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Abstract

Tokenizers serve as crucial interfaces between models and linguistic data, sub-
stantially influencing the efficacy and precision of large language models (LLMs).
Traditional tokenization methods often rely on static frequency-based statistics and
are not inherently synchronized with LLM architectures, which may limit model
performance. In this study, we propose a simple but effective method to learn tok-
enizers specifically engineered for seamless integration with LLMs. Initiating with
a broad initial vocabulary, we refine our tokenizer by monitoring changes in the
model’s perplexity during training, allowing for the selection of a tokenizer that is
closely aligned with the model’s evolving dynamics. Through iterative refinement,
we develop an optimized tokenizer. Our empirical evaluations demonstrate that
this adaptive approach significantly enhances accuracy compared to conventional
methods, maintaining comparable vocabulary sizes and affirming its potential to
improve LLM functionality.

1 Introduction

In recent years, large language models (LLMs) have emerged as foundational tools across a spectrum
of applications in natural language processing [3, 7, 24]. From generating human-like text to enabling
complex question-answering systems [28], LLMs have proven to be exceptionally versatile and
capable. At the core of these models lies the tokenizer, a critical component that dictates how natural
language is transformed into a format amenable to computational processing. The effectiveness of a
tokenizer directly influences the model’s ability to understand and generate language, thus playing a
pivotal role in the overall performance of the LLM. Recognizing this integral relationship, it becomes
essential to develop tokenizers that are not only effective but also dynamically adaptable to the
evolving architectures of contemporary LLMs.

Current tokenization methods for large language models (LLMs) primarily include Byte Pair Encoding
(BPE) [32], WordPiece [43], and Unigram [19], each serving to enhance text preprocessing by splitting
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it into manageable subwords. BPE focuses on reducing the dataset size through a greedy merging
strategy based on character or subword frequency, effectively addressing the issue of infrequent
words by splitting them into more common subunits. WordPiece, similar to BPE, starts with a base
vocabulary and iteratively refines it by merging the most frequent pairs but incorporates a likelihood
maximization step, which makes it slightly more context-aware than BPE. Unigram tokenization
operates somewhat inversely, beginning with a large vocabulary and iteratively pruning it down
based on token utility calculated through negative log likelihood, aiming to optimize the vocabulary
against corpus loss metrics. Despite their efficiency in handling large vocabularies and improving
computational feasibility, these tokenization methods are typically fixed once developed and are not
designed to adapt or learn from the model’s evolving understanding of language during training.

While traditional tokenization methods have been instrumental in enhancing the efficiency and
effectiveness of large language models (LLMs), they are typically decoupled from the model’s
learning mechanisms. This means they do not adapt or evolve based on the model’s performance or
the specific requirements of the tasks being addressed. Instead, these methods prioritize compressing
the vocabulary size, which can sometimes lead to suboptimal performance in complex language
tasks where adaptability and contextual understanding are crucial. Recent advances in end-to-end
learnable tokenization [17, 16, 38] aim to address these deficiencies by more closely integrating
tokenization with the model’s learning processes. However, these systems, while innovative, introduce
significant computational overhead (e.g., gradient-based tokenization and pooling modules) and lack
the flexibility of traditional tokenization methods, which can be easily transferred across different
models.

In this study, we address the limitations of traditional tokenization methods by creating a system
where the tokenizer’s development is coupled with the performance of the LLM itself. Specifically,
we introduce an adaptive tokenizer that begins with a comprehensive initial vocabulary. As training
progresses, we fine-tune this tokenizer by closely monitoring the model’s perplexity. This ongoing
adjustment allows the tokenizer to evolve in tandem with the LLM, ensuring that the tokenization
process remains optimally aligned with the model’s dynamic learning patterns. Our empirical
results confirm that this adaptive approach markedly improves accuracy over traditional methods,
demonstrating its potential to significantly enhance LLM functionality.

2 Related Works

2.1 Subword tokenizer

Subword tokenizers are widely applied in many large language models (LLMs) [32, 19, 42, 35, 20],
such as GPT-3 [7], BERT [12], and T5 [30]. This is because subword tokenizers do not face the
out-of-vocabulary issues that word-level tokenizers do. Unlike character-level tokenizers [36, 27],
they do not require processing longer sequences at the character level, which significantly increases
the complexity of the models quadratically [21]. Specifically, BPE (Byte Pair Encoding) [32] applies a
compression algorithm [13] to the task of word segmentation. Unlike BPE, which builds a vocabulary
from smaller to larger units, Unigram [19] starts by preparing a large seed vocabulary. The vocabulary
is pruned until it reaches the specified size. Similar to the Unigram framework and its assumptions,
BytePiece [35] trims the vocabulary based on token frequency to the required size. In its initial
text encoding phase, BytePiece converts the corpus into bytes, enhancing the training speed of the
tokenizer and achieving a higher compression rate. Obviously, these tokenizers are data-driven [5],
with the generated vocabulary built based on the frequencies of word fragments [6]. However, they
cannot directly interact with LLMs to enhance model capabilities [9].

