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Abstract

The issue of bias in Machine Learning (ML) models is a significant challenge for the machine
learning community. Real-world biases can be embedded in the data used to train models,
and prior studies have shown that ML models can learn and even amplify these biases.
This can result in unfair treatment of individuals based on their inherent characteristics
or sensitive attributes such as gender, race, or age. Ensuring fairness is crucial with the
increasing use of ML models in high-stakes scenarios and has gained significant attention
from researchers in recent years. However, the challenge of ensuring fairness becomes much
greater when the assumption of full access to sensitive attributes does not hold. The settings
where the hypothesis does not hold include cases where (1) only limited or noisy demographic
information is available or (2) demographic information is entirely unobserved due to privacy
restrictions. This survey reviews recent research efforts to enforce fairness when sensitive
attributes are missing. We propose a taxonomy of existing works and, more importantly,
highlight current challenges and future research directions to stimulate research in ML
fairness in the setting of missing sensitive attributes.

1 Introduction

The growing success of Machine Learning (ML) and Deep Learning has led to successful applications in
several domains such as healthcare (Shailaja et al., 2018; Jafri & Arabnia, 2009), criminal justice (Berk
et al., 2019; Rudin, 2019; Berk, 2012; Tollenaar & Van der Heijden, 2013), and finance (Dixon et al., 2020;
Heaton et al., 2016; Culkin & Das, 2017). The decisions provided in such domains can have profound social
impacts, such as allowing or denying a loan to an individual (Pandey et al., 2017), releasing a defendant from
jail (Angwin et al., 2016), admitting an individual to a university (Waters & Miikkulainen, 2014), or hiring
an applicant for a certain job position (Van den Broek et al., 2021). In this regard, the use of ML systems in
high-stakes decision-making has raised concerns about how these systems operate and the fairness of the
decisions. Recent empirical studies have shown that a data-driven approach can unintentionally learn human
biases, perpetuate or amplify them, and even introduce new ones (Caliskan et al., 2017; Bolukbasi et al.,
2016; Buolamwini & Gebru, 2018; Zafar et al., 2017), leading to discriminatory outcomes against certain
groups of individuals (Mehrabi et al., 2021; Barocas et al., 2017). Thus, in recent years, the social impacts of
ML systems have led to an increasingly growing interest and efforts to address unfairness in machine learning.

Many definitions of fairness in ML have been proposed, along with many algorithms to achieve them (Caton
& Haas, 2020). These fairness definitions and algorithms typically utilize demographic information to measure
and mitigate the unfairness of ML models (Mehrabi et al., 2021; Pessach & Shmueli, 2023). They rely on the
strong assumption that complete and reliable demographic information is available, which is not true in many
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real-world applications. Therefore, the applicability of these fairness-enhancing algorithms is hindered by
various constraints on demographic information. Specifically, in many real-world applications, demographic
information is noisy (Lamy et al., 2019), partially available (Awasthi et al., 2020), and even completely
missing (Lahoti et al., 2020). This has raised the need to design fairness-enhancing algorithms that can
operate under various restrictions on demographic information. A naive approach in such settings consists of
training the model without demographic information with the hope that the model will make predictions
without relying on demographic attributes. However, protected attributes1 could be correlated with other
non-protected features that affect models’ predictions (Kilbertus et al., 2017). For example, a decision-making
process could not have access to the race of individuals but use their zip code. As people from the same
origins tend to live in the same neighborhood, the zip code will act as a proxy for race. The model could
indirectly rely on people’s race to make decisions, leading to discrimination in the outcomes.

Existing surveys on algorithmic fairness generally emphasize the need for more efforts in bias mitigating
without relying on demographic information (Caton & Haas, 2020; Mehrabi et al., 2021; Pessach & Shmueli,
2023; Garrido-Muñoz et al., 2021). Consequently, researchers have done intensive work to design fairness
methods under different assumptions of demographic information. However, a significant limitation in the
literature lies in the lack of a clear and consistent conceptualization of these assumptions, as they are expressed
in different forms in existing algorithms. In addition, when demographic information is unavailable, it is
often unclear what algorithm can be used to enforce each type of fairness notion, along with the underlying
challenges, assumptions, and limitations. In light of this, this paper aims to provide a comprehensive
survey of methods proposed to measure and mitigate unfairness in settings where the assumption of full
access to reliable demographic information is not met. The assumptions on protected attributes govern the
design choice of fairness-enhancing algorithms and the notion of fairness they aim to achieve. For example,
when protected attributes are assumed missing, algorithms proposed to enhance fairness generally leverage
information that correlates with the unknown demographic group (e.g., gradient information and errors
disparity of the model) and target fairness metrics such as equal accuracy (Chakrabarti, 2023; Lahoti et al.,
2020; Ahn et al., 2022). When protected attributes are assumed to be partially available, existing methods
aim to enforce different group fairness notions on the data without protected attributes using techniques
from semi-supervised learning (Awasthi et al., 2020; Coston et al., 2019; Kenfack et al., 2023a). On the other
hand, when the protected attributes are assumed private, existing fairness methods aim to improve different
group fairness notions while providing privacy guarantees for sensitive information, thereby aiming to comply
with bias-free and data protection principles.

This survey identifies four primary assumptions or constraints on demographic information: (i) missing
sensitive attributes stemming from privacy or legal restrictions (Hashimoto et al., 2018); (ii) noisy sensitive
attributes arising from flawed data labeling or data corruption; (iii) private sensitive attributes, arising from
constraints concerning the confidentiality of sensitive attributes (Chen et al., 2022a); and (iv) proxy sensitive
attributes, due to the use of non-sensitive attributes correlating with the sensitive ones (Zhao et al., 2021).
Or proxy attributes estimated from partial demographic (Diana et al., 2022). These constraints are not
defined solely based on the reason provided but on the technical challenges resulting from the constraints
on the sensitive information. Effectively addressing these constraints is crucial for advancing fairness in
machine learning and ensuring the practical applicability of these methods across broader real-world scenarios.
This paper proposes a taxonomy of fairness-enhancing algorithms without demographics based on their
assumptions of protected attributes, their objectives, the techniques used, and the fairness notion they target.
We provide a systematic review of fairness notions that do not (fully) rely on sensitive attributes and recent
algorithms to achieve them.

The rest of this paper is organized as follows. We present related surveys in Section 2. In Section 3, we delve
into the concept of protected attributes, exploring scenarios where the assumption of their availability does
not hold. We examine how the absence of access to these attributes can give rise to unforeseen biases in
the ML pipeline. Section 4 provides a background of various concepts utilized by methods presented in the
survey, such as group fairness notion, fairness enhancing algorithms, and differential privacy. Fairness notions
and methods to mitigate unfairness in missing sensitive attribute settings are introduced in section 5 and 6,
respectively. Section 8 is dedicated to the conclusion and future perspectives.

1Throughout the paper, we use (sensitive/protected/demographic) group/attribute interchangeably
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Table 1: Existing surveys on machine learning fairness. Most surveys do not cover or briefly (fairly)
discuss fairness without demographics.

Paper Key topic(s) of the survey Cover missing
demographics?

Enhancements in this paper

(Ashurst & Weller,
2023)

Benefits and risks of collecting de-
mographic data; Privacy methods
for protecting demographic data;
Overview of approaches for address-
ing missing sensitive attributes.

Yes Fairness definitions with miss-
ing sensitive attributes; A tax-
onomy of approaches; System-
atic review of existing methods;
Current challenges and future
perspectives;

Mehrabi et al. (2021) Different sources of bias; type of dis-
crimination and fairness definitions;
Fair ML algorithms for classifica-
tion; Fairness beyond classification;
Datasets for ML fairness.

No Sensitive attributes free fairness
definitions and mitigation algo-
rithms; Source of bias when the
sensitive attribute is unknown;

Caton & Haas (2020) Fairness definitions; Fairness algo-
rithms for binary classification; Fair-
ness beyond classification

No Fairness definitions and miti-
gation algorithms without sen-
sitive attributes; Bias audi-
tion under missing sensitive at-
tributes.

Le Quy et al. (2022) A comprehensive review of datasets
set for ML research; Fairness defini-
tions; Sensitive attributes and statis-
tics of existing fair ML datasets

Fairly NA

Zehlike et al. (2021) Fairness definitions in ranking; Tech-
niques to enforce fair ranking;

Fairly NA

Pessach & Shmueli
(2023)

Source of bias; Fairness definitions;
Fair ML algorithms; Fairness beyond
classification; and Datasets for ML
fairness research

No Fairness-enhancing algorithms
without full access to the sensi-
tive attributes.

Wan et al. (2022) Fairness definitions; In-processing
techniques for bias mitigation

Fairly In processing techniques with
unknown or noisy sensitive at-
tributes

Makhlouf et al. (2021) Causality-based fairness notions; Al-
gorithms to estimate causal quantities

No NA

Chhabra et al. (2021) Fairness definitions for clustering; Al-
gorithms to enforce fairness in clus-
tering.

Yes NA

Garrido-Muñoz et al.
(2021)

Type of bias in NLP; Bias mitigation
techniques in NLP.

Yes NA

(Dunkelau & Leuschel,
2019)

Fairness definitions; Bias mitigation
techniques; dataset for fair ML and
fairness toolkits.

No NA

2 Related Surveys

There are several surveys within the fair ML community. Some of these surveys cover the same topics broadly
but with some specificity. In this section, we briefly present some of them in position to this paper. Mehrabi
et al. (2021) proposed a survey on machine learning biases, covering several sources and types of biases along
with some mitigation strategies. A similar survey is proposed by Caton & Haas (2020); Wan et al. (2022);
Le Quy et al. (2022); Pessach & Shmueli (2023) emphasizing bias mitigation techniques for classification
tasks and beyond. Le Quy et al. (2022) survey benchmarks for machine learning research. Several datasets
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Table 2: Some examples of conventions and laws against discrimination worldwide.

LAW OR CONVENTION GOAL
The Human Rights Act Ewing
(1999)

Prevents discrimination on a wide range of grounds, including ‘sex, race, color, language,
religion, political or other opinions, national or social origin, association with a national
minority, property, birth or any status

US Fair Housing Act Yinger (1999) Protects people against discrimination for different housing services, including renting,
buying, getting a mortgage, and housing assistance. The act makes unlawful any
decision or action that is taken solely based on race, color, religion, or national origin.

CEDAW Women (1979) The UN Convention on the Elimination of All Forms of Discrimination against Women.

Equal Credit Opportunity Act Hsia
(1978)

Make unlawful for creditors to discriminate against applicants based on their race, color,
religion, national origin, sex, marital status, or age.

UNESCO Convention against Dis-
crimination in Education

Enforces anti-discrimination in education, making it available to all in any circumstances.

are presented for various domains in machine learning, including natural language processing and computer
vision. For each dataset, the set of available sensitive features is described, a causal graph between features
is presented, and different fairness notions are measured. Soremekun et al. (2022); Bansal (2022) survey
fairness definitions and bias mitigation technique in natural language processing. While Zehlike et al. (2021),
Wang et al. (2022) and Pitoura et al. (2021) focus on fairness in ranking and recommender systems. Table 1
presents an overview of existing surveys along with the position of this work.

To complement existing surveys, this paper focuses on methods to measure and mitigate unfairness when
there are various constraints over sensitive attributes, e.g., missing, limited, private, or noisy. This context
has received less but growing attention within the past years, and we hope this paper will lay the groundwork
for much more research effort to address fairness issues under these challenging constraints on demographic
information. Most closely in the spirit of our work is the survey by Ashurst & Weller (2023). It discusses
challenges and techniques to collect demographic data, methods providing protections for collection, and
alternative methods such as sensitive information inference. They also presented methods for fair learning
without demographic data. In contrast, this work differs on many points: We conceptualize the constraints in
sensitive attributes. We identify and discuss five main constraints or assumptions over sensitive information
used in existing fairness-enhancing techniques without demographic information. We present and discuss
fairness notions that do not rely on sensitive information and a taxonomy of fairness-enhancing techniques
without demographics based on the constraints we identified. Under each category in the taxonomy, the
paper provides a systematic review of existing techniques, their pros and cons, and the fairness metric they
can handle. We also highlighted the limitations, current challenges, and open research questions in bias
mitigation without demographic data.

3 Unfairness in Automated Decision Making

This section discusses the notion of protected attributes and their importance for bias assessment and
mitigation. We present various settings under which protected attributes are not fully available. We also
discuss the origins of bias and their impact on ML models, especially when demographic groups are unknown.

3.1 Protected Attributes

Features are considered protected when they can be grounds for discrimination and their use is impertinent for
decision-making. Many conventions and laws prohibit using protected attributes as a basis for decision-making.
These laws and conventions seek to avoid discrimination against groups of people in various domains. Table 3.1
provides a non-exhaustive list of anti-discrimination laws and conventions worldwide. Some common protected
attributes in these laws and conventions include gender, race, ethnicity, sexual orientation, religion, etc.
Regulations and conventions also prohibit the collection or the use of sensitive information to ensure privacy
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for individuals. These restrictions pose challenges when designing algorithms that rely on sensitive attributes
to ensure fair outcomes across demographic groups.

3.2 Constraints on the Protected Attributes

This section covers various settings where access to complete and clean sensitive attributes is not possible, as
well as their challenges for unfairness measurement and mitigation. Existing methods proposed to enforce
fairness under incomplete demographic information make different assumptions about the sensitive attributes.
Based on these assumptions, we identify the four main constraints on the sensitive attributes. This includes
cases where sensitive attributes are entirely missing, partially available, noisy, or accessible only through
related features (proxy).

3.2.1 Missing Sensitive Attribute

Sensitive attributes can be missing for several reasons; some of the most common reasons include constraints
in the data collection process and privacy concerns.

• Data collection: During data collection, the sensitive attributes of people might not have been
recorded. For example, users were not requested to provide their gender.

• Privacy or legal compliance: As people become more concerned about the privacy of their
sensitive information, data-driven algorithms are increasingly subject to data protection by regulators
such as the Electronic Communications Privacy Act (ECPA) and General Data Protection Regulation
(GDPR). Legal compliance can restrict direct access to users’ sensitive attributes.

Most existing bias assessment and mitigation methods require direct access to sensitive attributes (Dwork et al.,
2012; Hardt et al., 2016). These methods are not directly applicable without sensitive attributes, making bias
assessment and mitigation challenging in these scenarios. Under the missing sensitive attributes constraints,
the existing algorithms aim to improve the performance of worst-performing (unknown) demographic groups.
We present in Section 6.2 and Section 7 methods proposed for bias mitigation and assessment without access
to sensitive attributes, respectively.

