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Abstract

Integer Linear Programming (ILP) is an essen-
tial class of combinatorial optimization problems
(COPs). Its inherent NP-hardness has fostered con-
siderable efforts towards the development of heuris-
tic strategies. An emerging approach involves lever-
aging data-driven methods to automatically learn
these heuristics. For example, using deep (rein-
forcement) learning to recurrently reoptimize an
initial solution with Large Neighborhood Search
(LNS) has demonstrated exceptional performance
across numerous applications. A pivotal challenge
within LNS lies in identifying an optimal subset
of variables for reoptimization at each stage. Ex-
isting methods typically learn a policy to select a
subset, either by maintaining a fixed cardinality
or by decomposing the subset into independent bi-
nary decisions for each variable. However, such
strategies overlook the modeling of LNS’s sequen-
tial processes and fail to explore the correlations
inherent in variable selection. To overcome these
shortcomings, we introduce ILP-FORMER, an in-
novative model that reimagines policy learning as a
sequence-to-multi-label classification (MLC) prob-
lem. Our approach uniquely integrates a causal
transformer encoder to capture the sequential na-
ture of LNS. Additionally, we employ an MLC
decoder with contrastive learning to exploit the
correlations in variable selection. Our extensive
experiments confirm that ILP-FORMER delivers
state-of-the-art anytime performance on several
ILP benchmarks. Furthermore, ILP-FORMER ex-
hibits impressive generalization capabilities when
dealing with larger problem instances.

*Correspondence to: Caihua Liu <Caihua.Liu@guet.edu.cn>

1 INTRODUCTION

ILP has found applications in production planning [Mulal
et al.| [2006], scheduling [Ku and Beck] [2016], scientific
discovery [Chen et al.| [2021a], and telecommunications net-
works |Gollowitzer and Ljubic [2011]], among many others.
It is well-known that ILP is NP-complete Karp|[[1972] and
many efforts have been devoted to designing effective heuris-
tics to find near-optimal solutions [Taha! [2014]]. Historically,
such algorithms were designed largely manually, requiring
a careful understanding of the underlying structure within
specific classes of optimization problems.

Due to the recent success of deep learning (DL) and re-
inforcement learning (RL), there has been an increasing
interest in automatically learning heuristics for COPs from
training data Bengio et al.| [2021]]. Existing works often
leverage machine learning (ML) to output solutions directly
from input instances, configure hyperparameters of COP
algorithms, or learn a local decision policy for search frame-
works such as branch&bound (B&B), local branching (LB),
or LNS. Among them, we are particularly interested in learn-
ing to iteratively reoptimize an initial solution with LNS
Wu et al.|[2021]], [Song et al.|[2020], |Sonnerat et al.|[2021]],
Nair et al.| [2020a]. These approaches are attractive because
we can leverage existing state-of-the-art commercial ILP
solvers such as Gurobi or SCIP as a generic black-box sub-
routine and thus benefits from the cutting-edge technologies
of such commercial ILP solvers.

In this paper, we focus on boosting the performance of LNS,
though our method can also be applied to boost the perfor-
mance of other local search algorithms such as LB. A key
challenge of LNS is to select a promising variable subset to
reoptimize based on the current solution. Since the selection
choice is combinatorial, finding an optimal subset is also
computationally hard. Song et al.|Song et al.|[2020] learn
to select fixed, predefined variable subsets with imitation
learning and RL. Wu et al. Wu et al.|[2021] learn to select
arbitrary variable subsets with RL by factorizing the selec-
tion of a variable subset into elementary selections on each



variable separately. Similarly, Sonnerat et al.|Sonnerat et al.
[2021]] learn to predict the probability of selecting a variable
independently of other variables using imitation learning
and Nair et al. Nair et al.|[2020a] use RL to learn a policy
that selects one variable at a time. Recently, Huang et al.
Huang et al.| [[2023]] adopt contrastive learning for a better
embedding of ILPs. Nevertheless, all of these works miss
modeling the sequential processes of LNS and also do not
exploit correlations of variable selection. To address these
limitations, we propose to model the policy learning as a se-
quence to a multi-label classification problem, which jointly
models the selection of variables as well as the sequential
processes of LNS.

