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ABSTRACT

Adam has become one of the most popular optimizers for training modern deep
neural networks, such as transformers. However, its applicability is largely re-
stricted to single-level optimization problems. In this paper, we aim to extend
vanilla Adam to tackle bilevel optimization problems, which have important ap-
plications in machine learning, such as meta-learning. In particular, we study
stochastic bilevel optimization problems where the lower-level function is strongly
convex and the upper-level objective is nonconvex with potentially unbounded
smoothness. This unbounded smooth objective function covers a broad class of
neural networks, including transformers, which may exhibit non-Lipschitz gradi-
ents. In this work, we introduce AdamBO, a single-loop Adam-type method that

achieves O(e~*) oracle complexity to find e-stationary points, where the oracle
calls involve stochastic gradient or Hessian/Jacobian-vector product evaluations.
The key to our analysis is a novel randomness decoupling lemma that provides
refined control over the lower-level variable. We conduct extensive experiments
on various machine learning tasks involving bilevel formulations with recurrent
neural networks (RNNs) and transformers, demonstrating the effectiveness of our
proposed Adam-type algorithm.

1 INTRODUCTION

The Adam algorithm (Kingma & Bal [2014)) is one of the most popular optimizers for training mod-
ern deep neural networks due to their computational efficiency and minimal need for hyperparameter
tuning. For example, Adam has become the default choice for training transformers (Vaswani et al.,
2017;|Devlin et al.l 2018)) and vision transformers (ViT) (Dosovitskiy et al.,2021)). Practitioners fa-
vor Adam and adaptive gradient methods in general because they significantly outperform stochas-
tic gradient descent (SGD) for certain models, such as transformers (Zhang et al., 2019; |(Crawshaw
et al.| 2022} [Kunstner et al.,[2023; |Ahn et al., [2023)). Recently, there is a line of work analyzing the
convergence of Adam under various assumptions (Guo et al., [2021b; |Défossez et al., 2020; Wang
et al.,[2022; |Zhang et al., [2022; |L1 et al., 2023a).

Despite the empirical and theoretical advances of Adam, it is only applicable for single-level op-
timization problems such as the empirical risk minimization. However, there is a huge class of
machine learning problems which are inherently bilevel optimization problems (Bracken & McGill,
1973 Dempe, |2002), including meta-learning (Franceschi et al.l 2018} [Rajeswaran et al., |2019),
reinforcement learning (Konda & Tsitsiklis, [2000), hyperparameter optimization (Franceschi et al.,
2018; |[Feurer & Hutter, 2019) and continual learning (Borsos et al., [2020; |Hao et al., |2023)). There-
fore, an important question arises: How can we extend the applicability of vanilla Adam to solve
bilevel optimization problems, while ensuring both provable theoretical convergence guaran-
tees and strong empirical performance for machine learning applications?

In this paper, we provide a positive answer to this question, under the setting of bilevel optimiza-
tion under unbounded smoothness (Hao et al., 2024} |(Gong et al., [2024a). In particular, the bilevel
optimization in this setting has the following form:

min ®(z) := f(z,y"(z)), st y*(z)=arg min g(z,y), (1)
rERdx yeR%
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where f and g are upper- and lower-level functions respectively, and f satisfies a unbounded smooth-
ness condition (see Definition[3.1]) and g is a strongly-convex function in y. One example satisfying
this particular setting is meta-learning (Finn et al.| 2017} Franceschi et al.| [2018)) with certain ma-
chine learning models such as RNNs (Elman, [1990) or transformers (Vaswani et al.| 2017)), where
x represents all layers except for the prediction head, y represents the prediction head, and the goal
is to learn the shared model parameter z to find a common representation such that it can quickly
adapt to various tasks by simply adjusting the task-specific prediction head y. The unbounded
smoothness condition for the upper-level function f is particularly relevant in this paper for two
main reasons. First, recent studies have demonstrated that the gradient’s Lipschitz constant (i.e., the
smoothness constant) is unbounded in various modern neural networks, including RNNs and trans-
formers (Zhang et al., 2020bj; (Crawshaw et al., 2022} Hao et al., [2024)). Second, Adam is empiri-
cally successful on training these neural networks (Vaswani et al., [2017; [Kunstner et al., [2023) and
its convergence under unbounded smoothness was recently proved within the single-level optimiza-
tion framework (Li et al., 2023a). Therefore it is natural and imperative to design new Adam-type
algorithms, building on the vanilla Adam approach, to solve bilevel optimization problems in the
unbounded smoothness setting.

We introduce an Adam-type algorithm for such bilevel optimization problems with provable con-
vergence guarantees. Our algorithm is called Adam for Bilevel Optimization (AdamBO). AdamBO
begins by running a few iterations of SGD to warm-start the lower-level variable, after which it
simultaneously applies vanilla Adam updates to the upper-level variable and SGD updates to the
lower-level variable. The primary challenge for the convergence analysis of AdamBO is tackling
the complicated dependency between the upper-level hypergradient bias and the lower-level esti-
mation error when the upper-level performs the vanilla Adam update. The convergence analysis of
AdamBO for unbounded smooth upper-level functions builds upon the insight of regarding bilevel
optimization as a stochastic optimization problem under distributional drift (Gong et al.,[2024a)), but
with a few important differences. First, our analysis incorporates a novel randomness decoupling
lemma for lower-level error control, which arises from using Adam updates for the upper-level vari-
able. Second, unlike (Hao et al., [2024} |Gong et al., 2024a), the lower-level error in our setting is
not necessarily small across iterations, requiring a more refined analysis to handle the hypergradient
bias and establish convergence guarantees. Our main contributions are summarized as follows.

* We design a variant of Adam, called AdamBO, for solving bilevel optimization problems
under the unbounded smoothness setting. We prove that AdamBO converges to e-stationary

points with 5(6’4) oracle complexity.

* We develop a novel randomness decoupling lemma for lower-level error control and a re-
fined analysis for the hypergradient bias, which are of independent interest and could be
applied to analyzing the convergence of other adaptive optimizers in bilevel optimization.

* We conduct experiments on meta-learning and deep AUC maximization for text classifica-
tion tasks with RNNs and transformers to verify the effectiveness of the proposed Adam-
type algorithms. We show that AdamBO consistently outperforms other bilevel algorithms
during the training process. Notably, for the transformer model, they improve the training
(testing) AUC by at least 14% (7%) over other baselines. The running time results indicate
that our algorithms converge much faster than baselines.

2 RELATED WORK

Convergence Analysis of Adam. Adam was proposed by (Kingma & Bal, [2014) and the conver-
gence guarantee was established under the framework of online convex optimization. [Reddi et al.
(2019) identified a divergence example of Adam under fixed hyperparameters and designed new
variants to fix the divergence issue of Adam. Recently, there is a line of work analyzing the conver-
gence of Adam under various assumptions and problem-dependent hyperparameter choices (Zhou
et al.,2018;/Guo et al., |2021b; Défossez et al., 2020; Wang et al., 2022; Zhang et al.,|2022; |L1 et al.}
2023a). The most related work to our paper is (Li et al., |2023a), which studied the convergence
of Adam under relaxed assumptions (i.e., generalized smoothness as defined by (Li et al.l 2023a))).
However, all of these works only consider Adam within the single-level optimization framework and
are not applicable for bilevel optimization problems.
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Bilevel Optimization. Bilevel optimization was extensively studied in the literature, most of which
focus on asymptotic convergence guarantees (Bracken & McGill, |1973}; |Vicente et al., |1994; |Anan-
dalingam & White, [1990; White & Anandalingam,|1993). /Ghadimi & Wang| (2018) studied bilevel
optimization algorithms with non-asymptotic convergence guarantees when the lower-level func-
tion is strongly convex. The complexity results were later improved by a series of work (Hong et al.}
2023; Ji et al., 20215 (Chen et al., 2021; [Dagréou et al., [2022}; [Kwon et al., 2023 |Chen et al., 2023a).
When each realization of the functions has a Lipschitz stochastic gradient, several works incorporate
momentum-based variance reduction techniques (Cutkosky & Orabona,2019) to further improve the
convergence rate (Khanduri et al.}|2021; |Guo et al., [2021a} |Yang et al., 2021). Recently, (Hao et al.,
2024; \Gong et al., 2024ajb) considered bilevel optimization with unbounded smoothness for the
upper-level function and designed stochastic algorithms with convergence guarantees. However,
none of these works use the Adam update under the bilevel optimization setting.

Relaxed Smoothness. Zhang et al.[(2020b) initiated the convergence analysis of the gradient clip-
ping algorithms under the relaxed smoothness condition, which was motivated by the loss landscape
of RNNs and LSTMs. The work of (Zhang et al.| [2020b)) inspired a line of work focusing on design-
ing various algorithms under the relaxed smoothness condition (Zhang et al.,[2020a; Jin et al., 2021}
Liu et al., [2022; |Crawshaw et al., [2023ajb; Faw et al., 2023; [Wang et al., 2023; L1 et al., |2023azb),
some of them achieved improved convergence rates (Liu et al., 2023} Reisizadeh et al., [2023} [Li
et al.l 2023a). Several variants of relaxed smoothness were considered in (Crawshaw et al., 2022}
Chen et al.,[2023b; [Hao et al.;,|2024; /Gong et al.,[2024aib). This work considered the same problem
setting as in (Hao et al.| 2024} |Gong et al.| 2024azb)), focusing on designing Adam-type algorithms
for bilevel optimization with unbounded smooth upper-level functions.

3 PRELIMINARIES, NOTATIONS AND PROBLEM SETUP

Denote (-,-) and || - || as the inner product and Euclidean norm of a vector or spectral norm of a
matrix. For any vectors x and y, denote 22, 1/, ||, z®y, z/y as the coordinate-wise square, square
root, absolute value, product and quotient, respectlvely We write x = y to denote the coordinate-
wise inequality between x and y7. We use O(-), ®(~), Q(-) to denote asymptotic notations that hide
polylogarithmic factors of 1/¢. Define f, g : R% xR% — R as the upper- and lower-level functions,
where f(z,y) = E¢up, [F(z,y;§)] and g(v,y) = E¢up, [G(x,y; ()], with Dy and D, being the
underlying data distributions, respectively. When the lower-level function is strongly convex, the
hypergradient has the following form (Ghadimi & Wang|, 2018)):

VO(z) = Vo f (z,y%(x)) — Va,9(z, v (2))[Vi,9(x, y* ()] 'V, f(2,y"(2)).

The goal of this paper is to design Adam-type algorithms that can find e-stationary points of function
® (i.e., finding an x such that IV®(x)|| < €). For a given (z,y), we estimate the hypergradient
Vo(x ) using Neumann series approach (Ghadimi & Wang, 2018)) with the following formulation:

A ) Q-1 g V2 G(z,y; ¢(09)
Vo(x,y;€) = Vo F(x,y;€) — V2,G(x,y;:¢) Z 1T ( o ) Yy F(x,y;8),

l
q0j1 9,1

where g = {g’ C(O), 5(0)7 . )é(Q_l)} and 6((” = {C((I-,l) C((IvQ)} for q 2 0.

Definition 3.1 ((L;,0, Ly,1, Ly, 0, Ly,1)-Smoothness (Hao et al., 2024, Assumption 1)). Let z =
(z,y) and 2’ = (2/,/), there exists Lx,o, Ly1,Ly0,Ly1 >0 such that for all z, 2 if ||z = 2| <

1/\JL3 1+ Ly 1. then ||V f(2) = Vo f(2')|| < (Lao + Lea Vo f(2) )]z = 2l and |V f(2) —
Vi f(Z)I < (Lyo + Ly 1 [Vy F() DIz = 2.

Remark: This definition characterizes the unbounded smoothness of the upper-level function f and
has also been used in previous works (Hao et al., 2024} |Gong et al.| [2024ajb). It can be regarded
as a generalization of the relaxed smooth assumption in (Zhang et al., [2020b) and the coordinate-
wise relaxed smoothness assumption in (Crawshaw et al., [2022). Moreover, it has been empirically
verified for bilevel formulations with RNNs (Hao et al.| [2024).

Assumption 3.2. Suppose functions f and g satisfy: (i) f is continuously differentiable and
(Lz,0, La,1,Ly,0, Ly,1)-smooth in (z,y); (i) For every z, ||V, f(z,y*(x))|| < l¢,0; (iii) For every
z, g(z,y) is p-strongly convex in y for 11 > 0; (iv) g is continuously differentiable and [, ;-smooth
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jointly in (,y); (v) g is twice continuously differentiable, and V2, g, V7 g are I, o-Lipschitz jointly
in (z,y); (vi) Objective function ® is bounded from below by ®*.

Remark: Assumption [32] is standard in the bilevel optimization literature (Kwon et al.| 2023}
Ghadimi & Wang| 2018}; |Hao et al., 2024). Under this assumption, the objective function ® is
(Lo, L1)-smooth, see Lemma in Appendix [B|for definitions of Lo, L1 and more details.

Assumption 3.3. The stochastic estimators are unbiased and satisfy: (1) |V.F(z,y;&) —
Vo f(@y)ll <ops () [|VyF(z,y:6) =V, f(2, )| <o i) [[VyG(,4;0) = Vyg(z,y)|| < g5
(V) [|V2,G (2. 4: Q) = Vi, 9(2,9)ll < 0g,2: W [V, G (2,43 ¢) = Vi,9(z,9)|| < 0g0.

Remark: Assumption [3.3] assumes the noise in the stochastic gradient and Hessian/Jacobian is
almost-surely bounded or light-tailed. This is an standard assumption in the literature of optimiza-
tion for single-level relaxed smooth functions (Zhang et al.l [2020bjal), as well as for bilevel opti-
mization under unbounded smooth upper-level functions (Hao et al., {2024} |Gong et al., 2024a}b)).
Assumption 3.4. (i) If |z — 2| < 1/4/L2,+ L7, then for every &, |V.F(z,y;§) —
VoF (2,95 )| < (Lao + LoalVaf(z,9)Dlly — vl and [V F(2;€) = Vy (2 €| < (Lyo +
Ly1lIVy f(2)[)llz = 2'||; (ii) For every ¢, G(z, y; ¢) satisfy Assumption[3.2)(iv) and (v).

Remark: Assumption[3.4](i) requires that certain properties of the second argument (i.e., the lower-
level variable y) in the upper-level function at the population level also hold almost surely for each
random realization. Assumption[3.4](ii) requires each random realization of the lower-level function
satisfies the same property as in the population level. Similar assumptions were made implicitly
in the bilevel optimization literature (Ghadimi & Wang] 2018)). Note that this assumption does not
assume any properties in terms of the upper-level variable x under each random realization.

4 ADAMBO AND CONVERGENCE ANALYSIS

4.1 ALGORITHM DESIGN AND TECHNIQUE OVERVIEW

Algorithm Design. Our proposed Adam-type algorithm AdamBO is presented in Algorithm (1} It
consists of the following components. First, the algorithm requires several warm-start steps for
updating the lower-level variable y for a given initialization of the upper-level variable x (line 2),
which is designed to obtain a good estimate of the optimal lower-level variable at the very beginning
and shares the same spirit of the bilevel algorithms introduced in (Hao et al., 2024; |Gong et al.,
2024ab). Second, the algorithm updates both the upper- and lower-level variables simultaneously:
the lower-level variable y is updated by SGD, and the upper-level variable x is updated by the vanilla
Adam algorithm (lines 3 ~ 9). Therefore, the upper-level update benefits from the coordinate-wise
adaptive learning rate. In contrast, the existing bilevel optimization algorithms under the unbounded
smoothness setting use normalized SGD with momentum to update the upper-level variable (Hao
et al., [2024; |Gong et al., |2024ab)), which use a universal learning rate for every coordinate.

