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ABSTRACT

As the complexity and size of deep neural networks continue to increase, low-
precision training has been extensively studied in the last few years to reduce
hardware overhead. Training performance is largely affected by the numeric for-
mats representing different values in low-precision training, but finding an optimal
format typically requires numerous training runs, which is a very time-consuming
process. In this paper, we propose a method to efficiently find an optimal format
for activations and errors without actual training. We employ this method to deter-
mine an 8-bit format suitable for training various models. In addition, we propose
hysteresis quantization to suppress undesired fluctuation in quantized weights dur-
ing training. This scheme enables deeply quantized training using 4-bit weights,
exhibiting only 0.2% degradation for ResNet-18 trained on ImageNet.

1 INTRODUCTION

Deep neural networks have been used in various fields such as vision, audio, natural language pro-
cessing, and reinforcement learning. As larger and more complex neural networks are adopted, the
energy and time consumed for training have become a critical issue in hardware implementation.
Using low-bit representations in training significantly reduces hardware overhead and memory foot-
print; hence, neural network training with limited precision has been extensively studied recently.
For instance, 16-bit formats are already adopted in commercial devices such as FP16 (IEEE, 2019)
in Nvidia GPUs and bfloat16 (Kalamkar et al., 2019) in Google TPU (Wang et al., 2019). Also,
Köster et al. (2017) suggested a new data format using a shared exponent suitable for low-precision
training. Recently, it has been demonstrated that even 8-bit formats could be adopted in deep neural
network training with reasonable accuracy (Sun et al., 2019; Fox et al., 2020). However, there are
various issues in realizing low-precision training in practical applications as detailed below.

Optimal data format for low-precision training: Training performance is susceptible to the data
format we use to represent variables in the network. When a value is represented using a floating-
point format with a fixed number of bits, there is a trade-off between dynamic range and precision.
For instance, allocating more bits to the exponent part in a floating-point format enlarges the dynamic
range but lowers precision due to fewer bits in the mantissa part. Recent studies on 8-bit training
suggest various ways to reduce the dynamic range required for number representation to enhance
representation precision. Early work on 8-bit training (Wang et al., 2018) adopts a 5-bit exponent
to represent different variables using a single format, but Sun et al. (2019) examine the statistics
of each variable and optimize the numeric formats separately. Specifically, the values used in the
forward path (weight and activation) have a relatively narrow dynamic range, and only 4 bits are
allocated to the exponent. Fox et al. (2020) propose to divide data into smaller blocks and assign a
shared exponent bias to each block. Since the values in a block tend to exhibit similar statistics, the
forward (weight and activation) and backward (error) paths could be represented using only 2-bit
and 4-bit exponents, respectively. Note that the shared exponent bias is effectively identical to the
scaling factor. If a variable has a value of m · 2e and a shared exponent bias of b, then its actual
value is m · 2e+bias, which is identical to the scaling factor of 2bias. However, these approaches
are difficult to generalize since we should empirically decide numeric formats for each task, neural
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Figure 1: Two Challenges in low-precision training. (a) An optimal format varies with dataset,
quantization scheme, and model. (b) There is a performance gap between from-scratch training
with quantized weights and fine-tuning of a pre-trained full-precision model.

network structure, and quantization scheme (Fig. 1). Furthermore, analyzing the statistics of each
variable is not enough to determine an optimal format. Their distributions often have a long tail, and
hence the dynamic range of the numeric format should be experimentally selected through many
trial-and-errors in actual training.

Performance degradation in from-scratch training: Previous studies on quantized models show
that a model could achieve comparable accuracy to full-precision models even using 1- or 2-bit
weights (Choi et al., 2019; Martinez et al., 2020) through fine-tuning a pre-trained model. However,
in low-precision training where a neural network is trained from scratch using low-precision values
and computations, the trained model typically shows a noticeable accuracy drop (Elhoushi et al.,
2021). Fig. 1(b) shows the Top-1 validation accuracy of ResNet-18 (He et al., 2016) trained on
ImageNet (Deng et al., 2009) for different training schemes. The weights are quantized into a 4-bit
base-2 logarithmic format. From-scratch training of the model with quantized weights results in a
2.1% accuracy drop, whereas only 1.0% degradation is observed if we fine-tune a pre-trained model.
This suggests that even though a better solution (i.e., a set of parameters) exists for a given format,
it cannot be reached through from-scratch training.

To formalize the issues above, here we divide quantization in low-precision training into two types:
network quantization and data flow quantization. Network quantization refers to the quantization of
the neural network model. An example of this type of quantization is weight quantization. In net-
work quantization, we need to reduce the performance difference between from-scratch training and
fine-tuning (Yang et al., 2019b). On the other hand, data flow quantization refers to the on-the-fly
quantization that occurs when data propagate through the network in low-precision training. Exam-
ples include activation, error, and weight gradient quantizations. Additional errors are introduced in
weight update computation due to this type of quantization, which leads to performance degradation.
Hence, we need to find an optimal format to minimize accuracy drop due to computation errors in
data flow quantization.

In this paper, we present a systematic approach to implementing low-precision training on various
models and tasks. First, we present a method to efficiently find an optimal format for data flow
quantization. In addition, we introduce a hysteresis quantization technique, a new quantization
method for network quantization that can mitigate the issues of from-scratch training. Our main
contributions are:

• We present a method that can predict the training performance of various numeric
formats for data flow quantization. This method allows us to determine an appropriate
data format for different neural network structures, datasets, and tasks efficiently.
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• Using the method above, we propose an optimal 8-bit format suitable for low-precision
training of various models, which enables quantization of BatchNorm layer input and im-
proves hardware efficiency with minimal performance degradation.

• We propose a new quantization scheme that utilizes the hysteresis effect to improve
the performance of from-scratch training in network quantization. This scheme enables
ultra-low-precision training using 4-bit logarithmic weights.

