
Published in Transactions on Machine Learning Research (06/2025)

NeurIPS 2023 Competition:
Privacy Preserving Federated Learning Document VQA

Marlon Tobaben1∗, Mohamed Ali Souibgui2, Rubèn Tito2, Khanh Nguyen2, Raouf Kerkouche3,
Kangsoo Jung4, Joonas Jälkö1, Lei Kang2, Andrey Barsky2, Vincent Poulain d’Andecy5,
Aurélie JOSEPH5

Competition Organizers
1University of Helsinki, 2Computer Vision Center, Universitat Autònoma de Barcelona,
3CISPA Helmholtz Center for Information Security, 4INRIA, 5Yooz

Aashiq Muhamed6, Kevin Kuo6, Virginia Smith6, Yusuke Yamasaki7, Takumi Fukami7,
Kenta Niwa7, Iifan Tyou7, Hiro Ishii8, Rio Yokota8, Ragul N9a, Rintu Kutum9a,9b

Winning Competition Participants
6Carnegie Mellon University, 7NTT, 8Institute of Science Tokyo,
9aDepartment of Computer Science, and Mphasis AI & Applied Tech Lab at Ashoka, Ashoka University,
9bKoita Centre for Digital Health - Ashoka (KCDH-A), and Trivedi School of Biosciences, Ashoka University

Josep Llados2, Ernest Valveny2, Antti Honkela1, Mario Fritz3, Dimosthenis Karatzas2

Competition Organizers
1University of Helsinki, 2Computer Vision Center, Universitat Autònoma de Barcelona,
3CISPA Helmholtz Center for Information Security

Reviewed on OpenReview: https: // openreview. net/ forum? id= 3HKNwejEEq

Abstract

The Privacy Preserving Federated Learning Document VQA (PFL-DocVQA) competition
challenged the community to develop provably private and communication-efficient solutions
in a federated setting for a real-life use case: invoice processing. The competition introduced
a dataset of real invoice documents, along with associated questions and answers requiring
information extraction and reasoning over the document images. Thereby, it brings together
researchers and expertise from the document analysis, privacy, and federated learning com-
munities. Participants fine-tuned a pre-trained, state-of-the-art Document Visual Question
Answering model provided by the organizers for this new domain, mimicking a typical
federated invoice processing setup. The base model is a multi-modal generative language
model, and sensitive information could be exposed through either the visual or textual in-
put modality. Participants proposed elegant solutions to reduce communication costs while
maintaining a minimum utility threshold in track 1 and to protect all information from
each document provider using differential privacy in track 2. The competition served as a
new testbed for developing and testing private federated learning methods, simultaneously
raising awareness about privacy within the document image analysis and recognition com-
munity. Ultimately, the competition analysis provides best practices and recommendations
for successfully running privacy-focused federated learning challenges in the future.

1 Introduction

Automatic document image processing has become a highly active research field in recent years (Appalaraju
et al., 2024; Lee et al., 2023; Tito et al., 2023), with invoices being one of the most frequently processed doc-
ument types (Šimsa et al., 2023). In a typical real-life invoicing scenario, business suppliers produce invoices

∗This analysis is jointly written by organizers and participants. See author contributions on Page 16.
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for their services and send them to their customers. These documents contain sensitive information, such
as consumer/purchaser identity, transaction details, purpose, date, phone numbers, amount paid, account
information for payment, etc. The customers (document users) need to extract this information and take
the corresponding actions (i.e. reject, or make a payment against the invoice). In automated pipelines, these
documents would be sent to AI technology providers, typically offered in the form of cloud services1, which
automatically extract all required information from the documents, and return it to the document users.

A generic approach to extract information from invoices is DocVQA (Mathew et al., 2020). The extraction
is done by asking questions in a natural language form to get specific information as answers, using a deep
learning model. However, training an accurate DocVQA model requires a considerable amount of data,
that is rarely held by a single entity. One solution is to train this model collaboratively by aggregating and
centralizing data from a set of clients that face the same problem. But, documents often cannot be freely
exchanged due to the sensitive information they contain. Federated Learning (FL) is a learning paradigm
that purports to solve this problem (McMahan et al., 2017b). Rather than exchanging privately-held data,
participating entities (known as clients) train models on their data in a decentralized fashion, exchanging
only the local model updates with a central server. However, even though FL is more private than the
centralized approach, a significant amount of information can still be inferred from the updates shared
during training, or from the parameters of the resulting trained model, whether by an adversarial server,
client, or downstream user (Sikandar et al., 2023).

Differential Privacy (DP) (Dwork et al., 2016) is considered the gold standard in terms of privacy preservation
and can be used to provide provable privacy guarantees. DP formally quantifies the maximum information
leakage from the inclusion of any one individual record in a dataset. Deep learning models can be trained
under DP by clipping parameter updates and adding noise to them (Rajkumar & Agarwal, 2012; Song et al.,
2013; Abadi et al., 2016). However, this introduces a trade-off between privacy and utility. Stronger privacy
guarantees require introducing more noise, which proportionately degrades model accuracy.

Another drawback of FL is the high communication cost (Kairouz et al., 2021b). At each federated round,
the global model is transmitted by the server to selected clients (downstream step) to be trained on their
local data, and then the update of this model is sent by these selected entities back to the server (upstream
step). For models with millions or even billions of parameters, this requires significant bandwidth, multiplied
by the number of federated rounds required to reach model convergence.

In this paper, we present an analysis of the NeurIPS 2023 competition on privacy preserving FL DocVQA
that we designed to expose the above challenges and invite the community to design novel creative solutions
for this real-life use case. It brought together researchers and expertise from the document analysis, privacy,
and FL communities. Additionally, it added a realistic use case for privacy and FL researchers as well as
expanding the scope of document analysis to DP solutions.