Main Challenges. The main challenges for the convergence analysis of AdamBO are listed as
follows. First, the analysis of vanilla Adam in the single-level generalized smooth optimization set-
ting (L1 et al., [2023a) is not directly applicable for bilevel problems. This is because the hypergra-
dient estimator in bilevel optimization may have a non-negligible bias due to inaccurate estimation
of the lower-level variable, whereas the single-level analysis in (L1 et al., 2023a) does not need to
account for this issue. Second, the existing algorithms and analyses for bilevel optimization with
unbounded smooth upper-level functions require the lower-level error to be small (Hao et al., 2024;
Gong et al.,|2024azb)), which may not hold for AdamBO. In particular, the existing analysis crucially
relies on a fixed update length for the upper-level variable at every iteration (due to normalization):
the analysis in (Hao et alJ |2024; \Gong et al.| 2024ajb) views the update of the upper-level variable
as a fixed distributional drift for the lower-level function, which is crucial to show that the lower-
level error is small and the hypergradient bias is negligible. However, such an argument is not true
for AdamBO: the Adam update for the lower-level variable does not have a fixed update size and
it depends on randomness from both upper-level and lower-level random variables in the stochastic
setting, which make the lower-level error control more challenging.

Technique Overview. To address these challenges, one of our main technical contributions is the
introduction of a novel randomness decoupling lemma for controlling the lower-level error when
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Algorithm 1 ADAMBO
1: Illpllt: ﬂvﬂsqan777>‘7T07T7xlayO R R
2: Initialize y; = SGD(x1,v0,7, T0), M1 = Vo(z1,y1; &) and 91 = (Vé(xq,91;61))?
3: fort=1,...,7 do
4 Y1 =Y — ’YvyG(ﬂﬁtayy Ct) R
i omy= (1= B)mu_1+ BVe(xe, yi; &), v = (1 — Bsq)Vi—1 + 5sq(v¢($tayt;§_t))2
p N
7
8

A n — v
M= T=a-py YT TRy
T4l = Tt — ﬁ@mt

: end for

the upper-level variable is updated by Adam, as illustrated in Section[4.3.1} This lemma provide a
high probability guarantee for the lower-level error control when the upper-level update rule satisfies
certain conditions (which are satisfied by the vanilla Adam update rule for the upper-level variable).
The key novelty of this lemma lies in the randomness-decoupling fact: the high-probability bound
depends solely on the randomness {(;}7_; from the lower-level random variables, and it holds for
any fixed sequence of upper-level variables {z;}7_; and any fixed upper-level random variables
{&}I_, that respect the Adam updates. To describe the condition that Adam satisfies and to prove
this lemma, we introduce an auxiliary sequence (defined in (3)) that separates the randomness in
the upper- and lower-level random variables, which is new and has not been leveraged in previous
bilevel optimization literature.

4.2 MAIN RESULTS

We first introduce some notations and technical definitions. Denote o(-) as the o-algebra generated
by the random variables within the argument. Let Fi,;; be the filtration for updating v, (see Algo-
rithm: Finit = 0 (70, - .., m1,—1). Forany t > 2, define F¥, F} and F; as Ff¥ = o(&1,...,&-1),
F! =0(Cy. .. Go1) and Fy = o(Fipe U FF U FY). We use E¢[] to denote the conditional ex-
pectation E[- | F;]. We also use ¢q, co, c3 to denote small enough constants and C1, Cs to denote
large enough constants, all of which are independent of € and J, where € denotes the target gra-
dient norm and § denotes the failure probability. The definitions of problem-dependent constants
0$,Cs0,Cs,1,1, Lo, L1, L, Cg are comprehensively listed in Appendix [D.1}

Theorem 4.1. Suppose Assumptions to hold. Let G be a constant satisfying G >
max {4/\,20(25,40(15,0, Cfil,,/%z%, %;Ll} Given any € > 0 and § € (0,1), choose

0<Bg <18 =0(2),7=0(2),n=06(2),Q = 6(1), Ty = O(c2). Run Algo-
rithm or T = max {%, %} = 6(6_4) iterations. Then with probability at least 1 — § over
the randomness in Fr1, we have % Zle [V@(x,)| < €2

Remark 1: The full statement of Theorem with detailed parameter choices is deferred to The-
orem in Appendix Theorem [4.1] provides the convergence guarantee for Algorithm [T}
AdamBO converges to e-stationary points with Ty + QT = O(e~*) oracle complexity. This com-
plexity result matches that of non-adaptive bilevel optimization algorithms in (Hao et al.| 2024;/Gong
et al.,[2024a) when the upper-level function exhibits unbounded smoothness, as well as the complex-
ity of Adam for single-level optimization with generalized smooth functions (Li et al., [2023a). It is
also worth noting that we choose a larger learning rate 7 = O(e?) for the upper-level updates, com-

paredton = 6(63 ) used in the SLIP algorithm (Gong et al.,[2024a)). See Table [2| for a comparison
of bilevel optimization algorithms under the unbounded smoothness setting.

Remark 2: In Theorem 4.1] we require the momentum parameter 3 to be small. Note that the de-
fault choice of 3, in Kingma & Bal (2014) is 0.9, which corresponds to 5 = 0.1 in our algorithm.
This seemingly different choice of 3 (i.e., 8 = ©(e?) in Theorem versus 8 = 0.1 in|Kingma &
Bal (2014)) is due to the problem setting. In practice, Adam is typically used to minimize functions
with finite-sum structure Zhang et al.| (2022)), while our paper considers a more challenging stochas-
tic optimization setting. In stochastic optimization setting, constant 8 makes Adam diverge. For
example, (Reddi et al., 2019, Theorem 3) has shown that there is a stochastic convex optimization
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problem for which Adam does not converge for any constant 3. We believe a small 3 = ©O(€?)
is a reasonable surrogate for 5 = 0.1 under stochastic optimization setting: such a choice of [ is
also used in the analysis of Adam under the single-level stochastic optimization setting with a gen-
eralized smooth upper-level function [Li et al.| (2023a). Moreover, existing convergence analyses of
Adam that do not need such choice of 3 require other strong assumptions for the objective function,
which is incompatible to our setting. Please see discussion and Table [I]in Appendix [F| for details.
Also, Flgure@ shows that AdamBO’s performance remains largely robust to the choice of (8, fsq)-

Remark 3: One limitation of our complexity dependence on ) is O(A~2), which can be large since A
is typically small in practice. To address this concern, we conduct additional experiments in Figure@
to evaluate the empirical sensitivity of our algorithm to A. Although the default choice of A is 10~
(Kingma & Ba,2014), increasing it up to 10~ only causes minor differences in AUC maximization,
and increasing it up to 10~3 leads to minor changes in hyper-representation performance with BERT
(Devlin et al., 2018]).

4.3 PROOF SKETCH

In this section, we pr0v1de a proof sketch for Theorem 4.1} The detailed proof can be found in
Appendix @ Lety; =y (;vt) The key idea is to provide a high probability bound of lower-
level estimation error ||y; — ;|| when the upper-level variable x is updated by the vanilla Adam.
Lemmald.4]provides such a guarantee: the lower-level error ||y, —y; || is bounded by a function of the
initial estimation error ||y; — y7||, the variance term ag’l, and an auxiliary momentum estimator of
the hypergradient ||d|| (see definition of @, in (6)). Based on Lemma[4.4} we introduce Lemma4.5]
and[4.6] which incorporate the lower-level error into the upper-level problems and adapt the stopping
time technique of Adam (Li et al.| 2023a) to prove the convergence. The proof of Lemma isa
direct application of the randomness decoupling lemma (i.e., Lemma [.2]in Section £.3.1)). All of
the proofs in this section are based on Assumptions [3.2to [3.4] The full statements and proofs of

Lemmas [4.2]to[4.6|are provided in Appendices|C.2]and[D.3|to

(lﬁ B and o} = J%qﬂ) Inspired by (Li et al.,[2023a), we provide an equivalent

yet s1mpler update rule of lines 5-8 of Algorlthml 1] (see Proposition[A.T|for more details):
My = (1 — ay)my—1 + atv¢($t7yt§§t)7 O = (1 — afM) i1 + of (V¢(xtayt;£t))2'

4.3.1 RANDOMNESS DECOUPLING LEMMA

Let oy =

In this section, we introduce the random decoupling lemma (Lemma [4.2)) for the lower-level error
control. The rationale is as follows: for any given upper-level variable sequence and any given
randomness from the upper-level updates that satisfy certain conditions and are consistent with the
AdamBO updates, we can bound the lower-level error with high probability, where the randomness
is taken solely from lower-level random variables. Specifically, for any given sequence {Z; }, define

Ct and ft as the random variables from the lower-level and upper-level, respectively, at the t-th
iteration (see (23) for definition). We consider the following update rule for {g, }, which is exactly
SGD and corresponds to line 5 of Algorithm [T}

Y1 = Gy — VVyG(fty Ut Et) (2)

Let §; = y* () and FY = 0(Cy,...,C—1). Denote Gy == maxy<; | V®(Z1)||, Lt = Lo + L1G,.
We also introduce the following auxiliary sequences {/m;} and {@;} for our analysis:

iy = (1= c)y + V(@ G &), e = (1— an)lig—y + V(3 57:&).  3)

Lemma 4.2 (Randomness Decoupling). Given any sequence {i;} and randomness {&;} such that

~ ~ 2 - =2 - -
@ern = @ll? < 35 (all? + Ly Sy dugllg; - 7511) )
where {dy ;}i_, is defined in Q). Let {fj,} be the iterates generated by the update rule (@) with

v < 1/2ly1 and choose v = 23/ 1. For any given § € (0,1) and all t > 1, the following holds with
probability at least 1 — & over the randomness in F7, 1l

2
. wy . 8yoy1 eT .
Je =31 < (1= ) Iy = 3l + = S (Variance
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an?12, _ 160212 02 =1 t=1—i _g .
+ (Wu/ Sl ) S (=) L o )
i=1

4?2 2 poy 64713 1 py\eE e ,
+E 2 (1 - 7) lill* + <755 (1 N 7) aLiflwl. (Drify
0 By S it

Remark: Lemma 4.2/ shows that, when (@) holds for any sequence {7;} and any {&,} (as satisfied
by the vanilla Adam update for the upper-level variable), the lower-level error can be controlled with
high probability as in (3)). In addition, the high probability is taken over the randomness solely from
the lower-level filtration ﬁ% +1- This lemma provides a technical tool to control the lower-level error
without concerns about the dependency issues from the upper-level randomness. In particular, the
right-hand side of @]) consists of two parts: the standard variance term, which does not involve the
update of {Z;} over ¢; and the drift terms, which account for the update of {Z;} over time.

4.3.2 APPLICATIONS OF THE RANDOMNESS DECOUPLING LEMMA AND REMAINING PROOF

Given a large enough constant GG, denote L = Lo+ L1G and v = C 1 G? /2L, where G is defined
in Theorem [.1] and C7, is defined in (42). Now we formally define the stopping time 7 as 7 =
min{¢ | ®(xz) — ®* > ¢} A (T + 1). Based on Lemma|D. 1} we know that if ¢ < 7, we have both
D (zy) — P* < tpand ||VP(z,)| < G. Similar to Section|4.3.1} we introduce the following auxiliary
sequence {; } for our analysis:

= (1 — a)iig—1 + V(e yp3 &) (6)
Lemma 4.3 (Warm-Start). Choose v < 1/2l, 1. With probability at least 1 — 6 /4 over the random-
2
ness in Fiir (denote this event as &) that: |ly1 — yi||> < (1 — “QJ)TO lyo — yE |2 + SWTM In 4.

Lemma 4.4. Under the parameter choices in Lemma apply Lemma 4.2\ with {Z;} = {x},
{0} =y} {a} = {} and {L} = {L+}, then ) holds with probability at least 1 — /4 over
the randomness in FY.__ (denote this event as £,).

Remark: Lemma[d.3|and Lemma [.4] together provide a high probability bound for the lower-level
error, where the randomness is taken only from the lower-level filtrations Fj,;; and ]-'% T Lemma
is a direct application of Lemma[4.2]to the actual sequence {x;} and {y; } in Algorithm |1}

Lemma 4.5. Ift < 7, we have |V®(z;)|| < G, |G| < Cuo; under event Eg N E,, if t < T, we
have ||| < Cuo + Cu10, 9 = (Cuo + Cu10)? where constants Cy, 0, Cy 1, 0 are defined in

#@2) and B2), respectively. a

Remark: Lemma {4.5|generalizes the stopping time analysis from the single-level setting (Li et al.,
2023a)) to the bilevel setting and is useful for upper-level analysis. It shows that the momentum
estimators of the hypergradient remains bounded when ¢ < 7 and & N &£, holds. This implies that
Z¢+1 and z; remains close for small enough 7, allowing us to apply Lemmas and

Lemma 4.6. Under event & N E, and the parameter choices in Lemma we have 22;11 [l77s —
~ T—1
i* < OVT) +0(1) = (el + [V (z0)[?).

Remark: Lemma[.6|provides a bound for the difference between the actual momentum 772; versus
the virtual momentum 4, under the good event & N &,, which is essential for establishing the
convergence guarantees for AdamBO.

5 EXPERIMENTS

5.1 HYPER-REPRESENTATION LEARNING

Hyper-representation learning, i.e., meta-learning (Finn et al. 2017), aims to find a good meta
learner parameterized by z, such that it can quickly adapt to a new task ¢ by fine-tuning the cor-
responding adapter y;. Consider a meta-learning task consisting of K tasks with the training set
{DI" | i = 1,...,K} and validation set {D?% | i = 1,..., K}. Each task has a loss function
L(x,y;; &) over each sample &;. This meta-learning problem can be reformulated as a bilevel op-
timization, where the lower-level objective function tries to find an optimal task-specific adapter
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Figure 1: Comparison with bilevel optimization baselines on BERT for hyper-representation.

y¥(x) on training data D!", and the upper-level minimizes the objective function on validation data
DY by finding the optimal meta-learner = with a set of adapters y = {yi (@), y5(x), ..., y5 ()}
We have the following formulation:

m1n72| val| Z L(z,y*(x);€), st y'(z )—argmln—ZﬁDw (z,ys )"’_gHylHQv

¢epyal i=1

where EDQT(:L", yi;C) = ﬁ demr L(x,y;; ). The adapter (parameterized by y;) is typically
instantiated as the last linear layer, and the meta learner (parameterized by x) is the remaining layers
of model, which guarantees that the lower-level function to be strongly-convex when p > 0.

We conduct meta-learning experiments on a larger language model, specifically an 8-layer BERT
(Devlin et al.,2018)) model. The experiments are performed on a widely-used question classification
dataset TREC (L1 & Roth,[2002) (under Creative Commons Attribution 4.0 License), which contains
6 coarse-grained categories. To evaluate our approach on meta-learning, we construct X = 500
meta tasks, where the training data D!" and validation data DY for the i-th task are randomly
sampled from two disjoint categories, with 5 examples per category. A BERT model, with 8 self-
attention layers and a fully-connected layer, is used in our experiment. The self-attention layers
serve as representation layers (with their parameters treated as upper-level variables) and the fully-
connected layer (with its parameters treated as lower-level variables) serves as an adapter, where
each self-attention layer consists of 8 self-attention heads with the hidden size being 768. The fully-
connected layer acts as a classifier, with the input dimension of 768 and the output dimension of
6 (corresponding to the 6 categories). Our bilevel optimization algorithm trains the representation
layers and the adapter on the meta tasks (D! and D"®) from scratch, and then evaluate it on the test
set D*¢. During the evaluation phase, we fix the parameters of representation layers and just fine-
tune the adapters. We train the models for 20 epochs and compare it with other bilevel optimization
baseline algorithms.

We compare with typical meta-learning algorithms, MAML (Rajeswaran et al., 2019) and ANIL
(Raghu et al., [2019), and recent bilevel optimization algorithms, StocBio (Ji et al.| |2021), TTSA
(Hong et al.| 2023), SABA (Dagréou et al., |2022), MA-SOBA (Chen et al., 2023a), BO-REP (Hao
et al.,2024), SLIP (Gong et al},2024a). The comparison results of training and testing accuracy are
shown in Figure[T} AdamBO achieves fast convergence to the best training and test results among all
baselines. We also conduct the meta-learning experiments on RNN for text classification on dataset
Stanford Natural Language Inference (SNLI) (Bowman et al.,|2015)), and the results are presented in
Appendix One can refer to Appendix [E| for detailed hyper-parameter choices and experimental
settings. All the experiments are run on an single NVIDIA A6000 (48GB memory) GPU and a
AMD EPYC 7513 32-Core CPU.

