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ABSTRACT

Recent advances demonstrate that increasing inference-time computation can sig-
nificantly boost the reasoning capabilities of large language models (LLMs). Al-
though repeated sampling (i.e., generating multiple candidate outputs) is a highly
effective strategy, it falls short when external feedback is available to guide re-
sponse selection and refinement. In this work, we propose Adaptive Branching
Monte Carlo Tree Search (AB-MCTS), a novel inference-time framework that uni-
fies repeated sampling with principled multi-turn exploration and exploitation.
At each node in the search tree, AB-MCTS dynamically decides whether to “go
wider” by expanding new candidate responses or “go deeper” by revisiting exist-
ing ones based on external feedback signals. We evaluate our method on com-
plex coding and engineering tasks using frontier API models. Empirical results
show that AB-MCTS consistently outperforms both repeated sampling and stan-
dard MCTS, underscoring the importance of combining the response diversity of
LLMs with multi-turn solution refinement for effective inference-time scaling.

1 INTRODUCTION

Recent work has begun to reveal that scaling inference-time computation can significantly boost the
performance of large language models (LLMs) on complex tasks. Traditionally, LLM performance
improvements have stemmed from training-time scaling—namely, increasing the size of training
datasets and model parameters. By contrast, inference-time scaling attempts to harness the capacity
of a fixed, pretrained LLM by allocating more computational resources at inference. This approach
aims to enhance the LLM’s reasoning and problem-solving abilities on-the-fly, without further train-
ing.

A prominent approach of inference-time scaling is repeated sampling, which encompasses meth-
ods such as best-of-n, majority voting, or self-consistency (Wang et al., 2023; Brown et al., 2024;
Liang et al., 2024). In this approach, multiple candidate outputs are generated independently from
the same prompt, and a final solution is chosen—often via simple heuristics. Repeated sampling
has proven effective in challenging tasks such as coding competitions (Li et al., 2022) and the
ARC Challenge (Greenblatt, 2024). This strategy leverages the unbounded generative capacity
of LLMs—their ability to produce an effectively infinite range of diverse responses from a single
prompt. The success of repeated sampling illustrates that harnessing this capacity is paramount to
achieving effective inference-time scaling.

However, repeated sampling focuses exclusively on exploration and lacks an explicit mechanism
for exploitation. In certain real-world scenarios, one can obtain external feedback on a candidate
solution. For instance, in coding tasks, one can run tests to evaluate the correctness of generated
programs and gather feedback on how to improve them (Jain et al., 2024). In such settings, it is
natural to want to select promising solutions and refine them based on available feedback, which
repeated sampling alone cannot accomplish effectively.

Although a handful of multi-turn methods for exploration and exploitation at inference time do exist,
most of them were designed before the effectiveness of large-scale inference-time computation and
the unbounded generative capacity was fully realized. Consequently, these methods often do not
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Baseline 1: Repeated Sampling

Baseline 3: Standard MCTS

Baseline 2: Sequential Refinement

Ours: Adaptive Branching MCTS

Repeated sampling only goes wide (i.e. pure exploration) Sequential refinement only goes deep (i.e. pure exploitation)

Task Prompt

Initial Answer

Refined Answer…
Sample 𝒏 answers

Refine 𝒏 − 𝟏 times

Fixed branching factor
(3 in this example)

…

Task Prompt

Answers
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when appropriate…

AB-MCTS systematically decides whether to go wider or deeperMCTS expands a node at most once with a fixed width

Figure 1: A visual comparison of the proposed AB-MCTS against three baseline approaches.
Repeated sampling generates multiple answers at once (wide but shallow), sequential refinement
iteratively revises a single solution (deep but narrow), and standard MCTS applies a fixed branching
factor. In contrast, AB-MCTS dynamically decides whether to branch out or refine deeper in each
iteration, effectively balancing exploration and exploitation.

fully leverage the unbounded generative capacity of LLMs. For example, standard Monte Carlo
Tree Search (MCTS) has a fixed branching factor (i.e., the number of child nodes per state) as a
hyperparameter (Zhou et al., 2023).