2.2 Learnable tokenizer

Unlike traditional tokenizers that offer a predefined and fixed vocabulary, learnable tokenizers [17, 16,
38, 37, 34, 8] can be integrated with large language models into an end-to-end learning framework,
resulting in task-specific tokenization to enhance the performance of LLMs. MANTa [16] introduces
a gradient-based tokenization and pooling module that can be jointly learned with an encoder-decoder
LLM [2]. RETVec [8] embeds words into a high-dimensional vector with a pre-trained model to be
robust against adversarial attacks. Neural [17] adapts the tokenization behavior to the downstream
task after pre-training the tokenization by distilling from a language-specific subword tokenizer.
However, such tokenizers have high requirements for the quantity and quality of the training data. If
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Figure 1: Illustration of the proposed ADAT pipeline. (a) The traditional tokenizer algorithm that
directly extracts vocabulary from data. (b) The framework of the LLM-enhanced tokenizer, iteratively
refining vocabulary based on model feedback. (c) Overview of ADAT, encompassing initial tokenizer
acquisition, training and inference to derive token losses, token pruning based on scores and losses.

the data distribution is unbalanced or contains too much noisy data, it can lead to poor generalization
of the tokenizer and negatively affect the performance of LLMs. For instance, Neural [17] requires
a pre-training dataset curated with space-separated tokens and two carefully crafted heuristics to
improve the ground label of the dataset. Therefore, stringent requirements for the quality of training
data limit their widespread application.

In addition, some existing works have applied the concept of adaptive tokenizers in several fields,
such as neural machine translation [26], domain adaptation [31], and text generation [23]. These
task-adaptive tokenizers integrate tokenizers generated from different data distributions, focusing
on how to combine the task-specific tokenizer with the other one. In contrast, our proposed model,
ADAT, is designed to learn a general tokenizer. Therefore, the purpose of ADAT is different from
that of the aforementioned adaptive tokenizers.

3 Adaptive Tokenizers

For Large Language Models (LLMs), two critical aspects are accuracy and inference speed, both of
which are deeply intertwined with the design of the tokenizer. Specifically, an optimal vocabulary
V with maximum size N in an objective dataset D can be described by the following optimization
problem:

min
V

Length(Do, V )− λAcc(D,M, V ), |V | ≤ N, (1)

where M denotes the trained LLM, Length and Acc denotes the sequence length and accuracy (or
the performance) using vocabulary V in dataset D, and the λ is a hyper-parameter to balance the
two terms. This problem incorporates two primary objectives: given a fixed vocabulary size, the
first is to maximize inference speed given a fixed vocabulary size, and the second is to maximize
model accuracy. However, existing tokenizer schemes typically focus on one aspect over the other;
for instance, traditional frequency-based schemes emphasize speed, while end-to-end approaches
prioritize accuracy. To address this, we propose a method that optimizes both aspects. Therefore,
we introduce an improved approach based on traditional frequency statistics, termed "adaptive
tokenizers." This method aims to refine the balance between vocabulary efficiency and performance,
thereby enhancing both the speed and accuracy of the model.
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3.1 Unigram Model

Traditional tokenization methods generally fall into two categories: one approach, exemplified by
Byte Pair Encoding (BPE) and WordPiece, starts with a small set of symbols and incrementally builds
a larger vocabulary by merging the most frequent adjacent pairs. The other approach, typified by the
Unigram method, begins with a large initial vocabulary which is progressively pruned based on token
utility, a method found to generally offer superior performance due to its probabilistic foundation.

The Unigram model operates on the principle that the probability of a sentence is determined by
the individual probabilities of its tokens. Here we briefly review the Unigram model. Initially, a
large vocabulary V is established. This extensive initial set includes potentially every unique word
or subword unit observed in the training corpus, ensuring that the vocabulary can cover all possible
textual inputs. The process of refining the vocabulary involves several key steps repeated in cycles: 1.
Probability Estimation: For each token xi in the current vocabulary, we calculate its probability
p(xi) based on its frequency of occurrence in the corpus. 2. Loss Calculation: We then compute the
loss for each token, which is determined by how much the overall loss of the model would decrease
if that token were removed. The loss function is calculated as:

LP (V ) =

|V |∑
s=1

log(p(X(s)) =

|V |∑
i=1

log(

P∑
x∈S((X(s))

(x)), (2)

where S(X) is a set of segmentation candidates built from the input sentence X , and x = (x1, ..., xK)

is a subword sequence that P (x) =
∏K

i=1 p(xi). The loss for each token xi is then formulated as
LP (xi) = LP (V )−LP (V −xi). 3. Token Pruning: Tokens are ranked according to their calculated
loss. Finally, a proportion of tokens contributing the most to increasing the overall loss is pruned
from the vocabulary.

3.2 LLM-Enhanced Tokenization

To enhance the integration of Large Language Models (LLMs) with our tokenization process, we
have developed a simple but effective refined method for calculating the loss associated with each
token, incorporating insights directly from the LLM’s performance metrics. This approach aims to
optimize the tokenizer’s vocabulary to better align with the LLM’s understanding and generation of
text. The framework is illustrated in Figure 1.

Our revised loss calculation method integrates the traditional Unigram model’s frequency-based loss
with a performance-driven loss derived from an LLM. Specifically, we first train an LLM M in the
vocabulary D using a training dataset T . This model is designed to capture the linguistic nuances
relevant to the tasks it is trained for, providing a robust framework for assessing token utility. For
each token xi in the vocabulary, we measure its individual contribution to the model’s error using a
cross-entropy loss function. The loss for each token is calculated as:

LM (xi) =
∑
xi∈T

CE(M(xi−1), xi). (3)

Here, CE represents the cross-entropy function, M(xi−1) is the LLM’s output given the previous
token xi−1, and xi is the actual next token. This formula assesses how well the LLM predicts
each token following its predecessor, providing a direct measure of each token’s impact on model
performance. Finally, The cross-entropy loss for each token is then combined with the traditional
Unigram frequency-based loss. This combined loss ensures that tokens are evaluated not only on
their frequency of occurrence but also on their actual contribution to the LLM’s task performance.
The final loss for pruning the vocabulary is given by:

L(xi) = F (LP (xi),LM (xi)), (4)

where F (·, ·) is a function to balance the importance of frequency-based loss and LLM-driven loss,
which will be discussed in experiments. Using this enhanced loss metric, we iteratively refine the
vocabulary by pruning tokens that contribute the least to the combined loss, thus optimizing the
vocabulary for both general language understanding and specific task performance. This process
continues until the vocabulary is compact enough to manage while still being comprehensive enough
to support the LLM effectively.
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Random sampling. In the training of Large Language Models (LLMs), ensuring that each token
within the set vocabulary receives equal and substantial training is crucial to prevent loss bias due to
uneven training. While iterating over all possible tokenizations of the training corpus would ideally
provide the most comprehensive learning experience, this approach is computationally prohibitive
due to the immense variety of potential segmentations. To address this, we adopt the classic Viterbi
algorithm [40] to perform randomized tokenization of the training data. This method allows for
a diverse and balanced exposure of all tokens within the vocabulary to the learning process. The
Viterbi algorithm efficiently determines the most probable tokenization paths through a probabilistic
model of token occurrence, which significantly reduces the computational overhead compared to
exhaustive methods. By leveraging this approach, our LLM can learn each token in the vocabulary
more uniformly, enhancing the overall robustness and performance of the model.

Loss momentum. In the iterative process of training Large Language Models, maintaining the
stability of the vocabulary is crucial to ensure consistent learning outcomes. To achieve this, we
propose a momentum-based improvement for calculating the loss during each iteration. Specifically,
the loss for iteration j of token xi, denoted as Lj(xi), is not solely computed based on the current
data but is also weighted by the loss from the previous iteration Lj−1. This approach allows for a
smoother convergence and mitigates fluctuations in training dynamics. The formula for updating the
loss at each iteration is given by:

Lj
momentum(xi) = βLj−1

momentum(xi) + Lj(xi), (5)

where β is the momentum coefficient that controls the extent to which the previous loss influences
the current loss. This methodology not only stabilizes the vocabulary updates across iterations but
also enhances the model’s ability to generalize from the training data by reducing the variability in
loss across successive training epochs.

4 Experiments

In this section, we outline the comprehensive experimental framework designed to assess the ef-
fectiveness of our proposed tokenizer, Adaptive Tokenizer (ADAT), in comparison to established
methods such as Byte Pair Encoding (BPE) [32] and the Unigram model [19]. These evaluations
utilize the Pythia [3] suite of models at various scales, leveraging a substantial corpus to ensure robust
and generalizable results.

4.1 Experimental Setup

Model Framework We deploy the Pythia framework [3] for its lightweight design and adaptability
across different computational setups. Pythia’s flexibility facilitates reproducibility and consistent
assessment of performance, making it an ideal choice for evaluating the scalability and efficiency of
various tokenization strategies across model sizes of 70M, 160M, and 410M parameters.

Data Corpus The study utilizes a substantial corpus extracted from The Pile [14], consisting of
56GB of raw data across 91 files. We specifically excluded subsets from DM_Mathematics and
Github to ensure the relevance and quality of the data. The remaining data, approximately 16 billion
tokens after a random shuffle, was tokenized using a Unigram [19] tokenizer with a vocabulary size
of 50,000 tokens. A detailed enumeration of the data files used is available in Supp. A.8.

Baseline Methods Our investigation compares four tokenization methods: Bytepiece [35], Byte
Pair Encoding (BPE) [32], Unigram [19], and our proposed ADAT. These tokenizers were selected
based on their established efficacy in handling large corpora and their theoretical implications for
processing complex linguistic data.

Evaluation Metrics The effectiveness of each tokenization strategy is rigorously evaluated using
several metrics. These include Perplexity (PPL), which measures the model’s predictive accuracy,
and Compression Rate(refer to A.1), assessing how efficiently the tokenization process reduces
vocabulary size while preserving linguistic diversity. We calculate PPL for all models on PG19 [29]
dataset. Specifically, we use its test set and the first 2048 tokens for each book. Furthermore, we use
the Language Model Evaluation Harness [15] to run five-shot evaluations on eight common language
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Table 1: Performance Comparison of Different Tokenization Methods.
Metric BPE BytePiece +ADAT(Ours) Unigram +ADAT(Ours)

PPL 22.31 71.5 67.19(-4.31) 16.52 6.97(-9.55)

ARC-C 17.32± 1.11 18.69± 1.14 18.94± 1.15 19.54±1.16 18.46± 1.12
ARC-E 37.58± 0.99 33.80± 0.97 33.71± 0.97 37.04±0.99 40.57±0.99
Boolq 61.28± 0.85 42.12± 0.87 62.20±0.85 53.06± 0.87 61.19± 0.85
Lambda 10.89± 0.43 8.80± 0.39 13.55± 0.48 17.27± 0.53 17.97±0.52
LogiQA 23.04± 1.65 20.28± 1.58 22.27± 1.63 23.20± 1.66 24.22±1.70
PIQA 59.25± 1.15 57.83± 1.15 56.96± 1.16 60.50±1.14 59.93± 1.14
SciQ 66.60± 1.49 54.01± 1.58 51.90± 1.58 68.10± 1.47 72.40±1.44
SST-2 51.26± 1.69 49.08± 1.69 50.23± 1.69 49.77± 1.69 54.24±1.69
Winogrande 49.96± 1.41 50.31± 1.41 49.41± 1.41 51.46± 1.40 51.62±1.40

Avg. (%) 41.91 37.21 39.91(+2.70) 42.22 44.51(+2.29)

modeling benchmarks: Lambada (OpenAI) [25], PIQA [4], WinoGrande [1], ARC-Easy [10], ARC-
Challenge [10], SciQ [18], LogiQA [22], and SST-2 [33, 41], to provide a comprehensive insight into
each method’s capabilities.