5.2 DEEP AUC MAXIMIZATION WITH RNNS/TRANSFORMERS

The Area Under the ROC Curve (AUC) (Hanley & McNeil, [1983) is a widely used metric for
evaluating the effectiveness of binary classification models, especially in the imbalanced data
scenarios. It is defined as the probability that the prediction score of a positive example is
higher than that of a negative example (Hanley & McNeil, [1982). Deep AUC maximization (Liu
et al.| [2020; |Ying et al.l 2016) can be formulated as a min-max optimization problem (Liu et al.,
2020): MiNy,cpd,(q,p0)cr2 MaXacr f(w,a,b, @) = E.[F(w,a,b,a; 2)], where F(w, a,b,a; z) =
(1 = p)(h(w;z) — a)*Te=y) + p(A(w; ) — 0)*Te——1) + 2(1 + a)(ph(w;@)[e=—y) — (1 —
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Figure 2: Transformer for AUC maximization on Sentiment140 dataset with imbalance ratio of 0.9.

p)h(w; x)lj—1)) — p(1 — p)a?, w denotes the model parameter of a deep neural network, and z =
(x, c) represents a random training data sample (x represents the feature vector and ¢ € {+1, -1}
represents the class label), the function h(w,x) is a scoring function for the sample with feature
@, and p = Pr(c = 1) indicates the proportion of positive samples in the population. This min-
max problem can be reformulated as the form of a bilevel optimization problem with lower-level
objective function g = — f:

weR},Izjzr,lb)eR"‘ E.[F(w,a,b,a"(w,a,b); z)] s.t,a*(w,a,b) € arg IOIélel]% —E.[F(w,a,b,a;z)].
In above, (w, a,b) is the upper-level variable, and « is the lower-level variable. The lower-level
problem is a strongly convex one-dimensional quadratic function with respect to «, while the upper-
level objective is non-convex and can exhibit unbounded smoothness when using a recurrent neural
network or a transformer as the predictive model (Crawshaw et al, 2022} [Zhang et al., | 2020b).

In our experiment, we focus on tackling an imbalanced text classification task by maximizing the
AUC metric. Specifically, we conduct experiments using deep AUC maximization on the imbal-
anced Sentiment140 dataset (Go et al., [2009), a binary text classification benchmark. Following
the approach in (Yuan et al., 2021), we introduce imbalance in the training set using a pre-specified
imbalance ratio (p) while keeping the test set distribution unchanged. For a given p, we randomly
remove positive samples (labeled as 1) from the training set until the desired proportion of positive
examples is achieved. In our experiment, we set p to 0.8 (0.9), meaning that 80% (90%) of the train-
ing samples are positive examples. We run the experiment using two different models, a two-layer
transformer, and a two-layer recurrent neural network (RNN) with the same input dimension of 300,
hidden dimension of 4096, and an output dimension of 2.

To evaluate the effectiveness of our proposed bilevel optimization algorithm, we compare with recent
bilevel optimization baselines, including StocBio (Ji et al.,2021), TTSA (Hong et al., 2023)), SABA
(Dagréou et al., [2022), MA-SOBA (Chen et al., 2023a), SUSTAIN (Khanduri et al., [2021), VRBO
(Yang et al., 2021), BO-REP (Hao et al., [2024])), SLIP (Gong et al., [2024a)), and AccBO (Gong et al.,
2024b). The training and testing results of the transformer model over 50 epochs are presented
in Figure E] (a) and (b), while the corresponding running times are shown in Figure {4 (c) and (d).
Our proposed Adam-type algorithms, AdamBO, shows the faster convergence rate and significantly
outperform other baselines. In particular, the performance on the training AUC (testing AUC) is
better by at least 14% (7%) over other baselines. The running time results indicate that AdamBO
converges much faster to a high AUC value compared to the other baselines. We also perform the
AUC maximization on a RNN model with imbalance rario of 0.8, and the results are presented in
Appendix More detailed parameter tuning and selection can be found in Appendix [E]

6 CONCLUSION

In this paper, we propose an Adam-type algorithm termed AdamBO for solving bilevel optimiza-
tion problems under the unbounded smoothness setting. AdamBO is a single-loop algorithm with

O(e*) oracle complexity to find e-stationary points. We conduct experiments on meta-learning and
deep AUC maximization for text classification using transformers. The experimental results demon-
strate the superior performance of our proposed method. One limitation of our analysis is that the
complexity bound of AdamBO depends on O(A~2), which can be large when ) is small. However,
our empirical sensitivity analysis indicates that AdamBO’s performance remains largely unaffected
by the choice of A within a reasonable range. In the future, we plan to improve the dependency on
A in the complexity bound.
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REPRODUCIBILITY STATEMENT

We state Assumptions[3.2)to[3.4]in the main text and provide proofs of Theorem[4.T]in Appendices[A]
to [D] An anonymized codebase containing training/evaluation scripts, configurations, seeds, and
environment files is included in the supplementary materials.
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Algorithm 2 SGD
1: Input: x, 3,7, To # 5GD(, Yo, 7, To)

2: Initialize yM = y,

3: fort =0,1,...,7y — 1 do

4:  Sample 7; from distribution D,
50yt =y = AV Glry )
6: end for

Algorithm 3 ADAMBO (Equivalent update rule of Algorithm T])

1: Input: Bvﬂsqvnv’yvAvTOvTvxlvyO R R

2: Initialize Y1 = SGD(JH, Yo, Y, T()), m; = Vgi)(a:l, Y1, 51) and v = (Vgi)(xl, Y1; 51))2
3: fort=1,...,7Tdo

@ = =gy o' = =Sy

Draw new samples and perform the following updates

Yi41 = Yt — ’YvyG(xtvyt5A<t)

my = (1 — ay)riy—1 + atVEﬁ(a:t,yt; ft)

b= (1= ;Mo 1 + o (Vo(wr, yi; &)

9: .’Et+1:$t—ﬁ®mt

10: end for

e A A

A EQUIVALENT UPDATE RULE OF ADAMBO (ALGORITHM [I))

In this section, we aim to provide a simplified version of the bias correction steps (lines 7-8) of
Algorithm [} Inspired by (Li et al., 2023a, Appendix C.1), we present an equivalent yet simpler
update rule of Algorithm (1|in the following Proposition The detailed equivalent framework is
also outlined in Algorithm 3]

Bsq

T== o)t Then the update rule in Bi-Adam
sq

Proposition A.1. Let oy = 71_(15_ g and oyt =
(Algorithm[l) is equivalent to that in Algorithm3}
Yer1 = Yt — YVyG (21, Y15 Ct),
iy = (1 — ag)rivg—1 + Vo e,y &),
by = (1 — oM 0—1 + 03N (Vo v &), @
Tpp1 = Ty — ﬁ © 1y,

where initially we set my = @d)(xl, y1;&1) and 1 = (@d)(xl, y1;€1))%. There is no need to define
o and Vg since 1l —ap =1 —aj? = 0.

Proof of Proposition|[A. 1] We follow the same proof as in (Li et al} 2023a, Proposition E.1), but
replace the stochastic gradient V f(x, &) in (Li et al., 2023a) with the stochastic hypergradient

estimator @gf)(xt, y¢; &) in our setting. We still provide the proof here for completeness.
Let Z; = 1 — (1 — 3)t. Then we know that oy = 3/Z; and m; = Z;1n;. By line 6 of Algorithmﬁ]
(the momentum update rule for m;), we have
Zing = (1 — B) Zy—1ing—1 + BV G(xe, y1; &).
Note that Z, satisfies the following property
(1=P8)Za=1--(1-0)" =2 —B.

iy B
Zy
= (1 — o)1 + s Vo(xe, ys; &)
Next, we verify the initial condition. By Algorithm |1} since we set mg = 0, then we have m; =
BV¢(x1,y1;& ). Therefore, we have riy = my/Z1 = V(x1,y1;&) since Z; = . Then the
proof is completed by applying the same analysis on v; and 0. [

Then we have

Me—1 + %@fﬁ(f%yt;f_t)
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B TECHNICAL LEMMAS

In this section, we present several useful algebraic facts (Appendix [B.I]), probabilistic lemmas (Ap-
pendix[B.2), and auxiliary lemmas for bilevel optimization under the unbounded smoothness setting

(Appendix [B.3).
B.1 USEFUL ALGEBRAIC FACTS

In this section, we will frequently use a; and o}, so we restate their definitions here for the reader’s
convenience:
B Psa

T 1-(1- ) 1—(1- Bt

The following two lemmas, i.e., Lemmas [B.I] and [B.2] are useful for bounding the norm of the
difference between Neumann series approximation matrices in Appendix [B.3]

Lemma B.1. For any matrix sequences {A;Y¥_, and {B;}¥_, (where k > 1), it holds that

k k
[1+- 11
=1 i=1

where we use the convention A1 = By = 1.

oy and a;t = (8)

k
=Y 1Bl IBica 1 Ai = Billll Assall - | Axll
i=1

Proof of Lemma It is easy to check that
k k
HAi_HBi:Al"'Ak_Bl"'Bk
i=1 i=1
= (Al 7B1)A2"'Ak+Bl(A2 7B2)A3"'Ak‘+."+B1"'Bk'_1(Ak 7Bk»)
k
= Z By Bi1(A; — By)Aig1 -+ Ay,
i=1

where we set A1 = By = I in the last equality. The result follows by noting that the operator
norm is submultiplicative. O

Lemma B.2. Forany QQ > 1anda € (0,1), we have
Q-1

1
ql Ve &
Sots

q=0
Proof of Lemma We obtain the result by simple calculation:

! 1-Qa® ' +(Q—-1)a® 1-Qa% '+ (Q —1)a®!
-1

1—a%t 1

(1-a)? =~ (1-0a)?*

O

The next four lemmas, Lemmas E]to are useful for controlling the lower-level estimation error
and for proving the randomness decoupling lemma (i.e., Lemma[4.2)) in Appendix [C]

Lemma B.3. Foranyt > 1, define {d; j};_ as the following:

HZ:lt(l - ai)7 j=0
dtJ‘Z Oéj Hi:jJrl(l—Oéi), 1 Sjgt—l (9)
O, ]: t.

Then {d; ; }2‘:0 has the following properties:

15
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e Forj=0,d;; =0.

c For1<j<t dyj=ou(1—-p).
t t

Proof of Lemma[B.3] Recall the definition of cv; in Algorithm[3] we have

__ s 1= (1)
=By == )

It is obvious to see oy = 1, then for j = 0 we have

and 1—ap = (1-75).

Qi

t

dt,OZH(l—Ozi)Z(I—Oét)”'(l—()él)zo.

i=1
For1 < j <t —1 we have
B H 1—(1-pB)!

dij = H (1—ai):m (1-B) = au(1 - B)t.

=1 =1 1—(1-p)
For 7 =t we have
/B t—t
dip =04 = ————— = (1 — .
t,t it 1— (1 — B)t at( ,3)

For the last result of the lemma, we have

t t t
Dodig= dig= a(l-p) = 1(156)t04t =1,
j=0 j=1 j=1

where we use d; o = 0 in the first equality.

Lemma B.4. Forany x € (0, 1], we have
1
1—-—<hx<zx-1.
x

Consequently, for any B € [0,1) we have

,i<1n(175)§75 and Béfln(lfﬂ)ﬁL

1-p~ 1-p
Proof of Lemma This is a well-known logarithm inequality, so we omit the proof here.

Lemma B.5. Foranyt > 1, we have

tag(1 —p)t < 1.

Proof of Lemma[B.3] By definition of o, we have

toy(1—p)i~t = pra—p)

1= =-p)t
Let f: R — Rbe
_pt1-p)!
S
Then we have 81— gy
()= m(l —(1=8)"+tn(1l - B)).

Letg: R — Rbe
gt)=1—(1—p) +tin(l - p).

16



Under review as a conference paper at ICLR 2026

Then we have

g () =0—(1-p)"n(1-p) <0.
Note that Lemma[B.4]gives g(1) = 8+ 1In(1—3) < 0, then for any ¢ > 1 we have g(t) < g(1) <0,
and
py = g <o

1—@a-pns=

Therefore, for any ¢ > 1 we conclude that

tay(1—B)"t=f(t) < f(1) = 1.

Lemma B.6. Foranyt > 1and 0 < 8 < 1/2, we have
t

> (1-B)"a; <32+ 16In %

i=1

Proof of Lemma(B.6] We split the summation as the following:
t t 4 t —1

> (- 52 _ﬁtzl

i=1 =1
1-p" -5
1<;/51—(1—ﬁ) 1/l,z<:i<t1—(1—5)
Note that when ¢ < 1/, we have
(=B <i-ghi = 1-(-§'238 = g <5

and by Lemma|[B.4]and 3 < 1/2 we know that
. 1
A — /)N < < — ) < e
(1-p) exp(—iln(1 ﬁ))exp(l_ﬁ> exp(l_ﬁ> <e

Then for the first part of the summation we have
(1- 5)71‘ Z 1 2 ( >
Z T_ 1 _ A < — (1+nZ). (10)
1<i<1/8 1-(1- <i<1 Z B B
Also note that when ¢ > 1//3, we have

) 1 . 1
1-pi<s = 1-(0-f'zl-7 =
e e
Then for the second part of the summation we have

gD DI ot REPL D DY (BB e

IN

1/B<i<t (L=p) ~e-1 1/8<i<t e-1,5% - 18
(11)
Combining (T0) and (TT)) we obtain that
t _
Sa-pa<pi-p | ¥ Ly LA
i=1 1<i<1/8 1-(1-p) 1/8<i<t 1-(1 -8y
2 (1 5)
<AL-fy (B (”1 ﬂ) (6—1)6)
=2¢%(1 - )¢ (1+1n;)+ei1
< 2¢2 <1+ln;> +ef1
§32+161n%.
]
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Finally, we provide a useful lemma regarding the time-dependent re-scaled momentum parameters
in (7) and Algorithm [3|for upper-level analysis.

Lemma B.7 ((Li et al.,|2023a, Lemma C.3)). Let a; = then for all T > 2, we have

5
—-p)"

T
> af <3(1+ 7).

t=2
B.2 PROBABILISTIC LEMMAS

In this section, we provide a well-known probabilistic lemma without proof.

Lemma B.8 (Optional Stopping Theorem). Let {Z;};>1 be a martingale with respect to a filtration
{Fi}it>0. Let T be a bounded stopping time with respect to the same filtration. Then we have
]E[ZT] = E[ZO]

B.3 AUXILIARY LEMMAS FOR BILEVEL OPTIMIZATION

In this section, we provide several useful lemmas for bilevel optimization under the unbounded
smoothness setting, including the properties of the objective function ® (Appendix|B.3.1)), the Neu-
mann series approximation error (Appendix [B.3.2), and the hypergradient estimation error (Ap-

pendix [B.3.3).
B.3.1 PROPERTIES OF THE OBJECTIVE FUNCTION

Lemma B.9 ((Hao et al.| 2024 Lemma 8)). Under Assumption[3.2] we have
(1) y*(x) is (I4,1/)-Lipschitz continuous.

(1) ||Vaf(z,y* (@) < V@) + lgalso/p.
Lemma B.10 ((Lo, L1)-smoothness (Hao et al., 2024, Lemma 9)). Under Assumpnonn for any
z, 2’ € R% we have
IVO(z) = VO(2')|| < (Lo + L1[|[VO(2')|]) ]|z — 2|
1

if |lz—a'|<r:= : (12)
O+ )2, +12,)
where the (Lg, L1)-smoothness constants Lo and Ly are defined as
12 Iyl ly lgalgo + ul
Lo=4/1+ 9’21 (Lx()+Lx1 G109 | 0 (L 0+ L, 1lf())+lf0W) )
I I I a3)

12
Ly =1+ % L.
I

Lemma B.11 (Descent Inequality (Hao et al.l 2024, Lemma 10)). Under Assumption 3.2} for any
x, 2’ € R we have
Lo+ L1|VO(2')

B(@) < B() + (VO(a),x - ) 4 LT IIVREN e

1
A+ L2+ L2 )

i lle—of <r=

B.3.2 NEUMANN SERIES APPROXIMATION

Throughout the paper, for given (z,7y) € R% x R%, we estimate the hypergradient V®(z) using
Neumann series approach and the following formulation:

~ _ 9 Q 14q x y C(‘LJ))
Vo(x,y;€) = Vo F(x,y;8) — V2,G(x,y;¢Y) Z I I
7 q= 0 ] 1 I

18
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where the randomness € is defined as

&= {¢, ¢ O E(Q—l)}’ with (@ = {C(q’l)’ s C(qu)}_
For simplicity, denote P as the Neumann series approximation matrix for the Hessian inverse, then
P and ]EE[P] can be written as:

Q-1 ¢q (g,5) Q-1 2 4
H< V nygq1)> wd B[P llz< % (a:,y))
o —

g,1 0 j=1 lgal q=0 911
(14)
Hence the simplified version of the hypergradient estimator and its expectation are
Vo, y:€) = Vo F(2,458) = V2,G(@, 5 (V) PV F(w,3;), as)

Ee[Vo(z,y: )] = Vaf(a,y) - V%g(x Y)E¢[PIV, f(z.y)-
Also, we define V f(x,y) as

Vi(x,y) =Vef(z,y) — Vi,99)[Ve,9(,y)] ' Vy fz,y),
which is useful for the following analysis.