Our contributions are threefold: (1) we give a new angle
of sequence to multi-label classification for learning an ef-
fective local decision policy for LNS; (2) we materialize
this idea by providing a novel model to seamlessly integrate
a customized decision transformer encoder to model the
sequential processes of LNS and an MLC decoder with con-
trastive learning to exploit correlations of variable selection;
(3) we conduct extensive experiments on various bench-
marks and the results show that our model significantly
outperforms state-of-the-art baselines

2 OTHER RELATED WORK

Learning to Optimize. Recently, there has been an increas-
ing interest in applying ML to learn solving COPs. Broadly
speaking, there are three categories of learning to optimize
algorithms: (1) Learning to predict solutions from inputs.
Larsen et al.| [2018] train a deep neural network (DNN)
to predict the solution of a stochastic load planning prob-
lem. [Nair et al|[2020b|] propose neural diving to learn a
DNN to generate multiple partial assignments for its integer
variables, and the resulting smaller mixed integer programs
(MIPs) for unassigned variables are solved with an off-the-
shelf MIP solver to construct high-quality joint assignments.
Joshi et al.| [2019] learn a DNN by supervision to predict
the probability of an edge to be in the traveling salesman
problem (TSP) tour. A feasible tour is then generated by
beam search. (2) Learning to configure COP algorithms. [Liu
et al.|[2022] learn to configure the search neighborhood size
of LB in each step by using RL.|Deng et al.| [2022b] inte-
grate belief propagation (BP), gated recurrent units (GRUs),
and graph attention networks (GATs) within the message-
passing framework to reason about dynamic weights and
damping factors for composing new BP messages. (3) Learn-
ing alongside COP algorithms. Nair et al.|[2020a] learn a
DNN to make variable selection decisions in B&B to bound
the objective value gap with a small tree. Deep Bucket
Elimination (DBE) Razeghi et al.|[2021]] uses DNNs to ap-
proximate the large bucket functions. |Deng et al.| [2022al]
propose a pre-trained cost model which predicts the optimal
cost of a given partially instantiated COP. The predicted

cost is then used to construct heuristics for various COP
algorithms such as LNS and B&B. Our work belongs to the
third category.

Primal Heuristics. Numerous primal heuristic algorithms
have been proposed to enhance the efficiency of solving
ILPs Berthold| [2013]]. Primal heuristics span from simpler
rounding heuristics |Achterberg et al.|[2012] to more compu-
tationally demanding diving and large neighborhood search
(LNS) heuristics, such as Relaxation Induced Neighbor-
hood Search (RINS) |Danna et al.| [2005]. LNS heuristics
are improvement heuristics that solve auxiliary problems
using the branch-and-bound technique. In contrast, learning-
based LNS approaches can be regarded as primal heuristics
automatically learned through machine learning. These ap-
proaches showcase significant potential by exploiting data-
driven techniques, which ultimately result in improved per-
formance and adaptability across a wide range of problem
instances. This work is particularly interested in advancing
the capabilities of learning-based LNS approaches.

3 PRELIMINARIES

3.1 INTEGER PROGRAM

An integer linear program (ILP) is a problem of opti-
mizing a linear function over points in a polyhedral set:
arg min, {uTz|Wx < bjz > 0;2 € Z"}, where z € Z" is
a vector of n decision variables; € R™ denotes the vector
of objective coefficients; the incidence matrix W € R™*"
and vector b € R™ together define m linear constraints.

3.2 LNS AND ITS MARKOV DECISION PROCESS
FORMULATION

Given an initial assignment of values to the decision vari-
ables in an ILP instance, LNS iteratively refines this assign-
ment by selecting a subset of decision variables, relaxing
their values, and solving a subproblem that aims to optimize
the objective function while respecting the instance’s con-
straints. LNS aims to explore a complex solution neighbor-
hood and gradually improve its current solution until a cer-
tain termination condition is met|Pisinger and Ropke| [2010].
A key challenge of LNS is how to define a good solution
neighborhood, namely, one needs to decide which variable
subset to reoptimize given the current solution. Obviously,
such a decision problem is combinatorial, and many works
devote to constructing effective heuristics for it[Ropke and
Pisinger|[2006]], Perron et al.|[2004], Dumez et al.|[2021]]. In
this work, we are particularly interested in the recent trend
of learning-based approaches, where data-driven methods
are applied to learn the heuristics automatically Song et al.
[2020], Wu et al. [2021]], [Sonnerat et al.| [2021]]. To this
end, the LNS framework can be formulated as a Markov
Decision Process (MDP) (S, A, P, R):



¢ Sisaset of states. A state s; € S describes the current
status of the LNS process in step ¢, which normally in-
cludes the static IP instance information (e.g., variables,
constraints, and objectives) and the dynamic solving
statistics (e.g., the incumbent solution);

* Ais a set of all candidate variable subsets for reopti-
mization. A variable subset a; € A is also called an
action of an agent that is executed in step ¢;

* P(s,a) is the transition function to return the next
state. Let x; be the solution with state s;, a smaller
sub-IP is first generated by keeping the values of
non-selected variables in x; and reoptimizing the re-
mainder, and then the next state s;;; is obtained
by updating s; with the new solution to the sub-
IP: 2441 = argming{u’2|Wx < bjz > 0;2 €
ZM;at = a2t vt € at);

* R(st, at) is the reward function to return the change of
objective values, which is defined as r; = R(s¢,a;) =
uT (x4 — 2441). Let T be the step limit, the cumulative
rewards from step ¢ of an episode is defined as R; =
S _, ¥ty with a discount factor v € [0, 1].