By analyzing the impact of tokenization on model scalability and the influence of vocabulary size
variations, this study aims to enhance our understanding of how tokenization strategies can optimize
language models for efficiency and linguistic performance. The findings are expected to contribute
significantly to the development of more robust and adaptable language processing tools, catering
to a wide array of NLP applications. The Pythia models are trained using a corpus of 15B tokens,
where training the 70M model consumes approximately 48 GPU hours with FlashAttention [11]. The
models used for loss calculation require additional 2 GPU hours.

4.2 Tokenization Methods Evaluation

In this section, we examine the effects of different tokenization strategies on the training effectiveness.
The core objective is to explore how variations in the vocabulary, induced by different tokenization
methods, affect model training and performance.

The Pythia-70M model is selected due to its moderate size and efficiency, which help mitigate the
complexities associated with larger model architectures. It is initialized with random weights and
undergoes a single training epoch using pre-training data. This data is processed with vocabularies
generated from 1/10th of the training corpus (approximately 1.5 billion tokens), each containing
50,000 tokens—a size consistent with the Pythia [3] setup.

Baseline tokenization methods including BPE, Unigram, and BytePiece, generate vocabularies
consisting of 50,000 tokens directly from initial data that approximately one-tenth of the training
corpus (about 1.5 billion tokens). In contrast, for the proposed ADAT method, initial vocabularies
are generated using either BytePiece or Unigram with 150,000 tokens. These are then methodically
refined down to 50,000 tokens over 5 iterative steps, matching the baseline vocabulary size. At each
step, a randomly initialized model is trained on approximately 0.3 billion tokens from the initial
dataset. Subsequently, the model performs inference on a subset of 0.1 billion tokens, during which
token loss is calculated. This loss data, when combined with token frequency using the formula

a
λ log(b+1) , guides the vocabulary pruning process. An ablation study on the combination methods
will be discussed in Section 4.6.4.

As illustrated in Table 1, our method achieves its best performance when initialized with the Unigram
vocabulary, recording a score of 44.51. This score represents a considerable improvement of 2.29
points over the standard Unigram model and surpasses the BPE model by 2.6 points. Additionally,
our approach shows a notable enhancement of 2.7 points when utilizing BytePiece as the initial
vocabulary. Although the BytePiece vocabulary generally exhibits inferior baseline results, our
method effectively elevates its performance, indicating robustness across both high-quality (Unigram)
and lower-quality (BytePiece) vocabularies. These results not only affirm the efficacy of our method
but also demonstrate its adaptability to different initial conditions, thereby validating its potential for
broad adeptness on diverse vocab initialization.
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Table 2: Evaluation on Different Scale Model Size.
Metric 70M 160M 410M

Unigram ADAT Unigram ADAT Unigram ADAT

PPL 16.52 6.97(-9.55) 13.97 6.19(-7.78) 10.92 5.78(-5.14)

ARC-C 19.54±1.16 18.46± 1.12 18.69± 1.14 18.94±1.15 20.82±1.19 19.29± 1.21
ARC-E 37.04±0.99 40.57±0.99 39.52± 1.00 42.87±1.01 44.65± 1.02 46.69±1.03
Boolq 53.06± 0.87 61.19±0.85 58.56±0.86 57.68± 0.86 54.80± 0.87 60.81±0.87
Lambda 17.27± 0.53 17.97±0.52 19.06± 0.55 25.02±0.60 27.81± 0.62 28.94±0.66
LogiQA 23.20± 1.66 24.22±1.70 25.65±1.71 25.04± 1.65 23.20± 1.66 24.32±1.68
PIQA 60.50±1.14 59.93± 1.14 60.83± 1.14 61.86±1.14 63.38± 1.12 64.61±1.11
SciQ 68.10± 1.47 72.40±1.44 72.10± 1.42 79.60±1.28 80.70± 1.25 83.50±1.14
SST-2 49.77± 1.69 54.24±1.69 52.06± 1.69 52.78±1.69 50.69± 1.69 54.71±1.69
Winogrande 51.46± 1.40 51.62±1.40 49.88± 1.41 50.69±1.41 52.41± 1.40 52.93±1.41

Avg 42.22 44.51 44.04 46.05 46.50 48.42

4.3 Scalability

We examine the scalability of a proposed tokenization method that tailors the vocabulary to model
size, unlike the static Unigram method which maintains a consistent vocabulary across various
model capacities. The scalability of the tokenization methods is tested using the Pythia framework
configured at three different levels of computational complexity: 70M, 160M, and 410M parameters.
For each model size, our method generates an optimized vocabulary specific to that configuration,
allowing us to analyze how adjustments in vocabulary affect performance as model size increases. In
contrast, the Unigram method employs a uniform 50,000-word vocabulary across all sizes, serving
as a baseline. We gauge performance using Perplexity (PPL) and scores from benchmark datasets
designed to assess the linguistic capabilities of each model under various conditions, providing
insights into the efficiency and adaptability of the tokenization methods at scale. For training larger
models, the same volume of data will lead to insufficient warm-up, potentially resulting in a slight
decline in the accuracy of loss computations used for determining token priority. As a result, we
increase the data volume for training the loss calculation model according to the size of model.

