description of how far to roll back or 'none'”
"updated_consensus_state”: [

"Any statements or facts that remain accepted after rollback”

])
"reasoning_notes”: "Explanation of the chosen resolution strategy”

’

b

Instruction: Output valid JSON. If no global conflict is found, indicate "none" for
"global_backtracking_decision”.
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A.6 Controller Agent

Controller Agent Prompt

Role Description: You are the Controller Agent, providing high-level strategic oversight.
You may override local decisions, impose extra checks, or challenge specific assumptions
if repeated conflicts persist. You also maintain meta-information such as agent reliability
scores or fallback strategies.

Your Goals:

1. Intervene in situations where standard local or global backtracking repeatedly fails.

2. Challenge or confirm critical assumptions by requesting additional evidence or
verification from subordinate agents.

3. Log meta-data about agent reliability and final decision paths for interpretability.
Example Usage:

* Conflict Re-emerges: Repeated contradictory statements about a single piece of
evidence.

* Your Action: Issue a "challenge” directive to the Verifier Agent or the Retriever
Agent, requesting additional sources or alternative cross-checks.

Output Format (JSON Only):
{

"intervention_type": "challenge | override | escalate | none”,
"target_of_intervention”: "Which agent or assertion is challenged”,
"rationale”: "Explanation of why the Controller intervened”,
"meta_notes”: "Optional additional commentary or reliability signals”

b

Instruction: Produce valid JSON only. This agent acts rarely, but can do so when
repeated failures occur or when a major conflict must be forcibly resolved.
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A.7 Usage and Integration Notes

The above prompts constitute a cooperative multi-agent system designed for reversible multi-hop question
answering. The usage scenario is as follows:

1. Question-Decomposer Agent (§A.1) receives the user’s original query and splits it into sub-
questions.

2. Retriever Agent (§A.2) fetches relevant information for each sub-question from external sources
(text or KG).

3. Verifier Agent (§A.3) checks for local inconsistencies and can trigger local backtracking if contra-
dictory evidence arises.

4. Answer-Assembler Agent (§A.4) merges partial answers into a final solution. If irreconcilable
conflicts appear, it escalates to the Supervisor.

5. Supervisor Agent (§A.5) coordinates global resolution or wide-scale backtracking if multiple agents’
statements are in conflict.

6. Controller Agent (§A.6) optionally intervenes if repeated or severe conflicts persist, forcing extra
checks or overrides.

This architecture supports non-monotonic reasoning, allowing the system to roll back to earlier states
to correct errors and ensure robust, interpretable multi-hop QA. “Local backtracking” is handled by
individual agents (especially the Verifier), whereas “global backtracking” is orchestrated by the Supervisor
Agent when local corrections are insufficient.

All final outputs from each agent must adhere to the specified JSON schema to ensure interoperability.
Downstream agents read the previous agent’s JSON fields directly, enabling a structured, chain-of-thought
style pipeline that remains reversible at every step.

B Analysis of Computational Cost

We conduct a comparative analysis of computational cost on the HotpotQA, 2Wiki, and MuSiQue datasets
across GPT-4o, reasoning models O1 and O3, and our ReAgent. The evaluation includes average inference
calls, inference time (s), input/output tokens, and total cost($), as shown in Table 2. The results highlight
that our ReAgent, built on GPT-40, achieves superior performance compared to reasoning models O1 and
03, while incurring significantly lower computational cost. Although its cost is higher than the GPT-40
baseline, ReAgent delivers substantially better performance. These findings demonstrate the effectiveness
of our method in balancing performance and efficiency.

Model Avg.  Avg. Avg. Avg. Total
Calls Time(s) Input(7) Output(T) Cost($)
GPT-40 1 2.7 9289 5 69
o1 1 43 9289 1471 645
03 1 27 9289 1471 546

Ours (ReAgent,(GPT-40)) 29 46 12400 1920 275

Table 2: Cost Comparison. 7 denotes Tokens. Note that the input token counts are aggregated across the three
datasets. Since the complete reasoning outputs for O1 and O3 were unavailable, their output token counts are
estimated based on the reasoning outputs generated by Qwen-3-235B.