A policy is a (potentially probabilistic) mapping 7 : S — A.
The goal of RL-based algorithms for solving ILPs is to find a
policy function to maximize the expected cumulative reward
E[R;] over all episodes, i.e., the expected improvement over
initial solutions. However, existing RL-based algorithms for
IP solving train a policy by either temporal difference (TD)
learning Sutton and Barto| [2018]], policy gradient Williams
[[1992], or behavior cloning Torabi et al.|[2018], all of which
miss modeling sequential processes of LNS explicitly. Fur-
thermore, RL-based algorithms may suffer from various is-
sues, such as the need for bootstrapping to propagate returns
in TD-learning can cause stability problems, the discounting
future rewards can induce undesirable short-sighted behav-
iors, policy gradient is known to be sample inefficient, and
behavior cloning can suffer from cascading errors Kaelbling
et al.|[1996], Ross and Bagnell| [2010], Chen et al.|[2021Db].
To circumvent these disadvantages, we propose to learn
a policy with decision transformers, which seeks to bene-
fit from modeling sequential processes of LNS and better
generalization.

3.3 DECISION TRANSFORMER

Decision transformer (DT) |Chen et al.| [2021bf] abstracts
the decision-making process in RL as a sequence modeling
problem and attempts to learn a return-conditioned state-
action mapping. The return-conditionality means that given
a history of return-state-action tokens, such that the first to-
ken represents the desired return at the current state, the DT
predicts the action required to achieve this desired return.
In this paper, we follow the convention of the original DT
and define return, gy, as the non-discounted rewards-to-go:

gt = ZtT r¢. DT takes as input a sequence of three-tokens:
(<gt—K7$t—Kaat—K>a"' 7<gt75taat>)’ where K < T
is the context length. Each token is then encoded into
an embedding and added by a positional encoding. Fur-
thermore, let (<th71< T Zat—K>’ T <th ) %5 Zat>)
be the corresponding sequence of embeddings, and
this sequence of embeddings is fed into a causal
transformer to produce another sequence of embed-
dings ((zé}tiK,thfK,ngK% . <th>Z?uZ¢’zlt>)- A de-
coder takes as input z?t and outputs a;. During training,
a suitable loss function is applied to penalize the difference
between the prediction a; and label a;. During inference, af-
ter specifying a target return based on desired performance
and the environment starting state, DT generates actions
autoregressively. The actions are executed and the target
return is subtracted by the achieved rewards to obtain the
next states. The process of generating actions and applying
them to obtain the next return-to-go and state is repeated
until episode termination.

4 SOLVING ILPS WITH SEQUENCE TO
MULTI-LABEL CLASSIFICATION

Instead of learning to select fixed, predefined variable sub-
sets |Song et al.|[2020], Wu et al. Wu et al.|[2021]] factorizes
the combinatorial action space .4 into elementary actions on
each dimension (i.e. variables), where ai € {1,0} denotes
the elementary action of whether selecting 2 for reoptimiza-
tion in step ¢, and a! is 1 if 2 is selected and 0 otherwise.
Therefore, any action can be expressed as a; = U"_;a! and
the action selection problem can be converted into n sepa-
rated binary classification problems. The policy for action
selection is factorized by

m(ag|st) :Hﬂ'i(aﬂst), €))
i=1

which expresses the probability of selecting an action as the
product of probabilities of selecting its elements. However,
such an action space factorization limits the class of policies
that can be learned and it also fails to explore the correlations
between elementary actions. To address these limitations,
we propose to model the policy learning as a sequence
to multi-label classification problem, which jointly models
the selection of multiple elementary actions as well as the
sequential processes of LNS, i.e.,

m(a¢lst) = po(atlhe(Q(t, K))), )

where Q(t, K') denotes the function used to return the last
K sequence of return-state-action tokens from steps ¢t — K
to ¢, name]y’ (<gt7K7 St—K at*K>7 T <gta Sty >)’ hd)()
denotes the sequence encoder parameterized by ¢(NN); and
the MLC decoder parameterized by 6(NN) takes as input
state embedding th produced by hy and outputs action
distribution pg(a;|2" ). Effective implementations of the

sequence encoder and MLC decoder are crucial to this work.