In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel
inference-time framework that unifies repeated sampling with multi-turn exploration and exploita-
tion. Unlike traditional MCTS or beam search, AB-MCTS does not fix the width as a static hy-
perparameter. Instead, at each node of the search tree, AB-MCTS adaptively decides whether to
“go wider” by generating new candidate responses or “go deeper” by refining existing ones, lever-
aging external feedback signals. This design naturally extends repeated sampling, allowing us to
invoke the unbounded generative capacity of LLMs when necessary. Consequently, our framework
provides a powerful mechanism for balancing exploration and exploitation in the context of LLM
inference-time scaling.

We evaluated AB-MCTS on complex coding and engineering tasks using frontier API models such
as GPT-4o and DeepSeek-V3, in an inference-time scaling scenario that allows up to 128 generation
calls for each task instance. Under the same computational budget, AB-MCTS consistently achieved
stronger results than previous approaches.

Our technical contributions are summarized as follows:

• Unbounded Generative Capacity + Solution Refinement as a New Challenge. We
highlight the unbounded generative capacity of LLMs as key for inference-time scaling
and propose the new task of combining it with solution refinement to manage the explo-
ration–exploitation trade-off.

• AB-MCTS Algorithm. To address this challenge, we introduce AB-MCTS, which system-
atically decides whether to “go wide” or “go deep.” We present two variants AB-MCTS-M
and AB-MCTS-A based on different principles, each offering distinct trade-offs.

• Empirical Validation on Frontier Models and Complex Tasks. In a practical setting
using frontier API models and real-world complex tasks, we show that AB-MCTS consis-
tently outperforms existing methods.
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Figure 2: Performance Comparison on Code Contest. We compare five methods by plotting the
success rate against the generation budget. The left plot shows GPT-4o’s performance, and the right
plot shows DeepSeek-V3’s performance. The y-axis indicates the fraction of problems fully solved
by the single best solution (Pass@1).

2 PROPOSED METHOD

Our inference-time search problem is defined as follows. We are given input, which may include
task instructions or few-shot examples. The LLM can produce an answer to this input. Moreover,
by providing the existing answer along with feedback on that answer (for instance, the results of
executing code in a coding task) back to the LLM, we can refine the answer. Because the LLM
is used with a non-zero temperature, both of these operations are stochastic, and the same input
can yield different answers. A task-specific scoring evaluator is available. Our goal is to use these
resources to arrive at a good answer that maximizes the score. See Appendix for details on the
problem setting. Please see Appendix A.1 for further details on the problem setup and Appendix A.2
for how naive methods are expressed under this setting.

We consider constructing a tree T where each node N corresponds to an input text and its LLM-
generated output. The expansion from the root does the direct answer generation, while the expan-
sion from a node N employs the answer refinement using the input-output pairs of N ’s ancestors,
including N itself. We formulate MCTS iteratively as follows. We begin with a single root node and
expand the tree nnodes times, ultimately producing 1 + nnodes nodes in total. Each iteration proceeds
in three steps:

1. Selection: choose a node N in the current tree for expansion.

2. Expansion: apply direct answer generation or answer refinement to N to create a new
node Nnew, appended as a child of N .

3. Score backup: propagate the score of Nnew up the tree to update the ancestors’ score
information, including Nnew itself.

Unlike the standard tasks typically tackled by MCTS where the number of possible actions at each
node is finite, each call to an LLM can yield a new output even for the same input, making each
node’s branching factor theoretically infinite. To highlight this generative capacity, we introduce a
“GEN node” that explicitly represents the action of generating a new child. GEN node exists as a
child of all the nodes including the newly expanded ones, and represents the action of generating
a new child and append it to the GEN node’s parent node. When the GEN node is selected during
selection, a new node is created at that location, i.e., the parent node is expanded. This means that
not only leaf nodes but all nodes, including intermediate nodes, are candidates for expansion. This
allows branching to occur adaptively, wherever and whenever it is needed. Further description of
the framework can be found in Appendix A.3.