The results of this experimental framework, as presented in Table 2, indicate substantial performance
variations across different model sizes employing varied tokenization strategies. Specifically, average
performance scores across all evaluated metrics demonstrate consistent improvements with increases
in model sizes: ADAT achieves a score of 44.51 in the 70M model, significantly surpassing Unigram’s
42.22; 46.05 compared to 44.04 in the 160M model; and 48.32 versus 46.50 in the 410M model.
These findings highlight the superior efficacy of ADAT in managing diverse model volumes compared
to the more static approach of Unigram, which exhibits limited scalability with increasing model
size. Remarkably, the performance of the 70M model using ADAT exceeded that of the Unigram on
the 160M model by nearly 5%, illustrating the substantial enhancement and ability of our method to
bridge a parameter gap of over double. Furthermore, the performance of our 160M model approaches
that of the 410M model, emphasizing the robust adaptability of the ADAT method across varying
computational scales.

Table 3: Cross-Model Adaptability of Vocabularies.
Model Size Unigram 70M-Model Vocabulary 410M-Model Vocabulary

70M 42.22 44.51 42.62
160M 44.04 45.03 45.83
410M 46.50 47.66 48.42

4.4 Cross-Model Adaptability

This experiment evaluates the adaptability of vocabularies generated by our proposed tokenization
method across various configurations of the Pythia model, particularly assessing whether vocabularies
optimized for one model size can effectively scale to others. We initially create vocabularies using
the 70M and 410M configurations. These are then used to train models at both scales to evaluate
performance in downstream tasks, allowing us to assess how vocabularies designed for a specific
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Table 4: Impact of Vocabulary Size on Model Performance Across Different Model Sizes.
Model Size Vocabulary Size Tokenization Method Accuracy Perplexity (PPL)

70M
50,000 Unigram 42.22 16.52

ADAT 44.51(+2.29) 6.97

30,000 Unigram 40.93 32.53
ADAT 43.33(+2.40) 7.38

160M
50,000 Unigram 44.04 13.97

ADAT 46.05(+2.01) 6.19

30,000 Unigram 43.08 15.21
ADAT 45.26(+2.14) 6.11

size perform when applied to both smaller and larger models, thus examining their cross-model
adaptability.

Table 3 illustrates the cross-model adaptability of vocabularies across different model sizes. By apply-
ing vocabularies derived from different model sizes to various models, we observe that vocabularies
generated by the 70M and 410M models surpass the performance of the standard Unigram model.
This indicates the adaptability of the ADAT vocabularies across different model sizes. Furthermore,
we note that the vocabulary from the 410M model achieves only a marginal improvement of 0.4 when
applied to the 70M model, significantly less than the 2.29 increase afforded by the 70M model’s
vocabulary. This suggests that the vocabularies selected by ADAT possess a strong capacity for
targeted optimization, enabling the selection of tokenization strategies that are specifically tailored to
the characteristics of different models.

4.5 Model and Vocabulary Size

The experiment aims to assess the impact of different tokenizer strategies on model performance
across two vocabulary sizes, comparing a standard 50,000-token set with a reduced 30,000-token set.
We utilize two configurations of the Pythia model—70M and 160M—to explore how vocabulary size
influences model efficiency. Each model is tested using both the standard Unigram and our proposed
tokenization method. This setup allows us to directly observe the effects of reduced vocabulary
sizes on the performance dynamics, providing insights into how smaller vocabularies impact the
computational efficiency and efficacy of language models.

The experimental results, as presented in Table 4, support the hypothesis that changes in vocabulary
size can significantly affect model performance, with different impacts observed across varying
model sizes. For large language models, it is common for models of vastly different sizes to utilize
vocabularies of similar or identical sizes [3, 39]. This practice can lead to issues of performance or
efficiency. Our method offers a more effective solution by tailoring tokenization strategies to the
specific sizes of models, thereby mitigating these challenges. For the 70M model, ADAT achieved a
notable improvement in accuracy from 42.22 to 44.51 (+2.29) and a substantial reduction in perplexity
from 16.52 to 6.97 when using a 50,000-word vocabulary. Even with a reduced vocabulary of 30,000,
ADAT enhances accuracy to 43.33 (+2.40) and decreases perplexity to 7.38, suggesting robustness
against vocabulary size reduction. In contrast, the 160M model, which has a greater parameter
capacity, also shows improvements with ADAT: accuracy increases from 44.04 to 46.05 (+2.01),
and perplexity drops sharply from 13.97 to 6.19 for the 50,000 vocabulary size. With a 30,000
vocabulary, accuracy still increases to 45.26 (+2.14), and perplexity remains low at 6.11, underscoring
that larger models not only handle vocabulary reductions well but also benefit significantly in terms
of computational efficiency and model quality.

4.6 Ablation Study

This ablation study is structured into three distinct parts to explore how variations in the inference
corpus size used for calculating token loss, initial vocabulary sizes, momentum strategy, and balance
function F (a, b) influence the efficacy of our proposed tokenization method on a 70M parameter
model. More ablation results can be referred to in the supplementary.
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Table 5: Ablation Studies Results.
Infer Data Volume Initial Vocabulary Size Momentum Balance F (a, b)
Tokens Acc. Init Size Acc. Methods Acc. Methods Acc.