The following lemma bounds the norm of the Neumann series approximation matrix P and charac-
terizes the approximation error for the Hessian inverse in expectation.

Lemma B.12. Under Assumptions[3.2)to[3.4] we have

Q
1 _ 1 "

BRI <IPI<Y  and  [EeP— V20 < & (1—l ) .
:U' 1% g,1

Proof of Lemma|B.I2] We follow the similar proof as in (Ghadimi & Wang 2018, Lemma 3.2). By
Assumption[3.4]and definition of P in (T4), for any ) > 1 we have

Q-1 ¢ Y, (g.5) 1 Q-1 q
IEElPII < 1Pl = |- ZH< - (ZfC >> < — (1_“) S%‘

b g=0j=1

As for the second result, we have

IEelP] - (72,90 )]l < Z(I— ViuCla:v) )

IN

IA
=
M2 =

B.3.3 HYPERGRADIENT ESTIMATION ERROR
Lemma B.13. Under Assumptions[3.2t0[3.4) if ||y — y*(z)| < r, we have
< A+ 3lg71 + 04,2 of+ 2lg71 + 04,2
1 Y

251 + 042

lyo+ (Ly,0 + Lyalyo)lly —y* ().

Proof of Lemma([B.13] We will use a short hand y* = y*(x). By triangle inequality, we have
196 (2, y: ) — Ec[Vo(a, y: )|
= |(VaF(z,4;8) — V2,G(x,4;¢ )PV, F(2,y;€)) — (Vaf (2,y) — V3,9(x, 1) B[PV, f(x,9))]|
< V2 F (0, 5€) — Vi f (0, )|+ (92, G L,y ¢O) = 92, g(2, 1)) PV, F (2,5 €) |
(A1) (A3)
+ V2, 9(z 9) (P = E¢[P)Vy F(z,5: )|l + V2, 9(x, ) Ee[PUV F 2, y;€) = Vy f(z,))]

(As) (As)
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Bounding (4;). By Assumption[3.3] we have
(A1) = Vo F(z,y56) = Vo f (2, 9)]| < oy

Bounding (4;). By Assumptions[3.2]and[3.3/and Lemma [B.12} we have
(A2) = [[(V2,G(x,y:¢"") = V2,9(2,9)) PV, F(2,;6)|
< IV3,G (2, 5:¢) = V2, 9(z, ) | PV, F (2, y; €|

< Ulgf IVyF (2, y:€) = Vy f (@)l + Vo f(@,y) = Vy f (@, y7) | + [V f (@, 97)])

IN

0g,2 *
%(Uf + (Ly,o + Lyalyo)ly — y*ll +1s0)

0g,2 09,2
= Z (07 +10)+ Z (Lyo + Lyalyo)lly =yl

Bounding (43). By Assumptions[3.2]and[3.3/and Lemma [B.12} we have
(A3) = V2,9(2,y)(P — E¢[P])V F(z,y;€) |
IV2y9(@, DIIIP — B[PV, F (2, y; 6|

2, §
%(Uf + (Lyo + Lyalso)ly — v*ll +15.0)

IN

IN

2,1 2,1 .
z (07 +150) + %(Ly,o + Lyalso)lly — v,

where the second inequality uses the same step (the third inequality above) as in bounding (As).

Bounding (4,). By Assumptions[3.2]and[3.3|and Lemma [B.12} we have
l
(49) = V5,902 B[PV, F 35€) = Vo (@) < “2o.

Then we obtain the final bound

IVo(2,:8) — Ee[Vo(x,y; I < (A1) + (As) + (As) + (As)
< /L—‘r?)lg,l +Ug’20 2lg’1 + 0g,2 2lg’1 +(Tg,2
- [

r+

lyo+

Lemma B.14. Under Assumptions[3.2|t0[3.4) if ||y — y*(z)|| < r, we have

V(2. 5:8) = V(@) < Co0+ (Con + L[ VE@)IIly — y* (@)
where Ly is defined in (13) and constants Cy o and Cy 1 are defined as

3l ) 1y 1l
Cho="* +3lg1 + g2 o + 2ol T 9.2 Lo+ @10,
20,1+ 0 l
Co1 = QJTM(L%O + Lyalyo) + g: (Ly,0 + Lyalyo) + Lo.

Proof of Lemma We have the following decomposition:
IVo(w,y; &) = V()| < [Vo(x,y; &) — Eg[V(z, y: )|

+ |Ee[Vo(a,y;: )] = V(@) + IV f(z,y) — V()]

For the first term, by Lemma[B.13| we have

IV$(x,y:8) — Be[Vo(a,y; O]l

< B +3lg1 + g2 o+ 251 + 042 2lg1 +0g2
- 1

l

20

* 1 (Lyo + Ly1lyo)lly — vl

£.0+ T(Lyp + Lyalso)lly —y* |-

(16)
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For the second term, by Assumption [3.2]and Lemma[B:12) we have

[Ee[Vo(z,y:)] — V(z,y)
= (Vo f (2, y) — Vi,9(z, y)Ee [PV, f (2, 1))
— (Vaf(@,y) = V3,9(2,9)[Viy9(z,9)] 7' Vy f(2,9)]]
| = [Vi,9(z, )] DV fz,y)|

[P
n - " (18)
<=o\tmgy) V@) =Vl @)+ IV o))
g,
lg71 /’l’ Q i}
<\ 17 ) (Lot Lyalro)lly =7l + o)
1 ol
lgllf()< u)Q lgl( N)Q )
= L= ] - 4+ L= (1 — = Lo+ Lol _ .
p lg u Iy (Ly,0 + Lyalso)lly — vl

For the third term, by Assumption [3.2]and Lemma[B.9| we have

195 (,) - Vo()]
<|Vaf(z,y) — Vaf(z,y)|
+IV2,9(z, 9) V2, 9z, 9)] "'V f (2, y) — Vi,9(z, y")[Vi,g(z,y™)] ' Vy f (2,97
< (Lo + Lo a Ve f (2, y) DIy — vl
+IV2,9(x,9) V2, 9(x,9)] "'V f (2, y) — Va,9(z,y)Ve,9(z, )]V f(z,y)]|
+IV2,9(z, y") Ve, 9(z, 9)] 7' Vy f(z,y) — Va,9(z,y") Vo, 9z, y*)] ' Vy fz,y)|
+IV2,9(x, y") Vi, 9(z, y)] ' Vy f(2,y) = Vi, 9(x,y") [Vi,g(z, )]~ Vy f (z,5%)]l

1,11 «
< <L L, ( LIl 4 vags >||)) —

folgl

Iy, Iy
p “lyally =yl + g,z\ly*y*ll+%(Ly,o+Ly,1HVyf(z,y*)ll)lly*y*ll

lg1l ly
= (LLO + Ly q,llufO + /«Ll (Ly)o +Ly71lf0) +lf0

< (Lo + Li|[Ve(2) DIy — y* I,

,Ul 2 +1 ,1l ,2 .
SR 4 LaaIVe@) )y — vl

19)
where the last inequality uses the definition of Lo and L; as in (T3). Summing up (T7) + (T8) + (19)
gives the final bound
IVé(w,y;€) — V()| < [Vo(z,y; &) — Eg[Vo(w, y; )|

+ B[V oz, y:€)] = Vi (@, 9)| + 1V f(z,y) - VO(2)]
Q
< p+3lg1+og2 or+ 2lg1 + 04,2 lro+ lg.1ly0 (1 _ “>
1% 1% lga

2051 +0g,2 lg1 M ? "
+ — (Lyo + Lylyo) + . - . (Lyo+ Lyalyo) + Lo+ Li[[VO (@) | [ly — y" |l
9,

3l 21
< p+ g;ﬂ”ﬁq,zgf+ g1 T 0g.2

2l + a, l *
+ (u(L + Lyalyo) + jj (Lyo + Lyalso) + Lo + L1||v<1><x>||) ly — v

= Co0+ (Co1 + La[[VO(2) )]y — v,

lgalyo

lfoJr

)

where the second and the third inequalities use ) > 1, and the last inequality is due to the definitions
of Cy0 and Cy 1 in (16). O
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B.3.4 OTHER USEFUL LEMMAS
Lemma B.15. Under Assumptionsto if lly — y*(2)|| < r, we havelﬂ

IVo(w,y; €) = Vo(z,y* (2); )l < (Lo + L[ VE(@)|)l|ly — y* (@)
if 2y — wsll < /(4 +Ug.1), we have

e, [V (1,473 6)] — Be, [Vo(wa, y3: &)l < (Lo + La[VO(@1) ) a1 — 2],
where yi = y*(x;) for i = 1,2, and constants Ly and Ly are defined in (13).
Proof of Lemma[B.I5} We will use a short hand y* = y*(x). Recall the definition of V¢ (z, y; €)
and Vo(z,y*; €) in (T3], we have
Vo(e,y;) = VoF (2,:€) = V3,G(2,5: () PV, F(z, y5€),

Vo(z,y*i€) = Vo F(2,y"58) = V3, Gl,y" (V) PV F(a,y":€).

where similar to (T4), we define the Neumann series approximation matrix P* as

Q-1 4 *. c(@.9)

q=0 j=1 lg’l

Then by triangle inequality we have
IVe(x,y;8) — Vo(z,y; )l

< NVoF(2,y:8) — VaF (z,y"5 8|
+(IV3, G, y;: (O PV F (2, y;€) — V3, G2,y (V) PV, F(x,y7:€) |

< |VoF (2,y;€) — Vo F(x, %5 ) + IV2,G(, y: (O)P(V F (2, y;€) — Vy Fx,y%:))|

(A1) (Az2)
+[|V2,G(a,y; (V) (P = P*)V, Fz,y": )|
(As)

+[(V2,G (2, y;¢ ) = V2,Gla,y";: () PV, F(, 57 )|

(Aq)

Bounding (4;). By Assumption[3.4]and Lemma [B.9] we have
(A1) = [IVaF (2, ;) = Vo F (2,458 < (Lao + Leal[ Ve f (@, y7) DIy = v7|l
lgal %
< (Baat Loa (222 4 90l ) ) o =o'

Lyqlgql %
_ <L + Lealaalro +Lm,1||v<b<x>|) —_—)

Bounding (As). By Assumption|3.4/and Lemma|B.12| we have

(A2) = |IV2,G(z,y; OV P(V F(z,y;€) — V,F(z,y7:€))]
= IV2,G(z, y; CNNIPNIVy F(z, 55 ) — Vy F(z, 4" &)

lg1 . wy o1 .
< i (Ly,o + Ly1lIVyf(@,y") DIy —y*ll < g?(Ly,O"'Ly,llf,O)Hy_y I

Please note that 21 and x here are unrelated to Algorithm and are deterministic.
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Bounding (A43). We first apply Lemma[B.1]to obtain

q V2 G(z,y; g(w‘))) q ( V2 G(x,y*;g(w)))
I _ vy _ I _ yy
Il I

i lg71 - lg,l
q—1 qg—1
l ,2 * I l ,2 *
<S(-E) BEw-vi-a(-£) vl
j=1 9,1 9,1 9:1
Hence we can write
Q-1 q—1
1 lgo ,U 2 l
P P* —_— 97’ _ g < 97
IP-Pl< -3 (=) < v < -

where the second inequality uses Lemma with a = p/l, 1, and the last inequality is due to
tt < lg,1. Then by Assumption 3.4 we have

(43) = |V2,G(x,y;: () (P — P*)V, F(z,y": )|

. . lyalgoly, .
<NIV5, Gy NP = POV, F e,y 59l < 22222y =yl

Bounding (4,). By Assumption[3.4]and Lemma [B.12] we have
(Ag) = [(V2,G(x,4;¢) = V2,G (2,575 ¢\) PV, F(a,y7: )|
* * * l , ! s *
<|IV2, G, y;¢V) = V3,G(z,y" COIP |V F(,y73 6] < %’colly -yl

Final Bound. Summing up (A1) + (A3) + (A4s) + (A4) yields the final bound
IV (e, y:€) — Vola,y: )| < (A1) + (A2) + (As) + (Ad)

lgal ! lgalgo + ul .
< (Lx,owx,lg’lu“w “5 (Lo + Lyalro) + 1y 0W+Lx,1|w>(x>||) ly =yl

< (Lo + La|IVe(z) DIy — v* |,
where the last inequality uses the definitions of Ly and L, as in (I3).
For the second result, we follow a similar procedure as above and obtain:
B, [Vo(x1,y7:€1)] — Bg, [V (2,55 &)1l < (A1) + (A2) + (As) + (As)
ly

124 lgalyo
1+ -"’2 (LI7O+LI, AL AL T Lt
7 7

1 lgalg2 + plg2
. (Lyo + Lylyo) + lfogng

+ Lmnwxl)n) T

= (Lo + L1[|[V®(x1)[)[|1 — 22,

where the last inequality uses the definitions of Lo and L as in (T3). O
Lemma B.16. Under Assumptions[3.2]t0[3.4) we have
- - lgalyo n\©
[Ee[Vo(z,y™(x); )] = Ve(2)] < L=
H g,1

Proof of Lemma[B.I6] We will use a short hand y* = y*(x). By definition of Vo (x,y;€) in (13)
and the hypergradient formulation, we have

Ee[Vo(z,y*: )] = Vaof (z,y%) — V2,9(x,y" ) Ee [PV, f(x,57),
VO(z) = Vo f(z,y%) — V2,0, y")[Va,9(2,y)] 'V f(z,y").
Then we obtain the conclusion by applying Assumption [3.2]and Lemma [B.12}
[Be[Vo(w,y;§)] — V()| = V2, 9(x,y") (Be[P] — Vi, g(z,y™)] " )Vy f(z,y7)]|
l Q
< IV2,9(, y )P = V3,9, y)] IVaf (2,97 < “Mf‘) (1—/‘1) :

9,

O
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C PROOF OF THE RANDOM DECOUPLING LEMMA (LEMMA [4.2))

C.1 RECURSIVE CONTROL ON MOMENT GENERATING FUNCTION

The following technical lemma on recursive control is crucial for establishing high probability guar-
antee for controlling the lower-level estimation error at anytime. We follow a similar argument as
in (Cutler et al., [2023], Proposition 29) with a slight generalization.

Proposition C.1 (Recursive control on MGF). Consider scalar stochastic processes (Vy), (Dy),
(Xt) and (Y3) on a probability space with filtration (H:), which are linked by the inequality

Vier S peVi + DV + Xy + Y + ke (2D
Sfor some deterministic constants p; € (—o0, 1] and k; € R. Suppose the following properties hold.
* Vi and Y, are non-negative and H-measurable.

e D, is mean-zero sub-Gaussian conditioned on H; with deterministic parameter o:

Elexp(0D;) | Hi] < exp(0*07/2) forall 6 €R.

e X, is non-negative and sub-exponential conditioned on H; with deterministic parameter
V¢!

Elexp(6X:) | Hie] < exp(Ovy) forall 0<6<1/v.

Then the estimate

Elexp(0Vi41)] < exp(6(ve + £¢))Elexp(0((1 + pe)Ve/2 + Y2))]

holds for any 0 satisfying 0 < § < min { 1ope 1 }

20? ’ 2uy

Proof of Proposition|C.1} For any index ¢ > 0 and any scalar § > 0, the law of total expectation
implies
Elexp(8Vii1)] < E [exp (0 (pVi + Div/Vi+ X, + Vit 1) )|
= exp(Ory)E [exp(ﬁ(ptVt +Y:))E [exp(HDt\/Vt) exp(6X;) | HtH .