4.1 A NOVEL TRANSFORMER MODEL FOR
SOLVING ILPS

In this section, we propose a novel model ILP-FORMER
for the problem given in equation (2) based on the causal
transformer and contrastive learning.
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Figure 1: The architecture of our model ILP-FORMER: it
consists of several token encoders to produce latent token
embeddings, a causal transformer to capture dependence
between token embeddings, and a contrastive MLC decoder
to exploit correlations between label categories. Here we
use a small IP with 4 variables and 3 constraints to show the
full pipeline of our model. The problem is first translated
into a factor graph G, and G is associated with dynamic
factor-node features that describe the states of MDP and are
encoded into state embeddings in different steps. Similarly,
returns g; and actions a; are also encoded into latent em-
beddings. We use a GCN as state encoder and two simple
MLPs as return and action encoders respectively. Each to-
ken embedding is further added with its relative positional
encoding. The sequence of embeddings is fed into the causal
transformer to produce another sequence of embeddings. Fi-
nally, the contrastive MLC decoder takes as inputs the state
embeddings and outputs action predictions.

4.1.1 Factor Graph Representation

An IP instance can be represented by a factor graph|Gasse
et al|[2019] which is a bipartite graph G = (V, C, &) consist-
ing of variable-nodes V = {v1,--- , v, } and factor-nodes
C ={c1, -+, ¢m}. Variable nodes correspond to the vari-
ables and factor nodes correspond to the constraints in the
IP. An edge e;; € £ between v; and c; is established only
if the j-th constraint contains the ¢-th variable. The vari-
able nodes are associated with a feature matrix V' € Z"*dv
where d,, is the number of features for each variable node.
The features of each variable-node v; include two parts: (1)
static features: a one-hot vector indicates the node type and
the objective coefficient p; of x;; (2) dynamic features: the

current solution of z; in step ¢ and the incumbent solution
of z;. Note that the dynamic features are used to describe
the states of MDP in different steps. The factor nodes are
also associated with a feature matrix C' € Z"* 4 where d,.
is the number of features for each factor node. The features
of each factor-node c; only include static features: a one-hot
vector indicates the node type and the value b; at the right-
hand-side (RHS) of the i-th constraint. Finally, the weight
matrix of edges is exactly the incidence matrix.

4.1.2 Model Architecture

Fig.[T] gives the overall architecture of our ILP-FORMER
and it consists of a customized DT encoder and a contrastive
MLC decoder. Our encoder is only composed of several
customized token encoders and a causal transformer without
the linear decoder of DT (Chen et al.| [2021D].

Token Encoders: Each token is first encoded into an em-
bedding and added by a positional encoding. For return and
action tokens, two simple multilayer perceptrons (MLPs) are
used as return and action encoders respectively. Positional
encodings are produced by another simple MLP which takes
as input a single scalar ¢. Each state token s, is represented
by a factor graph as introduced in sectionf.1.1] and we use
a graph convolutional network (GCN) Zhang et al.|[2019]
as the state encoder. A single graph convolution layer is
detailed below

CUH) _ o) 4 (LN (Wv(lc)HI()k))> 7

YD) k) o, (LN (WTC(’“H)HC(,’@))) | 3)

where HY, HF) € Rdnxdn gre trainable weight matrices
in the k-th layer; V) € Rnxdn gnd C(K) ¢ R™*dn gre em-
beddings for variable-nodes and factor-nodes respectively
in the k-th layer; LN and o(-) denote layer normalization
and Tanh activation function respectively. The initial em-
beddings V(® and C(®) are linear projections of the raw
feature matrices V' and C respectively. In this paper, all
MLP encoders only have two layers, and the embeddings’
dimensions dy, are set to be 128; the GCN encoder consists
of two convolution layers and a mean pooling layer.

Causal Transformer: Causal transformer [Vaswani et al.
[2017] is an architecture to efficiently model sequences that
consist of stacked self-attention layers with residual con-
nections. In our model, each layer receives a sequence of
L = 3K token embeddings {2;}Z ,, and outputs L embed-
dings {zP'}L |, preserving the input dimensions. Specifi-
cally, each token embedding z; is mapped to a key 2%, a
query z;, and a value z! via linear functions, and the output
2! is given by

7
h _ U =
i _Zaljzj7 Q5 =
j=1

exp(z{ - 2F)

S ezl

“4)
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Figure 2: The architecture of our contrastive MLC decoder.
Firstly, a GCN takes as input an IP instance and learns em-
beddings for label categories respectively, and labels within
the same category share the same embedding. Secondly, we
use the state embedding in step ¢ as an input feature whose
inner products with label embeddings are used to produce
prediction a,. Lastly, a contrastive loss is designed to pull to-
gether the feature embedding and positive label embeddings,
while separating the feature embedding from the negative
label embeddings.

In this work, we adopt the causal transformer GPT2 Radford
et al.|[2019] to learn and reason about sequences and we
defer the other architecture details to the original paper.

