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Abstract

Human vision is dynamic and continuous. How-
ever, in video understanding with multimodal
large language models (LLMs), existing meth-
ods primarily rely on static features extracted
from images sampled at a fixed low frame rate
of frame-per-second (FPS) ⩽2, leading to critical
visual information loss. In this paper, we intro-
duce F-16, the first multimodal LLM designed
for high-frame-rate video understanding. By in-
creasing the frame rate to 16 FPS and compress-
ing visual tokens within each 1-second clip, F-
16 efficiently captures dynamic visual features
while preserving key semantic information. Ex-
perimental results demonstrate that higher frame
rates considerably enhance video understanding
across multiple benchmarks, providing a new ap-
proach to improving video LLMs beyond scaling
model size or training data. F-16 achieves state-of-
the-art performance among 7-billion-parameter
video LLMs on both general and fine-grained
video understanding benchmarks, such as Video-
MME and TemporalBench. Furthermore, F-16
excels in complex spatiotemporal tasks, includ-
ing high-speed sports analysis (e.g., basketball,
football, gymnastics, and diving), outperform-
ing SOTA proprietary visual models like GPT-4o
and Gemini-1.5-pro. Additionally, we introduce
a novel decoding method for F-16 that enables
highly efficient low-frame-rate inference with-
out requiring model retraining. We will release
the source code, model checkpoints, and data at
https://github.com/bytedance/F-16.
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1. Introduction
Large language models (LLMs) have demonstrated excep-
tional performance across many natural language process-
ing tasks, with some even nearing human-level performance
(OpenAI et al., 2024; Dubey et al., 2024; Touvron et al.,
2023; Du et al., 2022; Bai et al., 2023). The impressive abil-
ity of LLMs to understand, generate, and reason with text
has sparked significant interest among researchers, drawing
attention from both academia and industry to expand their
capabilities to multimodal understanding.

In video understanding, videos contain both slowly chang-
ing elements, such as backgrounds and scenes, and rapidly
changing, fleeting details, such as body movements and
micro-expressions. Given the high frame count in videos,
processing every frame is computationally expensive. As
a result, existing video LLMs (Li et al., 2024; Zhang et al.,
2024b; Wang et al., 2024; Lin et al., 2024b; Cheng et al.,
2024; Tang et al., 2024; Yao et al., 2024) primarily focus on
slowly changing elements, typically employing low-frame-
rate sampling or selecting a fixed number of frames, effec-
tively treating every 1-second video clip as a few images.
However, this approach has a critical limitation: while low-
frame-rate sampling like 1 frame-per-second (FPS) may be
sufficient for capturing a video’s overall theme and context,
it fails to preserve rapidly changing visual cues, leading
to information loss. This significantly hinders the model’s
ability to comprehend dynamic scenes, thereby limiting its
overall video understanding capabilities.

To address these limitations, this paper introduces F-16, a
video LLM designed for more human-like video perception
by processing coherent video frames at a higher frame rate
of 16 FPS. A key challenge in high-frame-rate video under-
standing is the increased visual token sequence length and
redundant information across consecutive frames. To miti-
gate this, we propose a visual-text aligner that not only trans-
forms visual features into text-like tokens suitable for the
LLM backbone but also compresses redundant intra-frame
and inter-frame information within each 1-second video
clip. To leverage the strengths of existing high-performance
image encoders, we adopt a 3-layer multi-layer perception
(MLP) as the aligner, extending a pre-trained image LLM
to process the dynamic features in 16 FPS videos while
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preserving rich semantic features from each static frame.
Experimental results demonstrate that F-16 achieves state-
of-the-art (SOTA) performance among models of similar
sizes and remains competitive with much larger models on
general video question-answering (QA) benchmarks, includ-
ing Video-MME (Fu et al., 2024), MLVU (Zhou et al., 2024),
LongVideoBench (Wu et al., 2024), and NeXT-QA (Xiao
et al., 2021), as well as fine-grained video understanding
benchmarks like TemporalBench (Cai et al., 2024) and Mo-
tionBench (Hong et al., 2025). The superior performance of
F-16 highlights the advantage of reducing visual informa-
tion loss through 16 FPS sampling. Additionally, after fine-
tuning on high-speed sports tasks such as basketball, foot-
ball, gymnastics, and diving, F-16 significantly outperforms
SOTA proprietary models like GPT-4o and Gemini-1.5-Pro.
Finally, we introduce a training-free variable-frame-rate de-
coding method, allowing F-16 to adapt to lower-frame-rate
scenarios without increasing test-time computational costs.

Our main contributions are summarized as follows:

• The first high-frame-rate video LLM: We developed F-
16, the first video LLM capable of perceiving videos at 16
FPS. F-16 supports videos up to 110 seconds, processing
1,760 visual frames per video, and achieves SOTA per-
formance on multiple video understanding benchmarks
among 7-billion (B)-parameter video LLMs.

• High-frame-rate sports video benchmarking: To eval-
uate video LLM comprehension in high-frame-rate sce-
narios, we curated a dataset of sports videos that require
fine-grained temporal understanding. F-16 significantly
outperforms GPT-4o and Gemini-1.5-Pro on these tasks.