Holder’s inequality in turn yields

E [exp(eDt VVi) exp(6X,) | Ht} < \/IE [exp(29Dt\/‘7t) | Ht} -Elexp(20X:) | He]

< y/exp(20202V;) exp(20v;)
= exp(0207V;) exp(Ovy)

provided 0 < 4 < i Therefore, if 6 satisfies

1— 1
0<9<min{ 2pt },

207 ’Tm

then the following estimate holds for all ¢ > 0:

Elexp(8Vi11)] < exp(0r:)E [exp(8(p: Vi + V7)) exp(8°07 Vi) exp(6r)]
= exp(0(v1 + k1) )E [exp(0((p1 + 007)Vi + V)]
< exp(0(v + ) JE [exp(O((1 + po)Vi/2 + V)],

where the last inequality uses the given range of 6. Thus the proof is completed. [
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C.2 PROOF OF LEMMA [4.2]

In this section, we aim to provide a high-probability guarantee for the approximation error of the
lower-level variable, namely ||y; — y;||. Our main technical contribution is the any-sequence argu-
ment, which separates the randomness in the updates of the upper-level variable z; and the lower-
level variable y;. Specifically, for any given sequence {Z:}, we consider the following update rule
for {§,} (which is the same as line 5 of Algorithm|I):

Jo1 = U — YVyG(Er, 3 Gb)- (22)

Before proceeding, we will first define (or restate) a few key concepts and useful notations.

Filtration. For any ¢ > 2, define j—"f as the filtration of the randomness used in updating 3, before
the ¢-th iteration:

j:LZ/ = 0’(517'-%51571)7 (23)

where o (-) denotes the o-algebra generated by the random variables within the argument.

Aucxiliary Sequence. We also introduce the following auxiliary sequence {@;} for our analysis:
t
iy = (1= o)ii—1 + V(&4 73 &) = Zdt,jﬁéf)(i’t,ﬂ:;é% (24)
j=1
where the sequence {d; ;}’_, is defined in () of Lemma Similar to (I4), (I3) and 20) in
Appendix @ the hypergradient estimators V(Zy, §,; &) and Vo(iy, 773 £) can be written as
- . L =) = o
Vi, 1 &) = VaF (@0, 505 &) = Vi, Gl 5 GV BV F (@0, 5 &),
~ " ek 2 ~ s Z 0 * ~  ~xF
V(i G55 6) = Vo F (8,55 6) — Vi, G(@e, 773 ¢, @ ))Pt Vy F(%4, 915 &),
where the randomness ét is defined as
ét = {gt» 5}50)7 5(0)7 RS E(Qil)}v where E(q) = {CN(q’l)v s ,CN(q,q)}; (25)

and the Neumann series approximation matrices P; and P, are defined as

Q-1 ¢ 7(q,5) Q-1 ¢ 2 ~x. %(q,7)
- 1 V G(act,yt, ) . 1 Vi G(Zt, 915 6")
Pt:ZH<I - nd Py = ZH -
. g, ’ :O =1

lga

Constants. We define the following constants, which will be useful for analysis. Given any se-
quence {Z;}, denote G; and L; as

G, = Joax, IV®(21)|l, Li= Lo+ LGy, (26)

where constants Ly and L, are defined in (13).

Lemma C.2 (Distance recursion, (Cutler et al.,[2023| Lemma 25)). Suppose that Assumptions3.2]
and 3.3 hold. For any given sequence {I.}, let {y,} be the iterates generated by the update rule
(22) with constant learning rate v < 1/2ly 1. Then for any t > 1, we have the following recursion:

_ . ~ 2
T2 = Freall® < (0= pn)llge = G717 + 29(Ee, 0)l|7, — yt\|+2’vzll€tll2+me’ @27

where Uy == 7“ if §, is distinct from §j; and zero otherwise, &, = V., g(%4,5,) — VG (1, 74; Ct)

9
denotes the noise, and Dy = ||§j; — ¥ || is the minimizer drift at time t.

Lemma C.3 (Restatement of Lemma.2). Suppose that Assumptions 3.2l and 3.3| hold. Given any
sequence {Z} and any randomness {&;} (see (23)) for definition) such that

N - 2772 ~ 72 : ~ ~ %
[Ep1 — &e]|” < bVl le||® + Ly Zdt,jﬂyj 1R (28)
=1

25
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where @i, {dy ;}5_, and Ly are defined in 23), ©) and @8), respectively. Let {ij,} be the iterates
generated by the update rule 22) with constant learning rate -y < 1/2ly 1, and choose v = 23/ pu.
Then for any given § € (0,1) and all t > 1, the following estimate holds with probability at least
1 — 6 over the randomness in j—'% 41

t—1 .
. 2 1 wy 2l2 1 /~L'7 =1 I~12 - ~x 2
5, — 75 1I* < *7 WZ -5 2 | g —ail
8 eT 16772l t—1—i _o
T (:m ; ( “7) L) o2, (29)
212 -1 t—1—i 6andyd | =1 t—1—i
1 Y ~ 12 TS Y 20~ 112
- Z(lf—) lal? + s > (1= 51 el
APpty 2 Mpiyt 2

Proof of Lemma|C.3] By Lemmal|C.2]and Lemma[B-9] we have

- i~ . - 2
G001 = F5all* < (L= p)llg, - 2‘H2+2v<~€t,vt>||yt—y2‘\\+272||€t||2+ED?

2

< (= N)Fe — GNP + 29(Ee )T — Frll + 292161 + — Zy|?
. e w N (30)
< (X = p) — TP+ 27 017 — T 11+ 297161
47ll 1
+ )\2 39 || t||2+L Zdt]Hyj y]||2 )

Jj=1

where the last inequality uses (28). Note that under Assumption[3.3} there exists an absolute constant
¢ > 1 such that for all ¢ > 1, ||&|* is sub-exponential conditioned on F} with parameter co ;, and
£t i1s mean-zero sub-Gaussian conditioned on fg’ with parameter cog,; (Cutler et al.,[2023, Theorem
30). For simplicity we set ¢ = 1 here. Thus (&, u;) is mean-zero sub-Gaussian conditioned on jff’
with parameter o, 1. Hence, in light of (30), we apply Proposition @With

He=F, V=g, — 0% Di=20(En0), Xi=292&3

477212
Yi= s L Zdunyj 7;°,
2l2
pr=1—py, K= N op=2y0g1, v =27 0971,
yielding the following recursion
- 4) lgl 24 77 9 17
E [exp(07 1) <E |exp{ 0| (1= E51) 70+ 24% sz lal® + 552 L de
(€2
for all 6 satisfying
1
0<0<mind — - (32)
8yo? 9.1 " 42 a 8v0g1

where in (3T) we denote V', := ||, — ¢/ ||2, and the last 1nequality of B2)usesy < 1/21,1 < 1/2p.
By Lemma we use induction to show that for any ¢ > 1 and  satisfying (32), it holds that

. d~o? qn212 =L t—1—i
exp {9 (1 - %) Vi + ’Yug,1 + 7 g’l Z (1 - %) [ ||

E [exp(@f/t)] <E

A2y
2l2 t—1 t—1—i _ 16 l t—1—i .
1 wy 2 N 2
+)\2 g,yvlz(l_?) Li + A2 Y Ugl ( ) L;
i=1
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64n*l | =1 pyNtlme o o2
e (1) ekl g
=1

where the first and the last lines use the sum of geometric series, and the second line is due to

Lemma
-1

i—1 2 ,
(-8) == -y,
= Ky
= Py s PN 2 e A N H
S (1-5) el (-5) Tl S (- F) ekl
i=1 Jj=1 i=1
Moreover, by setting 1 as follows, we have
8yo2 4yo?
9=2%01 %1 ang 7:7/2 .
1% 1% U 8yo

Hence for any ¢ > 1 we obtain
t—1 )
- ey t—1 _ 4772[2 1 Y t—1—1 -
E 9V—<1——) Vi 52 (1——) .
lexp{ t 9 1 )\2u3’Y P ) HU’ ||

P12, py\ e 1672, A py\ 1 =2
e (1-5) Lo (-9) L
=1

64774l3 1 — A N HT
B3 (1 - 7) L7 <exp(69) forall 0<6<1/v.
Taking 6§ = 1/1 and applying Markov’s inequality and union bound completes the proof. O

Lemma C.4. Suppose (1) holds, where iy, {dy;}'._, and Ly are defined in (&), ©) and ([Z6),
respectively. Choosing v = 23/, then for any t > 1 we have

E [exp(@f@)} <E lexp {0

A2 pdy
P17 py it iaz2 | 16770, — Yy
oy 1 (1-5) =L el 3 (1- )
i=1 i=1
32015 4 ( W)H i ol Py
-4 LY (1-51)

4,,7~3 ) J
ATy =

(33)

Proof of Lemma We use induction to show that (33) holds for any ¢ > 1 and \ satisfying (32).

Base Case. For the base case ¢t = 1, it is easy to check that

Elexp(8V1)] < Elexp(8V1)].

Induction Step. Now we assume that the induction hypothesis @ holds for 1 < k£ < ¢, then for
k =t + 1 we have

E[exp(6V1+1)] < Elexp(8[(A1) + (A2) + (A3) + (A1) + (As) + (Aq)])];
where (A1), (A2), (As), (A4), (A5) and (Ag) are defined as

),
= (-12) (- 12)

27
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Y P\t
(A2) = 29%0] | +27°07 (1 - ?) Z (1 - 7) ;

1=

4772l21 ~ 4772[21 Ly t—1 1y t—1—i
() = s linll® + 5522 (1= ) 2 (1= 55) Nl

4772l§ 132 L py\I—t ~ 4n lg 1~ Ly =l py Nt a2
(A1) = 555 L ;ldt,j (1- 7) Vit etV (1- 7) Zl (1- ?) io(1— B) VL7,

AQ#B’Y j=1 i=1 2 )\2'u4 ” 2 i=1 2 a
4772l§ 12 ¢ 4172l§ 1 it YNl
(o) = g da e Dzt S (1=15) "l
Jj= i=1

K2

474 t—1 . .
9.1 Y Py =2 PYNTI - e
e ()X (-F) el (7))

i= j=1

We continue to bound each term individually.

Bounding (A;).

Bounding (A5).

— 92,2 2 2 Y PN o o o Y Pyt
(42) = 29202 + 29202, (1-E0) S (1-50) =222, (1-E) > (1-51)

i=1 i=1
Bounding (A3).
Al 13 Y O py\ i1 a2 | ¢ t—i
Aa) = 9115112 4 g, (1_7) (1_7) =2 g1 (l—ﬂ) AL
( 3) )\ng/}/ ||utH >\2M3’V 2 ; 2 ||qu )\2,11/3'7 ; 2 ||u1||

Bounding (4,). By Lemma[B.3]and the choice of v = 23/, we have

4?12 | -2 i py\I—t ~ P2 o i , .
olf d-(l——) V= -t 9lf 1- B i(1— BtV
)\zﬂs,y t; t,J 2 1 )\gﬂg,y t;at( /6) ( 5) 1
4772l3 1~2 ¢ -
= ~L 1- 8w
MMt;m BV
4772l§1 t—172
— )\2 3 tat(lfﬁ) LfVl
Then we obtain
ARETEN PN Ty AP - BYVR (B 172
Ay) = —9LF2NTg ,(1,7> 1% 9.1y (1f—) (177) oi(1— B)—1I
( 4) )‘2M3’y tj; t,j 9 1+ )‘QMS'Y 1 9 ; 9 ZO(( ﬂ) i
4n?1? =2~ 4?2 | . =1 t—1—i o
s, e () 8 )
i=1
4772l31 ~ ¢ Mfy t—1 X ~92
Py S () e gy
ety 2 p ) =BT L

i=1
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Bounding (A5). By Lemmaand the choice of v = 23/ u, we have
4772@
d 29202 (1 — —)

Then we obtain

477l

-1
15 ny
(A5) = 3g i Zdw 2720 (1—7)
j=1
160%12, , -2 1677212 —
< Nepd Tort s 12(
i=1
16772l i .9

Bounding (A4s). By LemmaB.3|and the choice of

i—1 ) )
4772l_!2],1 =2 ] 7721_?],1 JZ (1 _ ﬂ)g_l_z Ha”Q
Npsy T YNy 2 i
Then we obtain
4n212 L2 4n212 L j—1 N1
Ag) = —91] > (1= 50
( 6) )\2/~L3"/ tj:1 t,j >‘2/1’3’Y lz:; 2
-1 )
32774%1’1 (1 B ﬂ) tz (1 B ﬁ)t—l—za-
A4M773 2 . 2 v

$IPl51 ) 5 5 32y

< a2V gl Zdtvj
A2ty p

_ 16772[.3«,1 o2 72

>\2M4 g,1°-t"

160212 — t=1-i
M 2 (MY Z 1M =
et T (15 2175

,EZ

= 253/ u, we have

An?l2 | 8l
dy ||t
Nt Nepie? Z vl
An212 8?12, o .
< 9, 9l . L (1_5)t—9 112
iy iy 2 I
82y, : t—j
= 2 1 — 7) T 2.
)\4'u7,}/3 g ( ”u]”
]
72 My

L; Z(l) Iz

j=

321l 1 ' =, 3 P\ a2 [y
- )\4u7'y3 Z (1 - 7) 11 + ApT3 (1 - 7) ailL; (1 - 7)
j=1 i= j=1
321715,1 YN\ ERE T
=S 2 (1 - 7) i Z (1 - 7) ;]2

Final Bound for the Induction Step. Putting these terms together and rearranging yields

t

e e ol
s z<><> i)
L) > (1-17) Z(l—f) '*jnajnz ,

which aligns with (33) for & = ¢ + 1. Thus, the induction step is complete, and (33)) holds for any

t>1.
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D CONVERGENCE ANALYSIS OF ADAMBO (ALGORITHM

In this section, we provide detailed convergence analysis of Algorithm |1| (or equivalently, Algo-
rithm [3). Before presenting the lemmas and the main theorem, we will first define (or restate) a few
key concepts and useful notations.

D.1 TECHNICAL DEFINITIONS AND USEFUL NOTATIONS
Filtration. Define Fjy; as the filtration for updating y; (i.e., the filtration of warm-start phase):
]:émt = 0'(71'0, ey 7TT071)-

For any ¢t > 2, define F}* and ]—'ty as the filtrations of the randomness used in updating x; and y,,
respectively, before the ¢-th iteration:

ff:U(gh"'agt—l)’ fg:U(Cla"'act—l)a

where o (-) denotes the o-algebra generated by the random variables within the argument. Addition-
ally, let F; denote the filtration of all randomness before the ¢-th iteration:

Fi = 0 (Finie UFF UFY).
Expectation. We use E,[] to denote the conditional expectation E[- | F].

Auxiliary Sequence. Note that m; (line 7 of Algorithm [3)) can be written as
t
my = (1 — ap)iy—1 + V(e yi; &) = Zdt,jv¢(xt>yt§€t)' (34)
j=1
Similar to Appendix we introduce the following auxiliary sequence {1} for our analysis:
t
iy = (1= )iy + V(e 475 6) = Y di V(w75 &) (35)

Jj=1

Other Definitions. We define the deviation of the rescaled auxiliary momentum from the condi-
tional expectation of the hypergradient estimator as

e = G — B[Vo(ar, y: &) (36)
Also, let h; be the learning rate vector and H; be the learning rate matrix:
N .
hy = ——— d H; = diag(hy). 37
v oWl ¢ = diag(hy) (37

Then the update rule for upper-level variable z; (line 10 of Algorithm I)) can be written as

T4l = T — ht ® mt =Xt — Ht’l’ht. (38)

Stopping Time. Given a large enough constant G as defined in Theorem [D.12] denote L and v as
CrG?
2L

where constants Lo, Ly and C, are defined in and (42). Now we formally define the stopping
time 7 as

L=Ly+ LG and Y=

(39)

Ti=min{t | ®(z;) — D" > Y} A (T +1). (40)

In other words, 7 is the first time when the sub-optimality gap is strictly larger than ¢, truncated
at T + 1 to make sure it is bounded. Based on Lemma|[D.I} we know that if ¢ < 7, we have both
O(xy) — P* < ¢ and [|[VO(zy)| < G.
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Constants. We define the following constants, which will be useful for analysis.