Contrastive MLC Decoder: Recall that an elementary ac-
tion al € {0,1} (ak.a. a label) denotes whether or not to
select variable  for reoptimization in step t. A label vector
a; = U ;al € {0,1}™ denotes the selected action given
state s;. Different from eq. (1)) which approximates 7 (a¢|s;)
with n separated binary classification problems, we propose
to approximate m(a|s;) with an MLC decoder that finds
a mapping from z” to a;, where 2 is a state embedding
generated by the causal transformer and served as an input
feature for our MLC decoder. A key aspect of learning a
policy with an MLC module is that we can exploit the cor-
relations between elementary actions, which is missing in
those existing ML-boosted IP solvers|Wu et al.|[2021],Song
et al.|[2020]], Sonnerat et al.| [2021]).

We propose to exploit category-level label correlation with
contrastive learning based on the MLC model GMVAE |Bai
et al.|[2022]]. GMVAE assumes that the number of labels is
fixed and label embeddings are shared across all samples.
This is not applicable to our case since different instances
may have a different number of decision variables, i.e., ac-
tions from different instances may have different cardinali-
ties. Alternatively, we learn category-level label embeddings
for each IP instance with a shared GCN, and the embeddings
are only shared across samples within each instance. Fig.
gives the architecture of our MLC decoder. We denote a’
the ¢-th category of labels {aé z':t— x collected from steps
[t — K, t]. Our idea is as follows: (1) we learn an embedding

2517 for each label category a’ such that labels within the
same category share the same embedding. Since the number
of label categories is exactly the number of variables in an IP
instance, we use the GCN described in equations @]) to take
as input an IP instance and output node embeddings, and we
use the variable-node embeddings as label category embed-
dings respectively; (2) we use the state embedding zgt of
each LNS step as an input feature whose inner products with
label embeddings correspond to feature-label similarity and
can be used for prediction; (3) we use contrastive learning
to capture correlations between label categories by pulling
similar categories’ embeddings together. Specifically, let

I={1,---,n} and we define the positive label set of a, as
P(a;) = {i € Ilat = 1}. Given a sequence of return-state-
action tokens ((gi—k,Si—k, Gi—k ), ,{Gt, St, ar)), our

decoder is designed to optimize the following contrastive
loss function:

t h l
1 1 Rsj " Rqi
Lo = — —log =———F———,
R 2 Pl 2 TS

5
where state embeddings zfj for j € [t — K, t] are generated

by the causal transformer and are computed as in eq. {@).

For example, if in most of the actions a;, labels af; and a{
often appear together (i.e., they both equal 1), contrastive
learning will implicitly pull their embeddings together. In
other words, if two labels do co-appear often, their label
embeddings would become similar. On the other hand, if
they never co-occur or only co-appear occasionally, their
connections are not significant and our decoder will not
optimize for their similarity.

4.2 TRAINING ALGORITHM

Our model will be trained with supervised learning.
Given a set of training IP instances, we first col-
lect a dataset of sequences of return-state-action tokens
that are generated by the MDP with some expert pol-
icy: D = {(<gt—K; St—K, at—K>j; ) <gt7 St at>j)}§‘\[:]_9
where K < T is the length of each sequence. For each
sequence g € D, our model will take as input ¢ and gener-
ate a set of action predictions {a;}_; , and we will also
collect the set of labels from ¢, {a;}5_, . A supervised
cross-entropy loss for each sequence is given by

t n
1 1 S , y
£CE:E Z EZa}loga;—i—(l—a})log(l—aé).
j=t—K = i=1
(6)
The final objective function to minimize is given by

L=Lcr - BLcE, (7N

where [ is a trade-off weight. The model is trained with
Adam Kingma and Ba| [2014]] and optimized with £. We



sample mini-batches of sequence length K from the dataset
D and the model is trained with GPUs in parallel. However,
similar to DT, our model will generate action predictions
autoregressively during testing. We refer the reader to sec-
tion[3.3] for more details.

S EXPERIMENTS

We conduct experiments on four diverse NP-hard COP
benchmarks, including minimum vertex cover (MVC), max-
imum cut (MC), set covering (SC), and combinatorial auc-
tion (CA). We follow the experimental settings of |Song et al.
[2020]] and [Wu et al.|[2021]].

5.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. MVC and MC are graph optimization problems;
SC and CA are general IPs. For MVC, we use the Erd&s-
Rényi (ER) model Erdos et al.|[1960] to generate random
graphs with 1000 nodes and edge probability 0.15. For MC,
we use the Barabasi-Albert (BA) model |Albert and Barabasi
[2002] to generate random graphs with 500 nodes and an
average degree of 4. For SC, we generate instances with
matrices having 5000 rows and 1000 columns following the
procedure in Balas and Ho|[1980]], where each entry B;; €
{0, 1} represents whether the i-th element in the universe
belongs to the j-th set. For CA, we use the Combinatorial
Auction Test Suit (CATS) [Leyton-Brown et al.|[2000] with
arbitrary relationships to generate instances with 2000 items
and 4000 bids. For each problem type, we generate 100,
20, and 50 instances for training, validation, and testing,
respectively. For each training instance, we use LNS with
LB to run on it and set a time limit of half an hour for
solving the sub-IP in each step with LB and Gurobi. We use
the resulting trajectory for training ILP-FORMER, and we
randomly sample 20 sequences of return-state-action tokens
from each trajectory. Therefore, our dataset for training
ILP-FORMER includes 2000 sequences of three tokens.