• Efficient variable-frame-rate decoding: We propose a
variable-frame-rate decoding method that enables F-16,
trained at 16 FPS, to be seamlessly applied to scenarios
suitable for low-frame-rate videos, reducing computa-
tional cost without hurting the performance.

2. Related Work
2.1. From Image LLM to Video LLM

Most image LLMs adopt the approach of connecting an
image encoder to an LLM via modality adapters, achieving
remarkable success. LLaVA (Liu et al., 2024b;a) applies
instruction tuning (Wei et al., 2022), enabling zero-shot
image understanding. BLIP-2 (Li et al., 2023) integrates
a frozen image encoder with an LLM using Q-Former to
bridge the modalities. InternVL (Chen et al., 2023) further
enhances accuracy by scaling up the visual encoder for
more precise image representations. InternVL 2.5 (Chen
et al., 2024) delves into model scaling and achieves better
test-time performance.

Regarding video understanding, recent studies typically sam-

ple at a low frame rate or select a fixed number of frames,
treating them as separate images with orders. In many ap-
proaches, each frame is first encoded using a pre-trained
image encoder, then mapped to the text space via a modality
aligner, and finally fed into an LLM backbone for response
generation. Video-LLaVA (Lin et al., 2024a) uniformly
samples 8 frames from a video, processes each frame inde-
pendently through an image encoder, and generates video
tokens that are then passed to the LLM. LLaVA-OneVision
(Li et al., 2024) is designed to handle single images, multi-
ple images, and videos. For videos, it samples frames at 1
FPS and reduces the number of video tokens using bilinear
interpolation. Building on a similar architecture, Zhang
et al. develops a strong video-understanding LLM with syn-
thetic data, but still limits sampling to 1 FPS. Qwen2-VL
(Wang et al., 2024) increases the frame rate to 2 FPS and
employs a rotary position embedding to enhance temporal
modelling. Meanwhile, VideoLLaMA 2 (Cheng et al., 2024)
and video-SALMONN 2 (Tang et al., 2024) incorporate full
audio information to support video understanding. However,
VideoLLaMA 2 only processes 16 frames from each video,
while video-SALMONN 2 uses no more than 30 frames.

Low frame rate sampling can result in critical visual infor-
mation loss, particularly in videos with rapidly changing
scenes, intricate details, or fast motion. Additionally, if
keyframes are missed, yet the model is trained on labels that
rely on keyframe information, it may struggle to align its
predictions with the expected content, potentially leading
to hallucinations and degraded performance. To address
these challenges, Koala (Tan et al., 2024), Frame Voyager
(Yu et al., 2024b), and KeyVideoLLM (Liang et al., 2024)
employ intelligent sampling strategies to extract key infor-
mation more effectively. Meanwhile, MA-LMM (He et al.,
2024) and VideoStreaming (Qian et al., 2024) explore denser
video sampling to enhance model performance.

2.2. Temporal Input Compression in Video LLM

More frames must be sampled to enable high-frame-rate
video understanding, making temporal information com-
pression between adjacent frames essential for efficient com-
putation. A common approach aggregates image features
extracted from each frame to compress redundant informa-
tion effectively. RLT (Rafailov et al., 2024) reduces the total
number of video tokens by dropping redundant patches,
identified through frame differentials. Video-LaVIT (Jin
et al., 2024) integrates keyframes and motion vectors as
input and trains a motion encoder to enhance motion under-
standing. Espresso (Yu et al., 2024a) employs specialized
spatial and temporal Q-poolers and compressors to elim-
inate redundant information. NVILA (Liu et al., 2024c)
follows a “scale-then-compress” paradigm, first scaling up
both frame resolution and frame count, then applying spatial
linear compression and temporal averaging to reduce the
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total number of visual tokens. Notably, these approaches
mostly focus on processing long videos efficiently rather
than processing videos with high frame rates.

3. Methods
3.1. Model Architecture

The overall architecture of F-16 is illustrated in Fig. 1. F-16
takes a video and a text prompt as the inputs and generates
textual responses accordingly.

For the input video, frames are first sampled at a high frame
rate, indicating the sampled frames are adjacent to each
other and they may be visually very similar. Denote Fi as
the i th frame sampled from the video and n as the total
number of sampled frames. Each frame is encoded by the
pre-trained image encoder Enc(·) as

Zi = Enc(Fi), 0 ≤ i < n. (1)

Here, Zi ∈ Rp×d is the visual features of Fi output by the
image encoder, where p is the number of patches and d is
the output dimension of the image encoder.

Given the high similarity between adjacent frames, we aim
to compress image features within a local time window in
the visual feature space, preserving overall visual semantics
while effectively capturing the dynamic features introduced
by temporal changes across frames. Previous studies (Liu
et al., 2024b;c) suggest that linear transformations outper-
form nonlinear ones in mapping image features to the LLM
input space, as they better retain the semantic information
extracted by the image encoder. Building on these insights,
we design our high-frame-rate aligner using a 3-layer MLP,
which consists of two linear layers with a GELU (Hendrycks
& Gimpel, 2016) activation function in between.