2 Related Work

Document Visual Question Answering (DocVQA) DocVQA has been an evolving field during the
last few years. This is due to the emerging datasets that address different document domains. For instance,
industry documents (Mathew et al., 2020; 2021; Tito et al., 2021b; 2023), infographics (Mathew et al., 2022),
multidomain (Landeghem et al., 2023a;b), open-ended questions (Tanaka et al., 2021), multilingual (Qi et al.,
2022), multipage (Tito et al., 2023) or collections of documents (Tito et al., 2021a). However, these datasets
are often small and highly domain-specific, which limits generalizability.

Federated Learning (FL) FL (Shokri & Shmatikov, 2015; McMahan et al., 2017b) addresses this issue,
and has seen practical use in both research and industrial applications (Li et al., 2020), particularly in
domains where sensitive data is common, such as medicine (Dayan et al., 2021) and finance (Long et al.,
2020). FL carries a trade-off between model utility, data privacy, and communication efficiency (Zhang et al.,
2023), and requires specific consideration of client data heterogeneity, scalability, and fault tolerance. Much
recent work in FL focuses on mitigating these problems, primarily through developments in aggregation

1Automatic document processing services offered by large corporations (AWS Intelligent Document Processing, Google Cloud
Document AI, Microsoft Azure Form Recognizer, etc) or specialized providers.
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algorithms (Moshawrab et al., 2023; Elkordy & Avestimehr, 2022; So et al., 2022; Nguyen et al., 2022), but
also in parameter compression (Tang et al., 2019) and quantization (Xu et al., 2022).

Privacy Attacks While FL offers privacy advantages, it remains vulnerable to various attacks that jeop-
ardize client dataset privacy. In the federated architecture, both the server and clients can potentially act
as adversaries. Gradient updates in FL have the potential to disclose information about the training data,
making them susceptible to "gradient inversion attacks" (Zhu et al., 2019; Zhao et al., 2020; Fu et al., 2022;
Wainakh et al., 2022; Li et al., 2022b; Geiping et al., 2020; Melis et al., 2019; Li et al., 2022d), which en-
able accurate data reconstruction. Moreover, adversaries can execute "membership inference attacks" (Nasr
et al., 2019; Melis et al., 2019; Suri et al., 2022; Shokri et al., 2017; Choquette-Choo et al., 2021; Li & Zhang,
2021; Hu et al., 2022b) to infer the inclusion of specific data points in other participants’ datasets, as well
as "property inference attacks" (Melis et al., 2019) to deduce subgroup statistics despite secure aggrega-
tion (Kerkouche et al., 2023; Pejó & Biczók, 2023). FL inherently lacks protection against these threats,
necessitating explicit mitigation strategies to safeguard client data from adversaries.

Differential Privacy (DP) DP (Dwork et al., 2016) can be used to mitigate privacy attacks. A stochastic
algorithm is DP when the output distribution is similar on similar datasets. (ε, δ)-DP (Dwork et al., 2006),
which is a relaxation of the original ε-DP and introduces the additional parameter δ, has a privacy budget that
bounds how much the output distribution can differ between similar datasets. The privacy budget consists
of ϵ ≥ 0 and δ ∈ [0, 1], where smaller values correspond to a stronger privacy guarantee. DP guarantees also
depend on the definition of similar datasets, called adjacent datasets. These adjacent datasets can differ
on different levels, which can be for example the inclusion or exclusion of one datapoint (e.g., an image or
document) or the inclusion or exclusion of a client (e.g, a hospital). Especially relevant to our setting is
group-level DP, which preserves privacy leakage from the inclusion or exclusion of groups of datapoints (Galli
et al., 2023; Marathe & Kanani, 2022), such as multiple records associated with a specific user.

Training ML models under DP Training models under DP is often done with some form of DP stochastic
gradient descent (DP-SGD) (Rajkumar & Agarwal, 2012; Song et al., 2013; Abadi et al., 2016) that has some
modifications to non-DP SGD. The core differences are at each step: (i) a set of datapoints is sampled from
the training dataset, (ii) per-example gradients are computed and clipped so that their L2-norm does not to
not exceed a certain clipping threshold, (iii) the per-example gradients are accumulated, (iv) and Gaussian
noise is added to the accumulated gradients. The practice DP-Adam or other optimizers can be used that
have the same modifications. For language models specific optimization methods like DP-Forward (Du
et al., 2023) can be beneficial. In FL, methods like DP-FedAvg (McMahan et al., 2018) can be used and
DP can be combined with Secure Aggregation to improve the utility (Truex et al., 2019). Furthermore,
DP-FTRL (Kairouz et al., 2021a) adds correlated noise which can in some cases improve the utility/privacy
trade-off. We refer to Ponomareva et al. (2023) for a comprehensive introduction to DP in Machine Learning.

High utility models under DP DP introduces a trade-off between privacy and utility that can make it
hard to use DP in some applications (Ponomareva et al., 2023). Currently, many works improve the utility-
privacy trade-off through transfer learning (Yosinski et al., 2014) assuming the availability of non-sensitive
public data for pre-training and only utilizing DP to protect sensitive downstream data during fine-tuning.
We would like to refer to Tramèr et al. (2024) for a discussion on the drawbacks of these assumptions. Because
of these advancements and the popularity of the approach this competition also assumes the availability of a
model checkpoint that has been pre-trained on public data. This enables, transfer learning, which is highly
effective for both language (Li et al., 2022c; Yu et al., 2022) and vision tasks (Cattan et al., 2022; De et al.,
2022; Kurakin et al., 2022; Tobaben et al., 2023). In particular, parameter-efficient fine-tuning (Houlsby
et al., 2019) with adaptation methods such as LoRA (Hu et al., 2022a) have been demonstrated to yield
improved utility-privacy trade-offs for DP, as have quantization (Youn et al., 2023) or compression of model
updates (Kerkouche et al., 2021a;b; Miao et al., 2022). All these methods reduce the size of the updates,
and thereby reduce the amount of noise addition required. The same strategies often yield competitive
performance for FL.
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3 General Competition Information

This section describes general information about the competition that is common to both tracks. These are
the dataset, metrics, model, starter kit and the participation statistics.