2 DATA FLOW QUANTIZATION

2.1 NUMERIC FORMATS

There are many numeric formats that can be constructed with n bits depending on how much dy-
namic range is required and how many valid bits are used for representing a value. For example,
using 8 bits we could implement 8-bit fixed point integer format, 8-bit floating-point formats such as
FP152, FP143, and FP125 (FP1xy represents 1 sign bit, x exponent bits, and y mantissa bits), 8-bit
posit format (Gustafson & Yonemoto, 2017), and 8-bit float-fix format (Han et al., 2019). Since
the diversity of formats that could be formulated using n bits is nearly unlimited, here we assume
some constraints to limit candidates while still including widely used formats such as fixed-point
and floating-point formats as below:

• The MSB (Most Significant Bit) is used as a sign bit and other bits represent magnitude.
Accordingly, only symmetric formats that have identical representable ranges for positive
and negative numbers are considered. Two’s complement representation is slightly asym-
metric since it can represent one more negative value, but it does not incur a significant
difference.

• The number of valid bits of a larger value is greater than or equal to the number of valid
bits of a smaller value. The valid bits stand for significant digits in binary representation.

• The ratio between consecutive representable values does not exceed 2. For example, the
base-4 logarithmic format is excluded.

We could obtain 166 8-bit formats that meet these constraints. Then, we reduce 1 and 2 valid bits
in each format to obtain 7- and 6-bit formats, resulting in 498 formats in total. More information on
the numeric formats considered in our experiments is provided in Appendix A.1.

2.2 ACTIVATION AND ERROR QUANTIZATION

In a neural network consisting of n layers, the training process is described by

Al+1 = fl(W
t
l , Al) (1)

El = gl(W
t
l , El+1) (2)

Gwl = hl(Al, El+1) (3)

W t+1
l = o(Gwl,W

t
l ) (4)

where A, E, W , and Gw are activation, error, weight, and weight gradient, respectively. f , g, h,
and o are forward, backward, gradient, and update functions. l and t represent the layer number and
time step. We follow the quantized training scheme suggested by Fox et al. (2020), but with the
following modifications to reduce hardware implementation costs. A and E are quantized not only
for the GEMM input but also for the BatchNorm layer input. BatchNorm layer normalizes input
using the mean and variance of each channel, but these values are obtained only after observing
all the inputs from the previous layer, necessitating that all input values are temporarily stored in
memory. Therefore, quantizing the BatchNorm layer’s input significantly reduces memory footprint
and memory access overhead. Additionally, the scope of sharing exponent bias is extended to a
layer (Al and El) to avoid the overhead of aligning partial sums from different blocks in block-wise
exponent sharing. Finally, instead of determining the shared exponent bias by analyzing all values
in the layer, we conservatively update it by detecting overflow and underutilization that occurred in
the previous mini-batch.
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Figure 2: Training loss vs. proposed performance indicators. Blue dots represent full-precision
training runs, and yellow, green, and red dots represent training runs with 8-, 7-, and 6-bit formats,
respectively.

2.3 INDICATORS OF TRAINING PERFORMANCE

Effect of quantized error: Quantizing the error E in the backward path is independent of how the
forward path behaves since the loss surface of the model does not change. Therefore, the optimalW
that the network needs to reach through training remains the same regardless of the error quantization
scheme. However, when the error is quantized, a quantization error ∆E is introduced in E, which
incurs a noiseN∆E inGw through the gradient function in Eq. 3 and potentially updates each weight
in the wrong direction. While some amount of noise may improve the training performance through
regularization, using low-precision formats already introduces a large noise in the network, incurring
performance degradation (see Appendix A.8). Therefore, we suggest that the weight gradient error
N∆E could be a good indicator of degradation in training performance. One way to implement this
is predicting performance using the magnitude ofN∆E ; however, if the noise is in the same direction
as Gw, it would only change the amount of each update and result in a less severe effect. Instead,
we could measure the misalignment between Gw + N∆E and Gw for performance prediction. The
misalignment between two vectors is estimated by

∠(A,B) = cos−1

{
A ·B

‖A‖2 · ‖B‖2

}
(5)

Then, the change in the update direction due to N∆E is ∠(Gw, Gw +N∆E). We can expect that the
smaller ∠(Gw, Gw +N∆E), the better the training performance.

Effect of quantized activation: Contrary to error quantization, activation quantization affects the
way the forward path operates, and the loss surface of the model changes. Hence, the global optima
of weight parameters shift, where the amount of shift would be proportional to the quantization
noise. The displacement of global optima can be indirectly estimated using the direction of the
weight gradients Gw. If the angle ∠(Gw, Gw + N∆A) is small, the deviation of the global optima
is expected to be small as well, suggesting a better training performance.

In the discussions above, we assumed that the angles ∠(Gw, Gw +N∆E) and ∠(Gw, Gw +N∆A)
could be used to predict training performance. We experimentally prove this by comparing the
training performance of different numeric formats. For 498 numeric formats in 6 to 8 bits, we
compare the loss obtained from training with the proposed performance indicators (Fig. 2). Training
loss is obtained by training ResNet-18 on CIFAR-10 dataset using SGD with a momentum of 0.9
for 60 epochs. The batch size is 128 images and the initial learning rate is 0.1, which is decayed
by a cosine scheduler. We average angles from 100 mini-batches after quantizing a pre-trained
model. Note that we use Gw of the first layer since it can reflect quantization errors that occur in the
activations and errors of all the layers in the network. The weight gradients from the full-precision
network, the network with quantized activations, and the network with quantized errors are Gw,
Gw +N∆A, and GW +N∆E , respectively. Fig. 2 shows that using the misalignment angle results
in not only a higher Spearman’s correlation but also a more distinct shape for low training losses,
making it a better metric than the error magnitude. For instance, using the error magnitude would
predict the best format for transformer incorrectly (see Fig. 8(e) in Appendix A.3). While obtaining
the misalignment angle requires additional computations, its overhead is negligible since the part
that requires the most time and computation is to obtain Gw, Gw + N∆E , and Gw + N∆A, which
is still significantly lower than actual training. Using this method, we could determine the optimal
format for a specific neural network model, dataset, and task very efficiently as we only need to
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Figure 3: Scatter plots displaying misalignment angles for 166 8-bit formats. The numbers next to
four selected data formats (INT8, FP152, FP143, and FP134) represent the loss measured in actual
training.

measure the misalignment angle without time-consuming network training. For experiments in Fig.
2, the amount of computation is reduced by 99.6%, and the reduction will be even larger for larger
datasets and complex networks that need more epochs for training.