3.2.2 Noisy Sensitive Attributes

In some cases, sensitive attributes are available but are noisy. One of the most common reasons sensitive
attributes are noisy is that they have been corrupted during data collection or estimated using a non-optimal
classifier. For example, we can be interested in assessing the fairness of a facial recognition system across
different demographic groups. However, demographic information is not included in many image datasets.
One may rely on a different classifier trained to predict demographic attributes to obtain the group labels,
which are likely noisy (Buolamwini & Gebru, 2018). Additionally, sensitive attributes are likely to be corrupted
when users must self-report their sensitive information (Rosenman et al., 2011).

3.2.3 Private Sensitive Attributes

A common reason for missing demographic information is restrictions from laws or regulations that prohibit
collecting and using sensitive information about individuals in algorithmic decision-making. For instance,
the GDPR prevents the use of racial information about customers. At the same time, these laws and
restrictions enforce non-discrimination in automated decision-making systems. On the other hand, automated
decision-making systems require protected attributes to audit and mitigate discrimination from the system.
This raises the new challenge of design methods that comply with these two seemingly contradicting principles,
i.e., design methods to build fair models while preserving the privacy of sensitive information. To alleviate
the privacy restrictions, sensitive attributes can be made available under privacy-preserving mechanisms, i.e.,
a mechanism operating on the data that can expose or use sensitive data with strong privacy guarantees for
individuals’ demographic information (Dwork et al., 2014). We further discuss this in Section 6.4.
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3.2.4 Proxy Sensitive Attritutes

In some cases, sensitive information is not mandatory during the data collection, and reluctant users might
prefer not to provide their sensitive information for privacy reasons. For example, credit card companies
can collect personal information to assess creditworthiness. While some information is mandatory for risk
assessment, others, such as demographic information, might be optional. As a result, only a few data points
will have a value for the sensitive attributes. In such a scenario, data imputation approaches such as replacing
the most frequent value or inferring the missing values from other features could be used (Coston et al., 2019)
to obtain pseudo labels (proxy) for the missing sensitive attributes. However, this should be done carefully as
incorrect estimation of the demographic information can lead to more harm (Cf. Section 6.1.2). In other
settings, the sensitive attributes are available in a different but related dataset or task (Awasthi et al., 2021).
For example, in a loan application task where the feature gender is missing, a related task could be a model
that predicts gender based on other information in a separate context. Although the feature gender is not
directly utilized in the loan application model, the insights gained from predicting gender in the related task
might indirectly inform decision-making processes, contributing to bias mitigation without explicitly using
gender on the base task (Buolamwini & Gebru, 2018). On the other hand, non-sensitive information that
correlates with unknown sensitive information might exist. These related attributes (proxies) can also control
fairness w.r.t the unknown sensitive attributes (Zhao et al., 2021).

From the decision-maker viewpoint, these constraints on the sensitive attributes seem conceptually overlapping.
More specifically, decision-makers might not have access to sensitive information in private and missing
demographic setups. However, from a technical perspective, these constraints represent the core assumptions
that govern the design of the algorithms used to mitigate unfairness in each setting. For example, methods
under private attribute setups generally assume some access to sensitive attributes and involve some privacy-
preserving mechanisms. On the other hand, in the missing sensitive attribute setup, algorithms are designed
to improve the performance of unknown minority groups implicitly and without privacy preservation concerns.
Therefore, the constraints on sensitive information are distinguished by technical contributions and challenges
in enforcing fairness under each constraint.

3.3 Discrimination in Machine Learning

Unfairness or discrimination in a decision-making process made by humans is quite clear: it occurs when the
outcome of a decision systematically depends on an individual’s protected attribute and not on characteristics
that are useful in assessing that individual’s abilities with respect to the task or desired outcome. For example,
an officer assessing a consumer’s loan application may be qualified sexist or racist if the decision to refuse the
loan is based on the applicant’s sex or race. Not relying on non-sensitive features, such as the customer’s
financial or production management capabilities, to repay the loan can be considered discriminatory. Moreover,
even when decision-making processes do not directly use demographic information, there might be rules
(proxy to demographic information) leading to a disparate impact on some demographic groups. Machine
learning models are good at learning patterns related to unobserved sensitive information.

Models are trained using historical data, and the goal is to discover patterns (general trends) and make
predictions about future data. This training process, therefore, does not aim to discriminate against
individuals based on their group membership (unless the model is trained for that purpose). However,
unfairness in ML systems is more similar to systemic discrimination that also exists in some human decision-
making processes (Craig, 2007). Systemic discrimination happens when the decision-making process is, often
unintentionally, less or more advantageous for some groups of people. For example, a hiring decision process
that considers applicants’ criminal records may have disparate outcomes for equally qualified applicants
(despite a race-neutral hiring rule) because of racial disparities in criminal records caused by discrimination
in policing (Bohren et al., 2022). Therefore, direct discrimination in policing leads to systemic discrimination
in the hiring process. Specifically, systemic discrimination can be the result of past successive direct
discrimination.

Performances of ML systems are generally evaluated using different metrics such as accuracy, correct
classification rates, misclassification rates, or error w.r.t a given loss function. The fairness of these models
is often assessed in terms of disparities in performances across different demographic groups. As a result,
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fairness in machine learning is a subjective notion that can be defined based on three main aspects: the
metric used, the type of task, and the learning paradigm. For example:

• Classification: The model is considered unfair when the accuracy is higher for one group than
another (Barocas et al., 2019). Unfairness is also measured by comparing the correct classification
and/or misclassification rates (Zafar et al., 2017; Hardt et al., 2016). More generally, fairness is
measured using metrics derived from the confusion matrix of the classifiers. The ratio or difference
between considered metrics for each protected subgroup can be used to measure the disparities.

• Generative models: For models such as generative adversarial networks (GANs) Goodfellow et al.
(2020)–where two competing networks are used to estimate the true distribution of the data–the
model is considered unfair when the generator at the test time samples data from one protected
subgroup more often than another (Kenfack et al., 2021a). Tan et al. (2020) and Kenfack et al.
(2022) measure unfairness in generative models using the Kullback-Leibler (KL)-divergence between
the distribution of protected subgroups and the uniform distribution. Hence, a generative model
is considered fair when the distribution of subgroups in the generated data is uniform, i.e., all
demographic groups are equally represented.

• Reinforcement learning (RL): Chi et al. (2021) defined fairness in RL as parity in the reward
returned for different demographic groups. Unfairness occurs when the returned reward of two
policies trained of different groups sharing the same states and action spaces is higher for one group
than another.

• Natural language processing: the model is considered unfair or biased when it encodes social biases
such as racial or gender stereotypes from the data. For example, in machine translation, translation
from gender-neutral languages such as the Turkish language to non-gender-neutral languages such as
English tends to assign articles such as "she" to professions such as nurses and housekeepers. While
assigning articles "he" to professions such as Doctor, Engineer (Prates et al., 2020).

• Raking system: The model is considered unfair when it under-ranks individuals from protected
groups (Zehlike et al., 2021). Fairness is measured using a ranking score function that measures the
disparities disparity between demographic groups in the top-k ranking results. A ranking result gets
a lower score if the top-ranked results consist of samples from mostly one group.

As can be seen, fairness in various areas of machine learning involves analyzing and quantifying the impact of
trained models on different demographic groups. Therefore, addressing unfairness in machine learning systems
involves identifying the source of bias, quantifying the performance disparities in different demography groups,
and developing methods to mitigate them.

4 Background

This section provides an overview of the concept used by various methods covered in the paper. The
background information provided in this section represents the basic building blocks for existing techniques
proposed for bias mitigation when complete and clean sensitive attributes are unavailable, as presented in
Section 6. We present different source biases in the absence of the sensitive attributes, group fairness metrics,
fairness enhancing methods, and differential privacy used by some work to build fair models with privacy
guarantees on the sensitive attributes. A reader familiar with these concepts can skip this section.

4.1 Group Fairness Metrics

In general, group fairness metrics are defined by quantifying the disparities of metrics that can be derived
from the confusion matrix of each demographic group; see Makhlouf et al. (2021) for an exhaustive list of
group fairness metrics. The most popular group fairness notions include:
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Notation Description
X Random variable defining data sample.
Y Random variable defining the class label
A Random variable defining the protected attribute.
Ŷ Random variable defining the predicted class.
Â Random variable describing corrupted or predicted sensitive at-

tributes.
ai Sensitive attribute of the sample i
âi Predicted or corrupted sensitive value of sample i
xi data sample sample i, xi ∈ Rd, described with d features.
yi Label of sample i
ŷi Predicted label of sample i

Table 3: Table of Notation

• Statistical Parity (SP): also known as demographic parity, this fairness notion requires that the
classifier positive outcome must be independent of the protected attributes (Dwork et al., 2012), i.e.,
A ⊥ Ŷ . A classifier achieves statistical parity if the following expression is satisfied

P(Ŷ = 1|A = 0) = P(Ŷ = 1|A = 1) (1)

However, a classifier that satisfies this notion of fairness could also lead to discrimination against
individuals from the non-protected group. For example, consider a model for hiring and gender
as the sensitive attribute. If the goal is to hire the ten most qualified candidates and the hiring
process uses statistical parity as the fairness notion, the hired candidates should have equal gender
representation. Therefore, if the ten most qualified candidates are men, the model will select five less
qualified women to achieve statistical parity, harming five candidates from the non-protected group
(violating individual fairness). Moreover, when the sensitive attribute is correlated with the class
label, a classifier that achieves statistical parity cannot provide perfect predictions (Verma & Rubin,
2018).
Statistical parity can also be measured using the ratio between the fractions of disadvantaged and
advantaged samples assigned to the positive class. The ratio is generally referred to as Disparate
Impact (DI) and measured as follows:

DI = P(Ŷ = 1|A = 0)
P(Ŷ = 1|A = 1)

> 1 − ϵ (2)

Typically, one sets ϵ ≈ 0.2, which suggests DI > 0.8 for a fair classifier, as stated by the four-fifths
rule of maximum acceptable disparate impact proposed by the US Equal Employment Opportunity
Commission (EEOC) (Zafar et al., 2017).

• Equalized Odds (EOD) (Zafar et al., 2017; Hardt et al., 2016): This fairness notion promotes the
conditional independence between the classifier outcome and the sensitive attribute given class label,
i.e., A ⊥ Ŷ |Y . Thus, Equalized Odds is based on the confusion matrix and promotes the true positive
rates (TPR) and the false positive rates (FPR) across groups. Specifically, a model satisfies equalized
odds if

P(Ŷ = 1|Y = y, A = 0) = P(Ŷ = 1|Y = y, A = 1)
y ∈ {0, 1} (3)

In our example, the hiring model will satisfy equalized odds if it gives all groups the same advantages
(TPR) and disadvantages (FPR). That is, candidates labeled as qualified or unqualified should have
a similar classification rate, regardless of gender.

• Equal Opportunity (EOP) (Hardt et al., 2016; Zafar et al., 2017): In some applications, one might
be more interested in being fair when a positive outcome is made. Equal Opportunity is similar to
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equalized odds but focuses on equal TPR across groups and thus promotes equal true positive rate
across groups. Specifically, a model will achieve equal opportunity if

P(Ŷ = 1|Y = 1, A = 0) = P(Ŷ = 1|Y = 1, A = 1) (4)

Similarly, one might be concerned about fairness when the model gives a positive outcome while the
true one is negative. The fairness notion to promote in this scenario will be equal false positive rates
across groups, also known as equal False Discovery Rate (Zafar et al., 2017). We refer the readers
to Verma & Rubin (2018) and Mehrabi et al. (2021) for a more comprehensive list of group fairness
notions.

• Overall Equal Accuracy (Berk et al., 2021): This notion of fairness requires all demographic groups
to have similar accuracy. This notion could be important in applications where the quality of service
is crucial for users since individuals experiencing low-quality service might refrain from using the
system. For example, Buolamwini & Gebru (2018) evaluated three commercial gender classifiers by
Microsoft, IBM, and Face++. Their evaluation demonstrated that females with darker skin tones
receive the worst accuracy across all classifiers, while lighter skin gets the best accuracy. Specifically,
a model achieves equal accuracy if :

P(Y = Ŷ |A = 0) = P(Y = Ŷ |A = 1) (5)

For our example, the hiring model will satisfy equal accuracy if all groups receive similar accuracy.
However, this metric does not guarantee equalized odds since the TPR and FPR might differ between
groups, even though groups have equal accuracy (Angwin et al., 2016).

4.2 Fairness Enhancing Methods

Existing fairness-enhancing algorithms can be grouped into three main approaches: pre-processing (Madras
et al., 2018; Kamiran & Calders, 2012; Kenfack et al., 2023b), in-processing (Kamishima et al., 2011; Bechavod
& Ligett, 2017; Noriega-Campero et al., 2019), and post-processing (Hardt et al., 2016; Nabi & Shpitser,
2018). This depends on whether the notion of fairness is enforced before the model training, during the
model training, or after training the model. This section covers fairness-enhancing techniques —that rely on
sensitive attributes— leveraged by some exciting works presented in Section 6.1 for bias mitigation when
sensitive attributes are noisy or predicted. The method covered here involves post-processing (Hardt et al.,
2016) and in-processing techniques (Zhang et al., 2018; Agarwal et al., 2018).

Calibration (Hardt et al., 2016). Fairness-enhancing post-processing techniques involve treating the
model as a black box and enforcing fairness constraints by adjusting the model’s output. Hardt et al. (2016)
proposed an optimization problem over the model’s output (Ŷ ) to derive a classifier (Ỹ ) that satisfies fairness
constraints (Equalized Odds) while minimizing the classification loss. When the model output is continuous
(a score function), the derived classifier is based on a threshold of each demographic group to maximize the
classification loss while satisfying fairness constraints, i.e., equal opportunity and equalized odds. Similar
methods are proposed in the literature, and they differ mainly in how the optimization problem is defined.

Adversarial Debiasing. Proposed by Zhang et al. (2018), this adversarial-based approach enforces the
independence between the classifier outcome and the sensitive attributes. The classifier’s output is used as
input for the adversary network, which tries to predict the sensitive attribute. In the minimax optimization
problem, the goal of the classifier is to prevent the adversary from predicting the sensitive attribute, thus
enforcing statistical parity. The adversary considers the predicted outcome and ground truth to enforce
equalized odds. Thus, fooling the adversary enforces the independence between the model’s output and the
sensitive attributes. To enforce Equal Opportunity, the adversary gets the classifier outputs only for samples
with positive outcomes.

Exponentiated gradient. The exponentiated gradient is a reduction approach for fairness that transforms
a classification problem with fairness constraints into a sequence of cost-sensitive classification problems.
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The new problem is solved by the Exponential Gradient method that looks for the saddle point where the
classification loss is minimized and fairness is maximized (the disparities are minimal). The method yields
randomized classifiers for which classifiers with the lowest prediction error satisfying the fairness constraint
are returned (Agarwal et al., 2018). This approach can work for various base models (e.g., Logistic regression
and Random Forest) and with most existing group fairness metrics.