Let w be the number of frames in a processing window, and
let Zjw,Zjw+1, ...,Z(j+1)w−1 represent the visual features
of these w frames in the j th window, and P(·) and Q(·)
as the first and second linear layers of the high-frame-rate
aligner, respectively. To construct the input to the aligner,
the visual features of all frames within the processing win-
dow are first concatenated along the feature dimension as:

Zcat
j = Concat(Zjw,Zjw+1, . . . ,Z(j+1)w−1), (2)

where Zcat
j ∈ Rp×wd is the combined visual features of the

j th window.

Next, the high-frame-rate aligner maps Zcat
j to the input

dimension of the LLM, denoted as h. Specifically, the first
linear layer P(·) maps the features from the dimension of
wd to wh, while the second linear layer Q(·) maps from
wh to h. Therefore, the output vectors H̃j ∈ Rp×h of the
high-frame-rate aligner for the j th window can be obtained

using Eqns. (3) and (4) as:

H̃j = Q(GELU(P(Zcat
j ))). (3)

To further compress the visual tokens, a spatial 2 × 2
max pooling function Max2DPool(·) is employed after the
aligner, as shown in Eqn. (4). Specifically, H̃j is first re-
sized to R

√
p×√

p×h, then Max2DPool(·) is applied on the
first and second dimension, which results in about 4 times
reduction of the total number of visual tokens. Note that

Hj = Max2DPool(H̃j), (4)

where Hj ∈ R⌊
√

p

2 ⌋2×h are the visual tokens of the j th
processing window and are fed to the backbone LLM.

Finally, visual tokens of all non-overlapped processing win-
dows form the final visual token sequence H of the whole
video. The backbone LLM is required to generate a textual
response Ŷ given the user’s text instructions I and the visual
token sequence H by

Ŷ = argmaxY P (Y|I,H). (5)

3.2. Building F-16 by Extending Image LLM

Video LLMs are typically built on well-trained image LLMs
to leverage their pre-trained visual perception abilities. How-
ever, a key challenge arises as shown in Fig. 1: the dimen-
sions of the high-frame-rate aligner’s modules P(·) and Q(·)
do not match those of the single-image aligner in the image
LLM when extending an image LLM to video LLM. This
mismatch prevents direct parameter initialization using the
pre-trained image LLM, as illustrated in Fig. 2. To address
this, we adopt the block matrix decomposition approach,
breaking down F-16’s high-dimensional modality aligner
into smaller sub-matrices that can be initialized using pa-
rameters from the image LLM, ensuring a smoother transfer
of pre-trained knowledge.

Specifically, F-16 extends a pre-trained image LLM with
LLaVA-OneVision structure (Li et al., 2024), which has
a single-frame aligner with two linear layers as shown in
Fig. 2(a). The aligner takes single-image features as input
and outputs the corresponding visual tokens. Denote its first
and second linear layers as A(·) and B(·), and their weight
matrices and bias vectors as WA ∈ Rd×h, WB ∈ Rh×h,
bA ∈ Rh, and bB ∈ Rh, respectively. Similarly, denote
the weight matrices and bias vectors of the two linear layers
P(·) and Q(·) of the high-frame-rate aligner in F-16 as
WP ∈ Rwd×wh, WQ ∈ Rwh×h, bP ∈ Rwh, and bQ ∈
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Input Video

LLM

Image Encoder

Input Video

Image Encoder

Low-frame-rate modeling High-frame-rate modeling

Sparse Sampling Dense Sampling

Single-frame
Aligner

High-frame-rate
Aligner

Does the shot get in?<video>

No.
LLM

Does the shot get in?<video>

Yes!

Figure 1. The overall architecture of F-16. Compared to the classical structure of low-frame-rate video LLMs, F-16 samples more frames
with a higher frame rate of 16 FPS and uses a high-frame-rate aligner, which not only preserves the overall visual semantics but also
extracts the dynamic features from the changes across frames, without introducing more visual tokens.

Rh. F-16’s parameters can be initialized using

WP =


WA O · · · O
O WA · · · O
...

...
. . .

...
O O · · · WA

 , (6)

bP =


bA

bA

...
bA

 ,WQ =
1

w


WB

WB

...
WB

 ,bQ = bB, (7)

where O is a zero matrix. This initialization leads to the fact
that F-16’s aligner’s output is the average of the representa-
tions of each frame in its initial state, since Eqn. (3) can be
expanded using Eqns. (8)-(9) as:

P(Zcat
j ) =

WA O
...

O
. . . O

· · · O WA




Zjw

Zjw+1

...
Z(j+1)w−1

+


bA

bA

...
bA



=


A(Zjw)

A(Zjw+1)
...

A(Z(j+1)w+1)

 , (8)

H̃j = Q(GELU(P(Zcat
j )))

=
1

w


WB

WB

...
WB


T 

GELU(A(Zjw))
GELU(A(Zjw+1))

...
GELU(A(Z(j+1)w+1))

+ bB

=
1

w

∑w−1

k=0
B(GELU(A(Zjw+k))). (9)

To improve training stability, in our implementation, we
set the off-diagonal elements in the WP to random noise
initialized with Kaiming Uniform (He et al., 2015), rather
than all zeros.

3.3. Variable-Frame-Rate Decoding

Encoding each frame with an image encoder significantly
increases the computational load, making inference slower
compared to low-frame-rate models. This becomes a major
bottleneck for real-time processing. To address this, we
introduce a variable-frame-rate decoding method, allowing
F-16 to perform low-frame-rate inference, thereby reducing
computational costs while maintaining strong performance.