Gy = max |[V®(xp)|l, Li=Lo+ LGy, L=Lo+ LG, A =d(zx;)—d,

1<k<t
Lm 1
Cp=—F————=, Cuo=0Cpo+G, Cu1=0Cp1+ LG,
+3l,1+0 2,1+ 0 2lg1 + 0o
op = M g; 9,2 + g,1 g72lf70 + 9,1 9,2 (Ly,o JrLy,llf’O)T_
8ea}G? max{1,t} 8C,eA;LoyG3 o;G
Cn > é iy o7 (14 -2 IRVONAS
b= max{ c2oN\2et c10202%€4 + c1 €2 max{l, Vi, o}

2 2
32e03G? 48CheA Loy G? oG
[ 261404 [
1 1
< c2oN\2et ) ’ < c1Ca0\2et + ci\e? max{l, v/i, 1}

(41)

(42)

(43)

(44)

Besides, constants Lo, Ly are defined in (I3)), Cy0, Cy,1 are defined in (T6), and r is defined in (12)),

respectively.

D.2 AUXILIARY LEMMAS

We first introduce the following useful lemma, which is crucial for the subsequent stopping time

analysis and for establishing the contradiction argument.
Lemma D.1. Under Assumption[3.2) we have

2
Cr

2 <
Ivo@)|? < =

(Lo + L [[VE(2) [ (D (2) — @),

where constants Lo, L1 and C|, are defined in (13) and @2). Further, for any given constant G > 0,

if we denote ) as in (39) and ®(z) — ®* < 1), then we have |[V®(z)|| < G.

Proof of Lemma([D1] Let 2’ be

. CulVe@)
Lo+ L1||V®(2)||’
then we have
o o = _CEIVE@I O ! .

Lot LIVe@I = L fa e a2, + L2 )

where the inequality can be verified by considering both cases of |[V®(z)|| < Lo/L; and

IV®(z)|| > Lo/L1. By Lemma|B.10} we have

- 0(r) < O(') ~ B(a) < (VO(x).a’ ) + LT LIVEE e
CL(2-Cy) 9
= — Vo .
(Lo + Lava( !
Rearranging the above inequality yields

CrL(2—-Cp) Cr
where the last inequality uses the definition of C, in #2) and C, < 1.

Now define the function ¢ : Rf — R as

() = - -5
u) = —mm—.
v 2(Lo + Ly1u)
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—1

It is easy to verify ¢ is increasing and ¢ (u) € [0, 00). Thus, ¢ is invertible and ¢~ is also increas-

ing. Then for any constant G > 0, denote L and 1 as in (39),

CG2
L=Lo+ LG, ¢=-"=¢G)

The property of function ¢! and @#3) imply that if <I>(a:) — §* < 1), we have
[Ve(2)] < o7 (2(x) - ©") < 7' (¢) = G.
O

Note that when ¢ < 7, some of the quantities in Algorithm[I]and Appendix [D.T]are bounded almost
surely. In particular, we have the following lemma.

Lemma D.2. [ft < T, we have

IVO(2)|| <G, Ly <L, || <Cuos he=~, [Hll =+
where hy is defined in @, constants ﬁt, L and C,, o are defined in (@) and @, respectively.

Proof of Lemma[D.2} By Lemma|D.1]and definition of 7, we have |[V®(z,)|| < G if t < 7. Also,
recall the definition of G, L; and L as in (&I, we have G; = maxy<; [|[V®(xy)| < Gift < 7,
and hence gives Ly = Lo+ L1Gy < Lo+ LG = L. Before bounding ||4:||, we first show
Vo, v &) < Cuo. Lemmadirectly implies that if ¢ < 7, then

Vo (e, yi €I < Co0 + (Coa + L1l V(@) ) lyr — vill + 1IV®(21)]| < Cy0 + G = Cuy,

where the last equality is due to the definition of C\, o in (@2). Now |||l can be bounded by a

standard induction argument as follows. First, for the base case k = 1, note that |V (x1, v &1 )|| <
Cl,0- Suppose ||tig—_1] < Cy o for some k < 7, then by update rule of iy, in (33)) we have

ikl < (1 — ap)lan—1] + w|Vo(xr, yr; &) < Cuo-

Therefore, the induction is complete. The last two results directly follow from the definitions of h;
and H; in (37). O

D.3 PROOF OF LEMMA [£.3]

In the next lemma, we provide high probability bound for the warm-start phase.

Lemma D.3 (Warm-Start, Restatement of Lemma %D Suppose that Assumptions[3.2]and[3.3| hold.
Let {y{"™"} be the iterates generated by Algorithm 2| with constant learning rate v < 1/2l, 1. Then
for any given § € (0,1), the following estimate holds with probability at least 1 — 6 /4 over the
randomness in F;,; (we denote this event as &):

4e

* (12 wy 2 8
o~ i1 < (1= 2" o — w5 + L 1Ag (46)

Proof of Lemma[D.3] For any given § € (0,1) and any fixed ¢ > 0, we invoke (Cutler et al| 2023|
Theorem 30) to obtain that

nr * 870’
I~ 5517 < (1= B2) o — w112 + ;’13— 7)

holds with probability at least 1 — § over the randomness in Fiy. Set t = T and then we have

T =

= |lyr,

. 7\ T
Iy — yi Py < (1 g

2
wY 0 w2 870‘9@ g
3 ) o=yl + =

1
n

init

where the first equality is due to y; = yp," and y7 = y; (since z1 = o) by line 2 of Algorithm [
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D.4 PROOF OF LEMMA [£.4]

The following Lemma (i.e., the full statement of Lemma [4.4) is a direct application of the
randomness decoupling lemma (i.e., Lemma[d.2) to the actual sequences {z,}, {y;} in Algorithm([I}

Lemma D.4 (Restatement of Lemma . Suppose that Assumptions to E hold. Let {y;} be
the iterates generated by Algorithm[I| Under the parameter choices in Theorem|D.12] let 1 further

satisfy

(48)

3/2
ngcmin{m A To\B A3/23 }

Gr’ 6L’ LGy max{l, i,In(1/8),n(Cs)} Lrv/Gr

then for any given § € (0,1) and all t > 1, the following estimate holds with probability at least
1 — &/4 over the randomness in F7, 41 (we denote this event as £, ):

t—1

. py\tL | APl Pyt 2 \
||ytyt2s<(12) e (-5 L) il

2,3
)\M’yizl

8y, el 167131 py\EITE L2
+ <u1n5+ o Z(l—7> L) o2,

477215 ) t—1 Ayt 647741;1 ) t—1 P T
+ N2y Z (1 - 7) [l4:]]* + N (1 - 7) o L |||,
i=1 N

=1

(49)
where constant L; and sequence {1;} are defined in @1)) and (33), respectively.

Proof of Lemma[D4) First, with the parameter choices in Theorem and the additional choice
for ) as in @), we can follow the same procedure as Lemma %@(see “Verification for o <
min{r, 1/4L;}”) to show that ||y, — y;|| < r for all ¢ € [T]. Thus, the condition for applying
Lemma [B.T3]is satisfied. Recall the definitions of 77, and @ in (34) and (33), we have

2

t
[[72s — e ||* < Zdt,j(@ﬂ%‘?yg‘;gj) — Vo(x;,y5:€)))

Jj=1

t
< di V(s y5:65) — Ve, vl &)1 (50)

J=1

t t
* 2 *
<N di (Lo + Lal| V() D2y — wpl* < Ly > dellys — w117,
j=1

j=1
where the second inequality uses Jensen’s inequality, the third inequality is due to Lemma|[B.T3] and
the last inequality uses the definition of L, in (#1)). By the update rule in Algorithm 3} we have

et — aell? < NE 2l < 22 < 2L ()2 + o — a2
A A
2n% [ . P
< 20 (ol + 2 Yl — 312 )

Jj=1

where the first inequality uses (37); the second inequality is due to Lemma[D.2} the third inequal-
ity uses Young’s inequality; and the last inequality is due to (30). This implies that the sequence
{x+} and the randomness {&;} generated by Algorithm [1satisfy the condition (Z8) in Lemma

Therefore, the result follows by applying Lemmawith {@} = {2} and {&,} = {&,}. O

Remark. In the end, we will show 7 = T+ 1 in the proof of Theoreml@ (i.e., the Full statement
of Theorem , thus we can apply Lemmato obtain G < G and Ly < L. This suggests that
under event & N &,, the additional requirement (48) is actually included in the parameter choices
of Theorem [D.12] Therefore, there is no need to worry about this temporary iterate-dependent
requirement for the choice of 7.
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D.5 PROOF OF LEMMA [4.3]

Before proving Lemma@ first note that when ¢ < 7 and £&yNE, holds, some of the time-dependent

quantities (such as Ly and |Gt ]) in Lemmacan be well bounded by Lemma In particular,
we have the following two high probability bounds for the lower-level approximation error ||y: —y; ||:
the first one, (]3_T|) is useful for the convergence analysis; and the second one, @ is crucial for

proving Lemmas [D.6|and [D.§]
Lemma D.5. Under event £ N £, and the parameter choices in Lemma ift <1, we have

. py\t-l o 812 L2 ) 8y, 4eT  320°L; L
||yt—yt||2s<(1—) Sl LU RR B SR vy ol K8

9 T N2}5
4772l3 ) t—1 1y 11— 647]4l4 1L2 t—1 1y i
9. 1_7) 012 4 —— 91 (1_7) a2
R v ;( 5 il + =58 ; . ]
(5D

and

. 8n?l2  L? . 8y . 4eT 32012 | L*
lye — w7 |I* < <1+g’ lyr — w711 + ;1nf+7g’ 5.1

242 5 2,5
272 Mz7 474 12012 o (52)
8n-l: C7 1024n*l; {L°C;, 1
M tg1%4,0 g1 UM (R P 02,
2242 P

where constants L and sequence {1} are defined in (1) and (33)), respectively.

Proof of Lemma([D.3] By Lemma we know that L; < L and ||| < Cl 0 if t < 7. Then under

event & N &,, (B1) is obtained by replacing L; with L, and (52) is obtained by substituting both L,
and ||4;|| with L and C,, o, respectively. O

With Lemma [D.3]in place, we now formally present the statement of Lemmad.5]below.

Lemma D.6 (Restatement of Lemma [4.3). Under event & N &, and the parameter choices in
Lemma|D.4] if t < 7, we have

~ ~ n n
|| < Cuo+ Curo, 0t = (Cuo+ Cui0)?, < hy < 2.
|72 < Cuo 10 t 2 (Cuypo 10) Coot Cotot A~ Y

ift <1, we have . ~ . ~
IVO(x, 525 &) — Be[V(ar, ye; &)l < 0,
B[V (e, 573 60)] — Era[Vo(ae1, 471 &)l < Ll — zea s
where constants Cy, o, Cy.1,04, L and ¢ are defined in @2), @1) and (52), respectively.

Proof of Lemma[D.6] By Lemma|[B.T4] under event & N &, if t < 7, we have

V(@ yo; &)l < Co0+ (Con + Lal| V(@) )llye — vi | + V(o) |
< C¢”O +G+ (C¢a1 + LIG)Q = Cu,O + Cu,lQa

where the second inequality is due to Lemma[D.2]and (32) in Lemma[D.5] and the last equality uses
the definitions in (@2). We can bound |77 || by a standard induction argument as follows. First, for
the base case k = 1, note that

|| = ||@¢(~T1»y1;f_1)|| < Cyyo + Cy 0.

Suppose ||my_1]| < Cy,0 + Cy,10 for some k < 7, then we have
7| < (1= o) -1 ]| + ol V(@k, yis &)l < Cuo + Curo-

Then we can show ©; < (C,, 0 + C,.10)? in a similar way (by induction argument) by noting that

(Vo(ze, 91 €))% = [ Vp(ae, yi: &)||* < (Cuo + Cu10)*.
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Given the bound on ¥y, it is straight forward to bound the learning rate h;. As for the second last
bound, by Lemmaand (32) of Lemma under event & N &,, if ¢ < 7, we have

||@¢($t7 Yt; f_t) - E; [@(ﬁ(xtv Yt; gt)]”
‘LL+31911 +0972 + 2Zg71 +0g’21 2lg,1 +0972

< o0+ —2——"=(Lyo+ Lylro)lly: —vi
1 1 f [ ( Y y,1tf )H t t”
pA3lg1+oge 251 +0g2 2051+ 042
< ! 0= 4 28 L=l p0 + —L—2= . L= (Lyo + Lyalgo)e

1
< O¢s

where the last equality uses ¢ < r by Lemma|[D.13]and the definition of o4 in (3)). The last bound
can be obtained by applying Lemmas [B.15|and[D.2]
||Et[@¢(xta yi &) — Etfl[@d)(xtfhyrfl;f_tfl)]” < (Lo + L[| Ve(ze—1) e — el
< (Lo + LG [y — i1 |

= Lzt — 1],

where the last inequality uses the definition of L in (41). O

D.6 PROOF OF LEMMA [£.6]

The following lemma provides a bound for the difference between the actual momentum 17, versus
the auxiliary momentum 4, under the good event & N &,, which is crucial for establishing the
convergence guarantees for Algorithm m

Lemma D.7 (Restatement of Lemma [£.6). Under event & N &, and the parameter choices in
Lemma[D.4) we have

T—1 272 12 272 12
8n°l- | L 8 4eT 32971z L
~ ~ N2 2 g,1 %12 Y g1 2
;:1 [y —d||* <TL <<1 + N2 1142 ) lyr —yill” + ( 7 In 5 + N2 115y ) Ug,l)

8n212,  2048n*1% L2 1\ & . .-
“2<A2uf§2+ i (2405 ) ) el + 208 Fo(on,a7:60] - Vo)
t=1

S22, 2048nt1 | L2 1)) &
217 = & 2+1In— Vo 2,
+ <)\2M4W2 + N pBAA < + nﬁ) ; [V ()|

Proof of Lemma[D.7} Under event & N &,, if t < 7, by Lemma and (30) in Lemma we
have

t t
R N .2
e — aull® < Ly > dijllyy — i 1? < L2 dejllys — v 1>
j=1 j=1

Now we apply of Lemma [D.3|and take summation to obtain

T—1 t
SO deslly -l
t=1 j=1
T—1 t . 219 9 - ,
pyNi-1 8P, L wio (8. 4eT 320702 L7\
S;;dt,j<<<l_2) +W Hyl_yln + IIDT—FW o2,
(A1)
T—1 t 27,2 j—1 . . 44 9 j—1 . ‘
Al 4 py\I—1=i oy 6Ant L i
IR (wv S (=) el S (1) el
(A2)

We continue to bound each term individually.
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Bounding (47). By Lemmas[B.3|and[B.5]and choice of y = 23/, we have

T—1 t : 272 2 272 2
T — py\i—t 87l L 2 87 4eT  320°12 L%\
- Z Zdtyj (1 - ?) + )\2M4'72 ”yl ~— U H + In (S + )\2M5'7 Og.1
t=1 j=1
T—1 ¢

=S (Y i

t=1 j=1
T—1

t 272 2
81”51 |2 87 deT" 32715, L 2
BRI (AQ Ay i+ (AL 2

t
T—1 2 272 2
= 2 gL (|2 8v, el 320l L 2
> lt (1= B) " lyr — vyl +Z</\242||y1 AR B b S v ol KO8

12 212 12
8y . 4eT 32n°l: L
2 g, 2
<T<< )\2 4 2 >y1—y1|| +< In 5 + N2i5y 9g,1 | >

where the last inequality uses 7 < T+ 1 by definition of 7.