C Case Study on Puzzle Solving

We illustrate our multi-agent backtracking (REAGENT) through a single-culprit puzzle with four suspects
{A, B, C, D}. Each suspect gives statements about who might be guilty or lying. The puzzle’s only correct
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Algorithm 1 REAGENT Multi-Agent Puzzle Solving

1: Input: Puzzle statements from A, B, C, D.
2: Goal: Identify unique culprit (one of {A,B,C,D}) with minimal contradictions.

3: Initialization
4: Decomposer < enumerates four hypotheses { H4, Hg, Ho, Hp}.
Checker Agents < each assigned to test one hypothesis’ consistency.

W

Round 1: Checking A as culprit

Ty : Checkery:  Evaluate puzzle statements assuming A is culprit.

Ty : Checker 4 detects contradiction:  (A’s claims vs. C’s claims cannot both hold).
T3 : Conflict Detector signals rollback to discard A-culprit assumption.

L ® 3D

10: Round 2: Checking B as culprit

11: Ty : Checkerp collects statements { A, B, C, D} under B=culprit.

12: T5 : Finds no fatal conflicts (B’s statements can be partly false, others partly true).
13: T : Conflict Detector sees consistency, no rollback needed.

14: Rounds 3 and 4: Checking C or D as culprit
15: 1% : Similar to H 4, each leads to irreconcilable contradictions.
16: = Supervisor triggers rollback again; discards these.

17: Conclusion: Only Hp remains consistent throughout.  Answer: B is culprit.

solution is that B is the culprit, but identifying this requires partially retracting initial assumptions along
the way, as shown in Algorithm 1.

Why a Rollback Mechanism is Needed. Naive single-pass (or single-thread) models often fixate
prematurely on one suspect, disregard contradictory evidence, and produce unsound conclusions. By
contrast, our multi-agent approach enumerates possible culprits in parallel, detects conflicts, and rolls
back to revise incorrect assumptions.

Suspects and Rules:
e There are four suspects: A, B, C, D.
* Exactly one of them is the culprit.

* The culprit must have at least one false statement. Non-culprits may also have errors, but are not
forced to be entirely truthful or untruthful.

» Each suspect makes the following statements:

1. A:
(a) “I did not do it.”
(b) “If B is the culprit, then C is lying (i.e., at least one statement from C is false).”
2. B:
(a) “Either A is lying, or D is the culprit.”
(b) (No second statement given in some puzzle variants, or it might be omitted. We assume just
one statement from B here.)

3. C
(a) “B did not do it.”
(b) “D has at least one untrue statement.”
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4. D:
(a) “Cis lying about everything.” (i.e., both C(i) and C(ii) are false)
(b) “I definitely did not do it.”

Question: Which single suspect is guilty, respecting the puzzle rules?
D Case Study on Traditional Multi-hop QA Tasks

D.1 User’s question:

"Which U.S. state has a capital city whose population is smaller than the state’s largest city, given that
this state hosted the 1984 Summer Olympics?"

To answer this, the system must:

1. Identify the state that hosted the 1984 Summer Olympics.

2. Compare the capital city’s population to the largest city’s population in that state.
3. Confirm the capital city’s population is indeed smaller.

4. Provide the name of that state.

Although it may appear straightforward, we deliberately introduce contradictory or erroneous data
along the way to showcase the reversible (backtracking) mechanisms.

D.2 Agents and Their Roles

1. Question-Decomposer Agent (Ag)
Splits the complex question into sub-questions:

* Sub-question 1: Which U.S. state hosted the 1984 Summer Olympics?

* Sub-question 2: What is the capital city of that state, and what is the largest city?
* Sub-question 3: Compare the populations of the capital and the largest city.

* Sub-question 4: Return the state name if the capital’s population is smaller.