At test-time, assume that we want to reduce the frame rate
by a factor of k, compared to the frame rate used for training.
The processing window can be correspondingly reduced to
w/k. To meet the input dimension of the high-frame-rate
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GELU

A

B

P

GELU

Q

(a) Single-frame Aligner (b) High-frame-rate Aligner

Figure 2. The comparison between (a) single-frame aligner and
(b) high-frame-rate aligner. With more input frames, the high-
frame-rate aligner concatenates the frames and uses linear layers
P(·) and Q(·) that have larger input dimensions to compress and
encode the frames to visual tokens.

aligner, the features of each frame need to be repeated k
times. Under this condition, in the j th processing window,
Eqn. (2) can be expressed as follows:

Z′
jw/k = Concat(Zjw/k,Zjw/k, . . . ,Zjw/k︸ ︷︷ ︸

k times

),

Zcat
j = Concat(Z′

jw/k,Z
′
jw/k+1, ...,Z

′
(j+1)w/k−1).

Therefore, Zcat
j ∈ Rp×wd, which still meets the input di-

mension requirements of the high-frame-rate aligner.

4. Experimental Setup
4.1. Model Specifications

F-16 utilizes the LLaVA-OV model of LLaVA-OneVision
(Li et al., 2024) with 7B parameters as based image LLM,
which uses SigLIP (Zhai et al., 2023) as the visual encoder
and Qwen2-7B (Yang et al., 2024) as the backbone LLM.
Besides, F-16 samples frames from the video at 16 FPS as
input, allowing for a maximum of 16× 110 = 1760 frames.
For videos longer than 110 seconds, F-16 uniformly samples
1760 frames from the video as input. The width w of the
processing window is set equal to the FPS as w = 16.

4.2. Data Specifications

The training data of general videos are the same as LLaVA-
Video (Zhang et al., 2024b), including LLaVA-Video-178K
(Zhang et al., 2024b), LLaVA-Hound (Zhang et al., 2024a),
NExT-QA (Xiao et al., 2021), ActivityNet-QA (Yu et al.,
2019) and PerceptionTest (Patraucean et al., 2024).

Besides generic video understanding, we also fine-tune the

model on high-speed sports videos. Videos for gymnastics,
diving, basketball, and football are collected for further tun-
ing, where FineGym (Shao et al., 2020), Diving48 (Li et al.,
2018), SoccerNet (Giancola et al., 2018), and NBA video
clips are used respectively. To demonstrate the importance
of high-frame-rate modeling in sports videos, the visualiza-
tion for a video randomly sampled from Diving48 is shown
in Appendix D.

Regarding the FineGym (Shao et al., 2020) data for gymnas-
tics understanding, we sample 90% clips as the training set
while the remaining 10% as the test set and ensure that the
duration of videos in the training and test sets is balanced.
Video captioning and open-ended QA of gymnastics are
trained, and open-ended QA is evaluated. Accuracy is the
used evaluation metric.

Regarding the Diving48 (Li et al., 2018) data for diving
understanding, we use its official data split. In addition, the
diving actions are split into four phases including takeoff,
somersault, twist, and flight, following the original paper.
Formatted captions describing all the phases are used to
train models. The mean accuracy of predicting actions of
the four phases is used as the evaluation metric.

The “Ball Action” subset of SoccerNet (Giancola et al.,
2018) is used for football understanding. Counting the
times of ball passes in the video is our focus task, since it is
essential to use high frame-rate information. We segment
the videos into 10-second clips and count the number of
passes in each segment to provide training labels. Accuracy
serves as the evaluation metric.

Regarding the NBA data, we collected NBA matches from
2024/11/13 to 2024/11/25, with a total number of 276
matches. We focus on the task of whether the ball goes
into the net, which requires high-frame-rate information.
We evaluated the performance using the test set of NSVA
(Wu et al., 2022) using F1 score. We manually annotated
video captions of 10,000 NBA video clips. These video
captions focus on details of players’ movements on the field,
the movement of the ball, and other aspects of movement,
providing the model with high-frame-rate data annotations.
Examples of these sports data can be found in Appendix A.

4.3. Training Specifications

For general video training, the high-frame-rate aligner and
the LLM are updated, while the image encoder stays frozen.
F-16 is trained for 1 epoch on the training data using 128
H100 GPUs, with a learning rate set to 2× 10−5.

For further tuning the model on high-speed sports data,
LoRA (Hu et al., 2022) is adapted to the LLM and serves
as the only trainable module in this stage. The rank and the
scaling factor of LoRA are set to 128 and 2.0, respectively.
We fine-tune F-16 using 64 H100 GPUs for 5 epochs, with

5



Improving LLM Video Understanding with 16 Frames Per Second

Table 1. Comparison of video QA results of different video LLMs. The FPS or maximum number of frames sampled by the model is
listed in the table. We evaluate the models on Video-MME, VideoVista (VST), TemporalBench (TPB), MotionBench (MB), NeXT-QA
(NQA), MLVU, and LongVideoBench (LVB) for a comprehensive performance comparison. %Accuracy is the evaluation metric, except
for TPB, which uses %Multiple Binary Accuracy (Cai et al., 2024) for evaluation. F-16 achieves SOTA on Video-MME, NQA, TPB, and
MB among all 7B models and offers competitive results compared to SOTA proprietary models like GPT-4o and Gemini-1.5-Pro.