Here, the challenge lies in how to model the scoring probability of the nodes, including this new type
of GEN node, during selection. For node selection, we adopt a Bayesian view of each action’s score
distribution and apply Thompson Sampling. In standard MCTS, the typical metric for choosing an
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Figure 3: Performance Comparison on three MLE-Bench tasks. Each plot shows performance
versus the total generation budget. For Nomad2018 Predicting Transparent Conductors and Spooky
Author Identification, lower scores are better (RMSLE and Log Loss, respectively); for Random
Acts of Pizza, higher is better (ROC AUC). At each budget, we choose the single solution based on
validation-set performance and report its test-set score.

action is UCT (Kocsis & Szepesvári, 2006), whereas here we replace it with Thompson Sampling.
Let N be a node with potential actions A = {a0, a1, . . . , anchild

}, where a0 is the GEN node, and
a1, . . . , anchild

correspond to already-existing child nodes. Suppose P (r | T, ai) is the posterior
predictive distribution over the score r if we choose action ai. Then Thompson Sampling proceeds
by drawing rai

from P (r | T, ai) for each action ai and selecting â = argmaxai∈A rai
. A key

question is how to build the posterior P (r | T, ai), especially for a0 (the GEN node, which may
have no observed data). We propose two strategies: a mixed Bayesian model (AB-MCTS-M) and a
node aggregation method (AB-MCTS-A).

AB-MCTS-M leverages a mixed-effects model to separate the variance from newly generated so-
lutions (GEN) and their refinements. Each child group (all children of the same parent) shares a
random intercept that captures baseline solution quality, with an additional noise term modeling in-
dividual refinements. Observed node scores continuously update this model via MCMC, enabling
Thompson Sampling to decide when to expand versus refine. Please refer to Appendix A.4 for more
details on AB-MCTS-M.

AB-MCTS-A partitions expansion (GEN) and refinement (CONT) into two distinct posterior distri-
butions. Newly created nodes initialize under the GEN posterior, while subsequent improvements to
existing nodes accumulate under CONT. By using Beta or Gaussian conjugate priors, AB-MCTS-A
efficiently updates these distributions. Appendix A.5 provides more details of AB-MCTS-A.

3 EXPERIMENTS

We evaluated our approach on two benchmarks: Code Contest for competitive programming tasks
and MLE-Bench for machine learning engineering challenges. Detailed experimental setup, hyper-
parameters, and comprehensive results can be found in Appendix B.

For Code Contest evaluation, we used GPT-4o and DeepSeek-V3 models, comparing our AB-MCTS
variants against two baselines: repeated sampling and standard MCTS. As shown in Figure 2, both
AB-MCTS-M and AB-MCTS-A consistently outperform the baselines as the generation budget
increases, with AB-MCTS-A (Beta) achieving the highest success rate at maximum budget.

For MLE-Bench experiments, we selected three representative tasks and evaluated them using
DeepSeek-V3. As demonstrated in Figure 3, our AB-MCTS variants showed superior performance
compared to repeated sampling across most tasks, particularly when given larger generation bud-
gets. AB-MCTS-A (Gaussian) emerged as the strongest performer overall, while AB-MCTS-M
demonstrated faster initial convergence in several scenarios.

These results validate the effectiveness of our adaptive branching strategy across different domains
and model architectures. The performance gains become particularly pronounced with larger gen-
eration budgets, suggesting that AB-MCTS makes more efficient use of additional computational
resources compared to traditional approaches.
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A METHOD DETAILS

A.1 PROBLEM SETUP

In this section, we define the problem setting and introduce the mathematical notation.

We consider problems where the input is a natural language prompt tin (which may include few-shot
examples, task instructions, etc.). Given tin, an LLM produces a natural language output tout, which
is then scored by a score evaluator to yield a final score r. We assume 0 ≤ r ≤ 1, where higher
values of r correspond to better answers.

This two-stage pipeline can be expressed as:

r = R(tout) = R(fLLM(tin)), (1)

where the function fLLM represents an LLM that generates the answer, and R is the score evaluator.
fLLM is stochastic and may produce different outputs tout for the same input tin. Here we allow tout
to include information beyond the direct answer (e.g. the reasoning steps), and we assume that R
properly performs the parsing of this answer to perform the score evaluation.