4.3 Differential Privacy (DP)

Differential Privacy (DP) (Dwork et al., 2006) is used by some existing works presented in Section 6.4 to
address fairness concerns under private sensitive attribute’s constraints. DP is a mathematical framework to
formally quantify the privacy/utility trade-offs of an algorithm that operates on personal data. It seeks to
maintain the privacy of individuals when releasing results derived from a confidential database by limiting the
impact of any single record on the outcome and incorporating noise. Differential privacy finds applications
across various domains, but its significance in machine learning is especially notable. In machine learning,
differential privacy helps in training models on private data (Abadi et al., 2016) while ensuring that the
trained model does not memorize or leak specifics about the training data, thus preventing potential attacks
such as membership inference (Shokri et al., 2017). Differential privacy can be applied in a centralized
manner (Global DP) when data subjects trust a data analyst to enforce privacy when realizing the result of
an algorithm that requires their data, using different mechanisms such as the Laplace mechanism (Dwork
et al., 2014) and the Exponential mechanism (McSherry & Talwar, 2007). It can also be applied in the
absence of a trusted centralized party (Local DP), allowing data subjects to directly create noisy versions
of their private inputs through protocols like randomized response (Warner, 1965), initially designed to
address evasive answer bias in social science, allowing useful analysis of responses provided for embarrassing
or sensitive questions. More formally, DP for the sensitive attribute can defined as follows:

Definition 1 (Differential Privacy) Given ϵ ≥ 0, δ ∈ [0, 1]. A randomized mechanism M is
(ϵ, δ)−differentially private if, for any adjacent datasets D and D′, i.e, datasets that only differ with a
single entry, we have

P(M(D) ∈ R) ≤ exp (ϵ) · P(M(D′) ∈ R) + δ (6)

Where R ∈ R is a subset of the output response, ϵ > 0 the privacy budget with values close to 0 meaning
strong privacy, and δ the probability of the algorithm not being ϵ-DP.

Abadi et al. (2016) proposed DP-Stochastic Gradient Descent (DP-SGD), a modification of the gradient
descent algorithm which provides provable privacy guarantees. DP-SGD bounds the sensitivity of sample
gradients and adds noise to the gradient before updating the weight models. DP-SGD provides privacy
guarantees for deep learning models trained on datasets containing sensitive information.

5 Fairness Notions without Sensitive Attributes

In most existing group fairness notions, individuals are grouped based on their sensitive attributes to achieve
fairness across these groups. Thus, classical group fairness notions are not directly applicable when the
sensitive attributes are unobserved. This section discusses fairness definitions that do not rely on sensitive
information for measurement. Figure 1 showcases an overview of existing fairness notions that do not assume
access to sensitive attributes.

5.1 Individual Fairness

Proposed by Dwork et al. (2012), this definition requires that similar individuals with respect to a given task
should receive similar outcomes. Within this fairness notion, the sensitive attribute used to group individuals
is irrelevant as fairness is assessed at the individual level, making individual fairness feasible even when the
demographic information is unavailable as long as the distance metric between individuals is given and is
irrelevant to sensitive information.
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Figure 1: Overview of fairness notions without sensitive attributes.

Definition 2 (Individual Fairness (Dwork et al., 2012)) Given a distance metric on individuals: d :
V x V → R, a mapping function from individuals to the outcomes probability: M : x → ∆(x); x ∈ V , and a
distance metric D over the distribution of outcomes. M achieve individual fairness iff:

D(M(x), M(y)) ≤ d(x, y). (7)

Here, (D, d) are fixed distance metrics, and x, y ∈ V are individuals. Individual fairness properly captures
the (D, d)-Lipschitz property and provides meaningful fairness guarantees. Dwork et al. (2012) showed that
when the classifier satisfies the Lipschitz property, it also achieves statistical parity with a certain amount of
bias. For example, the model for scoring resumes will achieve individual fairness if applicants with similar
resumes get similar predictions. Suppose two applicants x and y are very similar: they have similar years of
experience, graduated from the same school, and have mastered the same programming languages. However,
y is a woman; the similarity metric should ignore this fact since gender is irrelevant to determining who should
be hired. Thus, the distance between x and y should be small, e.g., d(x, y) = .01. If the model M assigns
the probabilities .9 and .7 to x and y respectively, the distance between their scores D(M(x), M(y)) = .2,
assuming D is defined as the statical distance (Dwork et al., 2012; Fleisher, 2021), which is higher than the
distance between individuals. Therefore, M fails to satisfy individual fairness since the Lipschitz mapping in
2 is not satisfied, suggesting similar applicants are not treated similarly.

Despite its fairness guarantees, individual fairness suffers from the assumption that task-specific similarity
metric between individuals is given, which is hard to measure in practice (Lahoti et al., 2019; Dwork et al.,
2012).

Relaxations of individual fairness have been proposed for various purposes, such as solving the problem
related to the task-specific similarity metric or generalizing individual fairness from a training set to the
underlying population. In this regard, Yona & Rothblum (2018) proposed approximate metric-fairness, a
relaxation of individual fairness with guarantees of generalization on the underlying population. This notion
of fairness allows for a small fairness error. It requires that, for two individuals sampled from the underlying
population, with all but a small probability, if they are similar, they should be treated similarly (Yona &
Rothblum, 2018). The statistical distance between the classification distributions is used to measure the
similarity between two given individuals. Thus, a model h is said to be (α, γ)-approximately metric-fair w.r.t.
the metric d and the distribution D if

Prx,x′∼D

[∣∣∣M(x) − M
(
x′)∣∣∣ > d

(
x, x′) + γ

]
≤ α (8)
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Where d represents the similarity metric, D the data distribution, γ is the small additive slack in the similarity
measure, and α the fraction of pairs of individuals for which the metric-fairness does not hold. However,
this notion also assumes that the task-specific distance metric between individuals is given. Although this
fairness notion opens the door to fairness-generalization bounds, there exist settings where the fairness error
it accepts might harm certain individuals in the population.

5.2 Fairness Through Unawareness

This definition of fairness used in some contexts, such as in law enforcement in certain countries, requires
that sensitive attributes should not be explicitly used in the decision system (Kusner et al., 2017). This
means the model is considered fair as long as the model does not rely on sensitive attributes during training
or decision-making. For example, in the case of resume screening, the model is considered fair as long as
the candidates’ resume does not disclose information about their gender, and the model does not explicitly
use gender to make its predictions. However, it’s important to note that the model being unaware of the
sensitive attributes is insufficient to avoid discrimination in the outputs.

While not using sensitive attributes directly in the decision system is a step toward fairness, it is not a
foolproof solution. For instance, certain features can be correlated with sensitive attributes, allowing the
model to rely on them implicitly. For example, research has shown that the age at which someone starts
programming correlates with gender (Barocas et al., 2019). Similarly, factors such as salary expectations and
working hours per week may tend to be lower for female applicants, or the zip code can be correlated with
the origins of some applicants as people from the same demography tend to live in the same neighborhood.
While these proxy features can be relevant to the decision, they may reflect existing biases and lead to unfair
decisions. For instance, how long someone has been programming is a factor that gives us valuable information
about their suitability for a programming job. Still, it also reflects the reality of gender stereotyping (Barocas
et al., 2019). Thus, while this fairness notion seeks to prevent the explicit use of sensitive attributes, it is
important to know that information about these attributes can still leak into the model through other means.

5.3 Rawlsian Mini-Max Fairness

The Rawlsian Mini-Max fairness notion does not rely on sensitive attributes but on a notion of unknown
least advantaged groups, which decision-makers should define. It is derived from social sciences and is based
on the principle of distributive justice proposed by John Rawls (Rawls, 1999). Rawl’s principle of justice
states (among other things):

“Social and economic inequalities are to be arranged [...] to the greatest benefit of the least ad-
vantaged members of society, consistent with the just savings principle.” (Rawls, 1999, p. 226)

In other words, this principle suggests that the right decision maximizes the minimum outcome, i.e., the
decision that makes the worst outcome as good as possible (Rawls, 2001). More formally, Rawlsian fairness
can be defined in the context of machine learning as follows:

Definition 3 (Rawlsian Max-Min Fairness) Given a set of hypotheses H and unknown demographic
groups a ∈ A, a hypothesis h∗ ∈ H achieves Rawlsian Max-Min fairness if it maximizes the accuracy of the
worst-off groups, i.e.,

h∗ = arg max
h∈H

min
a∈A

UDa
(h) (9)

where UDa
is the expected utility/accuracy of the hypothesis h over the group a. The group information (a)

is unknown in the general setting. The intuition is that making the worst case as good as possible would
positively impact truly disadvantaged groups.

While this notion has gained attention in recent years as a potential solution to achieving fairness without
sensitive attributes, it also inherits the critiques of the Rawlsian notion of distributive justice. Among these
criticisms is the emphasis on the notion of the least advantaged, which may not consider demographics or
individuals within the population (Altham, 1973). The least advantaged is not a single individual but a
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group that is difficult to define. Rawls proposed to select least advantaged groups from the least fortunate
with respect to (i) family and class, (ii) natural endowments, and (iii) fortune and luck (Rawls, 1999). In
the context of algorithmic fairness, particularly for classification, the least advantaged group can be formed
from mostly misclassified samples. Therefore, a model that aims to achieve Rawls’s principle by focusing
on improving misclassified samples, or samples from the worst-off distribution in a set of distributions
created from the empirical distribution, might not only fail to improve fairness with respect to the truly
disadvantaged group but may also make the model highly sensitive to outliers (Hashimoto et al., 2018; Lahoti
et al., 2020). In contrast to other group-based fairness notions, Rawlsian fairness does not aim to mitigate
the disparities in a given metric across groups but to make the worst-performing group as good as possible.
The Rawlsian definition can also effectively handle intersectionality between groups and be applied beyond
classification tasks as long as the utility metric is defined. Its application is particularly pertinent in medical
applications (Ricci Lara et al., 2022) or any other domains where decreasing the model performance to achieve
parity is unacceptable.

5.4 Proxy Fairness

Proxy fairness notions are derived from group fairness notions. They assume correlated features are known
and can be used as proxy to measure or enforce fairness with respect to the true protected attributes.

Considering scenarios where direct access to sensitive attributes is impossible, proxy fairness notions rely on
features that correlate with the sensitive counterparts. These proxy-sensitive attributes can also be predicted
through an attribute classifier. The underlying idea is to utilize correlated or predicted features as proxy for
the actual sensitive attributes. In particular, the sensitive attributes for group fairness metrics presented in
Section 4.1 can be replaced by the proxy-sensitive attributes to measure fairness in the model. By evaluating
the selected group fairness notion with respect to these proxies, one can measure the fairness of models w.r.t
true sensitive attributes. However, a drawback of proxy fairness notions lies in their assumption that the
features correlating with unobserved sensitive features are known, and determining the degree of correlation
proves challenging without input from a domain expert. Furthermore, auditing model fairness based on proxy
might lead to underestimating or overestimating the actual fairness violation. Special care must be taken in
the design of proxy-sensitive attributes for optimal bias estimation (we provide further discussion in Section
7).

6 Fairness Enhancing Techniques Without Demographics.

In the previous section, we presented fairness notions that do not (fully) rely on sensitive attributes. In this
section, we review methods proposed to enforce based on the constraints we identified in Section 3.1, i.e.,
sensitive attributes are predicted, missing, noisy, or private.

6.1 Enforcing Fairness Using Proxy Sensitive Attributes.

Proxy-sensitive attributes can be obtained using related non-sensitive features or using limited demographic
information available. Proxy attributes must be designed carefully, as incorrect proxies or predictions of
sensitive attributes may result in adverse effects, such as sub-optimal solutions or incorrect disparities
estimation in the model (cf. Section 7). In this section, we review methods to enforce fairness using
proxy-sensitive attributes. Table 4 showcases an overview of existing methods, the datasets, and fairness
metrics used for evaluation. Each method is also grouped based on mechanism type, i.e., at which step of the
ML pipeline the fairness mechanism can be applied: at the data level (pre-processing), during the model
training (in-processing), or after training the model (post-processing); Existing methods are also grouped
based on proxy features obtained via related features or partial demographic information.

6.1.1 Using Related Features.

In some applications, non-sensitive features may be closely associated with sensitive ones (Zhao et al., 2021;
Gupta et al., 2018; Diana et al., 2022). Proxy features are non-sensitive features that correlate with the
sensitive ones. For example, (Elliott et al., 2009) showed that customers’ origins can be estimated using
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Table 4: Overview of methods to enforce fairness using proxy sensitive information. Proxy-sensitive
information is obtained either using demographic predictors or related features. Existing methods in this
category can improve group fairness metrics (e.g., equalized odds, equal opportunity, and statistical parity)
w.r.t to the true sensitive attributes.

Papers Related
Features

Partial
Demographic

Mechanism
Type

Evaluation
Metrics Datasets General Description

FairRF (Zhao
et al., 2021) ✓ ✗ In

• Accuracy
• EOP
• SP

• Adult
• Compas
• LSAC

Assumes the knowledge of non-sensitive fea-
tures correlating with unknown sensitive ones
and adds a regularization term to minimize
their influence over the classifier’s output.

NOCCO (Peleg-
rina et al., 2023) ✓ ✗ Pre • Accuracy

• EOP

• Adult
• Compas
• LSAC
• Taiwanese

credit

Proposes a preprocessing method to detect
sensitive features in the datasets using the
Hilbert automatically–Schmidt independence
between class labels and features splitting the
data into groups.

KSMOTE (Yan
et al., 2020) ✓ ✗ Pre

• F1-score
• EOP
• EOD

• Adult
• Compas
• Violent crime

The proposed method relies on clustering
techniques to restore class balance while
improving model fairness on downstream
tasks without needing to observe sensitive
attributes.

Proxy-learner (Di-
ana et al., 2022) ✗ ✓ In

• Accuracy
• EOP
• EOD

• FolkTable
datasets

The work shows that training a model to pre-
dict the sensitive attributes can be a good
substitute for the ground truth sensitive at-
tributes when the latter is missing.

CGL (Jung et al.,
2022) ✗ ✓ Pre • Accuracy

• EOP

• Compas
• CelebA
• UTKFace

The paper proposes a confidence-based at-
tribute classifier that randomly assigns group
labels on samples with low confidence pre-
diction and shows its benefits on fairness in
downstream tasks.

SR-CVAE (Grari
et al., 2021) ✓ ✗ In

• Accuracy
• EOP
• EOD

• Adult
• Default Data

Assuming a causal graph of the data, the
approach uses Bayesian inference to recon-
struct the sensitive attribute in the latent
space and uses an adversarial approach to
enforce fairness.