Model FPS / #Frame Video-MME NQA ↑ TPB ↑ MB ↑ VST ↑ MLVU ↑ LVB ↑
Avg.↑ S↑ M↑ L↑ Test Short Val. Avg. m-Avg. Val.

GPT-4o 1FPS / 384 71.9 80.0 70.3 65.3 - 38.0 33.0 78.3 54.5 66.7
Gemini-1.5-Pro 1FPS 75.0 81.7 74.3 67.4 - 26.6 51.0 - - 64.0

Qwen2-VL-7B 2FPS / 768 63.3 - - - - 24.7 52.0 75.6 - 55.6
VideoLLaMA2-7B 16 47.9 - - - - - - 60.5 48.4 -
VideoChat2-HD-7B 16 45.3 - - - 79.5 - - - 37.4 39.3

LLaVA-OV-7B 32 58.2 - - - 79.4 21.2 - 73.0 64.7 56.3
MiniCPM-V2.6-8B 64 60.9 71.3 59.4 51.8 - 21.4 52.0 - - 54.9
LLaVA-Video-7B 64 63.3 - - - 83.2 22.9 - - 70.8 58.2

NVILA-7B 1024 64.2 75.7 62.2 54.8 82.2 - - - 70.1 57.7
F-16-7B (ours) 16FPS / 1760 65.0 78.9 63.2 52.8 84.1 37.2 54.5 74.4 70.3 57.6

a learning rate set to 2× 10−5.

5. Experimental Results
5.1. General Video Understanding

Results of the general video understanding are presented
in Table 1. F-16 achieves the SOTA results among the
7B models in several video QA benchmarks, including not
only the general video QA benchmarks Video-MME and
NeXT-QA, but also the fine-grained video understanding
benchmarks TemporalBench and MotionBench.

On the Video-MME Short, Medium, and NeXT-QA
datasets—each designed for short video understanding—our
model surpasses the previous 7B SOTA model by 3.2%,
1.0%, and 0.9% in accuracy, highlighting its strong per-
formance on short videos. For benchmarks evaluating
long video understanding, such as Video-MME Long,
LongVideoBench, and MLVU, the challenge is greater due
to sparser frame sampling, causing frames within the pro-
cessing window to exhibit more significant variations. This
increases the difficulty for the modality aligner to effectively
encode temporal changes within the limited token represen-
tation. As a result, F-16 experiences a slight performance
drop compared to LLaVA-Video-7B (Zhang et al., 2024b),
which is trained on the same video dataset.

Results on TemporalBench and MotionBench which focus
on motion and temporal understanding, show a significant
positive effect of high-frame-rate modeling. F-16 gains an
improvement of 13.5% and 2.5% respectively on the two
benchmarks compared with the existing 7B SOTA mod-
els and also achieves competitive performance of SOTA

commercial models like Gemini-1.5-Pro and GPT-4o.

5.2. High-Speed Sports Video Understanding

In this section, we explore the high-speed sports video under-
standing of our models. We use the sports data of gymnas-
tics, diving, basketball, and football to fine-tune our general
video understanding models trained using FPS = 1 and
FPS = 16. GPT-4o and Gemini-1.5-Pro are also evaluated
by uniformly sampled 120 frames as its input, to provide
an upper bound on the existing Video LLMs on these tasks.
Note that both models cannot recognize gymnastics and div-
ing actions, as these two scenarios require much expertise.
The detailed results are shown in Table 2.

Table 2. Results of high-speed sports understanding. F-16 with
the high-frame-rate aligner outperforms the low-frame-rate aligner
version in all sports tasks. We also evaluate GPT-4o and Gemini-
1.5-Pro on the NBA and SoccerNet QAs, which do not require the
knowledge from the in-domain training set to answer the questions.

Model Gym Diving NBA Soccer

%Acc.↑ %Acc.↑ %F1↑ %Acc.↑
GPT-4o - - 76.7 36.8

Gemini-1.5-Pro - - 80.6 43.1
F-16 - FPS = 1 48.5 76.0 87.1 55.4

F-16 - FPS = 16 64.1 86.5 92.9 57.7

The results demonstrate that our high-frame-rate model out-
performs both the low-frame-rate model and commercial
models across all four sports tasks, highlighting the impor-
tance of temporal perception. Among these tasks, high-
frame-rate modelling shows the most significant advantage
in gymnastics and diving, improving accuracy by over 15%
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and 10%, respectively. This is likely because accurately dis-
tinguishing movements requires capturing the full motion
sequence, rather than relying on sparse frames. For example,
in gymnastics, determining whether a movement is clock-
wise or counterclockwise can be difficult with only sparsely
sampled frames. Similarly, in diving, assessing the degree
of rotation or twist is challenging without a continuous mo-
tion view. In basketball and football, while the advantage
of high-frame-rate modelling is smaller, it remains notable.
This is likely because the model can leverage additional con-
textual cues, such as player behaviour, audience reactions,
or score changes, to infer outcomes even in the absence of
keyframes. For instance, whether a shot was successful or a
pass occurred.