2.4 OPTIMAL FORMAT FOR DATA FLOW QUANTIZATION

Here we show that we could find an optimal format for training with quantized errors and activations
using the proposed performance estimation method above. To find a format suitable for a wide range
of models, we select six models with different architectures, layer types, and target tasks that are
widely used in quantized training research for experiments: ResNet-18, ResNet-101, MobileNetV2
(Sandler et al., 2018), 2-layer LSTM, small transformer for translation on the IWSLT German to
English dataset (Cettolo et al., 2014), and SSD-Lite (Liu et al., 2016) with MobileNetV2. We
first measure misalignment angles for 166 8-bit formats. To verify the correlation between the
training performance and the misalignment angles, we select four formats that exhibit low hardware
implementation costs (INT8, FP152, FP143, and FP134) and train the networks using each format.
While we may use different formats for activation and error, it requires a complicated datapath (Sun
et al., 2019) and hence we only consider a single format for both variables. The experimental results
in Fig. 3 demonstrate that the training performance is higher if both misalignment angles are small in
all tasks and models, confirming that the proposed indicators could be used to determine the optimal
numeric format. Fig. 3 suggests that FP134 and FP143 are the best candidates across all models.
For hardware implementation, FP134 is the most optimal format due to its low implementation cost,
which is discussed in Appendix A.7 in detail. Note that using the error magnitude leads to the same
conclusion that FP134 is the best format for the target models. See Appendix A.3 for more details.

3 NETWORK QUANTIZATION

In quantized neural networks, the weight parameters are generally quantized in a way that minimizes
the quantization error (Choi et al., 2019; Martinez et al., 2020). For instance, if x is quantized
into a fixed-point format through s × round(xs ), a proper value is selected for the scaling factor s
to minimize the quantization error. However, as the weights continue to change during training,
we need to calculate s for every update, which could cause significant overhead. Therefore, prior
studies on low-precision training suggest constraining the scaling factor to the power of 2 in the
shared exponent (Köster et al., 2017) or the shared exponent bias (Fox et al., 2020). In this section,
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Figure 4: Comparison of quantization schemes.

we analyze the issues behind weight quantization and propose a new quantization scheme to mitigate
those issues.

3.1 FLUCTUATION OF WEIGHT PARAMETERS

In typical low-precision training, a master copy of weight parameters is separately maintained in
high precision, and those weights are updated based on the computed weight gradient. This high-
precision weight is quantized into a low-precision format and used for the forward path computation
during training. If the scaling factor s is constrained to 2n, the quantization threshold remains
the same unless s is updated due to overflow or underutilization. If the optimal weight is located
between two representable values of a data format, the quantized weight would fluctuate alternately
between the two values in each update (Fig. 4(a)) even for a very small weight update, causing large
fluctuations and undermining training performance.

3.2 HYSTERESIS QUANTIZATION

To mitigate the fluctuation issue above, we propose to introduce the concept of hysteresis to quan-
tization. More specifically, we quantize each weight differently in a way that the quantized value
tends to stay at its current value, effectively minimizing undesired oscillation between two values
due to small weight updates. The equation below shows an example of the proposed quantization
scheme.

Qtw =

{
bwtc, if wt > Qt−1

w

dwte, if wt < Qt−1
w

(6)

where w is the original value, Qw is its quantized value, and t is the time step. The proposed
hysteresis quantization reduces fluctuation significantly, stabilizing the training process and allowing
the network to reach global optima more efficiently. In Fig. 4(b), if the weight change ∆W is
small, then enough number of those changes should be accumulated to flip Qw. Hence, the update
frequency is now proportional to the weight gradient. This helps the network to learn better while
suppressing fluctuations for small Gw values. Alternatively, we may mitigate weight quantization
errors by adopting AdaRound (Nagel et al. (2020)), which learns whether each weight should be
rounded up or down to produce the same output as high-precision weights. However, whenever
full-precision weights are updated, we need to re-train the learnable parameters (i.e., quantization
scheme of each weight), incurring a large overhead and undermining the benefit of low-precision
training.

3.3 ULTRA-LOW-PRECISION FORMAT FOR NETWORK QUANTIZATION

To verify the effectiveness of the proposed hysteresis quantization, we select 4-bit logarithmic rep-
resentation as an ultra-low-precision format for weight parameters. This format has the same dy-
namic range as INT8 which is widely used for weight quantization, and is more hardware-efficient
as multiplication is implemented only using simple shift operations. There have been attempts to
use logarithmic weights in quantized neural networks (Lee et al., 2017; Elhoushi et al., 2021), but
from-scratch training shows a significant performance degradation. In logarithmic data formats, the
interval of quantization points is not uniform, making the effect of fluctuation more severe.
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Figure 5: Experimental results of hysteresis quantization.

