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Abstract

Tabular data is the foundation of many applications in fields such as finance and
healthcare. Although DNNss tailored for tabular data achieve competitive predictive
performance, they are blackboxes with little interpretability. We introduce XNNTas,
a neural architecture that uses a sparse autoencoder (SAE) to learn a dictionary
of monosemantic features within the latent space used for prediction. Using an
automated method, we assign human-interpretable semantics to these features.
This allows us to represent predictions as linear combinations of semantically
meaningful components. Empirical evaluations demonstrate that XNNTAB attains
performance comparable to that of state-of-the-art, black-box neural models and
classical machine learning approaches while being fully interpretable.

1 Introduction

Tabular data is the most common type of data in a wide range of industries, including advertising,
finance and healthcare. While deep neural networks (DNNs) achieved major advances in computer
vision, their performance on tabular data remained below that of Gradient Boosted Decision Trees
(GBDTs) [[Chen and Guestrinl 2016} Khan et al.,[2022]]. To improve the performance of DNNs on
tabular data, several deep learning methods have been developed with specialized architectures that
take into account the unique traits of tabular data (mixture of categorical, ordinal and continuous
features) in order to be on par [Huang et al.| 2020] or even outperform GBDTs [[Chen ef al.,|2024]].
While these methods address the limitations of DNNs in terms of performance, DNNs still remain
blackboxes, whose decisions are hard to communicate to end users [Schwalbe and Finzel, 2023]].

In this paper, we address the interpretability limitation of existing DNNs and present XNNTas, a
deep neural network with a sparse autoencoder (SAE) component. The SAE learns a dictionary
of monosemantic, sparse features that are used for outcome prediction. We take inspiration from
the success of SAEs in learning interpretable features from LLM’s internal activations [Huben
et all 2023} [Yun et al [2021]]. We use an automated method to assign human-understandable
semantics to the learned monosemantic dictionary features. Our method is illustrated in Figure|l|and
described in Section [3] We show that XNNTas outperforms interpretable models and has similar
performance to classical blackbox models. Additionally, XNNTaB is fully interpretable: the final
prediction is a simple linear combination of the dictionary features, which have easily accessible
human-understandable semantics.

Preprint.
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Figure 1: Architecture overview. A. An MLP learns nonlinear features, which are decomposed
into monosemantic dictionary features using an SAE. B. Dictionary features are assigned a human-
interpretable meaning by learning rules for the subset of training instances that highly activate a
specific feature. C. Predictions are linear combinations of monosemantic features by combining the
linear model components (the decoder, M T and the linear layer of the MLP, W).

2 Related Work

Gradient boosted decision trees (GBDTs) [Chen and Guestrinl, [2016; [Khan et al.l [2022] have shown
state-of-the art performance on tabular data [Grinsztajn et al., 2022]]. To close this performance gap
to GBDTs, neural architectures specifically designed for tabular data have been proposed, such as
attention-based architectures [Gorishniy et al.| 2021; [Somepalli et al., [2022; |Yan et all [2023] or
retrieval-augmented models [Somepalli et al.l 2022; Gorishniy et al.,|2023|]. Additional techniques
include tailored regularizations [Jeffares er al., [2023]], deep ensembles [Gorishniy ef al.| [2024]],
attentive feature selection strategies [|Arik and Pfister, 2021]], categorical feature embedding [Huang
et al.l2020]] and reconstruction of binned feature indices [[Lee et al., 2024].

Recent methods focus not only on performance, but also aim to include interpretability. Proto-
Gate [Jiang et all |2024] is an ante-hoc interpretable architecture for tabular data, which learns
prototypes of classes and predicts new instances based on their similarity to class prototypes. Inter-
preTabNet [Si et al.|[2024]], a variant of TabNet [Arik and Pfister, 2021]] adds post-hoc explanations
by learning sparse feature attribution masks and using LLMs to interpret the learned features from
the masks. Similar to ProtoGate and different from InterpetTabNet, XNNTaB is intrinsically inter-
pretable, i.e., it uses interpretable features directly for prediction. While ProtoGate relies on class
prototypes, XNNTaB learns relevant feature combinations that describe parts of instances, similar to
part-prototype models [Elhadri ef al., 2025].

3 Method

XNNTAaB consists of a standard neural blackbox (e.g., an MLP) to learn nonlinear latent features, and
a sparse autoencoder (SAE) [Huben et al.,[2023]] to decompose this latent polysemantic feature space
into monosemantic features (cf. Figure[I| A). The monosemantic features are in a latent space with
unknown (but unique) semantics. To assign meaning to each feature, we learn rules that describe the
subset of the training samples that highly activate each feature (cf. Figure[I} B). Finally, we combine
the last linear layers into a single linear layer by multiplying their weight matrices (cf. Figure [T} C).