Beyond QA, our model also demonstrates strong high-
frame-rate captioning capabilities. Even advanced models
like GPT-4 struggle with accurate captioning of high-speed
sports videos. Appendix C presents a comparison of sports
captioning outputs across different models, showcasing the
effectiveness of our approach.

5.3. Variable-Frame-Rate Testing

In high-frame-rate modeling, since each frame needs to be
encoded using the encoder, this can significantly impact
the model’s inference speed. Testing at a frame rate lower
than the training frame rate can increase speed with mini-
mal performance loss. Fig. 3 shows the performance and
inference time of variable-frame-rate testing. The infer-
ence is considerably slowed down by the image encoder
when the test FPS increases, as Fig. 3a shows. Especially
when outputting only a very small number of tokens, such
as when answering questions, the time taken by the image
encoder in high-frame-rate modelling even surpasses that of
the backbone LLM.

Variable-frame-rate decoding proves to be an effective so-
lution for addressing this challenge. As shown in Fig. 3b,
adapting the high-frame-rate model to low-frame-rate in-
ference achieves comparable performance on generic video
benchmarks like Video-MME, with only a slight degrada-
tion compared to evaluation at FPS = 16. Moreover, it
performs favourably against models trained at the same test
FPS. This flexibility allows developers to balance compu-
tational efficiency and high-frame-rate advantages based
on specific tasks. For example, lower FPS can be used
for fast reasoning in general video comprehension, while
higher FPS is preferable for fine-grained understanding in
high-speed video analysis tasks.

5.4. Analysis on High-Frame-Rate Aligner

To gain deeper insights into the mechanism of the high-
frame-rate aligner, we first analyze the visual features out-
put by the image encoder to verify the presence of subtle
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Figure 3. Performance and inference time analysis of variable-
frame-rate testing.

high-frame-rate details. We compare the cosine similarity
dcos,before between visual features across frames, as shown
in Table 3. Additionally, we apply a 2 × 2 Max2DPool(·)
function to the visual features and compute the cosine sim-
ilarity after pooling, denoted as dcos,after, to observe the
impact of this basic compression method on the feature rep-
resentations. As expected, cosine similarity before pooling
decreases progressively as frames shift over time, eventually
dropping to 0.5898 by the 4th frame, indicating clear differ-
ences in visual features. However, after max pooling, the
cosine similarity remains high (0.8828) at Frame 4, despite
significant changes in the scene and player actions. This
suggests that fine-grained visual features are not dominant
compared to global features and are largely suppressed by
max pooling. Based on this observation, we hypothesize
that preserving the complete visual features as input to the
high-frame-rate aligner can lead to significant performance
improvements, as it retains fine-grained temporal details
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Table 3. The average cosine similarity of all image tokens between the frames and the reference frame. dcos,before refers to the cosine
distance before pooling, while dcos,after refers to the cosine distance after pooling.

Reference Frame Frame 1 Frame 2 Frame 3 Frame 4

dcos,before 0.8945 0.7656 0.6680 0.5898
dcos,after 0.9609 0.9180 0.9023 0.8828

Table 4. Results on general video data using different pooling
strategies for models at different frame rates.

FPS Pooling Video-MME

Avg.↑ S↑ M↑ L↑
1 pre 62.3 76.6 59.7 50.6
1 post 62.9 77.7 60.3 50.8
16 pre 60.8 75.0 58.2 49.2
16 post 65.0 78.9 63.2 52.8

essential for high-speed video understanding.

We conduct experiments on general video data using dif-
ferent pooling strategies across models with varying frame
rates. Specifically, we examine pre-pooling, where max
pooling is applied before the modality aligner, and post-
pooling, where max pooling is applied after the modality
aligner. The results are presented in Table 4. For the FPS= 1
model, post-pooling provides only a marginal improvement
of less than 1% on the Video-MME benchmark. However,
for the FPS= 16 model, pre-pooling proves even less ef-
fective than in the FPS= 1 scenario, whereas post-pooling
yields a notable 4.2% improvement. These findings suggest
that the high-frame-rate aligner heavily relies on inter-frame
variations in the visual features to learn effectively. Pre-
pooling prematurely removes fine-grained temporal details,
making it harder for the high-frame-rate aligner, with its
larger parameter set, to extract complex motion patterns,
potentially leading to overfitting and degraded performance.
In contrast, post-pooling preserves these temporal details,
thereby enhancing the model’s overall performance.

Additionally, we conducted another way to reduce the
test FPS to see how the high-frame-rate aligner works.
The parameters WP ∈ Rwd×wh,bP ∈ Rwh,WQ ∈
Rwh×h,bQ ∈ Rh of the aligner are trimmed to subma-
trices according to the test FPS s, as in Eqns. (10)-(11):

W′
P = WP[: sd, : sh], b

′
P = b′

P[: sh] (10)
W′

Q = WQ[: sh, :], b′
Q = bQ. (11)

This trimming approach effectively leverages the local pa-
rameters of the high-frame-rate aligner for low-frame-rate
decoding, distinguishing it from the repeating-frame method
introduced in Section 3.3. To evaluate its effectiveness, we
compare trimming with frame repetition for low-frame-rate
inference, denoted as “Trimming” and “Repeat”, respec-
tively. The results, presented in Table 5, highlight the differ-
ences between these two methods.