Our framework applies to any task whose final answer can be quantitatively scored, such as pro-
gramming tasks (Li et al., 2022; Jain et al., 2024), math problems (Gao et al., 2024), and machine
learning competitions (Chan et al., 2024). We assume the score evaluator R is already defined in
a task-specific manner, and our goal is to find tout that attains as high an r as possible during the
inference-time answer search.

In some tasks that mimic real competitions, the ground-truth score evaluator Rgt (reflecting the cor-
rectness of the answer) is not accessible during the answer search stage. For example, in MLE-Bench
(Chan et al., 2024), the test dataset used for final evaluation is withheld, and in coding competition
tasks (Li et al., 2022; Jain et al., 2024), participants can often only submit their code a limited num-
ber of times to obtain the score on hidden test cases. In such situations, to search for the best answer,
one may resort to a different score evaluator. For instance, in MLE-Bench, this could be the perfor-
mance on a public dataset, while in coding competitions it might be the fraction of solved public test
cases. For mathematical tasks, a separately trained reward model (Yang et al., 2024) may be used.
Throughout this work, we assume there is some accessible score evaluator at the answer search stage
that can assess the quality of tout.

A.2 EXISTING METHODS FOR INFERENCE-TIME ANSWER SEARCH

We now review two standard approaches that focus on exploration or exploitation alone.

Only Go Wide: Repeated Sampling. A straightforward approach to inference-time answer
search is to repeatedly sample an answer from the LLM with a nonzero temperature. We refer
to each sampling step as the direct answer generation process. By performing it n times,

tmout = fLLM(tin), m ∈ {1, . . . , n}, (2)

we obtain multiple candidate answers. Then, one can select the best answer based on a predefined
criterion, such as the highest score r (best-of-N ), majority voting or self-consistency. Brown et al.
(2024) recently showed that as n increases, the coverage of generated answers improves. A similar
approach was employed by AlphaCode (Li et al., 2022) to achieve human-level performance on
competitive programming tasks.

Only Go Deep: Sequential Refinement. Alternatively, we can leverage the answer refinement
process and apply it sequentially to perform the answer search. We consider the situation where we
already let some answer generator solve the problem at hand k times, and collected the input-output
pairs tjin and tjout where j ∈ {1, . . . , k} for those answer generations.

We define the answer refinement process as a two-step procedure: (1) creation of a new refine-
ment input from the existing input-output pairs, and (2) generation of a new answer t̃out from t̃in.
Symbolically,

t̃out = fLLM(t̃in) = fLLM

(
hrefine

(
{tjin, t

j
out}j∈{1,...,k}

))
, (3)
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Figure 4: Example tree structure and the score posterior predictive distribution for AB-MCTS-
M. Here, a1 leads to a set of child nodes with higher scores, causing a peak at larger r. As more
child samples are collected, the variance of the distribution decreases.

where hrefine is a refinement input generator that provides all the information necessary for refine-
ment, such as feedback on each answer (e.g. code execution results or errors for coding tasks).

Applying this refinement step iteratively yields n answers:

t1in = tin, (4)

t1out = fLLM(t1in), (5)

tmin = hrefine

(
{tjin, t

j
out}j∈{1,...,m−1}

)
(6)

tmout = fLLM(tmin) (7)

for m ∈ {2, . . . , n}. Finally, one selects the best candidate among {taout}a∈{1,...,n} based on a
chosen criterion, similar to the Repeated Sampling approach.

A.3 ADAPTIVE BRANCHING MCTS

We can regard the two methods in the previous section (pure exploration and pure exploitation) as
special cases of a tree search: the former expands only from the root node, while the latter continues
from the most recently reached leaf node on a single linear path, exploring it in depth without
branching outward. Here, we generalize both approaches under the framework of Monte Carlo Tree
Search (MCTS)1.

We consider constructing a tree T where each node N corresponds to an input text tin and its LLM-
generated output tout = fLLM(tin). The expansion from the root does the direct answer generation,
while the expansion from a node N employs the answer refinement using the input-output pairs of
N ’s ancestors, including N itself.