1M 43.13 75k 43.42 Unigram 42.20 a− λb 42.70
10M 43.74 100k 43.78 ADAT+By 44.51 log(a)− λb 43.23
100M 44.51 150k 44.51 -w/o Mnt. 43.16 a/λ log(b+ 1) 44.51

4.6.1 Corpus Size used in Loss Calculation

We conducted an experimental study to investigate the effects of varying corpus sizes on the accuracy
of token loss calculations. The experiment assessed the performance of models trained on different
sizes of inference data, specifically 1 million (1M), 10 million (10M), and 100 million (100M) tokens.
The results are summarized in the table 5.

These results indicate a direct correlation between the volume of the corpus used during the loss
calculation phase and the overall accuracy of token loss estimates. When smaller corpora are used, a
significant number of tokens are absent, resulting in numerous instances where loss values cannot
be computed. Furthermore, the precision of token loss estimations tends to decrease with smaller
data sets. Even with just 1M tokens, there was a noticeable improvement over the baseline unigram
vocabulary accuracy of 42.22. This enhancement became more pronounced with larger data volumes,
reaching an increase of 44.51 in accuracy with 100M tokens.

4.6.2 Initial Vocabulary Size

This segment of our study assesses the effect of different initial vocabulary sizes on model perfor-
mance. Adjusting the vocabulary from a baseline of 150,000 tokens to either 100,000 or 75,000
tokens, we explore the influence of vocabulary scale on training outcomes. The results, detailed in
Table 5, illustrate the trade-offs associated with varying vocabulary sizes.

From the experiment, it is evident that models equipped with a larger initial vocabulary of 150,000
tokens tend to achieve lower Perplexity and higher Accuracy, indicating a robust ability to capture
diverse linguistic nuances that significantly enhance performance. In contrast, reducing the vocabulary
size to 75,000 tokens results in increased perplexity and decreased accuracy, highlighting a potential
compromise in linguistic detail that adversely affects model functionality, especially in complex
linguistic scenarios.

4.6.3 Momentum Strategy

This experiment evaluates the impact of incorporating a momentum strategy into our tokenization
algorithm’s vocabulary pruning process. The performance of vocabularies pruned under both the
momentum and non-momentum conditions is directly compared in Table 5.

The results in Table 5 demonstrate that the momentum approach significantly enhances model
accuracy, with a notable improvement from 43.16% to 44.51% in the ADAT method with Unigram
initialization vocabulary when momentum is applied. Similarly, the Unigram method shows a baseline
performance of 42.20% accuracy. These results confirm that integrating momentum allows for a more
refined pruning process by effectively utilizing historical performance data to make more informed
decisions, thereby preserving valuable linguistic features.

4.6.4 Balance Strategy

In this ablation study, we investigate various functions to balance token frequency and loss value in
our tokenization algorithm. The primary objective is to adhere to the principle that tokens with higher
frequency and lower loss should be assigned higher priority. Given the significant difference in their
magnitudes, we explored subtraction and division methods. We evaluated three functions, detailed in
Table 5. Here, λ is a scaling factor introduced to adjust the balance between frequency and loss, and
we set it as 1 in practice.

The results demonstrate that the subtraction methods a − λb and a − λ log(b) yielded accuracies
of 42.70 and 43.23 respectively. These results indicate relatively poor performance, even with
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the logarithmic transformation applied to the score log(a) − λb. This underperformance is likely
attributable to the significant disparity in the magnitudes of frequency and loss values, which the
subtraction methods struggle to reconcile effectively. In contrast, the division method a

λ log(b+1)

significantly outperformed the subtraction approaches with an accuracy of 44.51. This superior
performance suggests that the division method more naturally balances the influence of frequency
and loss by scaling the loss logarithmically before the division, thereby mitigating the impact of
numerical range discrepancies. This method’s ability to integrate frequency and loss without requiring
additional adjustments for scale disparities results in more stable and effective prioritization of tokens.

4.7 Analysis of the Compute Costs

To prove that the proposed method is feasible in practice. We analyzed the empirical runtime
introduced by ADAT. To measure runtime, we used 8 NVIDIA A100 GPUs, an Intel 8378A CPU,
and PyTorch 2.1.2 with CUDA 12.1. The tokenizer optimization involves 5 epochs, where each
epoch consists of training the LLM on a 0.3B corpus, followed by inference on a 0.1B corpus, and
concludes with a vocabulary pruning step (90 seconds for a 100K tokens vocabulary). Therefore, the
total computational cost of the tokenizer optimization process is calculated as:

5× (0.3B training + 0.1B inference + pruning time) = 1.5B training + 0.5B inference + 450s.

ADAT introduces an additional training cost of 1.5B tokens and an inference cost of 0.5B tokens,
along with minimal vocabulary pruning time. Compared to the hundreds of billions or even trillions
of tokens required for LLM training, these computational costs are negligible. As shown in Table 6,
the full-scale training of the LLM incurs significantly higher computational costs. For instance, when
training models with a 16B and 60B corpus, the tokenizer optimization accounts for only 4.17% and
1.04% of the total training time, respectively. The Pythia-70M model takes 510 GPU hours to train
with the full Pile dataset [3], and exceeds the tokenizer optimization’s computational cost by over 255
times. Therefore, the additional computational cost introduced by our method is minimal, making it
feasible in practice.

Table 6: Runtime of ADAT optimization and training models.
Tokenizer Optimization Training on 16B Training on 60B Pythia Report

Runtime 2 GPU hours 48 GPU hours 192 GPU hours 510 GPU hours

5 Limitations

The adaptive nature of our proposed tokenizer method introduces variations in tokenizers across
different model sizes, leading to inconsistent vocabularies. This inconsistency complicates tasks
such as knowledge distillation and speculative decoding, which rely on the assumption of a uniform
vocabulary across both smaller and larger models.