Fig. 5 shows experimental results of ResNet-18 training on ImageNet using 4-bit logarithmic
weights. Note that we apply channel-wise quantization to the convolutional layers to compensate
for the insufficient expression range and layer-wise quantization to the other types of layers. Further
details on the experimental setup are provided in Appendix A.5.1. First, we measure how many
quantized weights Qw change when the network performs one weight update using a mini-batch
and average them over the first 100 updates in the 60th epoch. The experimental result displayed
in Fig. 5(a) clearly shows that using hysteresis significantly reduces weight change frequency and
stabilizes the training process. Fig. 5(b) compares the training performance of quantization schemes
with and without hysteresis. Hysteresis quantization not only speeds up training but also achieves
better results at the end of training. Note that hysteresis quantization is applicable to other data
formats, and additional experimental results can be found in Appendix A.4.

4 EXPERIMENTAL RESULTS
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Figure 6: Computation flow of 8-bit low-precision training.

4.1 LOW-PRECISION TRAINING SCHEME

For low-precision training, we need to quantize four variables: activation, error, weight, and weight
gradient. In our experiments, we apply the quantized training scheme detailed in 2.2 to all of these
variables, as depicted in Fig. 6. As in previous studies on 8-bit training, the inputs of GEMM are
all quantized into 8 bits. Additional functions are applied to GEMM results in the forward and
backward paths. ReLU, tanh, and sigmoid functions are performed directly on the input, whereas
the input of BatchNorm is re-quantized.
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Table 1: Training Performance of FP134 Data Format

Model (Dataset) [Metric] Baseline (FP32) FP134

ResNet-18 (ImageNet) 69.8 69.8
ResNet-101 (ImageNet) 77.6 77.4
MobileNetV2 (ImageNet) 72.2 71.9
2-layer LSTM (PTB) [ppl.] 91.5 92.0
Transformer (IWSLT) [BLEU] 34.8 34.5
MobileNetV2 + SSDLite (VOC) [mAP] 68.3 68.2

Table 2: Comparisons of Data Formats for Low-Precision Training of ResNet-18 on ImageNet

Formats (Exponent, Mantissa) Top-1 Accuracy

Quantization Scheme w GEMM Batch dw dx Acc. FP32 Proposed
Input x -Norm

Input x

SWALP (Yang et al., 2019a) 81 81 - 81 81 321 70.3 65.8
S2FP8 (Cambier et al., 2020) (5,2)/(8,23) (5,2) - (5,2) (5,2) (8,23) 70.3 69.6
HFP8 (Sun et al., 2019) (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4
BM8 (Fox et al., 2020) (2,5) (2,5) 311 (6,9) (4,3) 311 69.7 69.8
FP8-SEB (Park et al., 2021) (4,3) (4,3) (4,3) (4,3) (4,3) (6,23) 69.7 69.0

FP134 (Ours) (3,4) (3,4) (3,4) (3,4) (3,4) (6,23) 69.8 69.8
1 Fixed Point

4.2 8-BIT LOW-PRECISION TRAINING

In Section 2.4, we found that FP134 is the optimal format for low-precision training using the pro-
posed performance prediction method. We measure the training performance of this format and
compare it against other 8-bit data formats from recent studies by applying those formats to the
training of various neural network models. More details on the experimental setup are provided in
Appendix A.5. The performance of the proposed data format is summarized in Table 1. Overall,
8-bit training using FP134 achieves nearly the same performance as the full-precision training on all
models. Even in MobileNetV2, which is known to be sensitive to quantization due to the small num-
ber of parameters, only 0.3% degradation occurred. Sun et al. (2019) show that HFP8 also exhibits
only 0.2% accuracy degradation in MobileNetV2 (71.81% vs. 71.61%), but they quantize Batch-
Norm input into 16 bits instead of 8 bits, roughly doubling the memory access and computational
complexity. Additionally, since the forward and backward paths employ different data formats,
HFP8 is actually implemented using 9-bit MAC units in hardware (Agrawal et al., 2021). Table 2
compares the training performance of various data formats for ResNet-18 training. The columns w,
x, dw, dx, and acc refer to weight, activation, weight gradient, error, and GEMM accumulation, re-
spectively. Our FP134 format exhibits no accuracy drop compared to full-precision training. HFP8
(Sun et al., 2019) and BM8 (Fox et al., 2020) demonstrate similar performance, but they both use
higher precision to represent BatchNorm inputs, and different formats are adopted in the forward
and backward paths, necessitating complex computation units when implemented in hardware, as
decribed above. In addition, BM8 assumes block-wise sharing of exponent bias, incurring additional
overhead in memory access and data alignment. FP8-SEB (Park et al., 2021) addresses this issue by
employing layer-wise exponent bias sharing and multi-way MAC units, but it results in a 0.7% ac-
curacy drop for ResNet-18 training. Contrarily, our data format shows no performance degradation,
while deeply quantizing BatchNorm inputs into the same format and allowing for a simple datapath
by using an identical data format in the forward and backward paths.

4.3 ULTRA-LOW-PRECISION TRAINING WITH 4-BIT LOGARITHMIC WEIGHTS

Elhoushi et al. (2021) recently demonstrated that 4-bit logarithmic weights could be used for net-
work quantization. Fine-tuning of a pre-trained model only showed 0.2% accuracy degradation, but
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Table 3: Comparisons of Training Schemes Using 4-bit Logarithmic Weights for ResNet-18

Formats (Exponent, Mantissa) Top-1 Accuracy

From1 w x, dw, dx Acc. FP32 Proposed
Scratch

DeepShift-Q (Elhoushi et al., 2021) X (3,0) - - 69.8 69.6
O (3,0) - - 69.8 65.3

FP134 + 4-bit Log W O (3,0) (3,4) (6,23) 69.8 67.7
FP134 + 4-bit Log W + Hysteresis O (3,0) (3,4) (6,23) 69.8 69.6
1 X: fine-tuning of pre-trained models, O: from-scratch training

Table 4: 4-bit Logarithmic Weight Training with and without Hysteresis Quantization.