We formulate MCTS iteratively as follows. We begin with a single root node and expand the tree
nnodes times, ultimately producing 1 + nnodes nodes in total. Each iteration proceeds in three steps:

1. Selection: choose a node N in the current tree for expansion.
2. Expansion: apply direct answer generation or answer refinement to N to create a new

node Nnew, appended as a child of N .
3. Score backup: propagate the score of Nnew up the tree to update the ancestors’ score

information, including Nnew itself.

In our setting, we do not perform a separate rollout, because each node’s score r can be evaluated
directly once an output is generated. After nnodes expansions, we select the best node based on a
chosen criterion.

1Unlike conventional MCTS settings, our objective is to maximize the best (rather than cumulative) score,
which might suggest focusing solely on exploration. However, with finite action budgets, some exploitation is
still needed to achieve the best result (Bubeck et al., 2009), so MCTS remains effective.
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Algorithm 1 Adaptive Branching MCTS

1: function AB-MCTS(nnodes)
2: T ← INITIALIZETREE( )
3: for n = 1, . . . , nnodes do
4: N ← SELECTEXPANSIONTARGET(T ) ▷ Step 1. Selection of an expansion target
5: Nnew ← EXPAND(N , T ) ▷ Step 2. Expand the selected node to generate a child
6: SCOREBACKUP(Nnew, T ) ▷ Step 3. Backup the score from the generated node
7: return SELECTBEST(T )

8: function SELECTEXPANSIONTARGET(T )
9: N ← GETROOT(T )

10: while not ISLEAF(N ) do
11: Nnext ← SELECTCHILD(N , T ) ▷ Detailed in Sec A.4 and A.5
12: if ISGENNODE(Nnext) then ▷ If GEN node is selected, branch off from the node
13: break
14: N ← Nnext
15: return N

The backup step ensures that the score of Nnew is shared with its ancestors, enabling more informed
node selection in subsequent iterations. We adopt different backup rules in our proposed methods
(see Sec A.4 and A.5).

Difficulty in Balancing the Breadth and Depth: Unbounded Branching. Unlike the standard
tasks typically tackled by MCTS where the number of possible actions at each node is finite, each
call to fLLM can yield a new output even for the same input, making each node’s branching factor
theoretically infinite. Recent studies (Brown et al., 2024) suggest that drawing more samples from
the same prompt often boosts performance, so limiting the branching factor might degrade overall
results. To highlight this generative capacity, we introduce a “GEN node” that explicitly represents
the action of generating a new child. GEN node exists as a child of all the nodes including the newly
expanded ones, and represents the action of generating a new child and append it to the GEN node’s
parent node. Algorithm 1 outlines MCTS with such GEN nodes, which we call Adaptive Branching
Monte Carlo Tree Search (AB-MCTS).

To employ MCTS with potentially unbounded branching, we must define a selection policy for when
to create new children (i.e., when to choose the GEN node). Because branching toward new children
expands the tree in the “breadth” direction, this decision critically affects how the tree grows.

In this work, we propose two methods to address unbounded branching: AB-MCTS-M (AB-MCTS
with a Mixed model) and AB-MCTS-A (AB-MCTS with node Aggregation). Both follow the overall
procedure in Algorithm 1 but differ in how they implement node selection via Thompson Sampling.

Modeling the GEN Node’s Score Probability. For node selection, we adopt a Bayesian view
of each action’s score distribution and apply Thompson Sampling. In standard MCTS, the typical
metric for choosing an action is UCT (Kocsis & Szepesvári, 2006), whereas here we replace it with
Thompson Sampling. Let N be a node with potential actions

A = {a0, a1, . . . , anchild
}, (8)

where a0 is the GEN node, and a1, . . . , anchild
correspond to already-existing child nodes. Suppose

P (r | T, ai) is the posterior predictive distribution over the score r if we choose action ai. Then
Thompson Sampling proceeds by:

1. Drawing rai
from P (r | T, ai) for each action ai.

2. Selecting â = argmaxai∈A rai
.

A key question is how to build the posterior P (r | T, ai), especially for a0 (the GEN node, which
may have no observed data). We propose two strategies: a mixed Bayesian model (AB-MCTS-M)
and a node aggregation method (AB-MCTS-A).
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A.4 AB-MCTS-M: ADAPTIVE BRANCHING MCTS WITH MIXED MODEL

Motivation. A natural way to model the GEN node’s score is to separate the variance stemming
from (i) answer generation with GEN node and (ii) subsequent refinements. A mixed-effects model
with a random intercept can capture this structure by assigning a random effect to each child’s
“group.”

Algorithm Outline. In AB-MCTS-M, we fit a separate mixed model at each node N of the MCTS
tree, that is, at each sub-step within the MCTS selection step. Specifically, let Nj (j = 1, . . . , nchild)
denote the direct child nodes of N , and define Tsub(Nj) as the subtree under Nj , including Nj itself.
For a newly generated node Ñ where (i) j = 0 (i.e. for GEN node) and Ñ is a direct child of N , or
(ii) j = 1, . . . , nchild and Ñ ∈ Tsub(Nj), we assume:

rÑ = αj + σyϵÑ , αj = µα + σαϵj , (9)
ϵÑ ∼ N (0, 1), ϵj ∼ N (0, 1), (10)

Here, αj is a “group-level” intercept capturing the quality of the base solution at Nj , while σyϵÑ
represents per-instance noise. The GEN node (action a0) is treated as a newly introduced group
without its own direct observations. However, its group-level intercept α0 is inferred not from the
prior alone but rather from the posterior distribution over µα and σα, which is informed by the other
observed data.

In experiments, we set priors on (µα, σα, σy) and estimate posteriors using MCMC. We then draw
from the posterior predictive distribution for Thompson Sampling (Figure 4). Typically, the GEN
node’s distribution has higher uncertainty, promoting additional exploration.

Score Backup. Once a node Ñ is created, its observed score is added to the history of Ñ and all its
ancestors. This allows AB-MCTS-M to maintain a record of all subtree scores needed for updating
the mixed-model posteriors.

A.5 AB-MCTS-A: ADAPTIVE BRANCHING MCTS WITH NODE AGGREGATION

Motivation. Another way to split the observations into (i) current refinement and (ii) subsequent
refinement is to introduce an explicit “CONT” node for continuing refinement, separate from the
“GEN” node for a brand-new child. This design makes it easier to model these two phases separately.

Algorithm Outline. AB-MCTS-A aggregates all child nodes under a single “CONT” node to
represent ongoing refinement. The probability of exploring new children (GEN) versus refining
existing ones (CONT) is handled via Thompson Sampling. Specifically, we assign probabilities (or
equivalently parameters of posterior distribution) for all the nodes including GEN and CONT nodes.

We propose two families of conjugate priors:

• AB-MCTS-A (Gaussian): uses a normal-inverse-χ2 prior, suitable if r may lie outside
[0, 1].

• AB-MCTS-A (Beta): uses a Beta prior, specialized for scores in [0, 1]. Because of its
simple parameterization, the Beta approach can be more sample efficient in settings where
r is inherently bounded.

Both approaches permit closed-form updates, making them computationally lightweight.

Figure 5 shows a schematic of AB-MCTS-A. When a new node is generated, its observed score is
initially “backed up” to the GEN node that created it. For subsequent updates, the score is backed
up to the CONT node, allowing us to separate the effect of initial generation from later refinements.

Using these posterior distributions, we perform Thompson Sampling at each step between GEN and
CONT nodes. If the GEN node is selected, a new child node is generated; otherwise, one of the
existing children is chosen through Thompson Sampling, using the backed-up scores for each child.
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AB-MCTS-A Example Tree

GEN CONT

r=0.8

 a1

r=0

 a2

r=0.2

 a3

current

a0

GEN CONT GEN GEN CONT

r=0.8 r=1 r=0.3

Figure 5: Example tree structure and the score posterior distribution for AB-MCTS-A. All
child nodes are aggregated under a single “CONT” node.