2. Retriever Agent (AR)
Searches external knowledge (e.g., a text corpus or knowledge graph) to gather relevant facts:

* Text passages or data about U.S. states, capitals, largest cities, and historical Olympic hosts.

3. Verifier Agent (Ay)
Cross-checks newly retrieved information for consistency against its local knowledge or prior verified
facts. If a contradiction is detected, it triggers local backtracking.

4. Answer-Assembler Agent (A 4)
Synthesizes partial answers from the other agents. If contradictory partial answers cannot be
reconciled at the local level, A 4 escalates the conflict to the Supervisory layer.

5. Supervisor Agent (Ag)
Oversees system-wide conflicts. It can perform global backtracking (rolling back all agents) if
needed.

6. Controller Agent (A¢)
Provides strategic oversight. In the example below, it will issue “challenges” to specific assertions
when local backtracking fails.
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D.3 Walkthrough of the Reasoning and Backtracking

Initial Question Decomposition

1. Ag receives the question:
Ag parses the main query:

“Which U.S. state has a capital city whose population is smaller than the state’s largest city,
given that this state hosted the 1984 Summer Olympics?”

2. Ag produces sub-questions:

* q1: “Which U.S. state hosted the 1984 Summer Olympics?”

* q2: “What is the capital city of that state? Also, what is the largest city of that state?”
* g3: “Compare the population of the capital city to that of the largest city.”

* q4: “Return the state if the capital’s population is smaller.”

These sub-questions (g1—¢q4) are broadcast to the Retriever (Ar) and Verifier (Ay).

Retrieval and a Local Conflict

1. Ap retrieves answers:

* For ¢q1, AR returns:
“The 1984 Summer Olympics were primarily hosted in Los Angeles, California.”
* For ¢9, AR retrieves partial data:
— Capital of California is Sacramento.
— Largest city is Los Angeles.
— Population estimates (unfortunately, one item is erroneous or inconsistent):
x Sacramento population: ~ 508,000 (from official records).
x Los Angeles population: ~ 3,900, 000 (correct).
+ But a second retrieved record incorrectly lists Sacramento’s population as 1,500,000.

2. Ay (Verifier) checks local consistency:
Ay notices that two different population figures for Sacramento are contradictory:

* Data point D;: 508,000
* Data point Ds: 1,500,000

Ay identifies these as mutually exclusive facts. It flags a local conflict:

“Population of Sacramento cannot be both 508k and 1.5M.”

3. Local Backtracking by Ay :
Before finalizing any partial answer, Ay backtracks to the checkpoint prior to adopting the second,
suspicious data point Ds.
Ay discards the contradictory population figure (1.5M) and retains only 508k as the consistent
number for Sacramento.
The system continues forward with the corrected value for Sacramento’s population: ~ 508, 000.

(This demonstrates how a single agent can retract contradictory or low-confidence evidence without
halting the entire process.)

Assembling Partial Answers & Uncovering a Global Conflict
1. A4 (Answer-Assembler) integrates partial conclusions:
So far, the state that hosted the 1984 Olympics is California.

The capital is Sacramento (population: ~ 508, 000).
The largest city is Los Angeles (population: ~ 3,900, 000).
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2. A4 composes a preliminary final:
Since Sacramento’s population (~ 508, 000) is indeed smaller than Los Angeles’s (~ 3, 900, 000),
the preliminary answer is: “California” should be the correct state.

3. New conflict introduced:
However, suppose the Retriever (Ar)—in parallel—fetched an alternative “capital city” record
stating that Los Angeles was once referred to as the “capital” in a historical context (erroneous
snippet from a non-authoritative source).
This implies the contradictory statement: “Los Angeles is also the capital of California,” which
directly conflicts with the known fact “Sacramento is the capital of California.”

4. Ay tries local resolution:
Ay cannot reconcile “Los Angeles is capital” with “Sacramento is capital.”
Because each piece of evidence was introduced into separate sub-threads, a single local reversion
inside Ay might not suffice. The conflict is also recognized by A 4 when finalizing sub-answers.