Model (Dataset) [Metric] FP32 4-bit Log W 4-bit Log W + Hysteresis ∆

ResNet-18 (ImageNet) 69.8 67.7 69.6 +1.9
ResNet-101 (ImageNet) 77.6 76.6 77.3 +0.7
MobileNetV2 (ImageNet) 72.2 67.5 69.6 +2.1
2-layer LSTM (PTB) [ppl.] 91.5 93.3 93.2 -0.11

Transformer (IWSLT) [BLEU] 34.8 33.5 33.8 +0.3
MobileNetV2 + SSDLite (VOC) [mAP] 68.3 63.3 66.1 +2.8
1 Lower is better

from-scratch training of the same model resulted in a 4.5% accuracy drop in ResNet-18 training (Ta-
ble 3). Similarly, our experiments show 2.1% lower accuracy when training ResNet-18 using 4-bit
logarithmic weights and FP134 format for other variables. However, using hysteresis quantization
greatly improves the training performance and reduces accuracy degradation to 0.2%. This is iden-
tical to the training performance achieved through fine-tuning a pre-trained model by Elhoushi et al.
(2021), confirming that hysteresis quantization effectively solves the issue of sub-optimal solutions
in from-scratch training. In addition, Table 4 demonstrates that hysteresis quantization improves
the training performance in all target models. Note that we quantized all trainable weights except
for the BatchNorm parameters into 4 bits in experiments; the training performance could be further
improved by using higher precision for error-sensitive parts such as the first/last layers and residual
connections.

5 CONCLUSION

In low-precision training, the dynamic range of a tensor is data-dependant, and hence an optimal
data format depends on various factors such as model, dataset, and quantization scheme. We showed
that the training performance of a specific data format for activation and error could be predicted
by observing the errors introduced in the weight gradients. Based on this observation, we deter-
mined an optimal 8-bit format for low-precision training very efficiently without running numerous
training runs. The proposed FP134 format achieved a similar or better accuracy compared to prior
works, while allowing for efficient hardware implementation through quantizing BatchNorm inputs
and using a unified data format in both forward and backward paths. In addition, we proposed
the hysteresis quantization scheme for network quantization, which improves training performance
by suppressing undesired fluctuations and stabilizing the training process. In ultra-low-precision
training with 4-bit logarithmic weights, hysteresis quantization significantly improves training per-
formance by mitigating sub-optimal solutions, closely matching the performance obtained through
fine-tuning a pre-trained model. We expect that these two schemes can complement each other to
enable practical low-precision training on various models and tasks.
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A APPENDIX

A.1 VARIOUS FORMATS ANALYZED IN SECTION 2

In this paper, we made three assumptions on the quantization formats that were analyzed. Firstly,
1-bit is allocated as a sign bit, so only symmetric formats are allowed, and secondly, the number of
valid bits with a large absolute numerical value must be greater than or equal to the number of valid
bits with a small absolute numerical value. Lastly, the base does not exceed 2.

Considering the above assumptions, we provide a systematical approach for generating different
quantization methods that were used for analysis in Section 2, in order to create quantization meth-
ods that have trade-offs in terms of dynamic range and the number of valid bits. The quantization
method is expressed with the following items: i) a list of decreasing positive real numbers P that
contains the interval points (Eq. 7) and ii) a non-increasing integer list L that accompanies the in-
terval list, with each item representing the number of valid bits (Eq. 8). Here, s is shared exponent
bias.

P = {2s+1, 2s, 2s−1, ..., 2s−K+1} where s ∈ N (7)
L = {l0, l1, ..., lK−1} where lk ∈ N, i < j ⇒ li ≥ lj (8)

The quantization points Q are generated in each of the intervals that are sliced with 2lk−1 evenly
distributed datapoints. If the interval is {2s+1, 2s}, the quantization point Q can be expressed by
Eq. 9.

Q = {2s, 2s(1 +
1

2lk−1
), 2s(1 +

2

2lk−1
), ..., 2s(1 +

2lk−1 − 1

2lk−1
)} (9)

Notice that L for an α-bit quantization must satisfy

2α−1 = 1 +

K−1∑
k=0

2lk−1 (10)

Since the format is symmetric, only half of the data points are assigned to positive numbers, so the
exponent in Eq. 10 should be α− 1 instead of α. The reason for adding 1 is to include a zero value.
For example, when shared exponent bias is -1, an 8-bit fixed-point quantization would be expressed
as follows:

P = {20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7} (11)
L = {7, 6, 5, 4, 3, 2, 1} (12)

The first interval from 1 to 0.5 would be evenly sliced by 27−1 datapoints, the next interval from 0.5
to 0.25 with 26−1, etc. Various cases are shown in Fig. 7, with P plotted on the x-axis and L plotted
on the y-axis. Since P represents the range of values due to shared exponent bias that is independent
of the data format, L can represent all of the various data formats we consider in this paper.
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Figure 7: Number of valid bits in various 8-bit formats.

When selecting 8-bit formats, we chose the formats so that the intervals with less than 3 valid bits
do not appear for more than two digits to reduce the search space, as they have an unnecessarily
large dynamic range. Thus, formats such as [7,6,5,4,2,2,2,1] were excluded from the search space.
Considering all of the generation rules, we selected 166 distinct 8-bit formats with different dynamic
range and valid bits from [7,6,5,4,3,2,1] to [3,3,3,...,3,2,1]. After the number of valid bits for an 8-bit
format is selected, 1 or 2 is subtracted from each value to create a corresponding 7-bit and 6-bit for-
mats. For example, in the case of [6,5,5,5,5,4,4,4,3,2,1] 8-bit format, the 7-bit corresponding format
is [5,4,4,4,4,3,3,3,2,1] and 6-bit corresponding format is [4,3,3,3,3,2,2,2,1]. From the generated 166
8-bit formats, 7-bit and 6-bit formats were also generated using this rule.
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A.2 SOFTWARE IMPLEMENTATION DETAILS

To support quantized training for various formats, custom C++ and CUDA codes to emulate quan-
tized data were written. Our custom C++ and CUDA extension code could perform quantization-
related functions through utilizing the Python APIs in PyTorch for extendable research while main-
taining high performance. We emulate the quantized value using custom code in the part that needs
quantization throughout the network, and PyTorch built-in functions are used for computation ker-
nels such as convolution and matrix multiplication. We created a package named lptorch, short for
low precision PyTorch, and the code can be found in the supplementary material.