Initialization. LNS starts with a feasible initial solution. For
MVC, MAXCUT, SC, and CATS, we initialize a feasible
solution by including all vertices in the cover set, randomly
partitioning all vertices into two complementary sets, includ-
ing all sets in the set cover, and accepting no bids, respec-
tively. The initialization process does not incur additional
computational costs in our experiments.

Implementation and Hyperparameters. Return, action,
and position encoders are all simple MLPs with 2 layers
and 128 hidden neurons. The state encoder is a GCN with
2 convolution layers and a mean pooling layer. We use the
GPT?2 as our casual transformer. Dimensions of all hidden
embeddings are set to 128. We set the batch size and the
number of training epochs to 128 and 100, respectively,
for all experiments. Our model was implemented with the

Pytorch deep learning framework and the whole model was
trained using the Adam optimizer [Kingma and Ba| [2014]
with a learning rate of 0.0001 and a weight decay ratio of
0.01 in an end-to-end fashion. All experiments were carried
out on a machine with a 4.2 GHz quad-core Intel i7 CPU,
16 GB RAM, and an Nvidia RTX 3090 24GB GPU card.

The hyperparameters we employed are as follows: (1) Num-
ber of layers: 3; (2) Number of attention heads: 1; (3) Em-
bedding dimension: 128; (4) Nonlinearity function: ReLU;
(5) Batch size: 128; (6) Context length K: 25; (7) Dropout ra-
tio: 0.1; (8) Learning rate: le-4; (9) Gradient norm clipping:
0.25. We maintained other parameters at their default values.
We trained the model from scratch and did not utilize any
pre-trained weights.

Grid search is adopted for tuning. We tune learning rate from
0.00005 to 0.002 with interval 0.00005, dropout ratio from
[0.05, 0.1, 0.3, 0.5], weight decay from [0, 0.01, 0.0001],
B from [0.1, 0.5, 1, 1.5, 2.0], token embedding size from
[64, 128, 256, 512], context length K from [15, 20, 25, 30],
batch size from [64, 128, 256], Gradient norm clipping from
[0.15, 0.2, 0.25, 0.3, 0.35].

In the data collection process, we run LNS with LB and
adaptive neighborhood size. The neighborhood size is ini-
tially set to 10% of the number of variables in the input
problem instance. It is then adapted following the approach
described in the paper by [Sonnerat et al.| [2021]]. During
testing, at each step ¢, the model generates action distribu-
tions a; ; for each dimension 7 autoregressively. We apply
a threshold of 0.5 to convert these values into 1 or 0, repre-
senting the selection or non-selection of the corresponding
variable z; in step ¢.

Baselines. We compare our method with five baselines:
(1) Gurobi (version 9.5) with default settings: a leading
state-of-the-art IP solver; (2) FT-LNS: the best-performing
LNS version by |Song et al.|[2020], which applies imitation
learning to mimic the best demonstrations; (3) RL-LNS:
the current state-of-the-art learning-based LNS method for
solving ILPs|Wu et al|[2021]), which uses deep RL to learn
LNS policy via action factorization to represent all potential
variable subsets; (4) LB-SRMRL.: the best-performing LB
version by Liu et al.[[2022], which uses a regression model
and RL to learn a hybrid model to predict and adapt the
neighborhood size for the LB heuristic; and (5) CL-LNS:
the current state-of-the-art learning-based LNS method for
solving ILPsHuang et al.|[2023]], which contrastive learning
for ILP representation learning. We follow the default set-
tings of these learning-based baselines and further fine-tune
them on our datasets to get the best hyperparameters. For
more details of the settings of these baselines, we refer the
reader to their original papers.

Evaluation Metrics. The performances of different algo-
rithms are compared in two measures: (1) the objective of
solutions returned by different algorithms within a time



Mothods _MVC-1000 — MC-500 —SC-1000 —_CA-2000
Obj.£Std.% Gap% | Obj.£Std%  Gap% | Obj.£Std.% Gap% | ObjE5td.%  Gap%
Gurobi 1322108 10.83 | —863.0+3.8 494 | 554083 626 | —111668+£2.0 4.8
FT-LNS 4700404 802 | —866.2+=17 469 | 564.1+84 802 | —110041+1.6 557
RL-LNS 469.0£05 779 | —878.0+£16 339 | 551.9483 569 | —111787+2.6  4.07
LB-SRMRL | 4724407 857 | —859.1+£23 547 | 5609473 741 | —1107414+3.1 497
CL-LNS 4502404 347 | —8653+1.6 446 | 5402474 345 | —112956+2.1  3.07
ILP-FORMER | 4351 £08 0 | -9088+1.3 0 |5222+53 0 | -116535+21 0

Table 1: A comparison of ILP-FORMER and the state-of-the-

art baselines on 4 diverse benchmarks. The time limit is set to

200s. Each result is averaged over 5 runs. The gap is the ratio of objective difference w.r.t. the best result.