Table 5. Variable-frame-rate decoding results on Video-MME us-
ing different methods. “Trimming” represents only using the sub-
matrices of the original aligner, and “Repeat” represents repeating
frames to meet the input dimension of the original aligner. The
normal decoding results are also provided.

Method FPS Video-MME

Avg.↑ S↑ M↑ L↑
- 16 65.0 78.9 63.2 52.8

Trimming 8 62.3 76.7 61.0 49.2
Repeat 8 63.9 78.0 62.4 51.4

The “Trimming” decoding method results in a performance
decline, whereas the “Repeat” method nearly preserves the
high-frame-rate performance. This suggests that the high-
frame-rate aligner does not simply perform an averaging
operation in the feature space, despite being initialized that
way. Instead, it effectively extracts motion information be-
tween semantic features through its 3-layer MLP structure,
rather than relying solely on local parameter adjustments.

Additionally, we experimented with more structures for the
high-frame-rate aligner, but the results were unsatisfactory.
This further confirms that using linear mappings or MLPs as
aligners is more effective in preserving the semantic space
of visual features. Detailed results of these experiments are
provided in Appendix B.

6. Conclusions
This work presents F-16, a powerful video LLM designed
for 16 FPS video understanding, along with the high-frame-
rate aligner. To the best of our knowledge, this is the first
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study to explore high-frame-rate processing in video LLMs.
We also introduce a method to initialize video LLMs from
pre-trained image LLMs, enabling F-16 to leverage their
rich pre-trained knowledge for enhanced video understand-
ing. Additionally, we propose a variable-frame-rate decod-
ing method, which balances high-frame-rate performance
and inference cost without requiring additional training. As
a result, F-16 achieves SOTA performance in general video
QA among models of similar size and demonstrates a clear
advantage in high-frame-rate video understanding, outper-
forming commercial models such as GPT-4o. This work
opens new directions for advancing high-frame-rate video
comprehension in multimodal LLM research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Examples of the Sports Video Data

Table 6. Examples of sports data, including Gym, Diving, Soccer and NBA.

Sports Type Category Content

Gym QA Q: Please describe the gym video between 0.0s and 5.7s in detail. A: The player performs
”round-off, flic-flac on, stretched salto backward with 1 turn off”.

Caption Q: Please describe the gym video in detail and pay attention to the time. A: The video is a sport
video about Floor Exercise. The player first performs ”double salto backward piked” between
19.7s and 21.5s. Then, the player performs ”2 turn or more with heel of free leg forward at
horizontal throughout turn” between 28.0s and 29.4s. Then, the player performs ”salto backward
stretched with 2.5 twist” between 43.3s and 44.3s. Then, the player performs ”switch leap to ring
position” between 51.2s and 52.1s. Then, the player performs ”split leap with 1 turn” between
52.9s and 53.9s. Then, the player performs ”salto forward tucked” between 64.1s and 64.9s.
Then, the player performs ”salto backward stretched with 2 twist” between 66.2s and 67.9s.
Then, the player performs ”switch leap with 1 turn” between 71.3s and 72.5s. Then, the player
performs ”double salto backward tucked” between 91.0s and 93.0s.

Diving QA Q: What type of take off did the diver use? A: Reverse.

Caption Q: Please describe this diving video. A: The diver executed a back take-off, transitioned into a
15 somersaults, and incorporated a 5 twist while in a free position.

Soccer QA Q: How many football passes are there in the video? A: 2.

NBA QA Q: Did the shot go in? A: Yes.

Caption Q: Explain the NBA video clip thoroughly, ensuring fleeting details are captured. A: Hawks
player No. 2 Wallace tossed the ball to No. 1 Johnson on the left side of the three-point line.
Johnson jumped up from the left side of the basket and caught the ball with his right hand. That’s
when the Celtics’ No. 7 tried to stop him. Johnson made two center-foot stance-up moves and
made a feint pass to the No. 10 from beyond the three-point line. At 11:45, No. 10 made a
three-point shot in front left of the rim before being blocked by Celtics player No. 0 Tatum. After
being blocked, the number 10 grabs the ball in the same position and dribbles once, passing the
ball to the number 1 on the left baseline of the frame.

Table. 6 shows the examples for each category of the sports video used in training and evaluation that are mentioned in
Sec. 4.2.

B. Different Modality Aligners for High-Frame-Rate Understanding
The high-frame-rate aligner mentioned in Sec. 3 uses linear layers that compress the frames temporally as the main layers
and form an MLP. However, more structures are tried in our experiments, as shown in Table. 7-9. Linear is finally selected
based on the experimental results.

Table 7. Comparison between linear and CNN methods.

Structure FPS Max Time LLM Training Video-MME

Avg.↑ S↑ M↑ L↑
Linear 32 30 LoRA 61.5 75.0 59.2 50.3

2D-CNN 32 30 LoRA 57.7 69.1 55.9 48.2
3D-CNN 32 30 LoRA 57.2 70.0 54.8 46.9

Table. 7 shows the comparison between linear and CNN methods, which implement spatiotemporal convolution to replace
the linear layer and the pooling layer, in order to make the model compress and understand spatiotemporal information
together. 2D-CNN conducts convolution on the temporal dimension and spatial visual token dimension together, while
3D-CNN resizes the spatial dimension into a 2D graph like the operation before pooling in Sec. 3. However, the CNN
models fail to understand fine-grained video details and achieve worse final results. The results show that spatiotemporal
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compression and encoding are difficult to conduct in one step. Besides, the CNN models get quite a different structure
compared to the aligner in image models, meaning that it cannot be easily initialized with the original pretrained aligner and
requires much more training costs to conduct image pretraining.