6 Conclusion

In this paper, we have presented a novel approach to tokenizer design that integrates key aspects of
both accuracy and inference speed, addressing the inherent limitations found in existing tokenizer
schemes. By innovating beyond the traditional frequency-based and end-to-end methodologies,
our adaptive tokenizer framework strategically optimizes vocabulary construction, ensuring both
rapid processing and high precision in language modeling tasks. Our results demonstrate that the
adaptive tokenizer significantly enhances the performance of Large Language Models (LLMs) across
various benchmarks, providing a balanced solution that does not sacrifice speed for accuracy or vice
versa. Future work will focus on refining these adaptive tokenization techniques, exploring further
integration with neural network architectures, and expanding their applicability to a broader range of
languages and complex linguistic tasks.
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A Appendix

A.1 Compression Rate results.

The compression rate of the proposed model and baselines across Pythia model2-70M models are
shown in Table 7.

Table 7: Performance comparison of different tokenization methods.

Metric BPE BytePiece ADAT+By Unigram ADAT+U

Compression Rate 4.38 4.81 4.98 3.96 2.91

A.2 Results of ADAT in the 1B model.

To further demonstrate the scalability of our proposed ADAT method, we expanded our experimental
results on larger models and larger corpus. Specifically, we add results(shown in Table 8) from
training a 1B model on 60B corpus. The results demonstrate that on larger models and with more
data, ADAT continues to show substantial improvements over the baseline, indicating that ADAT has
strong scalability.

Table 8: Results in the 1B model.
Metric Unigram ADAT
Avg 49.11 51.20

A.3 Analysis of Differences Between Vocabularies

To illustrate the differences between the vocabulary results obtained by ADAT and those from
unigram, we calculated the overlap ratio of the two token sets as follows:

Ratio = |Avocab ∩Bvocab|/|Avocab ∪Bvocab|. (6)

Where ∩ and ∪ denote the intersection and union of two sets, respectively, we present the overlap
ratios between the tokenizers obtained using ADAT and Unigram on different models under the same
vocabulary size setting, as well as the overlap ratios between these tokenizers themselves in Table 9.
As shown in Table 1, there are significant differences between the vocabulary generated by ADAT
and that generated by unigram. This disparity arises because ADAT is not entirely data-driven in its
vocabulary generation process. By incorporating the loss from the LLM, ADAT can simultaneously
focus on enhancing the performance of the LLM. Additionally,the overlap ratio between ADAT-160M
and ADAT-410M is higher than that between ADAT-160M and ADAT-70M. This also indirectly
explains why, as shown in Table 3, the tokenizer generated by ADAT-410M is more suitable for
Pythia-160M compared to the tokenizer generated by ADAT-70M.

Table 9: Comparison between Vocabulary of ADAT and Unigram.
Unigram vs. ADAT

Model size Ratio Model size Ratio
ADAT-70M 0.18 70M | 160M 0.71
ADAT-160M 0.19 70M | 410M 0.69
ADAT-410M 0.21 160M | 410M 0.84

To compare the vocabulary obtained by ADAT with the initial vocabulary, we sorted the 100k initial
vocabulary by score in descending order and calculated the percentage of tokens, pruned by ADAT,

2with Apache-2.0 license
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that fall into each score interval. As shown in Table 10, ADAT-70M-50K tokens are most densely
distributed not in the 0-25% interval, indicating that ADAT relies not only on token frequency but
also on the prediction difficulty of tokens in the LLM during training.

Table 10: Comparison with Initial Vocabulary with vocabulary size 100k.
Vocabulary 0-25% 25-50% 50-75% 75-100%
Unigram-50k 54.75% 23.95% 8.11% 13.19%
ADAT-70M-50k 21.43% 31.60% 32.72% 14.24%

A.4 Impact of Training Epochs

We investigate the effects of varying the number of training epochs for developing the vocabulary.
Specifically, the model is trained using vocabularies that have been developed over 3, 5, and 7 epochs.
The model is initialized with random weights for each training session to evaluate the immediate
impact of the epoch variation.

As shown in Table 11, the results from varying the number of training epochs suggest a clear
relationship between training duration and vocabulary efficacy. Before the epoch reaches a certain
value (5 epochs), increasing the number of epochs benefits accuracy, indicating a more refined and
effective vocabulary. However, accuracy does not significantly improve with further increases in the
number of epochs. This suggests that, given the specified vocabulary size, ADAT can quickly and
efficiently learn an appropriate vocabulary without the need for prolonged training over many epochs.
Therefore, in our experiments, the default number of training epochs is set to 5.

Table 11: Impact of Training Epochs on Model Performance.
Training Epochs Accuracy

3 43.67
5 44.51
7 44.58

A.5 Expanded Analysis on Infer Data Volume Tokens and Initial Vocabulary Size

we have expanded the analysis of ‘infer data volume tokens’ and ‘initial vocabulary size’—both
variables are explored within and beyond settings in Table 5. The expanded results are displayed
in the table 12. We observe that an inference data volume of 100M tokens is sufficient, with larger
volumes yielding only marginal improvements. Regarding the initial vocabulary size, increasing it to
150K is important to enhance performance. However, when it increases to 200K, the score shows
almost no improvement, indicating that the 150K vocabulary likely already includes most of the
potential final candidate tokens. Therefore, further increasing the initial vocabulary size will not
bring additional benefits.