Methods ‘ MVC-2000 ' MC-1000 . SC-2000 ‘ CA-4000
Obj.=Std.% Gap% Obj.£Std.% Gap% | Obj.=Std.% Gap% Obj.%Std. % Gap%
Gurobi 3925+13 1053 | —1784.7+£1.0 6.74 295.7+£7.9 6.63 —212890 £ 1.8 8.97
FT-LNS 390.5£1.1 9.97 —1767.8 +1.0 7.62 303.3£8.0 9.38 —211324 £2.1 9.64
RL-LNS 375.8 £2.1 5.83 —1831.0+0.9 4.32 2954+£7.8 6.53 —216650 £ 1.7 7.36
LB-SRMRL 395.2+19 1129 | —1765.6 £1.5 7.73 301.4+£7.2 8.69 —209420£2.1 1045
CL-LNS 370.2+£1.4 425 —1865.3 + 1.6 2.52 290274  4.65 —222956 £2.1 4.67
ILP-FORMER | 355.1 £1.1 0 —1913.6 +0.8 0 2773+7.1 0 —233870+£1.7 0

Table 2: Generalization to larger instances with a double number of variables. The time limit is set to 500s.

Mothods MVC-4000 MC-2000 SC-4000 CA-8000
Obj.£Std.% Gap% | Obj.£Std.%  Gap% | Obj£Std.% Gap% | Obj.=Std%  Gap%
Gurobi 2783+0.9 778 | —3574.4+08 591 | 1754+£7.0 748 | —422201+1.2 471
FTLNS 2792417 813 | —3526.240.8 7.8 | 175.246.6 7.35 | —4312344+0.9  2.69
RL-LNS 273.6+£2.1 596 | —3612.5+0.7 491 | 1724+7.1 564 | —432980+£0.7 230
LB-SRMRL | 2756422 674 | —3505.140.9 773 | 177.14£7.2 852 | —415631+£05 621
CL-LNS 2702424 465 | —3535.34£0.6 694 | 1732471 492 | —4342114£21  2.02
ILP-FORMER | 2582+19 0 | —37989+1.0 0 | 163261 060 | —439151+£05 0

Table 3: Generalization to larger instances with a quadruple number of variables. The time limit is set to 500s.

limit; (2) the gap between solutions, namely, the ratio of
objective difference w.r.t. the best result.

5.2 EXPERIMENTAL RESULTS

A comparison of ILP-FORMER and other state-of-the-art
baselines on 4 diverse benchmarks is given in Table[T] All
learning-based algorithms, including our ILP-FORMER,
call Gurobi to solve sub-IPs with a time limit of 2s at every
step. We can observe that LB-SRMRL is not comparable
to other algorithms. CL-LNS remains the most competitive
baseline and consistently outperforms Gurobi, RL-LNS, and
FT-LNS. Overall, these results suggest that our approach can
reliably offer substantial improvements over state-of-the-art
solvers.

We also compare the generalization ability of all algorithms
to solve large IPs. To this end, we generate two sets of test-
ing instances following the same settings as in section[5.1]
but double and quadruple the number of variables respec-
tively. Note that we only generate 50 testing instances for
each problem type without considering training and valida-
tion. We test all (trained) models on these new instances
and summarize results in Tables [6land 3] We can observe
that the advantage of our ILP-FORMER still preserves on
larger problem instances compared to baselines. Specifi-
cally, Table [6] shows that ILP-FORMER still consistently
outperforms all baselines on the 4 benchmarks when the in-

stance size is doubled. On the other hand, Table[3]shows that
ILP-FORMER outperforms all baselines on 3 out of 4 bench-
marks when the instance size is quadrupled. In summary,
our ILP-FORMER learned on small instances generalizes
well to larger instances, with a persistent advantage over
other methods.

5.3 ANYTIME PERFORMANCE

We further showcase the anytime performance of various
algorithms, including random LNS in this experiment, to
facilitate an easier comparison between random LNS and
ILP-FORMER across four benchmarks, as illustrated in
Figure E} Our observations indicate that: (1) ILP-FORMER
significantly outperforms other baselines with a noteworthy
margin. (2) Even with extended time limits, [LP-FORMER’s
advantage persists.