3.1 PFL-DocVQA Dataset

For this competition, we used the PFL-DocVQA dataset (Tito et al., 2024), the first dataset for private
federated DocVQA. The dataset is created using invoice document images gathered from the DocILE
dataset (Šimsa et al., 2023). For every image, it contains the OCR transcription and a set of question/answer
pairs. The version used in this competition contains a total of 336,842 question-answer pairs framed on
117,661 pages of 37,669 documents from 6,574 different invoice providers (See statistics in Table A1 and split
of documents per provider and client in Figure A.2). The original PFL-DocVQA dataset is designed to be
used in two tasks, and so is divided into two subsets. The first task aims at training and evaluating machine
learning privacy-preserving solutions on DocVQA in a FL fashion and uses a base subset of PFL-DocVQA
called the “BLUE”. The second task aims at designing membership inference attacks to assess the privacy
guarantees of the DocVQA models that were trained with the data of task one. These attacking approaches
are to utilize a second subset called the “RED” data. In this competition, we focus on the first task, thus, we
use only the “BLUE” data. For more details on the full PFL-DocVQA datasets, refer to Tito et al. (2024).

The competition aims to train and evaluate DocVQA systems that protect sensitive document information.
In our scenario, sensitive information encompasses all information originating from each invoice provider.
Therefore, an effective model must prevent the disclosure of any details associated with these providers (such
as provider names, emails, addresses, logos, etc.) across diverse federated clients. Following this, the base
data used in this competition consists of a training set divided among N clients (we use N = 10), a validation
set and a test set. (See Figure A.1). The training set of each of the N clients contains invoices sampled from
a different subset of providers, resulting in a highly non-i.i.d. distribution. In the validation and test sets,
documents both from the providers that were seen during training, and from a set of providers that were
not seen are included, to better evaluate the generalizability of the models.

3.2 Evaluation Metrics

In the PFL-DocVQA Competition three main aspects are evaluated: The model’s utility, the communication
cost during training and the DP privacy budget spent through training the model.

Utility To evaluate the visual question answering performance of the participants’ methods we use accuracy
and ANLS (Average Normalized Levenshtein Similarity), a standard soft version of accuracy extensively used
in most of the text-based VQA tasks (Biten et al., 2019a;b; Mathew et al., 2020; Tito et al., 2021b; Mathew
et al., 2021; Tito et al., 2021a; Mathew et al., 2022; Tito et al., 2023; Landeghem et al., 2023b;a). This
metric is based on the normalized Levenshtein Distance (Levenshtein, 1966) between the predicted answer
and the ground truth, allowing us to assess the method’s reasoning capabilities while smoothly penalizing
OCR errors.

Communication cost We measure the efficiency of the communications as the total amount of information
transmitted between the server and the clients in Gigabytes (GB) in both directions. The initial transmission
of the pre-trained model to the clients is not included in the communication cost.

Privacy The methods of track 2 are required to comply with a DP privacy budget of no more than a
pre-defined ϵ ∈ {1, 4, 8} at δ = 10−5. We provided a script within the starter kit detailed in Section 3.4 to
compute the required noise multiplier given the target (ϵ, δ). Participants may need to adjust the script
to their algorithms. Moreover, we required the participants to upload a theoretical privacy proof of their
methods, which was manually reviewed by the competition organizers.

4



Published in Transactions on Machine Learning Research (06/2025)

3.3 Pre-trained Model

The participants were asked to implement their solutions starting from the same pre-trained model. The
architecture chosen is Visual T5 (VT5), it is a multimodal generative network consisting of a simplified
version of Hi-VT5 (Tito et al., 2023), which was originally proposed for multi-page DocVQA. VT5 exploits
the image and text modalities, which is beneficial to perform the DocVQA task. However, this dual-modality
approach also presents a more complex challenge: safeguarding private information across both modalities,
compared to handling just one. Moreover, VT5 is a generative model based on the T5 (Raffel et al., 2020)
language model. Language models can suffer hallucinations (Rawte et al., 2023), leading to the potential
leakage of private information.

The architecture VT5 consists of an encoder-decoder model based on T5. The input of the model is the
question, the OCR tokens of the document (text and spatial information), and the encoded document image
using the DiT (Li et al., 2022a) vision transformer model. These three inputs are concatenated and fed to
the VT5 to output the answer following the autoregressive mechanism.

We also provide pre-trained weights for VT5. First, the language backbone T5 is initialized with the pre-
trained weights on the C4 dataset (Raffel et al., 2020), and the visual DiT with the pre-trained weights on
the document classification task. After that, the full model is fine-tuned on the single-page DocVQA task,
using the SP-DocVQA dataset (Mathew et al., 2020; 2021) for 10 epochs.

3.4 Starter Kit

The starter kit includes the pre-trained model checkpoint, the fine-tuning dataset, code for running
the baselines and instructions on how to run and modify the code. The code itself is based on es-
tablished libraries such as PyTorch (Paszke et al., 2019) and the FL framework Flower (Beutel et al.,
2020). Besides the training code, the starter kit includes functions for computing the privacy parame-
ters based on the hyperparameters and for logging the communication between server and clients. We
tested the installation and execution of the baseline on various clusters across different institutions and
provided support to participants if they encountered any difficulties. The starter kit is openly available:
https://github.com/rubenpt91/PFL-DocVQA-Competition.

3.5 Participation Statistics

Refer to Table 1 for the participation statistics. Our competition has gained interest across the com-
munities and remains an open benchmark in the future: https://benchmarks.elsa-ai.eu/?ch=2&com=
introduction. In Section 6.2 we discuss measures to lower the participation threshold.

Table 1: Participation Statistics as of May 31, 2024.
Registrations to platform Downloads Countries Submissions Track 1 Submissions Track 2

382 494 21 13 6

4 Track 1: Communication Efficient Federated Learning

Track 1 focuses on training high utility models while reducing the communication cost in federated learning.
We describe the task, the organizers’ baseline and two submitted approaches (See Table 2).