3.1 Architecture

The base blackbox model is an MLP with multiple hidden layers and a softmax output. We denote the
penultimate layer as /, and the representations of this layer as /#;. The MLP learns a function § = f(x).
f(x) can be decomposed into a function g learning the hidden representations /; and a linear model &
predicting the target based on Ay, i.e., § = h(h;) = h(g(x)). g(-) is characterized by the parameters 6,,
and A(-) is characterized by the weight matrix W.

We adopt the SAE architecture introduced by [Huben et al.|[2023]]. The SAE consists of an input
layer, a hidden layer, and an output layer. The weights of the encoder and decoder are shared, and
given by the matrices M and M7, respectively. The encoder has an additional bias vector b, the
decoder has not [Huben ef al., [2023]]. We set the size of the hidden layer as dyi; = R - d;, with d;,
being the dimension of the MLP’s layer /. R is a hyperparameter that controls the size of the feature



dictionary. The input to the SAE are the hidden representations of the blackbox MLP #;. The output
of the SAE is given by & = MT(ReLU (Mh; + b)). By design, /; is a sparse linear combination of
(latent) dictionary features [Huben ef al.| |[2023].

3.2 Training

XNNTaB is trained in four steps: i) training of the MLP’s representation, ii) training of the SAE, and
iii) finetuning of the decision layer, iv) combining linear components.

Step 1: MLP training. The MLP’s parameters 6yp= (6, W) are trained using cross-entropy loss
and L1 regularization. The SAE is not present in this step.

Step 2: SAE Training. To learn a dictionary of monosemantic features we follow the training
procedure by [Huben et al.|[2023[]. The SAE is trained to reconstruct the hidden activations #; of
training samples x. The SAE uses a reconstructing loss and a sparsity loss on its hidden activations
hs g to learn sparse dictionary features.

Step 3: Finetuning the decision layer. We freeze the parameters 6, of the MLP and 6s 4 of the SAE
and finetune the weights W in the decision layer with the same loss as in step 1 to make predictions
from the reconstructions learned by the SAE #;.

Step 4: Aggregating linear components. Both, the decoder part of the SAE and the final decision
layer of the MLP are linear layers, and can be combined into one layer. Therefore, we directly connect
the hidden layer of the SAE to the output and set the weights of this layer to W = WM TEf,

3.3 Learning Representation Semantics

The hidden representations of the SAE represent monosemantic dictionary features in a latent space,
but their semantics are unknown. To assign human-understandable semantics to those features, we
follow a similar idea as in [Huben et al| [2023] for tabular data instead of text (cf. Figure[I] B).
For each dimension in the latent representation of the SAE j € {1, ...d;;4}, we identify the subset of
training samples 7T'; which highly active this feature, i.e., whose activations are above a threshold ¢.
We then use a rule-based classifier to learn simple decision rules describing this subset.

4 Experiments

Datasets and Evaluation Metrics. We evaluate on two benchmark datasets for structured data,
Adult (ADULT) [[Vanschoren et al.,|2014] and Churn Modelling (CHURNﬂ ADULT contains 15
features describing approx. 50k instances. CHURN contains 14 features and 10k instances. In
both cases, the task is binary classification. For evaluation, we use 5-fold-cross-validation. The
training/validation/test proportion of the datasets for each split are 65%/15%/20%. We report accuracy
and macro F1 on the test set, averaged across all folds.

Models and Parameters. We manually define the neural architecture for the MLP and SAE
components of XNNTaB. The base MLP has 3 layers with (100, 64, 32) neurons, the SAE 2 x32 = 64
(R=2) neurons in the hidden layer. See Appendix A.2 for details on all hyperparameters.

Representation Semantics. To assign human-understandable semantics to the dictionary features,
we employ Skope-rulesﬂ For each dictionary feature f;, we retrieve a set T; of instances for which
the activation of neuron j is above the threshold ¢ = 0.75. We assign label = 1 to instances in T ;
and label = 0 to the remaining instances. The Skope-rules classifier learns a set of decision rules
describing instances of the positive class. We set the precision hyperparameter of Skope-rules to 1
and keep the rest of the hyperparameter to the default settings. For each T';, we keep the rule with the
highest coverage (recall).