A.3 ANGLE VS. MAGNITUDE TO PREDICT PERFORMANCE
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Figure 8: Scatter plots showing |N∆E | and |N∆A| of 166 8-bit quantization formats. The number
next to the star represents the loss obtained through actual training.

In addition to the misalignment angles of Gw (∠(Gw, Gw + N∆A) and ∠(Gw, Gw + N∆E)), as
defined in Section 2.3, we used the magnitude of noise (|N∆A| and |N∆E |) in order to predict the
final trained performance, and the results are shown in Fig. 8. Fig. 3 and Fig. 8 show that both the
error magnitude and the misalignment angle are good metrics for determining optimal data format.
For the six target models, both metrics suggest FP134 as the best format. However, the misalignment
angle still better captures the training performance. For instance, in Fig. 8(e), although FP134 shows
smaller noise magnitude, the actual training loss is smaller for FP143. Similarly, in Fig. 8(b), (c)
and (f), although INT8 failed and FP152 succeeded in training, the absolute value of noise did not
indicate a clear superior of the two formats. Based on these observations, we conclude that the
misalignment angles are more suitable for predicting training performance compared against using
the absolute value of noise.

A.4 HYSTERESIS QUANTIZATION WITH INTEGER WEIGHTS

In addition to 4-bit logarithmic weights, we also tested the hysteresis quantization scheme on a low-
precision integer format (INT4) that uses uniform quantization. The results are shown in Table 5.
Experimental results show that using hysteresis improves the performance in most cases. In addition,
in MobileNetV2 training with INT4 weights, training initially failed, but using hysteresis enables
reliable training, which suggests that hysteresis quantization not only helps the network to reach the
optimal point but also prevents divergence in an unwanted direction during the training process.

However, it is interesting to see that the hysteresis quantization is less effective on the LSTM model
for the INT4 format. We suspect that this is due to the weight distribution characteristics of the
LSTM model. As shown in Fig. 9, most of the weights have a relatively large magnitude in the
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Table 5: 4-bit Uniform Weight Training with and without Hysteresis Quantization.

Model (Dataset) [Metric] FP32 INT4 W INT4 W + Hysteresis ∆

ResNet-18 (ImageNet) 69.8 61.8 67.0 +5.2
MobileNetV2 (ImageNet) 72.2 Fail 69.7 -
2-layer LSTM (PTB) [ppl.] 91.5 113.4 118.3 +4.91

Transformer (IWSLT) [BLEU] 34.8 32.3 32.4 +0.1
MobileNetV2 + SSDLite (VOC) [mAP] 68.3 Fail 65.7 -
1 Lower is better
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Figure 9: Weight distribution of first layer of 2-layer LSTM and ResNet-18.

LSTM model when normalized, contrary to ResNet-18 in which the weights are more evenly dis-
tributed. In logarithmic formats, the relative amount of quantization error is similar for all values. In
contrast, the relative amount of quantization error is smaller for large values in uniform quantization.
Therefore, the weight parameters of LSTM are more severely affected by fluctuation in logarithmic
formats, making our hysteresis quantization scheme more effective in those formats compared to
uniform quantization.

A.5 EXPERIMENTAL DETAILS

A.5.1 RESNET-18 (IMAGENET)
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Figure 10: Top-1 Accuracy on ImageNet using a ResNet-18 model.
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We conducted ImageNet experiments using SGD with a momentum of 0.9 for 90 epochs with a batch
size of 256 images and an initial learning rate of 0.1 which is decayed by a factor of 10 at the 30th
and 60th epochs. We used the ResNet-18 architecture from the official PyTorch implementation1.
Fig. 10 shows Top-1 training & validation accuracy graphs. Observation of the training graph
indicates that all of the results are close to the baseline within 0.2% with the exception of FP130
without hysteresis quantization.

A.5.2 RESNET-101 (IMAGENET)
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Figure 11: Top-1 Accuracy on ImageNet using a ResNet-101 model.

We trained ResNet-101 by applying the same training method as ResNet-18. We conducted Im-
ageNet experiments using SGD with a momentum of 0.9 for 90 epochs with a batch size of 256
images and an initial learning rate of 0.1 which is decayed by a factor of 10 at the 30th and 60th
epochs. We used the ResNet-101 architecture from the official PyTorch implementation2. Fig. 11
shows Top-1 training & validation accuracy graphs. Observation of the training graph indicates that
all of the results are close to the baseline with less than 0.3% performance drop except for FP130
without hysteresis quantization.

A.5.3 MOBILENETV2 (IMAGENET)
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Figure 12: Top-1 Accuracy on ImageNet using a MobileNet-V2 model.

We conducted ImageNet experiments using SGD with a momentum of 0.9 for 270 epochs with
a batch size of 256 images and cosine annealing with an initial learning rate of 0.05. We used
the MobileNetV2 architecture from the official PyTorch implementation3. Fig. 12 shows Top-
1 training & validation accuracy graphs. Observation of the training graph indicates that FP130

1https://github.com/pytorch/examples/tree/master/imagenet
2https://github.com/pytorch/examples/tree/master/imagenet
3https://github.com/pytorch/examples/tree/master/imagenet
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without hysteresis leads to very unstable fluctuations throughout the training. On the other hand,
in FP130 with hysteresis, training is less susceptible to fluctuations and follows the baseline (FP32)
training closely until the learning rate decreases toward the latter part of learning, where both FP130
with hysteresis and FP134 show some degradation from the baseline. This is seen as a limitation
due to the low precision of each format.