4.1 Task Formulation

The objective of track 1 is to reduce the communication used (# bytes), while achieving a comparable utility
(ANLS) with the organizers’ baseline. The baseline achieved a validation ANLS of 0.8676 and we define a
comparable utility to the baseline as 0.8242 ANLS (5% w.r.t. the baseline). Any submission that achieves at
least that ANLS is valid, thus the deciding factor for winning the competition is the communication efficiency,
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which is measured using a single metric. We opted for scoring using a single metric as the trade-off between
utility and communication is not linear. Furthermore, in real world applications less communication efficiency
will lead to higher monetary costs or longer training times that need to be considered in contrast to changes
in model utility.

Participants are required to use the VT5 baseline model with the initial pre-trained weights and utilize only
the PFL-DocVQA dataset for fine-tuning. Further the participants are not allowed to change the PFL-
DocVQA data distribution. Additionally, participants are required to upload a log of the communication
between the clients and the central party (# bytes) and the final model checkpoint.

The organizers evaluate the model utility on a secret test set and thus the model architecture needs to be
the same as the initial baseline. While this makes some solutions such model distillation more challenging,
the track is open to a wide range of possible solutions. Participants could, e.g., utilize parameter-efficient
fine-tuning, compression of the FL updates, lower precision or better hyper-parameters to achieve higher
communication efficiency while maintaining a comparable utility.

4.2 Baseline Solution Track 1

The baseline solution for track 1 fine-tunes all parameters of the pre-trained model but the visual module.
It essentially uses Federated Averaging (FedAvg) (McMahan et al., 2017a). In each global round, the central
server samples K = 2 clients out of all N = 10, and each of these clients computes the weight updates
locally across multiple local rounds. The central server aggregates the client updates and communicates the
updated model to the sampled clients in the next round. This baseline achieves 0.8676 of ANLS and 77.41
accuracy on the validation set after 10 FL Rounds. It transmits 1.12GB constantly for each communication
stream, which results in a total of 44.66GB during the entire training process. We sample K = 2 clients at
every federated round.

Table 2: Competition Winners Track 1 (Communication efficient federated learning)
Rank Team Method Communication ↓ ANLS ↑

1 Muhamed et al. (Section 4.3) LoRA 0.38 GB (-99.14%) 0.8566 (-3.45%)
2 Niwa et al. (Section 4.4) FedShampoo 10.01 GB (-77.37%) 0.8891 (+0.20%)
- Organizers (Section 4.2) Baseline 44.65 GB 0.8873

4.3 Winner Track 1: Muhamed, Kuo, and Smith

We considered three orthogonal methods to reduce communication (LoRA, tuning FL hyperparameters, and
quantization). The winning solution for Track 1 uses only LoRA (100× reduction). Combining all methods
can achieve a 5200× reduction. We present an overview here and discuss the details in subsections.

1 MB
2 MB

4 MB
8 MB

16 MB
32 MB

64 MB
128 MB

256 MB
512 MB

1.02 GB
2.05 GB

4.1 GB
8.19 GB

16.4 GB
32.8 GB

65.5 GB

Communication (log scale)

Full finetuning

LoRA

Tuned HPs

Quantization

40.05 GB

0.38 GB

55 MB

7.7 MB

39.67 GB    (-99.04%)

0.33 GB    (-99.86%)

47 MB    (-99.98%)

1. LoRA. Low-Rank Adaptation trains low-rank adapters while freezing the rest of the model (Hu et al.,
2022a). We use LoRA to reduce the number of trainable parameters to 3.4M (1.37% from 250M). Using 2
clients per round, we reach the target ANLS in 7 rounds (0.38 GB total communication).
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2. Tuning FL hyperparameters. On top of 1. LoRA, we sample 1 client per round (default: 2) and
train for 16 local epochs (default: 1), which respectively reduces communication and improves utility. With
these adjustments, we reach the target ANLS in 2 rounds (55 MB total communication).

3. Quantization is a lossy compression approach which we use to reduce the size of the communicated
LoRA updates. We use NF4 (4-bit) quantization which reduces the message size by ∼ 8× while achieving
the target ANLS with the same configuration as 2. (7.7 MB total communication).

In all experiments, clients perform local fine-tuning with batch size = 16 and learning rate = 2e-4. In our
code, we train one model at a time using data parallelism. Specifically, we split each batch over 8 GPUs,
resulting in a batch size of 2 per GPU (we used 8 GeForce GTX 1080 Ti GPUs). Our code is shared on
Github: https://github.com/imkevinkuo/PFL-DocVQA-Competition.

4.3.1 Communication cost

Since all messages have an identical size in this FL setting, the total communication cost is simply a product
of the a) size of communicated messages and b) number of messages sent. In the table below, we break down
each method’s cost using the following equations:

‘Total’ = ‘Message Size’ × ‘Messages’
where ‘Message Size’ =

(
‘LoRA’ (#params) + ‘Base (#params)’

)
× ‘Bits’ (per param)

and ‘Messages’ = ‘C’ (clients per round) × ‘R’ (FL rounds) × 2 (up and down)

Message Size Messages Total ANLS
Method LoRA Base Bits Bytes C R Bytes Val Test
Baseline - 250M 32 1.11 GB 2 10 40 GB .8676 .8873
LoRA (rank=6) 660K 2.75M 32 13.7 MB 2 7 380 MB .8400 .8566
Tuned HPs 660K 2.75M 32 13.7 MB 1 2 55 MB .8467 .8683
Quantization 660K 2.75M 4.5 1.92 MB 1 2 7.7 MB .8444 .8673

Table 3: We summarize the three methods used. LoRA reduces the number of trainable parameters, tuning
HPs reduces the number of messages, and quantization reduces the parameter bitwidth.

LoRA. While the VT5 architecture contains both a language backbone (T5) and vision backbone (DiT),
we only use LoRA on the language backbone and insert 110K new parameters per LoRA rank. For the
vision backbone (‘Base’), we directly fine-tune the spatial encoder (2.16M params) and visual embedding
projection head (0.59M params). All other parameters in the entire model are frozen. Although LoRA
changes the model architecture during training, it can be merged with the pretrained architecture after
training is complete, which allowed us to make valid submissions.