FairDSR (Ken-
fack et al., 2023a) ✗ ✓ Pre

• Accuracy
• EOP
• EOD
• SP

• Adult
• LSAC
• Compas
• CelebA

The paper proposes an uncertainty-aware sen-
sitive attribute classifier to improve fairness-
accuracy tradeoffs on downstream tasks with
missing sensitive attributes.

MTL-
fair (Aguirre
& Dredze, 2023)

✗ ✓ In • Accuracy
• EOP

• Clinical-
Notes

• Online-
Reviews

• Twitter

A multi-task learning setup where the partial
demographic is available in one task, and the
objective is to improve fairness on tasks with
missing sensitive attributes.

FairDA (Liang
et al., 2023) ✗ ✓ In

• Accuracy
• F1-score
• EOP
• SP

• Toxicity
• Compas
• Adult
• CelebA

A domain adaptation setup where partial
demographic information is available in one
domain. An adversary is used to enforce
fairness in the target domain where the de-
mographic information is missing.

Proxy-
fairness(Gupta
et al., 2018)

✓ ✗ Post • Accuracy
• EOP

• Adult
• Default Data

Study bias mitigation when proxy-sensitive
attributes are used. Shows that proxy-
sensitive attributes can improve fairness, but
they can also overestimate or underestimate
it.

BiFair (Ozdayi
et al., 2021) ✗ ✓ In

• Accuracy
• EOP
• EOD
• SP

• Adult
• Bank data

Proposes a bilevel optimization where the
partial demographic is used to compute sam-
ple weights, and the target classifier is trained
with a weighted loss to improve fairness on
samples with missing sensitive data.

FURL-PS (Zhang
et al., 2022) ✗ ✓ Pre • Accuracy

• EOD
• CelebA
• UTKFace

Uses the partial demographic information to
train a contrastive sample generator, which
generates images with edited sensitive at-
tributes. A contrastive loss is adapted to
improve fairness in the latent representation.

APOD (Wang
et al., 2023) ✗ ✓ Pre

• Accuracy
• EOD
• EOP

• Loan default
• Adult
• German
• MEPS

An active learning setup where the goal is to
select the optimal data points with missing
sensitive attributes, for which human annota-
tions will improve fairness for the protected
groups.
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Figure 2: A taxonomy of fairness enhancing techniques without demographic information

their last name and residence address. Also, in the Adult Census Income dataset Asuncion & Newman
(2007), the protected feature Gender is correlated with non-protected features such as Relationship, Age,
and Marital-Status (Le Quy et al., 2022; Zhao et al., 2021). Intuitively, if we reduce the correlation between
proxy features and the model’s prediction, we indirectly reduce the correlation with the unknown sensitive
attributes. A straightforward approach is to train the model without the proxy features. The problem with
such approach is that, since proxy features can also be useful for the target task, we would inevitably observe
a drop in accuracy. Besides, it is important to design methods that control the fairness-accuracy tradeoffs.
Using the post-processing fairness technique by Hardt et al. (2016) (cf. Section 4), Gupta et al. (2018)
demonstrated empirically that enforcing fairness constraints with the proxy features can improve fairness for
the true protected groups. The authors characterize good proxy as features that share the same semantics
with the true demographic group. However, poor proxies can hurt accuracy and fairness, especially when the
proxies do not correlate equally with the true unknown sensitive attributes. Domain experts could provide
the weight of the relationship between features. However, obtaining accurate values can be difficult in some
real-world applications. To overcome this, Zhao et al. (2021) proposed FairRF, a framework that can learn
the weights of related features during the optimization process. The framework includes a regularization
term to minimize the correlation, R(xj , ŷ), between the classifier’s output (ŷ) and each related feature (xj).
The optimization problem of the framework is defined as follows:

minθ,λ Lcls + η ·
∑K

j=1 λj · R
(
xj , ŷ

)
+ β∥λ∥2

2
s.t. λj ≥ 0, ∀fj ∈ FS ;

∑K
j=1 λj = 1

(10)

where Lcls is the classifier loss (typically a cross-entropy loss), η controls the regularization term, {xj}K
j=1 is

the set of highly correlated features, and {λj}K
j=1 weights associated to each related feature. To avoid trivial
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solutions, weights are regularized (∥λ∥2
2) to enforce non-zero weights for each related features. Equation 10 is

solved through alternating direction optimization (Goldstein et al., 2014), wherein the parameters θ and λ
undergo iterative updates, with one variable fixed while the other is updated in each iteration.

However, Equation 10 requires a strong assumption on feature dependencies and can result in a sub-
optimal correlation between related features and the protected attribute. In other words, the true highest
related features of the sensitive attribute might be hidden, making it difficult for humans to identify them
correctly. More specifically, Equation 10 does not consider data-specific and distribution similarity for
identifying the highest related features. To alleviate this issue, Chang et al. (2023) propose a framework to
automatically identify highly correlated non-sensitive features and mitigate their influence in the model during
the training. The method involves a sensitive attribute reconstruction model leveraged by a self-attention
mechanism (Vaswani et al., 2017) to learn the interactions (weights) between the sensitive and non-sensitive
features. The detected biased feature interactions are then mitigated via a regularization term to mitigate
their influence. The method, however, requires demographic information at the training time to uncover
the correlated features. In a more principled way, Pelegrina et al. (2023) proposed a statistical method to
automatically detect the sensitive features without relying on real sensitive ones. The proposed method is
formalized around the hypothesis that a given feature might be considered sensitive if it splits data into two
groups of people (e.g., gender male or female) and the Hilbert–Schmidt (Gretton et al., 2005) independence
between this feature and the target label is high. Put differently, when a feature divides individuals into
groups and exerts significant influence over the target variable, it is highly probable that disparities will
emerge. For example, the authors show that by applying the proposed method to the Adult dataset, the
features Marital-Status and Relationship provide a high Hilbert–Schmidt score and are thus returned as
sensitive as sensitive features. These features are known to correlate with gender in the Adult dataset,
suggesting the efficiency of the method in uncovering sensitive features when they are unknown automatically.
The method can used as a preprocessing step that produces sensitive features toward which fairness will be
enforced or measured on the downstream task.

A common source of unfairness is the under-representation of the protected group in the dataset (Mehrabi
et al., 2021). One way to mitigate it is to balance the representation of each group in the dataset (Kamiran &
Calders, 2012). Leveraging this observation, Yan et al. (2020) addressed representation bias by adapting the
K-Means SMOTE algirthm (Last et al., 2017) for fair class balancing. K-Means SMOTE works in three steps.
In the first step, clusters are created using any clustering algorithm. In the second step, samples closest to
the cluster boundaries are removed since these samples are more likely to be misclassified. Finally, in the last
steps, for each cluster, the least represented classes are considered minorities, from which new samples are
generated (i.e., oversampled) based on the nearest neighbors within the minority class. Although this sampling
technique does not rely on sensitive features, the authors showed that it can improve fairness (w.r.t statistical
parity and equal opportunity) in downstream tasks. This line of work shows the effectiveness of clustering
methods in identifying groups even when their sensitive features are unknown. However, such methods
are prone to bias in approximating the sensitive groups, as they require a strong assumption that clusters
correlate with sensitive attributes. Alternatively, Grari et al. (2021) assumes a causal graph underlying
the training data and uses the causal dependencies between variables to reconstruct the sensitive attribute
(proxy) using a variational autoencoder (VAE) (Kingma et al., 2019), under a Gaussian prior for the sensitive
attribute. VAE is used to model exogenous variables in causal graphs. Within the causal graph, the variables
are grouped into two subsets: the subset of variables not caused by the sensitive attribute and those caused
by sensitive and non-sensitive features. The first step of the framework leverages the variables and the class
label to learn a latent space that contains as much information about the sensitive attribute as possible.
The encoder and the decoder are implemented as neural networks optimized to obtain a latent space that
reconstructs the sensitive attributes. A fair classifier is then built using an adversarial debaising approach
to enforce the independence of the predictions and the learned latent representation (proxy demographic
information), which is obtained from the learned posterior approximated by the encoder.

6.1.2 Using Limited Demographic Information.

Also referred to as demographic scarce regime, this setting occurs when the sensitive attributes are not
explicitly collected for the target task dataset (Bharti et al., 2022; Kenfack et al., 2023a; Coston et al., 2019)
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or are they are available in different a dataset. Specifically, this setting generally consists of two datasets
D1 and D2, described by {X, Y } and {X, A}, respectively. D1 contains the class label and is used to train
the target task, while D2 contains the demographic information. While some works assume that D1 and D2
share the same feature space, others assume a distribution shift between the datasets. In this setting, one is
interested in enforcing fairness on D1 using demographic information in D2 or estimating bias of a model
trained on D1 using demographic information available in D2. In the literature, most methods proposed
to address fairness concerns in the demographic scarce regime are based on established machine learning
algorithms or paradigms used in semi-supervised learning (Van Engelen & Hoos, 2020). These adaptations
include techniques such as data imputation, domain adaptation, multi-task learning, contrastive learning,
and active learning.

Data imputation. In this line of work, D2 is used to train a sensitive attributes predictor. The attribute
predictor is then used to augment D1 such that it jointly observes the non-sensitive feature, the class label,
and the demographic information (proxy), i.e., D̂1 = {X, Y, Â}, where Â = {âi}N

i=1 is the proxy sensitive
attribute obtained from the attribute predictor. A highly accurate sensitive attribute predictor can help
better quantify or mitigate the unfairness of models built from the augmented dataset D̂1. The core challenge
here is to characterize the properties of good attribute predictors, as incorrect or noisy predictions may result
in adverse effects, such as incorrect disparities estimation in the model or the amplification of disparities. We
cover in section 7 techniques to assess bias using the proxy-sensitive attributes.

In this regard, Diana et al. (2022) and Ozdayi et al. (2021) demonstrate that if the dataset with sensitive
attributes (D2) is distributed identically to the data without sensitive attributes (D1), a demographic predictor,
known as the proxy model, can accurately estimate the missing sensitive features and fairness enforced on Â
can improve fairness for the true protected groups. The results suggest that practitioners accessing only a
limited demographic information can impute the missing ones and still improve fairness for the true sensitive
attributes. However, the performances achieved are not as good as what could be attained by using true
sensitive attributes. To overcome this limitation, Kenfack et al. (2023a) designed a framework for efficient
uncertainty estimation of the sensitive attribute. Under this framework, they demonstrated that enforcing
fairness constraints primarily on samples with lower predictive uncertainty can enhance fairness-accuracy
trade-offs. Likewise, Jung et al. (2022) use a confidence threshold over the predictions of the proxy model
to discern instances where sensitive attributes are predicted with low confidence. Subsequently, random
attribute values are assigned to samples with sensitive attributes predicted low confidence. These values are
drawn from the empirical conditional distribution over the sensitive attributes given the class label. The
authors posit that this random labeling serves as a form of regularization. In the same spirit, Diana et al.
(2022) show that if the proxy model Â is multi-accurate over different groups, then a downstream task with
fairness constraints w.r.t Â can achieve a similar level of fairness as it would have with the true sensitive
features.

Domain adaptation. Another line of work formulates fairness in the limited demographic setup as domain
adaptation problem (Schumann et al., 2019; Madras et al., 2018; Coston et al., 2019; Liang et al., 2023). In
domain adaption, the goal is to train a model on a source domain to perform well on a target domain, with a
constraint that both domains might be drawn from different but related distributions, e.g., robustness to
distribution shift. See (Farahani et al., 2021) for a review on domain adaptation.

Formulated as a fairness problem, the objective is to build a fair model in a domain where the sensitive
attribute is available and then transfer the fairness properties to the domain where the sensitive attribute
is missing. For example, Coston et al. (2019) assume that limited demographic information is available
in a source or a target domain. When demographic information is available in the source domain, the
authors propose to learn the weights of each sample such that they are as close as possible to the covariate
shift weights2 subject to prevalence constraints for fairness. The covariate shift weights are measured as
qX(x)/pX(x), where pX(x) is the density distribution of data from the source domain and qX(x) the density
of the target domain. The prevalence constraint ensures that all pairs of groups are close to each other. When
demographic information is available in the target domain, the authors propose to learn sample weights by
minimizing a double loss consisting of the fairness loss (group disparity) and the classification loss. The group

2Loss function minimizes the L1 between the predicted weights and the covariate shift weights
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disparity loss is then defined as the difference between the classifier score across demographic groups and is
measured on the target domain in which demographic information is available. Liang et al. (2023) propose a
dual adversarial approach to build a fair model on a target domain where the sensitive attribute is solely
accessible in the source domain. In the source domain, a sensitive attribute is trained with a domain adversary
to enforce domain invariance in the latent space. Meanwhile, in the target domain, the label classifier is
trained alongside an adversary, preventing the prediction of pseudo-sensitive attributes of samples. These
pseudo-sensitive attributes are derived from the attribute classifier trained on the source domain. The general
objective of these methods is to transfer the knowledge of the sensitive attribute from one domain to improve
fairness in the domain with missing sensitive attributes. In the same spirit, Madras et al. (2018) proposes a
transferable fair representation learning approach. The transferability property of the fair representation can
be particularly useful when the sensitive attribute is missing on the downstream task.

Multi-task learning (MTL). Aguirre & Dredze (2023) formalized the problem in a multi-task learning
framework. In MTL, the goal is to optimize different but related tasks simultaneously during the training.
The model is generally designed by defining a shared encoder and task-specific layers for each task (Zhang &
Yang, 2018). The idea is that the knowledge gained from learning one task can benefit the performance of
other related tasks. To handle missing sensitive attributes, Aguirre & Dredze (2023) considered two tasks.
The first task involves training a classifier to predict the class label using the dataset with missing sensitive
attributes (D1). The other task consists of training the classifier with fairness constraints on the dataset with
sensitive attributes. The intuition is that fairness constraints on the second task will improve fairness on the
task with missing sensitive attributes. The authors also proposed a generalized approach to intersectional
fairness, where the two tasks are trained with fairness w.r.t different sensitive attributes, e.g., the first task can
have Gender as the sensitive attribute, and the second task Race. The proposed methods show improvement
in fairness w.r.t the missing sensitive attribute across each task.