Finally, because GEN and CONT nodes share the same tree depth in this design, AB-MCTS-A can
produce a wider branching structure than AB-MCTS-M. Specifically, generating a node at depth
d requires choosing the CONT node (instead of the GEN node) d times in succession, making the
probability of reaching greater depths decay approximately geometrically with d.

Score Backup. Whenever a new node is generated, its score is backed up to the GEN node that
created it (and all ancestors). In contrast, further refinements of an existing node update the CONT
branch’s parameters. Figure 5 shows a schematic depiction. Because deeper refinement requires
repeatedly selecting CONT, the probability of reaching depth d decays roughly geometrically in
practice. Nonetheless, AB-MCTS-A can still explore multiple branches by occasionally choosing
the GEN node.

AB-MCTS-A (Gaussian) Parameter Update Rules. Now we describe the parameter update rule
in detail. For the Gaussian case, we use a normal-inverse-χ2 prior:

p(r | {rn}Nn=1) = N (µ | “m, σ2

“κ )χ−2(σ2 | “ν, “τ2), (11)

“m =
κ̆m̆+Nr̄

“κ
, (12)

“κ = κ̆+N, (13)
“ν = ν̆ +N, (14)

“ν “τ2 = ν̆ τ̆2 +

N∑
n=1

(rn − r̄)2 +
N κ̆

κ̆+N
( “m− r̄)2, (15)

r̄ =
1

N

N∑
n=1

rn, (16)

where rn is the observed score.
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AB-MCTS-A (Beta) Parameter Update Rules. Alternatively, if r ∈ [0, 1], we can use a Beta
distribution with the following parameter update rules after observing {rn}Nn=1:

p(r | {rn}Nn=1) = B(r | “α, “β), (17)

“α = ᾰ+

N∑
n=1

rn, (18)

“β = β̆ +

N∑
n=1

(1− rn), (19)

where B(· | α, β) denotes the Beta distribution. We note that, usually this update rule is used in
conjunction with the Bernoulli trial, but here we directly use Beta distribution to model the score
distribution. In practice, this parameter update rule worked well according to our experimental
results.

B ADDITIONAL EXPERIMENTAL DETAILS AND ANALYSIS

B.1 EXPERIMENTAL SETUP

Tasks and Datasets. We evaluated our approach on two benchmarks for code generation (Code
Contest (Li et al., 2022)) and machine learning engineering (MLE-Bench (Chan et al., 2024)).

Code Contest is a well-established competitive programming benchmark, providing public tests
and hidden tests. We use the public tests to calculate each node’s score and the hidden tests for
final evaluation. A solution is counted as correct only if it passes all hidden test cases for a given
problem, and the success rate is defined as the fraction of problems for which the chosen solution is
fully correct.

For MLE-Bench, which comprises practical machine learning tasks derived from Kaggle competi-
tions, we adopt three low-complexity challenges to enable fair comparisons while keeping the API
cost manageable (Chan et al., 2024). Each competition’s training data is randomly split into 80%
for training and 20% for validation. The validation set is used to obtain the scores for each node.
We select a node with the highest validation score at a given inference budget and then evaluate it
on the hidden test set to get the final result. Following previous research (Chan et al., 2024), we use
the AIDE scaffold for our experiments.

Models. We perform our experiments using GPT-4o (gpt-4o-2024-08-06) (OpenAI, 2024)
and DeepSeek-V3 (deepseek-chat) (DeepSeek-AI, 2024). Each LLM generates a complete
solution in a single pass, and we set a maximum generation budget for each model and task. For
Code Contest, we set a generation budget of 512 for DeepSeek-V3 and 128 for GPT-4o. Due to the
expenses associated with API usage, we conducted MLE-Bench experiments with DeepSeek-V3,
fixing its generation budget at 128. We set the temperature of GPT-4o to 0.6 for all tasks, while for
DeepSeek-V3 we use a temperature of 1.5 for Code Contest and 1.0 for MLE-Bench.