(53)

Bounding (45). By Lemmas|B.3|and[B.6|and choice of v = 23/, we have

T—1 ¢ 2;2 J—1 . . 474 2 j—1 . .
Anly py\Ii—it—i 64n°l, 1 L pry\I—1-i .
=D > di (éf > (1 -5 ) 11 + 7/\4/;74 > (1 -5 ) ailla;||?
i=1 i=1

2
t=1 j=1 Ay
T—1 ¢ T—1 t
64ntid L2
g’gZdelluJH? e (32+161n )Zdenujn
t=1j=1 t=1 j=1

a2, 10241 12 ,
< <)\2M4’72 + N pS~A (2 +In > > Z e ||
Final Bound. Combining (53) and (54) yields

-1 t 212 72 212 12
8-l L 8y . 4eT  32n°l; L
do Ny —u*12 < T 14 L 92" — u¥? i == 29 ) 52
;:1:;:1 illyg —yill” < (( + 22 472 )”yl yill® + (M n=s + N2y 09,1
A2, 10245t | L? 1\ &=
> 5 9 In = ~ 2.
+ <A2M4W2 + P < + nﬁ) ; ([t |

In addition, recall the definition of @, and €, in (33) and (36), by Young’s inequality we have
lel|* < 2lecl® + 4BV G (e, 473 )] = V(o) | + 4] V()|
Therefore, we conclude that

(54)

r—1 T—1 t
> e —ad* < L2 0 diglly; — vl
t=1 t=1j=1

8n212 | L2 8y . 4deT 320212 L2
2 g1 %2 T 2 7 g1 2
<TL <<1+W4v2 lyr —will” + DT S vyl KA

8212, 2048yt L2 1)) & . .-
+L2< B i (2415 ) ) S al? + 2B o7 6] - VR IP
t=1

A2 pdq2 M8yt

8n212,  2048n*14 L2 1\ =
217 = g 2+4In— D (z)[|%.
+ <)\2M472 T A8 ( + nﬂ) tz:; V()|
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D.7 PROOF OF THEOREM [4.1]

The following lemma ensures that z;4; and x; remain close for sufficiently small 7, allowing us to

apply Lemma[B.TT]in Lemma[D.9]
Lemma D.8. Under event £y N €, and the parameter choices in Lemma ift < T, then we have
|z41 — z¢|| < nD where D := 2G/\.

Proof of Lemma([D.8] Under event & N &,, if t < 7, then we have

(Cuo +Cune) _ 290G
d d < =nD
A A s
where the first inequality uses (37)), the second inequality is due to Lemma[D.2] the third inequality

uses Lemmal|D.6] the fourth inequality is due to Lemma[D.13] and the last equality uses the definition
of D. O

R n. "
e = @ell < [|Helll7e ]| < Tllrmel| <

Next, we provide a descent lemma for AdamBO.
Lemma D.9. Under event £y N &, and the parameter choices in Lemma ift <, we have

2n . . R
(@e1) = B(wr) < =LV + S e — |

4n 4n - (55)
e 4+ TR (i 6] — V()|
Proof of Lemma([D.9] By Lemmas|D.6|and [D.13]and choice of G, if t < 7, we have
nl n nl
o< < H, < 2. 56
2G = Cuo+ Curo+ A~ 17 A (56)

Since we choose 7 < r/D, then by Lemmawe have ||z;11 — 2¢]| < rift < 7. Define é; and
€t as ~ _

€ =1y — VO(xy) and € = Up — B [Vo(xe, yi'5 &) (57)
For any ¢ < 7, we apply Lemma [B.TT]to obtain that

LO + L1 ||V(I>(It)

[ 2
9 lZt41 — @]

Q(z141) — ©(20) < (VO(21), 141 — 74) +

L
SAVO(x4), w1 — ) + §||5Ut+1 — z?

L
= —V&(x;) " Hyrng + EmIHEmt

< V) 3, — V) T Hiee +

< _§||v¢>(xt)\|§lt + zllétllét + % (Ve ()7, + lléll,)

< 5 Iva ), + el

< 15l ve@E)l? + el

< —%HV‘I’(%)HQ + 2777”77% — ] + 47””%”2 + 47”||Et[§¢(xt7yz§€t)] = V()|

where the second inequality is due to Lemma [D.2] and definition of L in (#IJ); the third inequality
uses (57) and (56); the fourth inequality is due to Young’s inequality a " Ab < %|la||4 + 3[b[[% and
la+b|? < 2||a|} +2/|b||4 for any PSD matrix A; the fifth inequality uses the choice of n < A/6L;
the second last inequality is due to (56)); and the last inequality uses and Young’s inequality. [

The following lemma is essential for bounding the sum of the error terms ||¢;||? before time 7. Since

we introduce B[V (zy, yF; £)] as part of the definition of ¢, (see (57)), we can directly invoke (Li
et al.| 2023a, Lemma C.10) to obtain the high probability bound.
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Lemma D.10 ((Li et al., 2023a, Lemma C.10)). Denote w; as

Wr—1 = (1 - at)(ﬁtfl + ]Etfl[@qs(mtflvy;fl;gtfl)] - Et[@d)(l't»y:;f_t)])'

Under the parameter choices in Theorem Sor any given § € (0, 1), the following holds with
probability at least 1 — 0 /4 over the randomness in Fr1 (we denote this event as £, ):

Z a(we—1, @¢($ta Ur' gt) - Et[@(ﬁ(mta Ui gt)D < 503&\/(1 + 827) In(4/9).

t=2

The next lemma bounds the sum of the error terms ||¢; ||? before time 7.

Lemma D.11. Under event £y N €, N &, and the parameter choices in Lemma we have
T—1
> el - 128G V() |? < 80%(1/8 + BT) + 2002+/(1/B2 + T) n(4/5)

t=1

A T—1
+ 108G Z 7 — e |® + |Be[V(e, 75 &) — V() ||,

(58)

Proof of Lemma[D.T1] We first denote w; as
wi—1 = (1= ay)(er—1 + Beo1[Vo(@i—1, 5715 &-1)] — Ee[V(@e, 571 €)]).
By definition of €; and the update rule (7), we have
= (1 - Otf,)(ét—l + Et—l[@ﬂ%—l,yf_l;f_t—l)] - Et[@¢(ﬂit7y:§§_t)])
+ ar(Vo(ze, yp 3 &) — Ee[Vo(ze, y7:&)]) (59
= Wg—1 + Oét(@¢($t’ yii &) — Et[?qﬁ(xt, yi5 &)))-

By choice of 1 we have
CoT\ _ 2cor T
IS <——< =
G D D’
where in the last inequality we choose small enough cy. By Lemmawe have ||z; — 24| < r
if ¢ < 7. Then for 2 < ¢ < 7, we apply Lemma D.6|to obtain

H]Et—l[vqs(zt—hyt—l; ft—l)] - Et[v¢(xt, yt;ft)m
L. . L .
< Ly — ol < Tl < 2V @e) | + e )

L A A . o
< 777 (||V‘I>($t—1)|| + M1 — Gy || + lee=1l] + |Ee—1[Vo(zi—1, yi_1:&-1)] — V‘I’(fﬂt—l)ﬂ) :

(60)
where the third inequality uses (57). Hence we have
lwer]* = [[(1 = as)(es—1 + o1 [Vo(wi—1, 57— 1;&-1)] — B[V (s, 473 &)
< (1= a)*(1+ ae) e
+(1—ay)? <1+ )|]Et V(@ 1,513 &-1)) = Ea[ Vo (e, y75 &)1
< (1= ag)ler—a]® + aftHEt—lWab(ﬂft—uyf—ﬁ Ei-1)] = B[V (s, y7: &)
4?2 1
< (= aglle P+ g5 (192G +lleal?) ©
aPIR ) . o
+ Z% (Hmt—l — A |” + [Ee—1[Vo( 211,57 1 &-1)] — V¢($t—1)|\2)
ot 2 2
< _
< (1 S) el + o V()
ety (Ires — e |2+ [Boos [V E-0)] - Va(e)[?).
2560 t—1 t—1 t—1 =15 Yi—15 §e—1 t—1
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where the first inequality uses Young’s inequality ||a + b||> < (1 + ¢)||al|* + (1 + 1/c)||b]|? for any
¢ > 0; the second inequality is due to

1—a)?)(I+a)<(1—a)1—-0a?)<1—ay,
(1—oy)? <1 + 1) = aitu —o)?(1+ ay)

Qi

IN

the third inequality uses and Young’s inequality; and the last inequality is due to the choice of
G and 7 with small enough ca:

3/2 3/2 272
pe @B X0l M B
LVG ~ 32LVG A28 T 256G T 256 ~ 2 T 2
Plugging (61) back into (59) gives
leel® = llwer1® + 200 wer, V(e 53 €) — Ee[Vlae, y736)])
+ 07 |[Vo(ze,y7s &) — Be[ V(e y5: &)]II°
« AB
< (1= %) le-all? + gees VO @) + afo?
+ 200 (vi—1, V(1,75 §) — Ee[Vd(ae, v &)])
A . . - . =
+ % (||mt71 - Ut71H2 +[EBe-1 [V (ze—1, ¥/ 1;&-1)] — V@(xt71)||2> :
Rearranging the above inequality, for any 2 < ¢ < 7, we have
Q@ A
et < el < lleeoal” — el + 5o V(eI
+ OétQUi + 204 (vi—1, Vo(or, 475 &) — Ee[Vo(xe, 15 6)])
A . . - . =
+ % (Hmt—l — G ||+ [[Bea [Vo(me1, ¥y _1;€-1)] — V¢(It—1)‘|2> ‘

Then taking summation over ¢ from 2 to 7 we obtain that

~f 2 AB 2
—|ler— — ——||VO(xs—
>_glenall - gigg Vel

< el = lle-I* + Ui Zaf +2 Z%(wt—l, Vo (e, y5 &) — Bi[ V(e uis &)])
t=2 t=2
AB

+ 256G ; 01 — 1 ||? + B 1 [V (i1, yp_ 15 &—1)] — V(1)

< do3(1+ B°T) 4+ 1003/ (1 + B2T) In(4/9)

M

* %566

D lrivemy = g |? + [Eea [V (e, g7y &-1)] = V(@)
t=2

where the last inequality uses Lemmas|B.7|and and the fact that ||, || < o3. Then we complete
the proof by multiplying both sides by 2/4. O

With Lemmas [D.9] and [D:T1] we are ready to prove Theorem [A.1] Below is the full statement
of Theorem Pf;fl with detailed parameter choices, where we use c1, co, c3 to denote small enough
constants and C, Cy to denote large enough ones. The definitions of problem-dependent constants
04,Cy0,Cs1,A1, Lo, L1, L, Cg are provided in Appendix [D.1]

Theorem D.12 (Restatement of Theorem[@.1). Suppose that Assumptions[3.2|to[3-4hold. Let G be
a constant satisfying

G Z max 4)\7 20’¢77 4C¢ 0 C(i)’l 5 1/ ClAlLO, ClAlLl ) (62)
’ Ll CL CL
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Given any € > 0 and § € (0,1), denote v := 1n(4/6), and choose

. C1A€ _ %
Ogﬁsqgla ﬂgmln{ 2Gmax{1 \[h’l(Cﬁ)}} Y= U ) (63)
oA A op\B 2\3/23
0= eomin GG T V7 n(Ca)} el ©y

1 I C3Ap“€e
QZQmax{lnB/ln(l—%J),ln< 311;0)/111(1—)} (65)

B 1 CoAG
T = In q’l In(1 ), T =max {, } , (66)
’ (u 2llyo — w512 / g2 e

where constant Cg is defined as

8ect G? 1 3 2q
C’BZmaX{ % max{l, 1} 8CoehLoyG <1—|— il )max{l,\ﬁ,b},

25)\264 ’ 61625>\264 Cl>\62

2
32e0G? 48C5e A1 Lo sG3 o;G
¢ 2681509
—— |1 1
( 22t ) ’ ( c1Ca0\2e + c1 )\ 7 | max{l, Vi, i}
Run Algorithm or T iterations. Then with probability at least 1 — § over the randomness in Frp1,
we have |[V®(z,)|| < G forall t € [T), and * ZtT:I IV ()| < €%

Proof of Theorem|[D-12] By Lemmas|D.3] [D.4and[D.10] we have Pr(£, N &, N &) > 1 —36/4 >
1 — . The following analysis is conditioned on the event & N &, N &,.

Rearranging (33) of Lemmaand telescoping over ¢ from 1 to 7 — 1, we have

166G . .
Z4||V‘I’ we)|* = || el” < =y (@) = &%) = (D(ar) — &7)]
(67)
32G
Z 70 — e |* + 2 Be [V (e, y7'5 &) — V() ||,
t=1
Also, (38) of Lemma|[D.T1|can be written as
128G 128G
S 1B 7 = vt < 256 (02015 + 57) + 2003 (175 1079
t=1
T—1 (68)
+ )l = | + B[V (e, 57 &)] — V() |-
t=1
Summing (67) and (68) and rearranging gives
16G 64G |
= (2lr) -0 +3Z IV ()|* + Z lel|?
t=1

< 1:;—5 (AAl + 640'¢ (Z + nﬁT) + 160770(225\/(1/52 +7) ln(4/6))

(1 + m) Z i — P+ 1+ MG) Z BV o(ar.vi:6)] - V()|

33G 65G <
ant — u]|* + ZHEt V(e y73 &) — V()%
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where the last inequality uses G > \. By Lemma|[D.7] we further have

16G = 64G
7@(%) )43 V()| + Z llec]|®
t=1

< nif ()\Al + 6402 (Z + nBT) + 160702 \/(1/52 + T) 1n(4/6)>

33L2GT 8n?l2,L? 87 4eT 32012 | L*
1 9, o x2 In 9, 2
T (( - N2pAn2 llyr = will” + -5 7 Ny 051

33L2G [SRI2, 20481 L7 N\ = . o )
+ B (Vu;ﬁ L (2+lnﬁ) S el + 21 Fo(e0,1758) - T#G)

66L°G (Sn?i2, 20481} L7 ,
2L (A%ﬁ i (24w 2} ) S iwoten

| 9GS z IE S (e, i3 8)] — V(a0

(69)
By Lemma|[D.T3] we know that
66L2G 12 2048n*1} | L* 1
2+4In- ]| <2
X <A2u7+ Ny (*“ﬂ) =7
Then with G > A, (69) can be simplified as
16G L=
—(D(ay) — @) + Y [[VO(x)|?
n t=1
16G n 2
< —= (AAL + 6403 (= + 0BT ) + 160n03+/(1/8% + T) In(4/4)
nA B (70)

33L2GT 8212 | L2 ) 87 deT  320%05,L%\
+/\<<1+/\242 Ion =i+ (ST 255+ e ) o

+67GTZ§’IZ§7O _ @ g
pVE Iy T

By definition of 7 in (@0), we have

16G 16G 8CLG?
210G () — gy » 20G¥ _ 8CL
Ul n nL
By Lemma[D.T4] we have I; < I, which leads to a contradiction. Thus, we must have 7 = T+ 1
conditioned on & N &, N &,. Therefore, combining and Lemma D.14|finally yields that under
event & N EYy N &y,

=: IQ.

T

1

= IV < &,
t=1

Moreover, since 7 = T' + 1, then by Lemmawe can replace ﬁT and G with L and G respec-
tively, in the additional requirement {8)) for 1. Therefore, (@8) is now included in the parameter
choices of Theorem [D.12} which indicates that the current parameter choices are sufficient. O

D.8 PARAMETER CHOICES FOR ADAMBO (THEOREM [D.12)

The following two lemmas, Lemmas|[D.13|and[D.T4] hide complicate calculations and will be useful
in the contradiction argument and upper-level convergence analysis.
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Lemma D.13. Under the parameter choices in Theorem|D.12| we have the following facts:

4eT ez L7Ba
I == <In(Cp). o —uill* < — 5" n(Cy), (71)
1
ngln T3 (> CuO+CuIQ+>\§2G7 (72)
4L1 ) )
L2G ([ 8n?l2 2048n*13 | L? 1
O6L7G (517 | Lol (oym—)) <2 (73)
by )‘2,”472 )\4M8,y4 ﬂ

Proof of Lemma|D.13] We first list all the relevant parameter choices below for convenience:

C¢ 1 ClAlLO CiA Ly
> 4,204, 4 ~ 4/
G > max{ A, 204,4C 0, L’ cr ' Cp ’

8 < mi c1A€? _ 2/
=P 20 max(L Ve m(Cy)) [T T

r (T(z)/\ﬁ )\3/2ﬁ}
G’ LGmax{1,y/,In(1/8),In(Cs)}" LVG

1 W C3AU“€
Q22max{ln6/ln<l—m) In <Gl§11?0>/ln(l—>}

B { 1 CQAlG}
To =In gl In(1-2p), T =maxq—, ,
’ (u *llyo — w17 / B2 e

where Cj is defined in (#4). Now we verify the above listed facts one by one.