5. Conflict escalates to the Supervisor (Ag):
As soon as multiple agents disagree over fundamental facts (the identity of the capital), the system
triggers a global conflict signal.
Ag identifies the minimal conflicting set:

* Capital(California, Sacramento)

* Capital(California, Los Angeles)

These two are clearly incompatible. The next step is to identify which statement should be retracted
system-wide.

Global Backtracking and Final Resolution

1. Global Backtracking:
The Supervisor Agent (Ag) issues a global backtracking command, rolling the entire system’s
knowledge to a shared checkpoint before the contradictory capital reference was accepted.
All local knowledge caches revert to a consistent state in which “Sacramento is the capital” is still
true, and “Los Angeles is the capital” is no longer present.

2. Controller (A¢) challenges the suspicious assertion:
To prevent the same contradiction from reappearing, Ac explicitly “challenges” the statement
Capital(California, Los Angeles).
This statement is reevaluated or ignored based on domain knowledge or reliability checks (e.g.,
confidence weighting from the retriever and the verifier).
The system confirms that Los Angeles was never the official capital.

3. Assemble the final consistent answer:
With the conflicting statement removed, the pipeline reaffirms:

(i) The 1984 Summer Olympics took place in Los Angeles, California.
(i1) California’s capital is Sacramento.
(iii) Sacramento’s population (~ 508, 000) is smaller than Los Angeles’s (~ 3,900, 000).

Final Answer: California.
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Figure 7: Full Comparison with Baseline Models

D.4 Full Comparison with Baseline Models (Figure 7)

D.5 Key Observations

« Early-Stage Conflict Resolution: The Verifier Agent (Ay ) performed local backtracking when it
discovered contradictory population data for Sacramento. This promptly removed an incorrect data

point without halting the entire process.

* Escalation of Irreconcilable Contradictions: When two different sub-threads provided fundamen-
tally clashing information (competing claims about the capital), the system automatically escalated
the conflict to the Supervisor (Ag) for global action.

* Strategic Re-check and Override: The Controller Agent (A-) could forcibly challenge the
suspicious statement “Capital(California, Los Angeles)” to eliminate it from the knowledge pool,

thus preserving the correct solution.

Algorithm 2 Multi-Agent Reversible Reasoning

Require: ()o: Main question

: Ag.decompose(Qo) — {q1,¢2, ...}
2: Broadcast assert(q;) to A, Ay, Aa

3: for each ¢; in {q1, q2, . . . } concurrently do
4: E + Ap.retrieve(q;)

5: Ay .verify (E)
6
7
8

—_

if Ay detects conflict locally then
Ay .BacktrackLocal(ry )
if conflict persists then
9: raise Conflict to Ag
10: end if
11: end if
12: A 4.storePartial Answer(g;, E)
13: end for
14: if Global conflict signaled then
15: Ag.HolisticUpdate(II;)
16: if A. intervention needed then
17: Ac.challenge(yp) or override
18: end if
19: end if
20: Final < A 4.assembleAnswer({q1, g2, ...})
21: return Final Answer
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Overall, this case exemplifies how reversible,
multi-hop reasoning allows for robust error cor-
rection: local invalid data is undone swiftly,
while deeper logic conflicts trigger system-wide
backtracking. Consequently, the answer “Califor-
nia” remains stable and correct, ensuring that a
single faulty retrieval step does not irreversibly
corrupt the entire reasoning chain.

E Reversible Reasoning Algorithm

Algorithm 2 summarizes the flow of this multi-
agent reversible reasoning design. The pro-
cess starts with question decomposition and sub-
question retrieval, followed by verification. Local
backtracking is invoked as needed to address in-
ternal inconsistencies. If the conflict persists, it is
escalated to the supervisory layer, where partial
or holistic backtracking may be applied. After
conflicts are resolved, the final step integrates all
consistent sub-answers.
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