The ∼ 110K parameters (0.44 MB) per LoRA rank r come from applying LoRA to the query and value
projections in each attention layer of the language backbone. Each projection matrix has dimension 768×768,
so its two adapter matrices A, B will both have dimension 768×r. There are 36 attention layers which contain
a query and value projection, giving the final value:

36 (layers) × 2 (query and value)× 2 (A and B) × 768 × r (rank) = 110, 592 ≈ 110K× r

We note that LoRA typically takes more iterations to train than full fine-tuning. While the full fine-tuning
baseline provided by the organizers achieves .8242 validation ANLS in 4 rounds (this is 5% below the .8676
ANLS at 10 rounds), we find that LoRA takes 7 rounds (↑ 2×) to achieve the same ANLS. However, the
parameter reduction from LoRA (↓ 100×) greatly offsets this cost. For all experiments in this section, we
use LoRA with rank r = 6.
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4.3.2 Tuned FL Hyperparameters

We find that extended local fine-tuning on a single client is very helpful, as it increases utility with no
additional communication cost. In Table 4, we show that training only on a single client can achieve .8242
ANLS. We also find that sampling a single client is more efficient than averaging multiple clients each round.
In Table 5, ‘1 Client’ usually outperforms ‘2 Clients’ when given double the number of rounds.

Client ID
Epochs 0 1 2 9

1 .7648 .7638 .7577 .7552
2 .7893 .7912 .7904 .7797
4 .8111 .8108 .8039 .8089
8 .8247 .8219 .8231 .8176

16 .8337 .8345 .8329 .8307

Table 4: Extended local training on a single client
greatly improves validation ANLS.

FL Rounds
1 Client 1 2 4 8
1 Epoch .7419 .7875 .8083 .8331
2 Epochs .7719 .8061 .8206 .8382
2 Clients (2× communication cost)
1 Epoch .7493 .7899 .8232 .8400
2 Epochs .7696 .8083 .8355 .8513

Table 5: Sampling one client and training for double
the rounds achieves a higher validation ANLS than
sampling two clients.

One surprising takeaway from our experiments is that the data from a single client is adequate to train a
competitive model. However, there are many limitations with limiting the client subsample, which we briefly
outline. First, in cross-device FL settings which consider a large network (up to millions) of clients, extreme
subsampling can lead to low-quality global updates. Next, since subsampling slows down convergence, the
model will take more rounds and thus more wall-clock time to train. Finally, in the context of privacy,
sampling fewer clients makes it more difficult to bound the sensitivity of the aggregate update with respect
to any individual client’s data, which results in greater privacy loss.

4.3.3 Quantization

By default, each parameter is communicated as a 32-bit floating-point value (FP32). We reduce this to 4.5
bits (↓ 7×) by using NF4 (normal-float) quantization (Dettmers et al., 2023). While NF4 proposes using
LoRA on top of a quantized backbone, we use quantization to reduce the size of all communicated parameters
(in both LoRA and the backbone). Similar recent FL methods have generally explored combining LoRA
with parameter compression to reduce communication (Yadav et al., 2023; Kuo et al., 2024).

In NF4, each parameter is stored using 4 bits (16 unique values) and each block of k = 64 parameters shares
an FP32 normalization factor. This adds up to 4 + (32/k) = 4.5 bits per parameter, as shown in Table 3.
Parameters are quantized only before communication, while finetuning and aggregation are all done in
full precision. As we show in Table 6, quantization slightly harms model performance, but this cost is greatly
offset by the reduction in communication.

4.4 Runners-up Track: Niwa, Ishii, Yamasaki, Fukami, Tyou, and Yokota

We briefly present our methods and experimental results. For more detailed information can be found in
Section 4.4.1. We aimed to achieve faster convergence of training for local models with fewer communication
rounds. To achieve this, we utilized Shampoo (Gupta et al., 2018), a second-order optimization method,
in local update rules by multiplying the local preconditioning matrix to the local stochastic gradient. The
update rules of our method, named FedShampoo, are outlined in Algorithm 1 in Appendix C. Shampoo
enables smooth local updates by geometrically rotating and scaling stochastic gradients. To reduce the
memory footprint in computing large-scale preconditioning matrices, we approximated them by employing
layer-wise block-diagonalization. Notably, the local preconditioning matrices (approximated by sub-matrices)
were not transmitted to the central server, thus avoiding excess communication costs. Furthermore, we
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Full-precision Quantized
Round Stage 1 Client 2 Clients 1 Client 2 Clients

1 Download Initialize weights using shared RNG seed
Finetuning .8337 .8341 .8337 .8341

Upload - - .8301 .8313
Aggregation - .8255 - .8253

2 Download - - - .8253
Finetuning .8467 .8437 .8448 8445

Upload - - .8444 .8524
Aggregation - .8520 - .8518

Total Communication 55 MB 110 MB 7.7 MB 15.4 MB

Table 6: We track the validation ANLS after each stage of communication-efficient FL. When sampling ‘2
Clients’ per round, ‘Finetuning’ and ‘Upload’ refer to the average ANLS over the two client models. ‘-’
indicates that the same model(s) are evaluated as the cell above e.g. full-precision ‘Upload’ and ‘Download’
do not change the model(s).

excluded the embedding layer from the optimization target, resulting in a reduction of approximately 26 %
in communication per round compared to whole parameters2.

In Table 2, FedShampoo achieved the target ANLS score with 10.01 GB communication cost. Refer to
Figure A.4 in Appendix C for convergence curves using validation loss, ACC and ANLS. We submitted the
model after only R = 3 communication rounds, surpassing the target ANLS score of 0.8873 and resulting in
an approximately 30 % reduction of the communication cost compared with the baseline method (using solely
AdamW-based optimizer). Furthermore, FedShampoo achieved higher ACC and ANLS scores compared with
the baseline method after exceeding the ANLS target score (after 3 communication rounds). This provides
as empirical evidence of FedShampoo’s faster convergence, which benefits from applying the preconditioning
matrix to the stochastic gradient. The detailed experimental configurations, such as hyperparameter tunings
of learning rate and clipping threshold, are summarized in Section 4.4.1.