Table 8. Comparison between linear and dual linear method.

Structure FPS Max Time LLM Training Video-MME

Avg.↑ S↑ M↑ L↑
Linear 32 30 LoRA 61.5 75.0 59.2 50.3

Dual Linear 32 30 LoRA 58.8 72.3 55.8 48.2

Table. 8 shows the comparison between linear and dual linear methods. Dual linear replaces the original max pooling layer
with a learnable linear layer, aiming to learn better spatial compression. Though the model performs better in training loss, it
performs worse in the test stage, showing worse generalization ability. That’s probably due to the limitation in the scale of
video data, making the learned spatial compression linear slightly overfits the training set. Meanwhile, the spatial linear
layer is difficult to initialize with the modules in image LLMs or human-tuned parameters, leading to the waste of the rich
knowledge in image LLMs.

Table 9. Comparison between linear and attention method.

Structure FPS Max Time LLM Training Video-MME

Avg.↑ S↑ M↑ L↑
Linear 32 30 LoRA 61.5 75.0 59.2 50.3

Attention 32 30 LoRA 61.8 74.2 60.3 50.9
Linear 16 60 Full 63.5 78.1 60.6 51.8

Attention 16 60 Full 62.9 76.8 60.2 51.9

Table. 8 shows the comparison between linear and attention methods. Attention uses similar structures to linear, but replaces
the first linear layer with a self-attention layer, to further catch the connection of the frames. It is observed that attention
does achieve better results when training LoRA only, but fails to maintain the advantage when training full LLM. The
difference is probably brought by the minimal transform of attention that fits the original pretrained LLM better (each frame
is independently processed with WV matrix in self-attention) but does not bring more advantages when all the parameters
are trainable. Meanwhile, the quadratic complexity of the attention mechanism also makes it harder to extend to a higher
max time. In our implementation, due to the VRAM limitation, it cannot be extended to 110s with 16 FPS like the linear
one, which also reduces the potential of attention aligner.

C. Captioning Cases for High-Speed Sport Videos
We show detailed NBA captions generated by models trained at different frame rates in Table 10. The groundtruth caption
and GPT-4o’s caption are also provided. GPT-4o and the FPS = 1 model misses ball-passing information or describes it
incorrectly, while the high-frame-rate model is able to catch these details.

D. Visualization of Sports Videos at Different FPS
We randomly sample a video from Diving48 and show the sampled frames at different FPS in Fig. 4-6.
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Table 10. Captioning Cases for a 10-second NBA video of different models.
Text Type Content

Groundtruth Jazz player No. 23 held the ball outside the left three-point line, guarded by Lakers player No.
46. He suddenly passed the ball to Jazz player No. 40, a teammate cutting into the paint from
the three-point line in the middle. The latter attempted a layup at 10:25, and Lakers player No.
3 raised his right hand, trying to block the shot. The ball didn’t go in. Lakers player No. 15
grabbed the rebound and passed it to player Lakers player No. 3. Lakers player No. 3 then
dribbled the ball past half-court.

GPT-4o (Inputted with
120 frames)

The NBA video clip captures a sequence from a game between the Utah Jazz and an opposing
team. The play begins with the Jazz on offense, setting up a play on the perimeter. The player
with the ball attempts to drive towards the basket but is met with strong defense from the opposing
team. The ball handler then passes to a teammate who is positioned near the three-point line.
This player makes a move to penetrate the defense but is also challenged by defenders. The
ball is then passed around the perimeter as the Jazz look for an open shot. Eventually, a player
attempts a shot near the basket but misses. The opposing team secures the rebound and quickly
transitions into a fast break, pushing the ball up the court. The clip ends with the opposing team
advancing towards their offensive end, looking to capitalize on the transition opportunity.

Generated by model
trained at FPS = 1

The No. 17 player of the Jazz held the ball in the backcourt. He dribbled once with his left hand,
then switched to his right hand, and moved towards the frontcourt. After three more dribbles,
he entered the paint. Then he jumped up and threw the ball towards the basket at 12:24. The
basketball hit the rim and bounced out. The No. 5 player of the Lakers jumped up and grabbed
the rebound with both hands.

Generated by model
trained at FPS = 16

Jazz player No. 24 dribbled the ball once outside the three-point line on the left side of the
basket and passed it to Jazz player No. 15 who moved to the right side of the basket outside the
three-point line. Jazz player No. 15 took a jump shot at 10:23, but failed to score. Lakers player
No. 3 jumped up and raised his right hand to try to block the shot. The basketball hit the rim and
bounced out. Then Jazz player No. 0 grabbed the rebound and passed the ball to Jazz player No.
24 who moved to the right side of the basket outside the three-point line.

Figure 4. Visualization at FPS=1

Figure 5. Visualization at FPS=4
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Figure 6. Visualization at FPS=16
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