Contrastive Learning. As an unsupervised approach, contrastive learning aims to construct a latent
space where samples sharing similar features are drawn together while distancing those that differ (Chen
et al., 2020). To obtain a representation that exhibits this property, positive examples consist of paired views
of the same image, whereas negative examples involve pairs of views from different images. The loss function
incorporates a distance metric between examples, intending to minimize the distance between positive pairs
and maximize the distance between negative pairs. Park et al. (2022b) show that contrastive learning can
rely on sensitive attributes to better optimize the contrastive loss, i.e., in the latent space, the separation
between dissimilar samples is more effective for some demographic groups than others. As a result, the learned
representation will incur disparate performance on downstream tasks. The authors integrate a group-wise
normalization factor to contrastive loss to improve the fairness of the representation. However, the proposed
fair contrastive loss fully depends on demographic information. To address this, Zhang et al. (2022) propose a
contrastive learning approach to acquire fair representations despite having limited demographic information.
The available demographic data is utilized to train an image attributes editor. Upon receiving an input
image, the editor produces its contrastive counterpart, i.e., an image with a different sensitive attribute
while preserving other visual features. For instance, it can generate a realistic photo resembling a man when
presented with an image of a woman. The process involves a sensitive attribute classifier for labeling the
generated contrastive examples. Images with confidently labeled attributes are then used to enhance the
attribute editor in a mutually improvement manner iteratively. This first step aims to generate an augmented
and balanced dataset where each sample has a contrastive example with a different sensitive attribute. In
the second step of the method, a fair representation is acquired through contrastive learning applied to the
augmented dataset. To obtain a fair representation, the authors propose considering contrastive samples with
different sensitive attributes as positive examples and negative samples as views originating from different
images with the same sensitive attributes. Feature weighting is integrated into the contrastive loss, assigning
higher importance to specific features that depend on the sensitive attribute in the latent space. This method,
however, heavily depends on the attribute editor model, and its application is limited to image datasets.
Chai & Wang (2022) propose a contrastive learning approach to learn fair representations and use limited
labels to guide the training. A weighting scheme is used in contrastive loss to up-weight samples with higher
classification errors on the validation set. Using the weighted contrastive loss, the representation learned is
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enforced to ensure high separability of samples from minority groups, thus improving fairness on downstream
tasks in terms of equalized odds.

Active learning Active learning is a prevalent machine learning method in semi-supervised learning that
addresses scenarios with costly data labeling. The model is initially trained on a small proportion of labeled
data and predicts labels for unlabeled data Settles (2009). Instances predicted with low confidence are then
referred to an oracle for annotation, e.g., a human annotator. The newly annotated data points are then
used to enhance the model in the next training round. The objective is to reduce the number of queries for
annotators. To learn a fair model, one can request demographic information of certain samples but with
compensation. The objective is to train a fair model with a minimum number of demographic query (Liu &
Lan, 2020).

In this spirit, Wang et al. (2023) propose an active learning approach for developing fair models under limited
demographic information. The goal is to find the optimal instance for sensitive attribute annotation that
can help improve the model’s fairness in the next iteration while minimizing the number of label queries. In
each iteration, the model is trained to minimize the classification loss with regularization over the labeled
data points. The regularization term penalizes the model for any disparities, such as equalized odds or equal
opportunity. In the subsequent step, a sample from the unlabelled set is selected to promote bias mitigation
maximally. The sample selection uses the demographic group of samples with the highest classification error.
Groups of samples are defined using predicted sensitive attributes provided by an attribute classifier. The
sample selected for annotation is at a maximum distance with annotated samples in the latent space.

On the other hand, Liu & Lan (2020) explore the decoupled fair model proposed by Dwork et al. (2012),
where a distinct model is trained for each demographic group. The authors introduce two strategies for
selecting data points to query demographic information: 1) using samples with the most significant outcome
variations across each model and 2) using samples that, when added to the labeled dataset, amplify the
disparity of the current model. While empirical results show the efficacy of these query strategies, the method
necessitates retraining the model after each demography query, which can be computationally expensive.

Based on demographic predictors, existing methods require the assumption that non-sensitive characteristics
are highly descriptive of sensitive characteristics. However, in some applications, this assumption may not
always be true. On the other, predicting sensitive information poses ethical concerns and, in some cases,
is unlawful. Kenfack et al. (2023a) suggest that obtaining datasets with high uncertainty in the inference
of the sensitive attribute can yield models (trained without fairness constraints) that inherently exhibit
fairness properties. Additionally, Ozdayi et al. (2021) introduce BiFair, an approach structured around a
bilevel optimization setup. This optimization process uses the limited demographic information to compute
the samples’ weights instead of trying to reconstruct the missing sensitive attributes with a demographic
predictor. In the bilevel optimization process, the inner optimization minimizes the classification loss. In
contrast, the outer optimization computes the fairness loss for samples with sensitive attributes and leverages
these computations to determine sample weights such that they minimize the fairness loss.

6.1.3 Evaluation Protocol in Proxy Demographic Setting.

When fairness constraints are enforced over features correlating with the sensitive features, the evaluation
process does not differ greatly from the setting where demographic information is observed. The particularity
is that sensitive attributes are not directly used during the training phase, but the correlated features Zhao
et al. (2021), the causal graph Grari et al. (2021), or the clusters Yan et al. (2020) are considered. For
example, Zhao et al. (2021) use Age, Relationship, and Marital-Status in the Adult dataset as the features
correlating with the unknown sensitive feature: considered Gender. For the Compas dataset, the unknown
sensitive attribute is Race, and its correlated features are Score, Decile Text, and Sex. The evaluation of the
fairness performance follows most existing works where the sensitive attributes are known at test time, and
fairness performances are reported using the true sensitive attributes.

In settings where partial demographic information is available, most approaches generally split the dataset
into three subsets: A subset where the sensitive attributes are missing, a subset as the dataset where the
partial demographic is available, and a subset for the evaluation as the test set where the sensitive attribute
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is also available. For example, Kenfack et al. (2023a), Diana et al. (2022), and Ozdayi et al. (2021) split the
Adult dataset into 60%, 20%, 20% for the training, labeled demographic, and test dataset respectively. As an
ablation study, some methods (Zhang et al., 2022; Ozdayi et al., 2021; Wang et al., 2023; Jung et al., 2022)
generally vary the ratio of the dataset with labeled sensitive attributes to see its impact on the proposed
method.

For evaluation, methods using proxy demographic information generally improve group fairness metrics, such
as equalized odds, equal opportunity, and statistical parity. This is possible thanks to proxy demographic
information that helps control the true demographic groups.

6.2 Enforcing Rawlsian Max-Min Fairness

The main objective of the Rawlsian Max-Min Fairness notion is to minimize the model error on the least
advantaged protected groups. When group information is available during the training, some methods are
proposed to optimize for the group performing worst (Martinez et al. (2020); Diana et al. (2021); Sagawa
et al. (2019)). However, defining the least advantaged groups becomes challenging when the necessary criteria
are not provided. Nevertheless, the Rawlsian fairness notion can be particularly useful to address the major
challenge of intersectional fairness, where the model performance could be worse across an intersection of
sensitive attributes, e.g., gender & race, age & nationality. For example, Buolamwini & Gebru (2018) showed
that most commercial face recognition systems are significantly less accurate in identifying darker-skinned
females. Pursuing Rawlsian fairness or improving model performance for the worst-case group shares a
common goal with Out-Of-Distribution (OOD) generalization. OOD aims to enhance the model’s performance
on an (unknown) test domain that differs from the training domain and is not independent and identically
distributed (i.i.d) (Ben-Tal et al., 2009; Shen et al., 2021; Arjovsky et al., 2019; Krueger et al., 2021). To
achieve fairness, domains are defined as demographic groups to learn a model that generalizes effectively
across different groups3. The optimization objective, in this case, is to minimize the error of the domain/group
with maximum error:

RF (θ) = max
e∈F

Re(θ) (11)

A model (θ) that does not control the worst-case loss across groups has a low overall loss, i.e., R(θ), but a
high worst-case loss (RF (θ)). We group methods to improve model performance on the unknown worst-case
groups into three categories: robust optimization, reweighting, and invariant representation learning. Table 5
shows an overview of existing methods, the datasets, and fairness metrics used for evaluation.

6.2.1 Robust Optimization

When demographic information is known a priori, Sagawa et al. (2019) proposed Group Distributionally
Robust Optimization (DRO) to improve model performance on groups with higher loss. Unlike the classical
Empirical Risk Minimization (ERM), DRO does not optimize for the average loss. When demographic
information is not observed, Hashimoto et al. (2018) showed that EMR does not control the worst-off groups,
and the authors adapted DRO (Duchi et al., 2016) to achieve Rawlsian Max-Min Fairnes by minimizing the
error of the worst-case distribution of perturbations around the empirical distribution, i.e.,

Rdro(θ; r) = sup
Q: D(Q∥P)≤r

EQ
[
l(θ; X)

]
(12)

Where D
(
Q ∥ P

)
is the X 2-divergence between the empirical distribution (P) and probability distributions

around P at a distance r and l(θ; X) represents the model loss over samples Z. The authors showed that
Rdro(θ; r) upper bounds the error of unknown worst-case groups, and optimizing it can help to control the
model performance over the worst-case group. In practice, the problem 12 can be solved by using the following
dual:

3In general, the terms "domains," "environments," and "groups/subgroups" can be used interchangeably
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Table 5: Overview of methods to enforce Rawlsian Max-Min fairness. Methods under this category
use robust optimization or a reference classifier to identify unknown subgroups. They generally improve
fairness in terms of worst-case group performance (Group Acc/Err). Some methods can also improve Equalized
Odds (EOD) and Disparate Impact (DI).

Papers
Subgroup
Identifica-

tion
Robust

Optimization
Reference
Classifier

Mechanism
Type

Evaluation
Metrics Datasets General Description

Yenamandra
et al. (2023) ✓ ✗ ✓ Pre • Precision

• Waterbirds
• CelebA
• NICO++

Use a "weak" model
to amplify bias, then
uncover samples from
worst-case groups by
clustering the latent
space.

(Chai et al.,
2022) ✗ ✗ ✓ In

• Accuracy
• EOD
• DI

• New Adult
• Compas
• CelebA

Upweight data points by
training the model with
soft labels from knowl-
edge distillation.

Hashimoto et al.
(2018) ✗ ✓ ✗ In

• Group
Acc.

• EOP
• Twitter

Distributionally Robust
Optimization to control
the utility of the worst-
case groups.

Chakrabarti
(2023) ✓ ✗ ✓ In • Group

Acc.
• Adult
• Compas
• LSAC

Upweight samples identi-
fied with statistical sig-
nificance as members of
the worst-case group.

Idrissi et al.
(2022) ✗ ✗ ✗ Pre • Group

Acc.

• Waterbirds
• CelebA
• MultiNLI
• Civil-

Comments

Data subsampling or
reweighing can achieve
state-of-art performance
on worst-case groups.

CVaR (Duchi
et al., 2019) ✗ ✓ ✗ In • Group

Acc.
• MNIST
• ImageNet

Optimizes for worst-case
distribution around un-
certainty set of the em-
pirical distribution.

JTT (Liu et al.,
2021) ✓ ✗ ✓ In • Group

Acc.

• CelebA
• Waterbirds
• MultiNLI
• Civil-

Comments

Use a reference classifier
to find misclassified sam-
ples to be up-weighted
to improve model per-
formance on the worst
groups (unknown).

ARL Lahoti
et al. (2020) ✓ ✗ ✗ In

• Group
AUC

• EOP

• Adult
• Compas
• LSAC

Weighted empirical risk
minimization with adver-
sarial reweighting

BPF Martinez
et al. (2021) ✗ ✓ ✗ In • Group

Err.

• Adult
• Compas
• LSAC
• MIMIC-II

Optimize worst-case
groups with minimum
harm on best-case
groups under Pareto
optimality.

Ahn et al.
(2022) ✓ ✗ ✓ In • Group

Err.

• CMNIST
• MB-

MNIST
• CelebA
• Civil-

Comments

Reweight data points
proportionally to their
gradients to improve
the performance of the
worst-case groups.

LfF Nam et al.
(2020) ✓ ✗ ✓ In • Group

Acc.
• CMNIST
• CIFAR-10

It uses a generalized
cross entropy to uncover
worst-case group sam-
ples and then upweight
them.

EIIL Creager
et al. (2021) ✓ ✗ ✓ In • Group

Acc.

• CMNIST
• Adult
• Waterbirds
• Civil-

Comments

Train a reference model
using soft-group assign-
ment to identify worst-
case group samples.

Ko et al. (2023) ✗ ✗ ✗ In • Group
Acc.

• CIFAR100
• Tiny-

Imagenet

Show the utility of DNN
ensembles for improving
worst-case group perfor-
mance.
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min
θ∈Θ

EQ
[
l(θ; X) − η

]2 (13)

Where η is a hyperparameter controlling the strength of the robust loss. By minimizing the equation 13, the
model exhibits improvement across all directions around the data-generating distribution, leading to reasonable
performance across sufficiently large subgroups, particularly for the worst-case unknown groups Hashimoto
et al. (2018). Hu & Chen (2022) built upon Hashimoto et al. (2018) to improve fairness in Survival Analysis,
where the goal is to "model the amount of time that will elapse before a critical event of interest happens"
such as death or patient recovery. Soma et al. (2022) propose a generalized DRO with faster convergence
and tighter bound over the worst-off groups. While Peet-Pare et al. (2022) argued that enforcing fairness on
models with static distributions does not capture the dynamic environment in which these models are deployed.
Consequently, such an approach may not effectively model most real-world scenarios with fairness concerns.
They showed that in repeated risk minimization, while DRO and ERM have similar convergence behavior,
ERM converges to a fixed point where the model is biased towards majority groups. DRO converges to a fair
fixed point. Peet-Pare et al. (2022) adapt performative prediction to distributional robust optimization and
studied its properties for fairness. Performative prediction (Perdomo et al., 2020) studies a more dynamic
setup, wherein the predictions of the model influence the data distributions on which the model makes
subsequent predictions.

It is worth noting that DRO operates as a reweighing approach, wherein, unlike ERM, which assigns equal
weights to all data points, DRO up-weights samples where the model incurs a high loss. While the robust
optimization process has demonstrated its benefit to the (unknown) worst-case group, its key drawback
is its sensitivity to outliers, i.e., the model could focus on optimizing noisy outliers rather than the real
worst-case protected groups. To overcome the limitation of DRO, Martinez et al. (2021) propose Blind Pareto
Fairness (BPF), an algorithm that can improve the worst-case performances of all groups of a certain size
while ensuring the solution is also Pareto-optimal, i.e., ensures that there is no other solution that provides
better group risks uniformly for all groups. With Pareto optimality, the method optimizes for the worst-case
groups with a minimum performance drop for the best-performing groups.

Papadaki et al. (2022) use robust optimization to enforce fairness in a federated learning setup when
demographic information is unknown. In federated learning, the dataset is not centralized but distantly
available on different devices. Each device trains a model using its local data and sends its weights to the
central model that will average all weights from the clients. The core advantage of federated learning is to
enhance individuals’ privacy as their data are not stored on a centralized server but locally locally (Li et al.,
2019). Still, federated learning does not prevent data stored locally from leaking since model parameters or
gradient updates can reveal sensitive information (Fredrikson et al., 2015). In their work, Papadaki et al.
(2022) use a robust loss in each client to improve the worst-case performance of all groups of a certain size in
the centralized model.