4.4.1 Details on FedShampoo

Update rules of FedShampoo: First, we explain the update rule using Shampoo Gupta et al. (2018).
As discussed in Section 4.4, Shampoo is a second-order optimization method that involves multiplying the
preconditioning matrix with the (stochastic) gradient, and the preconditioning technique in Shampoo is
introduced in the local model update in our FedShampoo, which is summarized in Algorithm 1.

In the optimization of models in the form of neural networks, it is typical for model parameters to be described
by a stack of matrices/tensors to transform each layer’s input and output. Although we have focused on
formulating the update rules in a matrix manner (since we will mainly focus on Transformer-based model),
it is not a loss of generality. For all clients i ∈ [N ] and each layer b ∈ [B], let W

(t)
i,b ∈ Rdout,b×din,b be the

model parameter in the b-th layer of the neural network, and G
(t)
i,b ∈ Rdout,b×din,b be the stochastic gradient

of the local loss function with respect to W
(t)
i,b . The local model update rule using Shampoo is given by

L
(t+1)
i,b = L

(t)
i,b + G

(t)
i,b

[
G

(t)
i,b

]⊤
,

R
(t+1)
i,b = R

(t)
i,b +

[
G

(t)
i,b

]⊤
G

(t)
i,b ,

W
(t+1)
i,b = W

(t)
i,b − η

[
L

(t)
i,b

]−1/4
G

(t)
i,b

[
R

(t)
i,b

]−1/4
, (1)

2We submitted a model applying LoRA to FedShampoo; however, it did not exceed the target ANLS score.
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where η denotes the learning rate, and L
(t)
i ∈ Rdout,b×dout,b and R

(t)
i ∈ Rdin,b×din,b are the preconditioning

matrices for the gradient and the weight matrix, respectively.

In Equation 1, the local preconditioning matrices, Li,b and Ri,b, are multiplied to both sides of the stochastic
gradient in a matrix form Gi,b. This process can be interpreted as mitigating changes in the local gradient of
loss function through model parameter updates by multiplying local preconditioning matrices. This supports
mitigating the negative effects of complex loss landscape in the loss function using neural networks, and it
can lead to fast convergence to the stationary point.

Thanks to the Shampoo application in a layer-wise manner, it is possible to track Li,b and Ri,b for each
layer, which significantly reduces the memory footprint. Specifically, while the full-matrix version of AdaGrad
Duchi et al. (2010) requires memory linearly proportional to the number of model parameters O(d2

out,bd2
in,b),

Shampoo only requires memory with O(d2
out,b + d2

in,b) for each layer. Furthermore, the inversion of the
preconditioning matrices can be efficient, since it takes O(d3

out,b + d3
in,b) rather than O(d3

out,bd3
in,b) in terms

of computational complexity.

Additionally, element-wise clipping was used in the local model update rule, which is a de-facto standard for
stable optimization of the Transformer-based models, as mentioned in e.g., Zhang et al. (2020). Due to the
heavy-tailed noise in stochastic gradient, the magnitude of updates in model parameters has significantly
changed, leading to unstable convergence. To address this issue, we effectively alleviated this phenomenon
by incorporating the clipping of the magnitude of each element of gradients into adaptive updates using
Shampoo.

Finally, as noted in Section 4.4, to reduce the amount of communication per round, the embedding layer was
excluded from the optimization target. This results in a reduction of around 26 % amount of parameters,
rather than transmitting whole parameters.

In the following, experimental setups are explained.

Compared methods: In our experiment, we utilized two methods with differing local update rules: 1) the
baseline method using AdamW optimizer, and 2) FedShampoo using Shampoo-based preconditioner to the
Stochastic Gradient Descent (SGD).

Hyperparameter Tuning: To ensure a fair comparison of the two methods, several hyperparameters
(learning rate η and element-wise clipping threshold C) were empirically tuned. This was done while main-
taining fixed values for the total communication rounds R = 10, the number of inner loops for local update
L = 5000, and the number of client sampling K = 2. In Figure A.3, a summary of our hyperparameter
tuning for FedShampoo is provided. After performing empirical trials, we selected η = 2e−4 and C = 0.2.

Computing environment: We used a server with 8 GPUs (NVIDIA A6000 for NVLink 40GiB HBM2)
and 2 CPUs (Xeon).

Experiment results: The best validation accuracy and ANLS were achieved with the proposed FedSham-
poo (with freezing embedding layer). As depicted with two lines, there was a confirmed difference between
the two methods.

4.5 Takeaways from Track 1

In the below box we highlight important takeaways from the Track 1. The insights are linked to prior
literature that suggested decreasing the communicated parameters (Hu et al., 2022a; Tobaben et al., 2023),
and the quantization of the communicated parameter update (Yadav et al., 2023; Kuo et al., 2024). In terms
of hyperparameters it is noteworthy that the the winning team used significantly more local epochs before
communicating than the baseline. While the literature (Karimireddy et al., 2020) suggests that a large
number of local updates leads to the clients drifting apart but the findings suggests that 16 local epochs do
not lead to this effect and are more optimal than just one epoch as in the baseline.
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Takeaways Track 1: The participants improved the communication efficiency through multiple orthogonal
approaches that could be used complimentary.

1. Optimizing the hyperparameters is crucial as highlighted by both winner and runners-up.

2. Carefully selecting the parameters to communicate (e.g., LoRA) can yield benefits but also significantly
decrease performance.

3. Quantization of the communicated parameter update, but not the prior computation and aggregation
only slightly harms performance.

4. Changing the optimization method can lead to faster convergence, allowing one to reduce the number of
rounds of communication while yielding similar utility.

It should be noted that these complex methods require substantial compute for ablation studies, as illustrated
by the number of GPUs used.

5 Track 2: Differentially Private Federated Learning

Track 2 focuses on training as high utility models as possible while preserving all information from each
document provider in the training set through DP. We describe the task, the organizer’s baseline and two
submitted approaches (See Table 7).