Results. Table (1| shows that, on both datasets, XNNTaB outperforms interpretable models. On
ADULT, XNNTaB is comparable to MLP and slightly below the performance of XGBoost and Rando
Forest. On CHURN, XNNTas is on par with all baseline blackbox models including XGBoost.

lill = MTI’ISAE, andjz = Wil] = WMT/’ZSAE
Zhttps://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
*https://github.com/scikit-learn-contrib/skope-rules. Accessed July 2025



These results show that our model introduces interpretability to DNNs with very little compromise
on performance. A selection of rules extracted for the dictionary features on ADULT are shown
in Table [2] (full list in Appendix B.1, for CHURN in Appendix B.2). The learned rules provide a
global explanation of the model’s behavior (Figure [2]left), since the predictions are simply a linear
combination of the learned features (rules). Each weight in this linear combination directly indicates
whether the presence of the corresponding features increases or lowers the probability of a class,
and to which extent. Figure 2] (right) shows that on average 30 out of the 64 features that we learn
for ADULT are active above the chosen threshold. That means, one local explanation requires us
to inspect 30 rules to understand the model’s prediction. The number of active features on average
slightly increases for CHURN, but not the complexity of the rules (average rule length remains 2).
While the number of active rules is high, several rules are redundant and could be pruned. A pruning
mechanism could improve the interpretabiliy of the explanations, and while not in the scope of this
paper, it is part of our future work.

Table 1: Performance of blackbox (X) and fully interpretable (v') models on two benchmark datasets.
Best values are marked bold, best values for interpretable models bold italic.

ADULT CHURN
F1-Macro Acc F1-Macro Acc
X  Random Forest 0.799 £ 0.003 0.861 =0.002 0.747 £0.013  0.862 + 0.007
X  XGBoost 0.815 + 0.002 0.869 = 0.001 0.750 +£0.012 0.861 + 0.007
X MLP 0.796 £ 0.002 0.850 = 0.002 0.751 £0.106 0.860 = 0.006
v/ Logistic Regression 0.782 +£0.002 0.815 +£0.002 0.601 +£0.006 0.808 + 0.000
v/ Decision Tree 0.787 £0.001 0.851 =0.002 0.735 +£0.008 0.849 + 0.006
v/ XNNTas (ours) 0.795 £ 0.002 0.850 = 0.002 0.752 + 0.008 0.861 = 0.002

Table 2: A selection of dictionary features for the ADULT dataset. |T;| - size of the training subset
that strongly activate feature j. Coverage of the rule reported as number of samples and percentage
of samples. Table sorted by |T].

j IT_jl Description Coverage

40 15294 marital_status_Married is False and educational_num < 13 11625/0.76
and capital_gain <= 8028.0

9 11968 marital_status_Married is False and age <= 37.5 and 7271/0.61
educational_num < 12

8 11634 marital_status_Married is False and age <= 34.5 and 6517/0.56
educational _num < 12

54 10889 marital_status_Married is False and age <= 31.5 and 5953/0.55
educational _num < 13

44 7457 marital_status_Married is False and 3330/0.45
relationship_Not_in_family is False and age <= 25.5

45 3975 marital_status_Married is False and age <= 22.5 and 1516/0.38
hours_per_week <= 32.5

5 1758 age <= 20.5 and hours_per_week <= 24.5 754/0.43

34 1658 occupation_Other_service is False and capital_gain > 547/0.33
14682.0

26 1358 marital_status_Widowedand is False and capital_gain > 546/0.40
14682.0

50 982 age <= 72.0 and capital_gain > 15022.0 532/0.55

63 978 gender is Female and age <= 18.5 and hours_per_week <= 236/0.24
24.5

7 290 occupation_Farming_fishing is False and capital_gain > 209/0.73
19266.0 and hours_per_week > 27.5

18 226 relationship_Other_relative is False and capital_gain > 185/0.82
26532.0

22 225 occupation_Farming fishing is False and capital_gain > 183/0.82
26532.0 and hours_per_week > 18.0

3 212 capital_gain > 34569.0 153/0.73
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Figure 2: Left: Decision weight matrix W’ for ADULT on interpretable features. Right: Statistics on
complexity of features on ADULT and CHURN.

Impact of activation threshold 7. Figure [3] shows the impact of 7 on the number of rules that can be
extracted per active feature and on the number of instances covered by each rule (recall). The average
recall increases with an increasing threshold, as the sets of instances by which features get activated
become more focused. This makes it easier for Skope-rules to find a rule that explains most of the
instances in the set. However, a focused set limits the data instances a rule could apply to. For some
of these sets, Skope-rules fails to extract meaningful rules, i.e., the sets of instances that are activated
by extracted rules become empty. In consequence, the amount of active features for which rules can
be extracted decrease with increasing threshold 7. Choosing the right threshold requires balancing the
trade-off between the average rule recall and the fraction of extracted rules per active features.

5 Conclusion

We introduced XNNTaB, an interpretable model for tabular data. Our results show, that XNNTaB
outperforms interpretable models and performs comparably to blackbox architectures. In future
work, we plan to investigate pruning of redundant rules and automated methods to identify activation
thresholds for an optimal balance between rule recall and fraction of extracted rules.
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Figure 3: Fraction of features and instances covered by rules to explain ADULT at different feature
activation thresholds ¢. Orange bars show the average fraction of rules extracted per active feature
with the number of active features on top, blue bars show the average recall of the rules in terms of
instances.
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