A.5.4 2-LAYER LSTM (PTB)
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Figure 13: Perplexify on PTB using a 2-layer LSTM model.

We adopted the 2-layer Long Short Term Memory (LSTM) network from PyTorch Examples4 for
language modeling on the Penn Treebank dataset (Marcus et al., 1993). We ran experiments in
batches of 20 sentences with an initial learning rate of 20 which is decayed by a factor of 4 at epoch
11, 16, 26, 31 and 37. The embedding and hidden dimensions are 650 and the sequence length is
35. Fig. 13 shows training & validation perplexity.

A.5.5 TRANSFORMER MODEL (IWLST)

We adopted the Transformer Base model from the FairSeq5 repository on the IWSLT’14 German
to English translation task. We used Adam optimizer and default training parameters found in the
repository and trained from scratch for 25 epochs. BLEU scores were calculated using the script
from the repository.

A.5.6 MOBILENETV2 + SSDLITE (VOC)

We adopted a PyTorch implementation of SSDLite from the online repository6. The base network
is MobileNetV2 which was pretrained with each format in Appendix A.5.3. The entire network is
trained on VOC2012 and VOC2007 trainval datasets and evaluated on VOC2007 validation dataset.
We used SGD with a momentum of 0.9 for 200 epochs in batches of 32 images and cosine annealing
with an initial learning rate of 0.01. Fig. 14 shows validation loss at every 5 epochs. Even in
this experiment, in the case of FP130 without hysteresis the loss fluctuates significantly, whereas
in FP130 with hysteresis learning proceeds much more stably. FP134 showed similar results to the
baseline regardless of hysteresis quantization.

A.6 MODEL QUANTIZATION METHODS

We quantized GEMM input and batchnorm input in all quantized training experiments. Among the
six models used in the experiment, the quantization details for three representative structures are
shown in the Fig. 15. In each structure of figure, inputs such as x, c, h, V, K, and Q are also all
quantized in 8 bits.

4https://github.com/pytorch/examples/tree/master/word language model
5https://github.com/pytorch/fairseq
6https://github.com/qfgaohao/pytorch-ssd

16



Published as a conference paper at ICLR 2022

0 25 50 75 100 125 150 175 200
Epochs

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Va
lid

at
io

n 
Lo

ss

Baseline
FP130 w/ hysteresis
FP130 w/o hysteresis
FP134 w/ Hysteresis
FP134 w/o Hysteresis

Figure 14: Validation loss on VOC using a MobileNetV2 + SSDLite.
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Figure 15: Quantized network structures.

A.7 HARDWARE EVALUATION

For hardware implementation cost comparisons, we implemented a conventional MAC unit and a
multi-way MAC unit with integer-based accumulation (Tambe et al., 2020; Park et al., 2021) that
support data formats presented in Section 4.2. For accumulation, we use FP169 with chunk-based
accumulation (Wang et al., 2018). Experimental results in Table 6 show that FP134 exhibits lower

Table 6: Area and Power of 2-Stage Pipelined MAC Units Synthesized in 40nm Process.

MAC Area per MAC [µm2] Power per MAC [µW ]

Structure FP134 FP1431 HFP82 BM83 Flex16+54 FP134 FP1431 HFP82 BM83 Flex16+54

Conventional 1355 1320 1308 1460 3800 122 116 106 141 537

Multi-way
2-input 1335 1480 2342 1865 2268 178 178 283 258 371
4-input 888 1034 1615 1296 1885 120 135 205 184 351
8-input 678 836 1343 1074 1672 97 123 194 168 342
16-input 571 698 1065 957 1540 95 114 170 155 329
32-input 511 668 994 898 1485 87 111 170 152 326
64-input 509 638 955 856 1450 88 110 172 149 326
1 Park et al. (2021) 2 Sun et al. (2019) 3 Fox et al. (2020) 4 Köster et al. (2017)
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cost than FP143 and other formats in previous studies. Note that HFP8 (Sun et al., 2019) and BM8
(Fox et al., 2020) employ different formats for activation and error. Therefore, they need to be
implemented in FP153 and FP145 to support all operations with a single MAC unit (Agrawal et al.,
2021). Since Flex16+5 (Köster et al., 2017) requires 16-bit multiplication, its cost is significantly
higher than other 8-bit formats.
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Figure 16: Multi-way MAC unit with an adder tree.

A conventional MAC unit consists of a multiplier and an accumulator. In the multiplier, the expo-
nents of two input operands are summed while their mantissas are multiplied. The multiplication
part is more complex, and hence it dominates the area of the multiplier. As a result, the size of the
multiplier is larger when more bits are allocated to mantissa. In the accumulator, a floating-point
adder adds the multiplication results to a partial sum in FP169. The adder is decomposed into a
shifter that aligns the mantissa by the exponent difference, an integer adder that sums aligned man-
tissas, and a quantization unit that converts the result back to FP169. Since the result is re-quantized
into FP169, the addition operation of aligned mantissas does not need to be lossless. FP169 format
has a 10-bit mantissa including one hidden bit. We only need to accurately calculate higher 10 bits,
which necessitates a 12-bit adder considering rounding. Shifting by more than 12 bits is not needed
even if the result of the multiplier has a larger exponent range. Therefore, the shifter, adder, and
quantization unit, which are the components of the accumulator, are not affected by the input for-
mat. There are minor differences such as an adder that calculates the difference between exponents
and a shifter with a different bit width of the input, but their costs are ignorable.