Baselines. We compare our proposed AB-MCTS approaches with the following methods:

• Repeated Sampling (Best-of-N ): We independently sample up to N candidate solutions
from the LLM using a single prompt. This strategy has shown strong performance on
coding tasks (Li et al., 2022; Brown et al., 2024).

• Standard MCTS: As a search-based baseline, we adopt a MCTS approach with UCT-
based node selection. Following the previous work (Zhou et al., 2023), we generate 5
child nodes in each expansion step, producing a total node budget of 128. This provides a
non-adaptive tree search baseline for comparison.

AB-MCTS Parameters. We assign the following priors for AB-MCTS-M in Equations 9 and 10:

µα ∼ N (0.5, 0.22), σα ∼ Nhalf(0.2
2), σy ∼ Nhalf(0.3

2), (20)

where Nhalf is the half-normal distribution. The prior parameters are designed such that the prior
distribution lies within the range of [0, 1]. For AB-MCTS-A (Gaussian), we set m̆ = 0, κ̆ = 1,
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ν̆ = 1, and τ̆2 = 0.1 in Equations 11 - 16, and for AB-MCTS-A (Beta), we set ᾰ = 0.5 and
β̆ = 0.5 in Equations 17 - 19. We chose these parameters in a way that imposes as few assumptions
as possible, thereby minimizing any potential bias.

B.2 RESULTS

Results on Code Contest. We first evaluate our frameworks on Code Contest. Figure 2 reports the
success rate (Pass@1) versus the generation budget for both GPT-4o (left) and DeepSeek-V3 (right).
Figure 2 (left) shows that, with GPT-4o, all variants of AB-MCTS exceed Repeated Sampling and
Standard MCTS across most budgets, ultimately achieving higher accuracy at the maximum bud-
get of 27. In particular, AB-MCTS-M consistently outperforms both baselines at every examined
budget, though its final accuracy is slightly lower than that of AB-MCTS-A (Beta). As shown in
Figure 2 (right), when using DeepSeek-V3, all algorithms exhibit similar performance for smaller
budgets. However, once the budget exceeds 26, AB-MCTS-A (Beta) and AB-MCTS-M show no-
tably stronger improvements than Repeated Sampling or Standard MCTS. AB-MCTS-A (Gaussian)
increases at a slightly slower rate, but it ultimately outperforms the baselines. Overall, these results
suggest that, for both GPT-4o and DeepSeek-V3, scaling up the generation budget yields greater
performance gains for AB-MCTS compared to the baselines, confirming the effectiveness of our
adaptive branching search algorithms.

Results on MLE-Bench. In Figure 3, we compare AB-MCTS-A (Gaussian) and AB-MCTS-M
with Repeated Sampling on three competitions from MLE-Bench. In Nomad2018 (Figure 3, left),
both variants of AB-MCTS steadily reduce RMSLE relative to Repeated Sampling. Although brief
fluctuations appear for moderate budgets (24–26), AB-MCTS-M and AB-MCTS-A (Gaussian) even-
tually converge below 0.060 at larger budgets, outperforming the baseline. Using Spooky Author
Identification (Figure 3, middle), AB-MCTS also exceeds the baseline as the generation budget in-
creases. Between 25 and 27, AB-MCTS-M and AB-MCTS-A (Gaussian) continue to improve their
scores, while Repeated Sampling plateaus near 0.47. Lastly, for Random Acts of Pizza (Figure 3,
right), AB-MCTS-A (Gaussian) begins to exceed the other methods from around 23 and ultimately
surpasses 0.66 at higher budgets. Meanwhile, AB-MCTS-M eventually falls slightly behind Re-
peated Sampling, yet remains competitively close overall.

Taken together, these MLE-Bench results mirror our coding-task results: both AB-MCTS variants
generally outperform Repeated Sampling once the budget is sufficiently large. Although AB-MCTS-
A (Gaussian) ultimately turns out to be the strongest framework in these three tasks, AB-MCTS-M
often scores well in earlier stages, suggesting that it can converge more rapidly in some scenarios.
Collectively, these results underline the advantages of adaptively deciding when to explore new
solutions versus refining promising ones.
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