6.2.2 Reweighing

Reweighing techniques typically operate by devising a mechanism to identify subgroups where the model
exhibits worse performance. The approach involves assigning greater weights to samples from these subgroups,
thereby enhancing the model’s performance on minority groups. An alternative group of methods aims
to show the benefit of certain established deep learning techniques on fairness. These techniques include
knowledge distillation (Chai et al., 2022), ensemble learning (Ko et al., 2023; Kenfack et al., 2021b), and
class balancing (Idrissi et al., 2022). We delve into both weighing using subgroup identification and implicit
weighing with techniques that improve fairness by design.

Subgroups identification. To overcome the sensitivity of DRO to noise, Lahoti et al. (2020) propose
Adversarially Reweighted Learning (ARL) that leverages the notion of computationally identifiable groups.
These groups are regions where the model makes more mistakes. The method uses an adversarial approach
where an adversary learns samples’ weights by maximizing the learner (classifier) error while the learner
minimizes the classification weighted loss function. Intuitively, the adversary will assign higher weights to
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Figure 3: Overview of Adversarially
Reweighted Learning (ARL) (Lahoti et al.,
2020)

Figure 4: Overview of Significant Unfairness Risk Elim-
ination (SURE) (Chakrabarti, 2023)

samples where the classifier makes the most misclassification, and to minimize its error, the learner must
focus on improving on these samples. Figure 3 shows an overview of ARL.

Chakrabarti (2023) argues that ARL may encounter challenges in comprehensively identifying all subgroups
due to the variability of unfairness patterns across training steps and datasets. The author suggests a strategy
to address this challenge: selecting the region in the latent space where the model exhibits statistically
significant errors and upweighting samples within that chosen region even for the correctly classified samples
for the next training iteration. The emphasis on the statistical significance of unfairness risk, specifically
the higher misclassification rate within the selected region, proves valuable in averting the upweighting of
misclassified samples resulting from randomness during training epochs. In cases where no region is identified
with a significant risk of unfairness, the training in the next iteration reverts to the classical EMR without
sample weights. To identify subgroups, the latent feature vectors for correctly and incorrectly misclassified
samples in the current iteration are segmented into bins (Cf. Figure 4). The number of samples per bin is a
hyperparameter. The subgroup with a high unfairness risk comprises samples belonging to the bin with the
most significant misclassification error across all latent feature vectors. To ensure that the selected subgroup
is large enough and handles the intersectionality of groups, the selected bin is merged with samples from the
surrounding bins. Empirical results show evidence that identifying subgroups with statistically significant
worst-case error can outperform ARL in various ranges of settings (Chakrabarti, 2023).

Leveraging a Reference Classifier. Another line of work leverages the information an auxiliary model
(reference classifier) provides to identify samples from disadvantaged groups. Existing methods empirically
show that an auxiliary model’s errors or gradient can be used to identify unknown worst-case groups (Ahn
et al., 2022; Zhao et al., 2023). Fairness is then enforced using a reweighting scheme based on subgroups
identified by the auxiliary model, hoping that the new weight will improve the performances of true protected
groups.

Nam et al. (2020) empirically demonstrated that a model can easily fit groups satisfying spurious correlations
in the data (bias-aligned samples) at the early stage of the training, while groups that do not satisfy spurious
correlation (bias conflicting samples) are fitted later. For example, in the Waterbird dataset, waterbirds with
a water background and landbirds with a land background are bias-aligned samples. In contrast, landbirds
with a water background are bias-conflicting samples. Following this observation, the authors proposed a
debiasing scheme that consists of two networks trained simultaneously. The "biased" network is fitted to
amplify its early-stage predictions using generalized cross-entropy loss. At the same time, the unbiased model
is enforced to focus on the mistakes of the biased model. As the biased model mostly learns the spurious
correlations, misclassified samples are mostly bias-conflicting samples that are upweighted to mitigate the
bias. The approach demonstrated its efficacy in improving the model’s performance over the wort-case group.
Building upon these results, Liu et al. (2021) introduce "Just Train Twice" (JTT), a two-step framework
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designed to enhance the model’s performance on worst-case groups without relying on group information
during the training. In the first step, a non-complex model is trained on the target task for a few steps,
intentionally leading the model to fit bias-aligned samples better, thus underfitting bias-conflicting samples.
The set of misclassified samples by the reference classifier represents a proxy for the worst-case groups. In
the second step, the misclassified samples, which mostly contain data points from the worst-case group, are
up-weighted to enable the model to improve on this group of samples. The ability of the reference classifier
to effectively learn spurious correlation depends on the number of steps used to fit the classifier, which is a
hyperparameter. The authors perform upweighting by oversampling misclassified by a factor λup, which is
also a hyperparameter. As a drawback, JTT requires expensive hyperparameter tuning and, most of the time,
requires sensitive attributes in the validation set to achieve good results. To address this limitation, Veldanda
et al. (2023) proposes a mechanism to generate pseudo-sensitive attributes efficient for tuning hyperparameters
over the training set. In the same spirit, Yenamandra et al.’s (2023) approach involves leveraging a weak
model to uncover bias-conflicting samples in the data. The authors demonstrate that bias can be amplified
using a weak model, trained to deliberately underfit the training set, which maximizes the separation between
minority and majority groups. In the subsequent step, samples from minority groups (bias-conflicting samples)
are derived by clustering the bias-amplified latent space obtained in the initial phase, combined with the
embedding of visual concepts of each image to preserve the semantic coherence of the clusters (Radford et al.,
2021). These clusters are formed by fitting a Gaussian mixture for each class and sorting them based on
cluster accuracy in ascending order. The top k clusters are then returned as samples representing minority
groups, which can be upweighted to mitigate bias in the downstream step. Methods using a single reference
classifier, however, suffer from their sensitivity to hyperparameters. This sensitivity does not provide a
reliable way to identify and compute the weights of samples from minority groups. In particular, for a pair
reference classifiers trained with different random initialization or learning rates, the number of samples from
the unknown protected group identified by each model changes significantly (Kim et al., 2022). To address
this, Tiwari et al. (2024) train the reference classifier using earlier layers of the model, which is more effective
in identifying bias-conflicting samples. Their results suggest that earlier layers provide more fine-grained
information to the reference classifier to identify and weigh samples from the worst-off groups. On the other
hand, Tiwari et al. (2024) uses an ensemble of biased classifiers as the reference classifier. They upweight
samples based on the proportion of reference classifiers that incorrectly classify them. Intuitively, samples
misclassified by most reference classifiers in the ensemble are more likely to be from the worst-case group,
thus providing a more reliable weighting scheme.

Another line of work identifies worst-case groups using the gradient magnitude during the optimization or
the confidence of the reference classifier. Specifically, Ahn et al. (2022) hypothesized that minority samples
get higher gradients when training a model with the generalized cross-entropy loss (Zhang & Sabuncu,
2018). Based on this hypothesis, the authors propose a method that involves two steps to mitigate bias. In
the first step, a biased model is trained using the generalized cross-entropy loss to amplify the gradient of
minority samples. In the second step, the final classifier is trained using data points sampled with probability
proportional to their gradient provided by the reference model. Samples are, therefore, weighted proportionally
to their gradient magnitude in the first step. Zhao et al. (2023) follows a similar approach but updates the
biased model in the first step only using samples whose predictions are highly confident (mostly samples from
the majority group). In the second step, sample weights are derived using the prediction probability of the
biased auxiliary model such that samples with low confidence in prediction (mostly from the minority group)
will receive higher weights. This weighting scheme enforces the alignment of gradients of the different groups
during the training to mitigate bias.

Fairness for free. There is a line of work that shows that some existing deep learning techniques inherently
have a positive impact on the worst-case group or some fairness metrics such as equal opportunity (Chai
et al., 2022; Idrissi et al., 2022; Ko et al., 2023). For instance, Chai et al. (2022) theoretically demonstrated
the connection between label smoothing and reweighing, i.e., with smooth labels, the model focuses more on
samples that are hard to classify. The authors then empirically demonstrated the utility of label smoothing
via knowledge distillation to improve fairness without relying on demographic information during the training.
The framework consists of teacher-student models, where the teacher with a larger capacity is trained to
overfit the training data, and its logits are used as smooth labels to train the student model. Remarkably,
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the authors show that knowledge distillation not only improves the worst-case groups but can also effectively
improve fairness in terms of equalized odds. On the other hand, Idrissi et al. (2022) show that applying
simple data balancing techniques such as subsampling or reweighting can improve the test accuracy of the
worst-case group and demonstrate that simple class balancing can be used when the group information is
not available. While Kenfack et al. (2021b); Ko et al. (2023) show that ensemble models positively impact
fairness, particularly for minority groups.

6.2.3 Invariant Representation Learning

Invariant representation learning is a group of methods aiming to learn representations invariant to different
environments or domains. In contrast to robust optimization that optimizes for distributions close to the
empirical distribution, invariant representation learning is a more general framework aiming to optimize for
distributions that are eventually far from the empirical distribution (Arjovsky et al., 2019). A representation
Φ(x) is environment invariant if, for any given environment e1 and e2 from the environment space Eobs, it
satisfies:

E
[
y|Φ(x) = h, e1

]
= E

[
y|Φ(x) = h, e2

]
∀h ∈ H, ∀e1, e2 ∈ Eobs

(14)

In other words, a representation satisfying this relation induces the same conditional class labels across
environments. This formulation has different applications for privacy, domain adaptation, and fairness(Zhao
et al., 2022). For fairness, the invariant representation formulation (Equation 14) is similar to the equation
1 for statistical parity, where demographic groups replace the environments. When group information is
available, the invariant representation can be achieved through Invariant Risk Representation (IRM) (Arjovsky
et al., 2019) or fair representation learning (Zemel et al., 2013; Madras et al., 2018; Kenfack et al., 2023a).

When group information is unavailable, Creager et al. (2021) proposes a method to automatically infer the
environment (or group) from data. The proposed method infers group partition using a fixed classifier trained
to maximize the invariance violation using a soft group assignment function (q(e|x, y)) optimized over the
training data. Once the group assignment is acquired, existing IRM or GroupDro methods can enforce a
representation that satisfies Equation 14.

6.2.4 Evaluation Protocol in the Rawlsian Fairness Setting.

In this setting, the model is trained without access to sensitive attributes. However, the evaluation of the
performances of the worst-case groups is performed using partitions of the datasets based on sensitive attributes
assumed known for the evaluation. Demographic groups are generally defined using an intersectionality of the
sensitive attributes. For instance, Lahoti et al. (2020) and Chai et al. (2022) establish demographic groups in
the Adult and Compas datasets based on a combination of Race and Sex. They report groups’ worst-case
performance (accuracy or AUC) using an intersection of sensitive attribute values, such as [White, Male],
[White, Female], [Black, Female], and [Black, Male].

As shown in Table 5, Rawlsian fairness methods presented in this section mostly focus on improving fairness
in terms of worst-case group performance. In particular, none of the methods presented target statistical
parity. Moreover, experimental results show that methods optimizing for the worst-case performance fail to
improve the statistical parity. On the other hand, results from some work showed improving the worst-case
performance can also benefit group fairness metrics such as equalized odds and disparate impact are also
considered (Lahoti et al., 2020; Chai et al., 2022).

6.3 Enforcing fairness Under Noisy Demographic Information

As discussed in Section 3.2.2, sensitive attributes could be noisy because they have been corrupted during
data collection. Noise could also be introduced when the sensitive attributes are estimated or collected with
privacy-preserving mechanisms. Recent works have emerged to mitigate bias w.r.t the true sensitive attribute
when only a noisy version of sensitive attributes is available, i.e., there is a limited number of clean sensitive
attributes. A straightforward method involves naïvely enforcing fairness using the noisy protected attributes,
expecting to enhance fairness for the true protected groups. The empirical evidence presented by Gupta et al.
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(2018) suggests that this objective can be realized when the noise in the protected attribute’s space arises
from estimation, i.e., pseudo-sensitive attributes are derived through an attribute predictor model. However,
the model’s bias could still be higher than that of a model with fairness on the true sensitive attributes (Celis
et al., 2021; Gupta et al., 2018; Kallus et al., 2022).

Several works attempt to provide theoretical bounds on fairness violation when the sensitive attribute is noisy
or design noise tolerant and noise robust approaches.

6.3.1 Bounding Fairness Violation.

When fairness constraints are applied using noisy protected attributes, one is interested in finding the
conditions or assumptions that guarantee fairness improvement on the true protected groups. In this regard,
Awasthi et al. (2020) theoretically analyze the impact of noisy attributes on the post-processing technique
proposed by Hardt et al. (2016) (see Section 4.2) to improve fairness in terms of equalized odds. The post-
processing mechanism takes a trained classifier and adjusts its decision boundary to satisfy fairness constraints
while maintaining the accuracy as much as possible (Hardt et al., 2016). The authors show that when a certain
conditional assumption is satisfied (Ŷ ⊥ Â|(A, Y )) and the sum of the corruption probabilities of each sensitive
attribute value is upper bounded by one (i.e.,

∑
a P (Â ̸= A|Y = y, A = a) ≤ 1, ∀a ∈ {0, 1}, y ∈ {0, 1}), the

post-processing fairness mechanism using the noisy protected attribute Â can be robust to the noise in the
attribute space, i.e., mitigate bias w.r.t the true protected groups. This means that constraints imposed on
the noisy protected groups do not exacerbate fairness violations in the true protected groups. However, this
fairness violation bound by Awasthi et al. (2020) is only validated on a post-processing technique. On the
other hand, Wang et al. (2020) provide an upper bound on the fairness violation for in-processing constraint
optimization techniques. They demonstrate that if the total variation of conditional probability distributions
of the data, given the true and noisy protected groups, is bounded for all groups, then fairness criteria will be
satisfied w.r.t the true groups within the specified total variation bounds for each group. In practice, the
corruption rate of the sensitive attributes can be used as the upper bound of the total variation between
the conditional distributions, i.e., P (A ̸= Â|A = j) ≤ λ, ∀j ∈ A. The authors show that this bound on the
fairness violation holds for various fairness metrics using performance disparity rates, such as demographic
parity and equal opportunities. Pursuing a comparable objective, Bharti et al. (2022) establishes a worst-case
upper bound on fairness violation in the context of equalized odds. This upper bound is defined under the
assumption that the attribute classifier is sufficiently accurate and makes fewer misclassifications than the
label classifier. However, this assumption may only hold true for a limited number of applications.

While evaluating the fairness violation bounds of the naïve approach that employs noisy protected attributes
could be valuable for practitioners, these assessments often fail to provide fairness guarantees for the true
protected groups. Another line of research concentrates on developing methods beyond the naive utilization
of noisy protected attributes. Instead, these methods address the noise to construct fair models that exhibit
tolerance to variations in sensitive attributes, ultimately providing guarantees of fairness improvement for the
true protected groups. We broadly classify these methods into the Noise Tolerance and Noise Correction
methods.