Table 12: Results for different Infer Data Volume Tokens and Initial Vocabulary Sizes.
Infer Data Volume Tokens 75K 100K 150K 200K

1M 42.89 43.07 43.13 43.20
10M 43.19 43.39 43.74 43.77
100M 43.42 43.78 44.51 44.56
1000M 43.45 43.83 44.53 44.57

A.6 Details of Model Parameters

The detailed parameters of the 3 different model sizes applied in our experiment are shown in
Table 13.
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Table 13: Specifications of different LLMs used in the paper.
Model Size Layers Model Dim Heads Learning Rate Batch Size

70M 6 512 8 10.0× 10−4 32
160M 12 768 12 2.5× 10−4 16
410M 24 1024 16 2.5× 10−4 16

A.7 Societal Impact

The adaptive tokenizer we propose is an important component of large language models. The proposed
tokenizer is fine-tuned by closely monitoring the model’s perplexity, enabling the language model to
perform well on various tasks, such as machine translation and question answering. However, it may
also face the same issues as existing subword tokenizers [19, 43], such as privacy leakage. For instance,
the tokenizer might segment sensitive information, like names, addresses, or identity identifiers, into
results of tokens that could be recognized in text generation. Therefore, we recommend that the
training corpus undergo preprocessing to remove private information. In addition, in real-world
applications, the tokenizer should be employed in conjunction with privacy-preserving technologies
and specially configured filtering rules. In specific scenarios, such as medical diagnostics and legal
consultations, human experts should be involved to review the tokenization results.

A.8 List of Training Dataset

The specific corpus used for training tokenizers is from The Pile3, and the detailed list of files is
shown below.

• pile_ArXiv_025.json
• pile_ArXiv_069.json
• pile_ArXiv_070.json
• pile_ArXiv_092.json
• pile_ArXiv_098.json
• pile_ArXiv_123.json
• pile_ArXiv_124.json
• pile_ArXiv_133.json
• pile_ArXiv_134.json
• pile_ArXiv_157.json
• pile_Books3_015.json
• pile_Books3_016.json
• pile_Books3_052.json
• pile_Books3_057.json
• pile_Books3_071.json
• pile_Books3_083.json
• pile_Books3_084.json
• pile_Books3_093.json
• pile_Books3_115.json
• pile_Books3_134.json
• pile_Books3_173.json
• pile_Books3_197.json
• pile_Books3_203.json
• pile_Books3_235.json
• pile_Books3_242.json
• pile_Books3_247.json
• pile_Enron_Emails_004.json
• pile_FreeLaw_031.json
• pile_FreeLaw_083.json
• pile_FreeLaw_104.json
• pile_Gutenberg_PG-19_044.json

3URL:https://pile.eleuther.ai/
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• pile_Gutenberg_PG-19_049.json
• pile_OpenSubtitles_008.json
• pile_OpenSubtitles_031.json
• pile_OpenSubtitles_037.json
• pile_OpenWebText2_011.json
• pile_OpenWebText2_050.json
• pile_OpenWebText2_063.json
• pile_OpenWebText2_108.json
• pile_OpenWebText2_118.json
• pile_OpenWebText2_132.json
• pile_OpenWebText2_157.json
• pile_OpenWebText2_162.json
• pile_OpenWebText2_212.json
• pile_OpenWebText2_216.json
• pile_OpenWebText2_242.json
• pile_OpenWebText2_245.json
• pile_OpenWebText2_256.json
• pile_Pile-CC_001.json
• pile_Pile-CC_024.json
• pile_Pile-CC_069.json
• pile_Pile-CC_076.json
• pile_Pile-CC_106.json
• pile_Pile-CC_120.json
• pile_Pile-CC_133.json
• pile_Pile-CC_181.json
• pile_Pile-CC_209.json
• pile_Pile-CC_211.json
• pile_Pile-CC_237.json
• pile_Pile-CC_254.json
• pile_Pile-CC_259.json
• pile_PubMed_Abstracts_037.json
• pile_PubMed_Abstracts_049.json
• pile_PubMed_Abstracts_054.json
• pile_PubMed_Central_028.json
• pile_PubMed_Central_053.json
• pile_PubMed_Central_067.json
• pile_PubMed_Central_069.json
• pile_PubMed_Central_085.json
• pile_PubMed_Central_123.json
• pile_PubMed_Central_125.json
• pile_PubMed_Central_132.json
• pile_PubMed_Central_149.json
• pile_PubMed_Central_165.json
• pile_PubMed_Central_173.json
• pile_PubMed_Central_215.json
• pile_PubMed_Central_220.json
• pile_Stack_Exchange_055.json
• pile_USPTO_Backgrounds_012.json
• pile_USPTO_Backgrounds_027.json
• pile_USPTO_Backgrounds_031.json
• pile_USPTO_Backgrounds_051.json
• pile_Ubuntu_IRC_001.json
• pile_Ubuntu_IRC_017.json
• pile_Ubuntu_IRC_021.json
• pile_Wikipedia_en_006.json
• pile_Wikipedia_en_009.json
• pile_Wikipedia_en_043.json
• pile_Wikipedia_en_053.json
• pile_Wikipedia_en_070.json
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• pile_YoutubeSubtitles_008.json
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results are included in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information needed to reproduce the experimental results is included in
the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The list of the dataset is included in the appendix. We will release codes after
completing the necessary preparations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are included in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the experiment results with std error.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The sufficient information on the computer resources is included in Experiment
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Both potential positive societal impacts and negative societal impacts are
discussed in Societal Impact section of the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Included all citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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