Contrarily, a multi-way MAC consists of a multiplier, a shifter for alignment, an adder tree, a nor-
malization unit, and a final accumulator. The multiplier and the final accumulator are identical to
those of the conventional MAC. However, since only one normalization unit and one final accumu-
lator are shared across multiple inputs, their implementation cost becomes insignificant for a larger
number of inputs. The shifter for alignment converts the multiplier output to an integer format since
the cost of integer addition is lower than that of floating-point addition. Then, the adder tree sums
those integer values, and the normalization unit converts the result back to a floating-point format.
The cost of the shifter for alignment, adder tree, and normalization unit is all determined by the
integer bit width, and the larger the exponent range of the input operands, the larger the required
bit width, as shown in Fig. 16. In FP134, FP143, and FP152, the minimum integer bit widths are
23, 37, and 67 bits, respectively. Since the bit width is sufficiently large, the cost difference of these
units exceeds the cost difference of the multiplier. Therefore, the cost of a multi-way MAC increases
with the number of exponent bits.

When designing a neural network training processor, some parts of the hardware (e.g., batch normal-
ization, non-linear activation functions such as tanh and sigmoid, and softmax function) are typically
implemented with higher precision to avoid performance drop. Hence, we need to consider data for-
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Table 7: Area and Power of Format Converting Units Synthesized in 40nm Process.

Area [µm2] Power [µW ]

Direction FP134 FP143 HFP81 BM82 Flex16+53 FP134 FP143 HFP81 BM82 Flex16+53

To FP32 155 141 145 176 330 28 26 27 30 53
From FP32 139 144 152 162 427 19 20 22 23 55
1 Sun et al. (2019) 2 Fox et al. (2020) 3 Köster et al. (2017)

Table 8: FPGA Implementation Results of 2-Stage Pipelined MAC Units

MAC FP134 FP1431 HFP82 BM83 Flex16+54

Structure LUT FF LUT FF LUT FF LUT FF LUT FF

Conventional 284 35 269 33 273 33 304 35 606 69

Multi-way
2-input 499 62 648 76 990 108 755 80 891 70
4-input 719 63 958 77 1589 109 1193 81 1499 71
8-input 1141 64 1503 78 2681 110 2013 82 2664 72
16-input 1997 65 2603 79 4632 110 3516 83 4955 73
32-input 3526 66 4758 80 8614 112 6591 84 9500 74
64-input 6713 67 9074 81 16289 113 12724 85 18649 75
1 Park et al. (2021) 2 Sun et al. (2019) 3 Fox et al. (2020) 4 Köster et al. (2017)

mat conversion overheads when comparing different formats. If we consider various 8-bit data for-
mats with different representation methods, as we did in Table 6, and assume that computations other
than MAC operations are implemented in full precision, the processing architecture (except MAC
units) will be identical for all formats. In addition, the on/off-chip memory space, control logics, and
on-chip interconnects will remain the same. The only difference would be the low-precision MAC
units and the data conversion units between full-precision and low-precision formats. However, the
cost of conversion between low-precision and high-precision floating-point formats is typically very
low and does not vary much with the low-precision format. For low-precision to high-precision
conversion, we only have to add a bias-correction term to the exponent and add 0 after the mantissa.
For high-precision to low-precision conversion, we need to add a bias-correction term to the expo-
nent, clamp the overflowed value to the maximum, and round off the mantissa. The cost is very low
compared to the MAC operation, and the cost difference between different low-precision formats
is negligible. We have synthesized the conversion units for different formats, and their costs are
presented in Table 7. The experimental results confirm that the overhead of data format conversion
is significantly lower than MAC operations. In addition, all formats except Flexpoint exhibit similar
conversion costs.

In addition to the synthesis result for ASIC implementation in Table 6, we measured the hardware
overhead of MAC units of different data formats on FPGA. Table 8 shows the synthesis results
on Xilinx Artix-7 FPGA (XC7A100TCSG324-1). Those MAC units do not need block RAMs
(BRAMs), and we used a compiler directive to avoid using DSP modules for fair comparisons.
Table 8 shows a similar trend to Table 6; the cost of one MAC gradually decreases as the number
of inputs increases in the multi-way MAC. Also, due to integer-based addition in the adder tree, the
cost of FP134, which has the smallest dynamic range, exhibits lower costs than the other formats.

A.8 EFFECT OF QUANTIZATION NOISE ON DATA FLOW QUANTIZATION

Table 9 shows the training results when both activation and error are quantized in various data for-
mats. If an appropriate amount of noise is introduced in the network during training, it will increase
the training loss but reduce the validation loss, suggesting that the model has been improved due
to the regularization effect. However, if the noise level continues to increase, the model’s perfor-
mance will start to degrade at some point. For instance, when MobileNetV2 is quantized in FP134,
its performance is improved through the regularization effect since the training loss increases while
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Table 9: Training Result Comparisons

FP32 FP134 FP143 FP152

Model (Dataset) train val train val train val train val

ResNet-18 Loss 1.286 1.220 1.292 1.223 1.302 1.233 1.343 1.261
(ImageNet) Accuracy 69.50 69.73 69.46 69.67 69.19 69.63 68.27 68.93

MobileNetV2 Loss 1.182 1.118 1.197 1.113 1.217 1.133 1.301 1.192
(ImageNet) Accuracy 71.47 72.20 71.16 72.25 70.63 71.92 68.70 70.35

2-layer LSTM Loss 3.994 4.517 4.014 4.525 4.005 4.518 4.037 4.535
(PTB) ppl. 54.27 91.54 55.39 92.30 54.89 91.68 56.63 93.20

Transformer Loss 3.498 3.847 3.531 3.885 3.527 3.887 3.621 3.942
(IWSLT) BLEU - 34.75 - 34.77 - 34.6 - 33.79

MobileNetV2 Loss - 2.743 - 2.773 - 2.801 - 2.970
+SSDLite(VOC) mAP - 68.34 - 68.16 - 68.32 - 66.56

the validation loss decreases compared to FP32. However, both the training and validation losses
increase when quantized in most cases, resulting in lower accuracy. This suggests that using a very
low precision data format already introduces a large amount of noise in the network, incurring per-
formance degradation. Hence, it is necessary to reduce error in the network to improve the training
performance in low-precision training.
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