6.3.2 Noise Tolerant Methods.

We have seen in section 6.2.1 that DRO can control the worst-case error of groups with certain sizes when
demographic information is unavailable. The optimization process is defined around the distance metric over
probability distributions and the neighboring distributions’ maximum distance (radius) likely to include all
groups Hashimoto et al. (2018). Access to noisy protected attributes can help define a more meaningful
boundary that improves fairness on true protected groups. In this spirit, Wang et al. (2020) formulate DRO
using the corruption rate of the sensitive attributes as the upper bound of the divergence metric in the
robust constraints. The corruption rate is assumed to be an upper bound of the total variation between the
conditional probability distributions of the data given the true and noisy protected groups. The authors show
this formulation is guaranteed to improve fairness in the true groups. However, it can lead to higher overall
classification errors due to the assumption about the corruption rate in the robust loss. Wang et al. (2020)
propose an alternative approach that uses soft group assignment. Soft group assignment leverages an axillary
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dataset, where the true sensitive attributes are available, to compute sample weights. Each weight is an
estimated probability that the sample belongs to a given demographic group. The proposed method builds
upon Kallus et al.’s (2022) definition of robust fairness criteria for efficient bias assessment to design a robust
optimization approach that is guaranteed to improve the fairness of the true groups while maintaining better
accuracy compared to the DRO base method. In (Lamy et al., 2019), the authors propose a noise-tolerant
approach that utilizes noise estimation methods, such as a mutually contaminated distribution, to model
noise in the sensitive attribute space. The noise model provides corruption proportions for the sensitive
attributes. The study demonstrates that any fairness-enhancing technique, accepting a minimum fairness
violation parameter τ , can be made robust to noise. This is achieved by deriving a new fairness violation
from the noise model, i.e., τ ′ = (1 − α − β) · τ , where α and β represent the (estimated) noise rates for each
demographic group. In particular, the authors illustrate the ability to maintain fairness in clean sensitive
attributes when running the exponentiated gradient fairness mechanism by Agarwal et al., with the noise
scaled τ ′ instead of τ as the fairness violation tolerance.

6.3.3 Noise Correction Methods.

Chen et al. (2022a) propose an approach that involves correcting noisy sensitive attributes collected with
privacy preservation techniques, such as differential privacy. This method assumes the availability of clean
and private sensitive attributes, which train a model to "correct" the noisy sensitive attributes. The authors
use the Corruption Matrix proposed by Hendrycks et al. (2018) to perform the correction. This is a K × K
matrix that models the corruption process of sensitive attributes and contains probabilities that a label i is
corrupted to class j. The matrix is obtained by training a model on the noisy part of the sensitive attribute.
Using the corrected sensitive attributes, Chen et al. (2022a) adapted the adversarial debaising (presented in
Section 4.2) algorithm to enforce fairness w.r.t statistical parity (equation 1).

6.4 Enforcing Fairness Under Privacy-Preserving Demographics

One way to alleviate privacy restrictions on sensitive attributes is the design of fairness-enhancing methods
employing mechanisms to preserve the privacy of the sensitive attribute. These mechanisms, offering strong
privacy guarantees, can effectively address privacy concerns on access to demographic information. The most
popular mechanisms include trusted third party, secure multiparty computation, and differential privacy .

6.4.1 Trusted Third Party

A trusted third party can be used to provide access to private demographic information. In this setup,
the third party can hold sensitive information private and allow data centers or models to access it while
providing a privacy guarantee to users. Sometimes, the third party might not provide access to the sensitive
attributes. Still, it can only perform fairness analysis, e.g., given the classifier outcomes, the third returns
its group fairness score. Hu et al. (2019) assumed a trusted third party with sensitive attributes to adapt
different fairness algorithms to enforce fairness via the trusted third party. The trusted party is used to
assess fairness violations by providing a signal to select the best model in terms of fairness. Hu et al. (2021)
assume different trusted agents hold sensitive attributes and aim at training a fair model on non-private data
without directly exchanging demographic information with the trusted agents. However, such approaches
are vulnerable to inferential attacks (Hu et al., 2021; Ferry et al., 2023), i.e., attacks to reconstruct sensitive
information. In addition, it is difficult in practice to find a trusted party that will collect or possess useful
demographic information for a variety of tasks and datasets. This could be alleviated using methods that
ensure strong privacy when the server or the third party cannot be trusted (Lowy & Razaviyayn, 2021; Lowy
et al., 2023a). Under these methods, individuals can share their sensitive information even if they do not
trust the third party.

6.4.2 Secure Multiparty Computation (SMC).

Originating in the 1980s, protocols for Secure Multiparty Computation aim to compute a function based
on inputs from multiple parties in a distributed manner while ensuring that only the computation result
is disclosed and the inputs of each party remain confidential. In an ideal scenario, a reliable third party

27



Published in Transactions on Machine Learning Research (06/2024)

would handle the entire computation process, delivering the result to all participants before erasing any
transaction memory. SMC, however, aims to facilitate this process without requiring such a third party. Yao
first formulated what is now known as Yao’s Millionaires problem, providing a provably secure solution for a
two-party comparison problem Yao (1986). Since Yao’s groundbreaking work, the SMC field has seen numerous
innovations. One such advancement is Blind Justice, a framework introduced by Kilbertus et al. (2018).
This framework enables the creation of fair machine-learning models without requiring access to sensitive
attributes. Specifically, Blind Justice first employs additive secret sharing Shamir (1979) to randomly
distribute parts of the sensitive attribute’s value between two non-colluding entities: the model creator and
the regulator. These two parties then engage in a two-server secure protocol Mohassel & Zhang (2017) to
develop a fair machine-learning model. Although SMC helps maintain the sensitive attribute’s confidentiality
during the training phase, it is still possible to deduce this attribute from the fair model Jagielski et al. (2019);
Ferry et al. (2023).

6.4.3 Differential Privacy

Several approaches have been proposed to train fair models with differential privacy (presented in Section 4.3)
guarantees w.r.t to the sensitive attributes (Mozannar et al., 2020; Jagielski et al., 2019; Tran et al., 2022;
Lowy et al., 2023b; Tran et al., 2021b;a). These methods generally involve transforming existing non-DP
fair algorithms into fair DP algorithms using random noise. In particular, Lamy et al. (2019) show that
one can release (ϵ, 0)−differentially private sensitive attributes by randomly flipping the sensitive attribute
with a probability p = 1

exp(ϵ)+1 (Local DP). As previously discussed, imposing fairness constraints on noisy
attributes does not guarantee fairness improvement for the true groups. To overcome this, Mozannar et al.
(2020) propose a two-step method using existing fairness algorithms to train fair models with fairness and
privacy guarantees on the true protected group. The proposed method initiates by applying the exponentiated
gradient (Agarwal et al., 2018) to enforce fairness constraints on private (noisy) attributes. To ensure fairness
guarantees on the true groups, Mozannar et al. adopt the post-processing technique introduced by Hardt
et al. in the second step. This adaptation helps to derive a predictor that ensures fairness improvement on
true attributes. Given the utilization of randomized response in collecting protected attributes, the fairness
constraints in the optimization process are defined using the conditional probability of the true protected
attribute given the private one to account for the noise and ensure no fairness violations on true groups.
Similarly, Jagielski et al. (2019) integrate DP in the postprocessing of Hardt et al. by adding Laplace noise in
the computed conditional probabilities before solving the resulting linear problem to drive the fair classifier.
However, this postprocessing technique generally incurs a higher drop in accuracy and requires sensitive
attributes at test time. To overcome this, Jagielski et al. (2019) incorporate DP in the in-processing fairness
algorithm by Agarwal et al. (2018) (exponentiated gradient). The training is made DP by adding a Laplace
noise to the gradient of the Auditor model during the two-player zero-sum game employed in the original
algorithm to optimize the fairness constraints (Agarwal et al., 2018). On the other hand, Lowy et al. (2023b)
argue that previous methods do not provide fairness and privacy convergence guarantees when the training is
done using mini-batch stochastic gradient descent as in most large-scale deep learning models. Lowy et al.
use regularization technique by Lowy et al. (2021) to enforce fairness constraints in ERM . This regularized
loss is optimized using a DP variant of the stochastic gradient descent-ascent of Lin et al. (2020). In their
method, Gaussian noise is added to the gradient of the weights to ensure differential privacy during training.
Similarly, the work of Tran et al. (2021a) proposes a training inspired from DP-Stochastic Gradient Descent
(DP-SGD) (Abadi et al., 2016) for training deep learning models with privacy guarantees. In DP-SGD, the
gradient of each sample is clipped, and noise is added before updating the model’s weights. Tran et al. use a
Lagrangian formulation of ERM with fairness constraints. In addition to the Gaussian noise added to the
model’s weights, Gaussian noise is added to the updates of the Lagrangian multipliers to ensure differential
privacy w.r.t sensitive attributes.

On the other hand, Tran et al. (2022) leverage the PATE framework (Papernot et al., 2016) to propose
two methods to build fair models with strong privacy guarantees for demographic information. In the first
approach, the teachers are trained to predict demographic information, and the student is trained with
fairness constraints on the noisy aggregated demographic information from teachers. In the second approach,
each teacher is trained to predict the target labels with fairness constraints w.r.t to true (private) protected
attributes. The goal is to transfer the fairness of the teachers to the student model. The authors argue
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that both approaches effectively bound and enhance fairness on true protected groups while simultaneously
providing privacy guarantees for sensitive attributes.

Ensuring the privacy of the sensitive attribute in fair learning, however, introduces a tradeoff between fairness
and privacy, i.e., smaller privacy budgets yield might models with higher bias (Lowy et al., 2021; Tran
et al., 2021a). This leads to the triple accuracy-fairness-privacy tradeoff dilemma. Moreover, differentially
private methods such as PATE and DP-SDG have shown disparate impacts on the model accuracy, i.e., the
drop in accuracy is higher for minority groups (Uniyal et al., 2021). This suggests that training fair models
under these frameworks might exacerbate unfairness in terms of Rawslian Max-Min fairness, i.e., worsen
performance for the minority groups.

6.4.4 Evaluation Protocol in Noisy and Private Demographic Setting.

When evaluating methods in noisy sensitive attribute setups, a noise model is considered for corrupting
sensitive attributes. For example, Lamy et al. (2019); Awasthi et al. (2020); Wang et al. (2020); Celis et al.
(2021) consider a stochastic matrix H ∈ [0, 1]p×p, i.e.,

∑
j∈[p] Hij = 1, where Hij is the corruption probability.

This noise model is applied to the training data. The testing dataset is assumed clean for evaluation. In
other settings, the noise model is defined based on a randomized response of sensitive attributes, i.e., a
local differential private mechanism was applied to the sensitive attribute to ensure privacy. The evaluation
protocol in privacy-preserving settings does not differ greatly from settings where demographic information is
available. Specifically, the sensitive attributes are privately used during the training and testing phase (Tran
et al., 2021b; Hu et al., 2019; Mozannar et al., 2020). The primary goal is to construct a fair model with
strong privacy guarantees concerning the demographic data used in training. In ablation studies, existing
methods introduce variations in the corruption probability of sensitive attributes or the privacy budget to
assess their impact on the proposed methods. For instance, Chen et al. (2022b) demonstrate that, in the
context of local differential privacy, reducing the privacy budget — resulting in a higher corruption rate in
the sensitive attribute space — degrades fairness performance.

Fairness-enhancing methods under noisy and private demographic settings can improve group fairness metrics
such as statistical parity , equalized odds , and equal opportunity . This is possible thanks to access to some
demographic information; although private or noisy, existing methods aim at effectively controlling fairness
on true protected attributes.

7 Auditing Bias Under Missing Protected Attributes

While auditing bias in AI systems generally requires access to protected attributes, regulations and laws
prohibiting their use raise the need to design alternative methods for efficient bias assessment. We Existing
methods attempt to provide efficient bias estimation of the true attributes when proxy attributes are
available (Baines & Courchane, 2014; Chen et al., 2019; Kallus et al., 2022; Awasthi et al., 2021; Kallus et al.,
2022), bias assessment under privacy-preserving of the sensitive attribute (Park et al., 2022a; Toreini et al.,
2023), and bias assessment using group-free metrics (Liu et al., 2023).

7.1 Auditing Bias Using Proxy Protected Attributes.

When estimating biases w.r.t true demographic groups using proxy demographic information, the proxy model
can exhibit biases/errors in predicting the true sensitive features, leading to adverse effects in disparities
assessment on downstream tasks. For example, Baines & Courchane (2014) show that bias assessment using
an approximation of racial information tends to overestimate the true disparity in a mortgage dataset. In
general, for probabilistic models, the estimation of the sensitive attribute is thresholded, meaning that group
membership is assigned when the output probability of the classifier is greater than a defined threshold
q ∈ [0.5, 1):

âi =


0, P

(
ai = 0 | xi

)
< q,

1, P
(
ai = 1 | xi

)
> q,

NA, otherwise
(15)
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With this estimation, some samples (NA) are not used to compute the disparity when the proxy model
outcome is lower than the threshold. Considering the equation 1, the demography disparity (∆̂) of a model
that uses a thresholded estimator of the sensitive attribute can be measured as follows:

∆̂ = µ̂(0) − µ̂(1)

with µ̂(α) =
∑i=1

N I(âi = α | xi)ŷi∑i=1
N I(âi = α | xi)

, α ∈ {0, 1}
(16)

where I represents the indicator function and ŷi = f(xi) the predicted label using the classifier f . The
overestimation or the underestimation of the true disparity is defined by comparing the computed disparity
based on the thresholded estimator (∆̂) with disparities obtained from the true sensitive feature (∆), i.e., ∆̂−∆.
This difference’s positive and negative values represent the overestimation and underestimation of the true
disparity, respectively. As protected attribute classifiers always provide noisy labels when estimating unknown
protected features, algorithms for auditing unfairness should account for the noise in sensitive attributes for
better bias estimation or mitigation. In particular, Chen et al. (2019) perform an analysis of thresholded
proxy models and show that bias assessment with the derived proxies can result in an overestimation or
underestimation of the true disparities, i.e., the disparity in terms of the positive prediction rate computed
using the proxy-protected attribute is relatively lower or greater than the positive prediction rate w.r.t the
true protected groups. The authors suggest that instead of computing the disparities based on thresholded
estimation of the sensitive features, using a soft group assignment within a Weighted Estimator (WE) is more
efficient. i.e., by replacing µ̂ in the equation 16 with the following µ̂w:

µ̂w(α) =
∑i=1

N P(ai = α | xi)ŷi∑i=1
N P(ai = α | xi)

, α ∈ {0, 1} (17)

With the weighted estimator, the uncertainty of the probabilistic proxy model is propagated into the final
estimation of the demographic parity, which may be more useful for the outcome disparity evaluations when
proxy models are used (Chen et al., 2019). Contrastingly, Kallus et al. (2022) demonstrate that without
observing the joint distribution P (A, Y, X), it is challenging to precisely identify the true disparity measure
when relying on proxy attributes derived from marginals, specifically P (X, Y ) and P (A, X). This limitation
arises due to the insufficient information provided by the corresponding marginal distributions, preventing
the unique determination of the joint distribution. Consequently, numerous valid full joint distributions can
provide various potential disparities, leading to ambiguity in the true disparity measure. This ambiguity can
be alleviated only if an independence assumption is satisfied (i.e., Y, Ŷ ⊥ A|X) or there are few samples drawn
from the joint distribution P (A, Y ) available. To reduce the set of possible disparity measures emerging from
the marginal distributions, the Kallus et al. assume one has access to two datasets drawn from the marginals
P (A, X) and P (Ŷ , Y, X). This assumption aligns with the scenario we outlined in Section 6.1.2, where the
sensitive attribute is solely available in an auxiliary dataset. With the two datasets, the authors show that it
is possible to limit the number of disparity values and to derive the closed-form of the disparity estimation
for various fairness metrics such as equalized odds and equal opportunity.