5.1 Track 2 Task Formulation

The objective of track 2 is to achieve the best utility possible while protecting all information from each
document provider in the training set, which could be exposed through textual (provider company name)
or visual (logo, presentation) information. Prior work (Tito et al., 2024; Pinto et al., 2024) has shown that
non-DP DocVQA models leaks sensitive information about the trianing dataset. Participants are required
to train under DP at different levels from strong formal DP (ϵ = 1) to reasonable privacy guarantees (ϵ = 8)
to mitigate the risk of provider information being leaked3. Ultimately, the goal is to achieve the best utility
while complying to the privacy budgets of ϵ ∈ {1, 4, 8} at δ = 10−5. The definition of DP critically depends
on the concept of adjacency of datasets. We seek to protect the privacy of providers and thus the typical
document-level adjacency definition would be too weak, as there are many documents from the same provider
and combining them could leak private information. Instead we use provider-level add/remove adjacency,
where adjacent training datasets can be obtained by adding or removing all documents from one provider.
Prior work denotes this as group-level DP (Marathe & Kanani, 2022; Galli et al., 2023).

Participants are required to follow the same rules regarding the pre-trained model and fine-tuning data as
in track 1. Besides uploading the final model checkpoint solutions, they are required to submit a theoretical
privacy proof and description. The requirement for a theoretical privacy proof in track 2 ensures that
the solutions proposed by participants are rigorously validated for their adherence to differential privacy
principles. This proof demonstrates that the final model maintains the privacy of all information from each
document provider by offering a quantifiable measure of privacy loss. Additionally, a thorough description
and code submission are necessary to facilitate reproducibility and allow for independent verification of the
privacy claims, ensuring transparency and trustworthiness in the solutions provided.

Verification that the submissions are DP The organizers reviewed all submissions to track 2 to ensure
that they are DP. Multiple organizers separately reviewed the description of the method, the privacy proof
and the source code. Most of the participants’ privacy proofs followed from the baseline proof and thus
the review process of the proofs was lightweight. The organizers asked questions about unclear details of
the privacy proofs. Otherwise the review process of the proofs was comparable to reviewing ML conference
submissions. The source code of the participants was inspected using static code analysis mostly focusing
on the deviations from the baseline implementation and DP-SGD critical parts of the implementation, e.g.,

3We refer to Section 5.2 in Ponomareva et al. (2023) for a discussion of classifying privacy budgets into tiers.
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the clipping operation, the noise addition and the DP accounting. In more complicated settings it would
make sense to run unit tests against these parts of the implementation, run the experiments or re-implement
but in this challenge the organizers did not need to do that as the amount of confidence in the participants’
implementation was sufficient based on the static code review.

5.2 Baseline Solution Track 2

The baseline solution for track 2 utilizes DP-SGD with provider-level add/remove adjacency. The optimiza-
tion of the model is done in multiple global rounds. In each round, the central server first samples a set
of clients from all N = 10 clients. Each selected client runs a local instance of federated learning where
each provider acts as the training data of a virtual client within the real client. The client randomly selects
providers, clips the per-provider updates and the adds an appropriate amount of noise so that the update
aggregated by the server is differentially private with respect to all providers over all clients4 The privacy
loss of the baseline follows the usual analysis of DP-SGD consisting of compositions of sub-sampled Gaussian
mechanisms. The loss depends on the number of iterations Tcl, sub-sampling rate q (both over clients and
providers) and noise scale σ (Mironov et al., 2019; Balle et al., 2020). The baseline is obtained through 5 FL
Rounds. It transmits 1.12GB constantly for each communication stream, which results in a total of 22.32GB
during the entire training process. We sample K = 2 clients per round and M = 50 providers on each client.
The updates are clipped to a norm of 0.5 and the Gaussian noise is computed so that the privacy budgets
of ϵ ∈ {1, 4, 8} at δ = 10−5 is spent at the end of training.

The baseline is DP as stated in Theorem 5.1. For details see the privacy analysis in Appendix B.
Theorem 5.1 (Privacy of FL-GROUP-DP). For any 0 < δ < 1 and α ≥ 1, FL-GROUP-DP is
(minα(Tcl · ξ(α|q) + log((α− 1)/α)− (log δ + log α)/(α− 1)), δ)-DP, where ξN (α|q) is defined in Eq. A5, q =

C·|M|
mink |Gk| .

The proof follows from the RDP property of the subsampled Gaussian mechanism, RDP composition and
conversion from RDP to approximate DP (Theorems B.6, B.7,B.8) and the fact that a group (provider) is
sampled in every federated round if (1) the corresponding client is sampled, which has a probability of C,
and (2) the batch of groups sampled locally at this client contains the group, which has a probability of at
most |M|

mink |Gk| . Therefore, a group is sampled with a probability of q = C·|M|
mink |Gk| .

Table 7: Competition Winners Track 2 (Differential Private Federated Learning)

Rank Team Method ANLS ↑
at ϵ = 1 at ϵ = 4 at ϵ = 8

1 Ragul N and Kutum (Section 5.3) LoRA 0.5854 0.6121 0.6225
2 Fukami et al. (Section 5.4) DP-CLGECL 0.5724 0.6018 0.6033
- Organizers (Section 5.2) Baseline 0.4832 0.5024 0.5132

5.3 Winner Track 2: Ragul N and Kutum

Similar to the winning solution for track 1, our method also uses LoRA. We choose LoRA for the following
two reasons: First, it significantly reduces the communication cost as shown in Section 4.3. Second, empir-
ical results have shown that differentially private adaptation of language models using parameter-efficient
methods such as LoRA outperforms full fine-tuning in centralized settings (Yu et al., 2022). These meth-
ods reduce the overall noise added by only updating a small proportion of the parameters in the model,
thereby increasing the utility of the model. The communication efficiency of LoRA also allowed us to
increase the number of FL rounds from 5 in the baseline method to 30 in our method without increas-
ing communication costs. With these changes to the baseline, our method improved the ANLS by 10-11
percentage points across all privacy settings. The GitHub repository of our solution can be accessed at
https://github.com/KutumLab/pfl-docvqa-with-LoRA.