5.4 ADDITIONAL EXPERIMENTS WITH SCIP

Our framework can integrate any ILP solver to enhance
incumbent solutions. We primarily conducted experiments
with Gurobi, given its status as a leading ILP solver. Ad-
ditionally, we also present results utilizing SCIP (v6.0.1)
as an alternative ILP solver. By employing the same set-
tings as detailed in Section 5.1 and applying them to the
four benchmarks, we display the results in Table [5] These
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Figure 3: Anytime Performance Comparison of Gurobi, FT-LNS, RL-LNS, LB-SRMRL, CL-LNS, and ILP-FORMER on

Four IP benchmarks. Runtimes are up to 30 minutes.

Mothods _MVC-1000 — MC-500 — SC-1000 —_CA-2000

Obj.£Std.% Gap% | Obj.£Std%  Gap% | Obj.£Std.% Gap% | ObjE5td.%  Gap%

SCIP 5522+ 0.5 21.60 | —793.9+28 1141 | 6043+£32 1141 | —100514£2.1 1231
FT-LNS 490.240.6 795 | —836.34+1.2 668 | 5852464 791 | —1071414+1.7 653
RL-LNS 4800405 570 | —847.5+£13 242 | 575.6+62 614 | —108787+£2.2  5.09
LB-SRMRL | 4924409 843 | —8203+£19 847 | 580.8+53 7.0 | —107741+3.0  6.01
CL-LNS 4704409 366 | —860.3+£19 401 | 560.8+53 341 | —109941+3.0  4.09

ILP-FORMER | 4541+07 0 | -8962+12 0 |5423+53 0 | —114626+15 0

Table 4: Results with SCIP. The time limit is set to 200s. Each result is averaged over 5 runs. The gap is the ratio of objective
difference w.r.t. the best result. The best results are shown in bold.

outcomes align with those observed when using Gurobi as
the ILP solver, albeit with SCIP exhibiting a notably lower
performance compared to Gurobi.

5.5 ABLATION STUDY

To demonstrate the strength of ILP-FORMER, we com-
pare it with two variants: (1) ILP-FORMERSMLC: a mod-
ified ILP-FORMER where its MLC decoder is replaced
with a linear decoder; (2)ILP-FORMERSDT: a modified
ILP-FORMER where its casual transformer component is
removed. The results are summarized in Table [Sl We can
observe that ILP-FORMER outperforms the two variants
consistently; our model’s performance drop significantly
if we do not consider modeling the sequential process of
LNS (drop by 4.09% on average) or exploit correlations of
variable selection (drop by 3.13% on average).

5.6 TESTING ON REAL-WORLD INSTANCES IN
MIPLIB

We follow the experimental settings for real-world instances
in MIPLIB as described in [Wu et al.| [2021]]. We exclude
“easy” instances with relatively small sizes, as well as in-
stances where Gurobi cannot find any feasible solutions
within a 3600-second time limit. Consequently, we choose
35 representative “hard” or “open” instances containing
only integer variables. Within these instances, the number
of variables ranges from 150 to 393,800 (averaging 49,563),
and the number of constraints varies from 301 to 850,513
(averaging 96,778). We use the datasets in section [5.1] to
train our model and evaluate our model (with Gurobi as the
repair solver) on this realistic dataset, in the style of active
search Bello et al. [2016], Wu et al.| [2021]], [Khalil et al.
[2017] on each instance. Our findings indicate that, with
a 3600-second time limit, ILP-FORMER surpasses both



Methods _MVC-1000 MC-500 _SC-1000
Obj£Std.% Gap% | Obj.£Std.% Gap% | Obj.+Std.% Gap%
ILP-FORMERCMLC | 4605+ 0.6 586 | —882.0+£1.5 295 | 5402+83 345
ILP-FORMEREDT | 4526+ 1.1 402 | —889.1+0.8 217 | 538.9+6.3 3.20
ILP-FORMER 4351+08 0 | —9088+13 0 |5222+53 0

Table 5: An ablation study on the casual transformer and MLC decoder components of ILP-FORMER. Note that the

experimental settings here follow that of Table E}

solvers on 20 of the 35 instances and exhibits comparable
performance on 10 of the 35 instances.

6 CONCLUSION

This paper concentrates on enhancing learning-based LNS
approaches, given their ability to conveniently utilize any
existing solver as a subroutine. Thus, they can inherit the ad-
vantages of meticulously engineered heuristic or complete
approaches, along with their software implementations. We
introduce ILP-FORMER, a novel approach that models pol-
icy learning as a sequence to an MLC problem. It seamlessly
integrates a customized decision transformer encoder, en-
compassing a causal transformer, to model the sequential
processes of LNS, and an MLC decoder with contrastive
learning to exploit correlations in variable selection. Further-
more, we carry out comprehensive experiments on diverse
benchmarks. The results suggest that our ILP-FORMER ap-
proach consistently delivers substantial improvements over
state-of-the-art solvers and exhibits excellent generalization
capabilities for larger instances.
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