Perhaps counterintuitively, Awasthi et al. (2021) demonstrate that the accuracy of the protected attribute
classifier does not necessarily correlate with the accuracy of the bias estimation, i.e., the gap between the
disparity measured using the true sensitive attributes and the predicted ones. Furthermore, the authors show
that accounting for the uncertainty of the sensitive attribute predictor using an active sampling technique
can yield a better estimation of the model disparity. Estimation is done using samples for which the sensitive
attribute predictor is most certain. A limitation of using the probabilistic proxy models is the assumption
that the features that correlate with the unknown sensitive features are known and available.

On the other hand, Fabris et al. (2023) formulate bias estimation without sensitive attributes as a quantification
problem. The goal of quantification methods is to estimate the prevalence of a class label in a given sample,
i.e., the proportion of the class in the given sample. A naive quantification method is the classify and count
(CC) approach. It consists of training a classifier and counting the frequency of each class in the unlabelled
dataset. Fabris et al. (2023) show that group fairness metrics can be formulated using prevalence scores.
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For example, the equal opportunity metric (Equation 4) can be expressed using the prevalence score of the
sensitive attribute as follows:

P(Ŷ = 1 | A = a, Y = 1) = P(Y = 1, Ŷ = 1, A = a)
P(Y = 1, A = a)

= P(A = a | Y = 1, Ŷ = 1)
P(A = a | Y = 1)︸ ︷︷ ︸

obtained from prevalence estimator

·P(Y = 1, Ŷ = 1)
P(Y = 1)

∀a ∈ {0, 1}

(18)

This suggests that an efficient prevalence estimator can better estimate the true bias in a model. In particular,
when applied to bias estimation using a proxy attribute classifier, the naive prevalence estimator with
hard labels corresponds to the thresholded proxy model (Equation 16), and the estimator with soft labels
corresponds to the weighted estimator presented above (Equation 17). However, the naive quantification
approach is not robust to feature or label space distribution shifts. Fabris et al. (2023) leverage more
principled existing quantification methods robust to distribution shift. For example, Bella et al. (2010)
propose adjusted classify and count (ACC), a better prevalence estimator that accounts for true positive rate
and false positive rate. On the unlabelled data, the true positive rates and false positive rates are estimated
from the training data using K-fold cross-validation. (Fabris et al., 2023) provide empirical evidence that
quantification-based approaches can be more effective in estimating the true bias in the dataset with missing
sensitive attributes, compared to other methods such as thresholded proxy and weighted estimation,

Cornacchia et al. (2023) introduce CFlips (Counterfactual Flips), a new metric for auditing bias based on
counterfactual reasoning. Given a trained model to be audited, a sample x and its protected attribute xa,
when the model predicts a negative outcome for x (i.e., denied a loan), a counterfactual generator is used to
generate a set of samples that are closer to x but for which the model predicts a positive prediction. The
sensitive attribute classifier is then used to predict the sensitive attributes of samples in the counterfactual
set of x. The bias score (CFlips score) is then calculated as the proportion of samples in the counterfactual
set having a predicted sensitive attribute different from xa. The intuition is that a model that does not
encode any dependency to the sensitive attribute should have the same predicted sensitive attribute for all
the counterfactual samples, i.e., a CFlips score equals one. Empirical results show that a model trained
with fairness constraints tends to provide a CFlips score closer to one. In contrast, models without fairness
constraints get a score closer to 0, meaning there is a majority sample in the counterfactual set with positive
predictions assigned to a different demographic group. While these results show the efficiency of CFlips score
for bias assessment, its effectiveness highly depends on the quality of the counterfactual generator.

While the bias estimation methods presented above can effectively assess the true fairness violation, they
pose ethical or privacy risks due to proxies or inference of sensitive information about individuals using
non-sensitive information.

7.2 Auditing Bias Under Privacy Preserving Protected Attributes.

Bias assessment under secured and privacy-preserving frameworks represents an alternative approach to using
proxy-sensitive attributes. This group of methods generally considers a black box access to the model to
be audited. For example, Park et al. (2022a) propose a Trusted Execution Environment (TEE) for secure
and privacy-preserving bias assessment. This method leverages confidential computing technology, utilizing
specialized hardware to store sensitive data in encrypted form and ensuring verifiability guarantees for
computation integrity. Within the TEE, the proposed approach offers fairness certification and verification
protocol for regulatory bodies and extends public verifiability of fairness certificates to end-users. However,
this protocol is sensitive to attacks such as data poisoning for fairness (Solans et al., 2020). In such attacks,
poisoning points can be crafted and introduced in the test set used by the regulator to mislead and enforce
the issuing of a fairness certificate to a biased model. Toreini et al. (2023) propose a different protocol
incorporating three key components: the black-box model under scrutiny, a group of individuals serving as
auditors, and a dedicated fairness computation module. Auditors interact with the model through secured
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and encrypted communications, receiving predictions in encrypted form. Subsequently, each auditor encrypts
essential information for bias assessment—namely, the predicted outcome, ground truth label, and locally
observed and privately held demographic information. The encrypted information is then independently
transmitted to the fairness computation module, which conducts fairness assessments based on a given fairness
notion. This evaluation protocol prioritizes the security and privacy of data by employing computation over
encrypted data and integrating zero knowledge proof (Goldreich & Oren, 1994) for verifying the integrity
of the computations. In addition, the proposed bias assessment protocol provides public access to users
interested in verifying the bias auditing process.

7.3 Auditing Bias Without Group Labels.

Liu et al. (2023) introduce Group-Free Group Fairness a bias assessment process that does not rely on
demographic group labels. This group fairness measure is based on homophily, a property in social networks
where people sharing the same attributes (both sensitive and non-sensitive) are more likely to be connected
than dissimilar people. In social science and social networks analysis of homophily, there is strong empirical
evidence of homophily in demographic dimensions, i.e., in community networks, there is high connectivity
between individuals sharing attributes such as race, gender, religion, and age (Verbrugge, 1977). In contrast to
bias estimation methods using proxy group labels, group-free group fairness measures group disparities using
pairwise similarities between individuals (Liu et al., 2023). The authors evaluate this approach’s effectiveness
in quantifying a model’s disparities on several tasks, such as node classification, recommender systems, and
information access maximization in a graph. The main drawback of group-free bias estimation comes from
the assumption that there is a social network that exhibits the homophily property for all the demographic
attributes of interest.

8 Conclusion and Future Directions

In this paper, we explored the issue of bias estimation and mitigation when the assumption of full access to
demographic information does not hold. We presented various real-world scenarios where the large body of
work on fairness using demographic information is not directly applicable. In particular, we presented the
settings where the sensitive attributes are entirely missing, partially available, noisy, or available only under
privacy guarantees. We presented existing works aiming at addressing fairness issues in each of these settings
and provided a taxonomy. In particular, when demographic information is not available: 1) fairness can be
enforced by focusing on improving the performance of the worst-case group. This goal can be achieved using
methods from robust optimization, invariant representation learning, or reweighting using various methods of
identifying protected subgroups; 2) related features or attribute classifiers can be used as a proxy to true
demographic groups; 3) sensitive attributes can be noisy due data corruption (e.g., for privacy concerns),
existing works focus on bounding fairness violation on the true protected groups, and designing methods that
correct or are tolerant to noise in the attributes space; 4) fair and privacy-preserving models can be used to
alleviate the privacy restrictions from regulators or laws. Despite this large and growing body of work, there
are challenges to be addressed, given room for the following future perspectives:

Bridging Fairness and Generalization. In the survey, we highlighted the similarities between gener-
alization and fairness, in particular for the Rawslsian Max-Min fairness. We observed that improving the
performance of the model over the worst-case group can be formulated as a generalization problem, where
different domains are considered as the unknown demographic groups. However, the fields of fairness and
generalization are mostly studied independently. The work by Creager et al. (2021) makes initial steps in
studying them jointly, by leveraging techniques from fairness without demographics to design a domain
generalization method without domain knowledge. More broadly, some existing works aim to improve
generalization by mitigating dataset bias, framed as spurious correlation (Nam et al., 2020; Zhao et al.,
2023; Ahn et al., 2022). The main objective in mitigating spurious correlation in the data is to identify
the bias-conflicting and bias-aligned samples (Nam et al., 2020), which are samples from the minority and
the majority groups respectively. Besides their similarities, methods for generalization problems are often
evaluated only on generalization benchmarks with known spurious correlations such as Waterbird, CMNIST,
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and CIFAR100 datasets. It will be interesting if different proposed methods are also evaluated on fairness
benchmarks to assess their effectiveness in improving the performance of worst-case demographic groups.

Robustness to distribution shifts. Most existing work presented in the survey assumes the data-
generating process is fixed over time and does not consider dynamic settings where the model is deployed in
changing environments (distribution shift). There are various reasons for the change in the environment such
as changes in the covariate, label, or protected attribute distribution (Barrainkua et al., 2023; Prost et al.,
2021). There are many practical scenarios in which distribution shifts occur, reflecting the constant evolution
of our society, such as in healthcare (Chen et al., 2021; Finlayson et al., 2021). It is, therefore, essential
to design robust, fair models without demographic information while preserving fairness guarantees when
data-generating processes change in the deployed environment.

Consistent Evaluation Protocols with Provable Fairness Guarantees. When demographic infor-
mation is missing, most existing approaches assume sensitive information is observed during the evaluation
phase. The reasons for the unavailability of the sensitive attributes during the training phase might also
apply to the testing phase or during internal bias screening. This makes the application of the proposed
methods less realistic in real-world scenarios, where the sensitive attributes are also not available for bias
assessment. Therefore, it is important to design bias estimation methods that make the same assumptions
about the sensitive attributes across the training, validation, and testing stages. For example, when the
sensitive attribute is noisy, the bias assessment on the testing set should also be performed on a noisy attribute
set. This assessment should be done using bias assessment methods with provable fairness guarantees on
true fairness violations, that also account for the noisy sensitive attributes. The same observation applies
to fairness-enhancing methods that use proxy sensitive attributes where the test is made on true sensitive
attributes instead of using bias assessment methods — over the proxy attributes — with provable fairness
guarantees on the true sensitive attributes (Diana et al., 2022; Jung et al., 2022; Kenfack et al., 2023a). We
have covered some of these methods in section 7, however, they are yet to be employed for evaluation on
different benchmarks.

Establishsing the Limits of Fairness with Missing Protected Attributes. We observed throughout
the survey that alternative solutions in enforcing fairness in missing protected attribute settings generally
come with new dilemmas that are yet to be addressed. For example:

• Using proxy models to infer sensitive attributes poses privacy risks (Andrus et al., 2021). In fact, the
prediction of sensitive information could also violate the privacy constraints from regulations that
prohibit their collection and the restriction could also be applied to predicted sensitive information.
Furthermore, predicting sensitive attributes can be unlawful and raises ethical concerns, e.g., inferring
gender using a photo or inferring racial/ethnicity using last names. Besides, there is no way to
evaluate the accuracy of the proxy-sensitive information when real values are not observed. This
leads to a risk of incorrect bias estimation and discrimination exacerbation.

• Training fair models under privacy preservation of sensitive attributes raises the fairness-privacy
tradeoffs dilemma (Tran et al., 2021a; Jagielski et al., 2019). We observed that privacy-preserving
mechanisms such as differential privacy can provide strong privacy guarantees and alleviate the
restrictions from regulators or laws. However, existing works show that the stronger the privacy
of sensitive attributes the higher the fairness violation. While regulators or laws enforce both
discrimination-free and privacy-preserving decision-making processes, it remains unclear which
value between fairness and privacy should be prioritized when there is no tradeoff satisfying the
different expectations. Moreover, privacy-preserving mechanisms exhibit disparate impact on minority
groups (Bagdasaryan et al., 2019; Uniyal et al., 2021); their use in fair learning can worsen the
performance in terms of worst-case groups.

• Enforcing worst-case group fairness does not necessarily mitigate the disparities between demographic
groups (Chai et al., 2022; Ozdayi et al., 2021; Lahoti et al., 2020). We observed that while achieving
the Rawlsian principle of distributed justice can be an effective fairness metric in different scenarios,
it also inherits the critiques of the Rawlsian principles. In particular, the difficulty in defining and
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targeting the right disadvantaged groups (Franke, 2021). On the other hand, while empirical evidence
shows that aiming to improve the worst-case group can positively impact equalized odds, it generally
fell short in improving group fairness compared to sensitive-attribute aware fair learning. These
shortcomings, therefore, limit the practical application of Rawlsian Max-Min fairness in contexts
where group fairness notions are required, particularly group notions in trade-offs with accuracy.

These dilemmas raise the need to clarify the limits of what can be achieved when the sensitive attributes—the
most important information for bias mitigation and assessment—are missing. This would provide regulators
and practitioners with tools and information to take appropriate actions for bias-free automated decision-
making. Furthermore, addressing these dilemmas might require rethinking the formulation of unfairness in
machine learning.

Benchmarking Existing Methods. A research direction that is worth exploring is to perform an empirical
comparison of the existing methods in order to establish state-of-the-art performances on different fairness
benchmarks. This will be particularly useful in providing the research community with methods that should
be used for comparison, the evaluation process (choice of the worst-case group), and the evaluation metrics.
In particular, we observed that some newly proposed methods to improve group fairness metrics, such as
demographic parity, are compared with methods designed to improve worst-case performance. The benchmark
will guide the community toward comparing methods on fairness metrics that they are designed to improve.
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