77<02min{

Verification for (71I): In(4eT'/0) < In(Cps). We focus on the dominant terms for each parameter
choice when ¢ is sufficiently small. For the remaining cases, the result can be easily obtained by
following the same procedure. Specifically, we consider the case where (3,7 and 1" are chosen as

o Cl)\€2 _ CQO’¢)\B T — ma i CgAlG
T 2Gmax{l,i,n(Cs)} | LGmax{l,\5In(1/8),n(Cs)} '

(Case 1) If T = 1/3%, then we have

B

In 4eT g de
= e n—
1 032
4eoyG? max{1, 1, In*(Cs)} 4eoyG? (max{1,t} + In?(Cp))
=In 5 <lIn 5
c2oN2et c2oN2et
deod G2 (max{1,t} + 40
® ’ B
<In ( EreR <In(Cp)
where the second inequality uses Inz < 2z'/4 for = > 0, and the last inequality is due to
4eoyG® max{1, 1} < ond 16ea3G* | _ Cs
c2oN2et - 2 c3oN2et TP T 2

since

Cp > max

860éG2 max{1,¢} 326021)(?2 ?
c2oA\2et c2oN\2et

42



Under review as a conference paper at ICLR 2026

(Case2)If T = CzAlG , then we have

In 4eT I (4026A1L0’¢G3 max{1,/¢,In(1/8),In(Cp)} max{1, /¢, ln(C,g)}>

1) 01025)\264
I <4CQ€A1LO'¢G3(H1aX{1 s/t +1n(1/8) +1In(Cp))(max{1,/t} + In(Cs))

01625)\264

(74)
Also note that
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Then we obtain
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where the second inequality uses In 2 < '/ and In 2 < 22/ for 2 > 0. Thus, plugging (73] back
into and we have
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where the last inequality is due to
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Verification for (71): [|y1 — yi||> < 17807, In(Cg)/p®. By choice of Tj and ~y, we have
2
. pyyTo . 8yog,, 4e
o = vl < (1= 750) " o = will* o+ = # g

1)
2 16 2
< ﬂo-gsl + ﬁo‘!%l ln%

Top? G d
17802,
< MQQ’ ln(Cg),

where the last inequality uses 7 > 1/4% > 1 and In(4eT'/§) < In(Cp).

Verification for (72): ¢ < min{r,1/4L;}. By Lemma[D.5|and choices of 77,y and 3, we have
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where in the last inequality we choose small enough ¢; and cso.

Verification of (72): C,, o + Cy, 10+ A < 2G. By definitions of C,, o, Cy,1 in (42) and choice of
G, we have
Cuo+ Cuio+A=Cyo+ G+ (Co1+ L1G)o+ A

G G G
<—+G+-+-—-=G.
<7 +G+ 5 + 1 G
Verification for (73). By choices of 7,y and 3, we have
66L2G [ 8n?l2 2048n*12 | L? 1
727 49112 + 477 sg’i (2 +1n )
A Aty AtpSy B
66L2G 217213’1 12817413’1L2 2+ In 1 - 66L2G 205035@1 3846%0'21371 .
=" 22232 M pApa B =" [2L2G? [AL2GH =4
where in the last inequality we choose small enough cs. O
Lemma D.14. Denote 17 and I as
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For any given € > 0, under the parameter choice in Theorem wehave I} < Iyand I /T < €2,
Proof of Lemma We first verify I; < I and then verify I; /T < €2.

Proof of I; < I,. We start to show [; /I5 < 1. We have
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where the first inequality is due to (76); the second inequality uses large enough C; and (Li et al],
2023a, Lemma C.5), the fact that In(4e7"/6) < In(Cjp) and In(4eT'/d) < In(Cjp), and the choice of
v, Q,T that

0l < n+C2A1G, 7:%, Q>- lnﬂ/ln<1u>,
1

= B2 2 Iy
the third inequality uses (Li et al.}[2023a, Lemma C.5), the choice of 7, 3 that

n C20p A B < 1A .
B = LGmax{l,/,In(Cp)}’ € =~ o3Gmax{l,/1,In(Cps)}’

and in the last inequality we choose small enough c; and cs.
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Proof of I; /T < €. Last, we show I; /T < €2. We have
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where the first inequality uses va + b < y/a + Vb for a,b > 0, the fact that In(4eT'/0) < In(Cp)
and [|ly1 — yil|> < 17802, In(Cp)/p?, and the choice of T', Q, ~ that

2.2
TzczAlG, Qzlln cahpe /ln 1—L , 7:%;
2 lga
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the second inequality uses the choice of T', 7, 8 that
1 C20 6 \3 c1Ae2
T>— < < .
=g "="1G = oG max{1,/1,In(Cp)}’

and in the last inequality we choose small enough ¢y, co, c3 and large enough Cs. [

E MORE EXPERIMENTAL DETAILS

E.1 HYPER-REPRESENTATION ON RNNS

We conduct the meta-learning experiments for the text classification on dataset Stanford Natural
Language Inference (SNLI) (Bowman et al.,[2015)), which consists of 570k pairs of sentences with 3
classes. We construct K = 500 tasks, where each task D!” and DY% randomly sample two disjoint
categories from the original data, respectively. Empirically, we use mini-batches of meta-tasks for
training, with a task batch size of 25. A 3-layer recurrent network is used as representation layers and
a fully-connected layer as an adapter. The input dimension, hidden dimension and output dimension
are set to be 300, 4096, and 3, respectively. The comparison results of training and testing accuracy
are shown in Figure [3] AdamBO outperforms other baselines on training set, and exhibits faster
convergence rate.

E.2 AUC MAXIMIZATION ON RNNs

The results with RNNs for both training and testing over 25 epochs are presented in Figure 4| (a)
and (b), while the corresponding running times are shown in Figure [ (c) and (d). Our proposed
Adam-type algorithm, AdamBO, shows the faster convergence rate and significantly outperform
other baselines during training process.
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Figure 3: Comparison with bilevel optimization baselines on RNN for hyper-representation.
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Figure 4: RNN for AUC maximization on Sentiment140 dataset with imbalance ratio of 0.8. Figures
(a), (b) are the results over epochs, Figures (c), (d) are the results over running time.

E.3 SENSITIVITY TO THE CHOICE OF A

Figure [5| shows the empirical performance of our algorithm is not very sensitive to the choice of .
Although the default choice of X is 1078 (Kingma & Ba,[2014)), increasing it up to 10~* only causes
minor differences in AUC maximization, and increasing it up to 1073 leads to minor changes in
hyper-representation performance with BERT (Devlin et al.| [2018).

E.4 SENSITIVITY TO THE CHOICE OF 3 AND fq

We have conducted ablation studies on /3 and ;4 in Figure @, which demonstrates that AdamBO’s
performance remains largely robust to the choice of (3, 5s,) within a reasonable range.

E.5 HYPERPARAMETER SETTINGS FOR HYPER-REPRESENTATION

Hyper-representation on BERT. The upper-level learning rate 7 and the lower-level learning rate
~ are tuned in a range of [1.0 x 10~%, 0.1] for all the baselines. The optimal learning rate pairs (7, )
are, (0.01,0.001) for MAML, (0.01,0.02) for ANIL, (0.01,0.002) for StocBio, (0.01,0.001) for
TTSA, (0.01,0.01) for SABA, (0.01,0.01) for MA-SOBA, and (0.1, 0.05) for both BO-REP and
SLIP, (1.0 x 107%,5.0 x 10~3) for AdamBO.

Hyper-representation on RNN. The upper-level learning rate 7 and the lower-level learning rate -y
are tuned in a range of [1.0x 10—, 0.1] for all the baselines. The optimal learning rate pairs are listed
as follows, (0.01,0.01) for MAML, (0.01,0.05) for ANIL, (0.01,0.01) for StocBio, (0.02,0.05)
for TTSA, (0.01,0.05) for SABA, (0.05,0.05) for MA-SOBA, and (0.1,0.05) for both BO-REP
and SLIP, (1.0 x 107%,1.0 x 10~3) for AdamBO.

Other hyper-parameter settings are summarized as follows. The steps for neumann series estima-
tion in StocBiO, AdamBO is set to 3, while it is uniformly sampled from {1, 2,3} in TTSA. The
momentum parameter 3 = 0.1 is fixed in SLIP, MA-SOBA, BO-REP, AdamBO, and /35, = 0.001
in AdamBO. The warm start steps for the lower level variable in BO-REP, SLIP, AdamBO are set
to 3. The number of inner loops for StocBio is set to 3. BO-REP uses the periodic update for the
low-level variable, and sets the iterations N = 3 and the update interval I = 2. The hyperparameter
A in the Adam update is fixed as 1.0 x 10~ in AdamBO.
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Figure 5: Test accuracy of different models on AUC maximization and hyper-representaion using
AdamBO with 8 = 0.1, 54 = 0.001 and different As. (a) a 2-layer RNN model on AUC maximiza-
tion (data imbalanced ratio = 0.8); (b) a 2-layer Transformer model on AUC maximization (data
imbalanced ratio = 0.9); (c) an 8-layer BERT model on hyper-representation.
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Figure 6: Test accuracy of different models on AUC maximization and hyper-representaion using
AdamBO with different (3, Bsq). (a) 2-layer Transformer model on AUC maximization (data im-
balanced ratio = 0.9); (b) 8-layer BERT model on hyper-representation.

E.6 HYPERPARAMETER SETTINGS FOR DEEP AUC MAXIMIZATION

We tune the best hyperparameters for each algorithm, including upper-/lower-level step size, the
number of inner loops, momentum parameters, etc. The upper-level learning rate 7 and the lower-
level learning rate «y are tuned in a wide range of [1.0x 10~¢, 0.1] for all the baselines on experiments
of AUC maximization.

AUC maximization on Transformer. The best learning rates (7),) are summarized as fol-
lows: Stocbio: (0.005,0.0001), TTSA: (0.0005,0.001), SABA: (0.001,0.005), MA-SOBA:
(0.0005, 0.005), SUSTAIN: (0.005,0.001), VRBO: (0.005,0.0005), BO-REP: (0.0001, 0.0001),
SLIP: (0.0001, 0.001), AccBO: (0.0005,0.0001), AdamBO: (5.0 x 10~%,0.005). Note that SUS-
TAIN decays its upper-/lower-level step size with epoch () by 7 = 1/ (t+2)*3, 10w = v/ (t+2)"/3.
Other algorithms use a constant learning rate.

AUC maximization on RNN. The best learning rates (7),7) are summarized as follows:
StocBio: (0.01,0.001), TTSA: (0.005,0.01), SABA: (0.01,0.005), MA-SOBA: (0.01,0.005),
SUSTAIN: (0.03,0.01), VRBO: (0.05,0.01), BO-REP: (0.001,0.001), SLIP: (0.001,0.001), Ac-
¢BO: (0.005,0.005), AdamBO: (1.0 x 10~°,0.001).

Other hyper-parameter settings are summarized as follows. The steps for neumann series estimation
in StocBiO, VRBO, and AdamBO is set to 3, while it is uniformly sampled from {1,2, 3} in TTSA,
SUSTAIN, and AccBO. AccBO uses the Nesterov accelerated gradient descent for the lower-level
update, the momentum parameter o = 0.5 for AccBO, the averaging parameter v = 0.5 for AccBO.
The batch size is set to 32 for all algorithms except VRBO, which uses a larger batch size of 64
(tuned in the range of {32, 64,128, 256, 512}) at the checkpoint (snapshot) step and 32 otherwise.
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The momentum parameter 5 = 0.1 is fixed in SLIP, AccBO, MA-SOBA, BO-REP, and AdamBO,
and s = 0.001 in AdamBO. The warm start steps for the lower level variable in BO-REP, SLIP,
AccBO, and AdamBO are set to 3. The number of inner loops for StocBio is set to 3. BO-REP uses
the periodic updates for low-level variable, and sets the iterations N = 3 and the update interval
I = 2. The hyperparameter X in the Adam update is fixed as 1.0 x 10~® for AdamBO.

F COMPARISON TABLES

Assumption F.1. Consider the following smoothness assumptions:

(A) The objective function is L-smooth.

(B) The objective function is (Lg, L1 )-smooth (Zhang et al.,2020a, Definition 1.1, Remark 2.3).
(C) The objective function is (p, Lo, L,)-smooth with 0 < p < 2 (Li et al.| 2023a, Definition 3.2).

The above assumptions satisfy: [Assumption F.1(A)|=>[Assumption F.1(B)|=—>[Assumption F.1(C)]
In other words, [Assumption F.1(A)|is the strongest, and [Assumption F.1(C)|is the weakest.

Assumption F.2. The (stochastic) gradient norm of the objective function is (almost surely)
bounded.

Assumption F.3. Suppose the following stochastic estimators are unbiased and satisfy:

Eenp, [IVaF(2,4;6) = Vo f(@,9)IIP) < 0F1, Eenn, [IVyF(@,4;6) = Vy f(@,9)]%] < 0% 1,
Pr{[|V,G(z,y; &) — Vyg(z,y)l| > A} < 2exp(—=2)*/0) ;) YA >0,

Ecp, [IIV2, G,y O=Va,9(@ 9Pl S 05,5, Eeop, IV, G2, 5: )= Vi,9(z,9)|°] < 055

Remark. Existing convergence analyses of (single-level) Adam that do not need such choice of 3
require other strong assumptions for the objective function, which is incompatible to our setting.
They either rely on the bounded gradient assumption (De et al., 2018} [Défossez et al.,|2020), or they
only prove convergence to some neighborhood of stationary points with a constant radius unless
assuming the strong growth condition under the finite sum setting (Zhang et al., [2022; Wang et al.,
2022). Please see Table[I]in Appendix [Hfor more details.

Table 1: Comparison of Adam-related papers under different settings and assumptions. /* represents
dropping the bias correction term for the first-order momentum while keeping it for the second-order
momentum. d denotes the dimension. Only the key assumptions are listed here.

Adam Paper Problem Stochastic Setting Assumptions Choice of Bias Correction Complexity

De et al.|(2018) Single-Level Deterministic E1A)]+[F2] 1-0(e) X O(e™%)

Défossez et al.|(2020) Single-Level  Stochastic (Expectation)  |F.1(A)+ E [Bsq, 1] s (3(de"")

Guo et al.|(2021b) Single-Level ~ Stochastic (Expectation) [F.1(A)}+[E.2 O(e?) X O(e™*)
Zhang et al.|(2022) Single-Level  Stochastic (Finite Sum) IF.1(A) 1- \/1 — Bsq»1] v (Randomly Reshuffled)  Not Converge

Wang et al.|(2022) Single-Level  Stochastic (Finite Sum) 1(B) 1- \/1 — Bsq»1] X (Randomly Reshuffled) ~ Not Converge
Li et al.|(2023a) Single-Level ~ Stochastic (Expectation) 1(C O(e?) v O(e™)
(This w Qﬁf‘?‘lﬁgem Bilevel  Stochastic (Expectation)  [F.1(B)f &(e) v O(c%)

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Our use of LLMs is limited to polish writing; they are not involved in our research methodology.

2(Guo et al.l 2021b| Assumption 2) can be implied by Assumptionm although it is weaker.
3 Adam can converge with an additional strong growth condition (Zhang et al.,|2022; /Wang et al., 2022)).
4 . . . . . T

Under Assumptlon the objective function ® is (Lo, L1)-smooth, see Lemma for details.
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Table 2: Comparison of bilevel optimization algorithms under the unbounded smoothness setting

Method Problem Stochastic Setting Loop Style Assumptions Adam-Type Learning Rate p  Complexity
BO-REP (Hao et al.|[2024)  Bilevel ~ Stochastic (Expectation) Double Assumptions B.2]and[F3] X O(€) 6(6’4)
SLIP (Gong et al.||2024a)  Bilevel  Stochastic (Expectation) Single Assumptions B.2Jand[F3] X CIG)) O(e%)
(This W(‘)?I?,a?ki Srem Bilevel  Stochastic (Expectation) Single Assumptions|3.2to|3.4 v é(ez) 5(5’4)
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