4Note when no clients are sampled in a FL round the server still needs to add noise.
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5.4 Runners-up Track 2: Fukami, Yamasaki, Niwa, and Tyou

We briefly present our methods and experimental results. More detailed information can be found in Sec-
tion 5.4.1. It is well-known that applying DP to FedAVG with a relatively high privacy level often stagnates
the model training process due to local parameter drift. This is mainly caused by i) noise addition in DP
and ii) data heterogeneity among clients. To address these issues, we propose DP-CLGECL, which incorpo-
rates the DP’s Gaussian mechanism into CLGECL Tyou et al. (2024). The update rules in DP-CLGECL
are derived by solving a linearly constrained loss-sum minimization problem, resulting in robustness against
local gradient drift due to data heterogeneity, and this would also be effective in addressing the drift issue
due to DP’s Gaussian mechanism. Note that the DP analysis of the private baseline detailed in Appendix B
is applicable to our DP-CLGECL. More details about our methodologies are provided in Section 5.4.1.

As indicated in Table 7, ANLS showed significant improvement with the use of our DP-CLGECL compared
with the baseline method for each ε. Associated experimental results, including convergence curves in
Figure A.5 are summarized in Section 5.4.1 and Appendix D. After passing the competition deadline, we
observed a negative impact of using AdamW optimizer in the baseline method. The norm of stochastic
gradient, preconditioned by AdamW, often increased, and the gradient clipping used to ensure the pre-
defined DP levels led to a loss of valuable information in model parameter training. To address this issue, we
replaced AdamW with momentum in the local update of DP-CLGECL, resulting in further improved ANLS.
Although more details can be found in Figure A.6, the ANLS was then 0.5918 for ε = 1 using DP-CLGECL
with momentum.

5.4.1 Details on DP-CLGECL

Firstly, we provide a brief explanation of the formulation of CLGECL Tyou et al. (2024). For FL consisting of
n local clients and a central server, we aim to solve a loss-sum minimization problem with linear constraints
on local parameters {wi}n

i=1:

min
{wi}n

i=1

1
n

n∑
i=1

f i(wi) s.t. wi = wj (∀i ∈ N, j ∈ Ei), (2)

where f i represents the local loss function and {1, . . . , n} ∈ N, {1, . . . , i−1, i+1, . . . , n} ∈ Ei. The derivation
details can be found in Tyou et al. (2024). A solver for equation 2 over the centralized network is referred
to as CLGECL. Due to the constraint of identical local parameters, CLGECL is expected to be robust to
gradient drift. For this competition, we propose DP-CLGECL, which introduced AdamW as a local update,
client sampling, and Gaussian mechanism in DP for CLGECL, as summarized in Algorithm 2.

To follow the regulation of this competition task, we specified this operation as follows: First, we assume
that each client’s data set Dk is partitioned into a set Gk of disjoint and pre-defined groups, and each client
has different groups. The server randomly selects a subset K of n clients in each round to update the global
model. Each client receives the global model from the server for each round. The client selects a random
subset M of groups, calculates the gradient ∆wG

t by SGD with momentum for each group, and the gradient
∆wG

t is updated with the dual variables λ, clipping it into clipped the gradient ∆ŵG
t to have a bounded

L2 norm of S, where S denotes the sensitivity of the gradient ∆wG
t . The sum of ∆ŵG

t for all groups is
calculated and perturbed by the Gaussian mechanism. Finally, the k clients selected by the central server
calculate the model update difference w′ − wt−1, send it to the server, and update the dual variable λ.

Privacy analysis: In the privacy analysis of DP-CLGECL, we aim to determine ε and σ that ensure that
∆wG

t +N (0, σ2I) guarantees (α, ε)-RDP. We then apply the composition on the RDP, and convert the RDP
to DP. The privacy analysis of FL-GROUP-DP (Marathe & Kanani, 2022; Galli et al., 2023) demonstrates a
a method to guarantee (α, ε)-RDP for ∆wG

t +N (0, σ2I). This analysis can be applied to our FL-GROUP-DP.

DP-CLGECL can guarantee (ε, δ)-DP if σ is used, satisfying the following

ε = min
α

(R · ξN (α | q) + log((α− 1)/α)− (log δ + log α)/(α− 1)) , (3)
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where

ξN (α | q) =



1
α− 1 log

(
α∑

k=0

(
α

k

)
(1− q)α−kqk exp

(
k2 − k

2σ2

))
, (Integerα),

1
α− 1 log

( ∞∑
k=0

Γ(α + 1)
Γ(k + 1)Γ(α− k + 1)(1− q)α−kqk 1

2 exp
(

k2 − k

2σ2

)
erfc

(
k − z1√

2σ

))

+ 1
α− 1 log

( ∞∑
k=0

Γ(α + 1)
Γ(k + 1)Γ(α− k + 1)(1− q)kqα−k 1

2 exp
(

k2 − k

2σ2

)
erfc

(
z1 − k√

2σ

))
,

(Fractional α).

and a group is sampled with a probability of q = C·|M|
mink|Gk| , C is probability of client sampling.

Compared methods: In our testing, we mainly compared: 1) the baseline method based on FedAVG and
2) DP-CLGECL. We also tested their variant versions, such as replacing AdamW with momentum.

Experiment results: The best ANLS for all ε was achieved by DP-CLGECL. By tuning the hyperparam-
eter, the baseline method given by the competition organizers was also able to achieve a higher ANLS than
the baseline presented.

The ANLS of DPCLGECL was further improved by using momentum instead of AdamW, as shown in
Figure A.6. This could be due to the clipping radius not being well-matched with the stochastic gradient
using AdamW. A larger clipping radius can degrade the performance due to noise, thus, it seems better
to use momentum than AdamW. In this competition, mitigating the gradient drift with CLGECL was also
effective in improving performance. However, calculating the stochastic gradient that matches the clipping
radius was the most effective in improving performance.

5.5 Takeaways from Track 2

In the below box we highlight important takeaways from the Track 2.

Takeaways Track 2: The participants improved the utility under DP through different approaches that
are similar to the approaches in Track 1.

1. Tuning the hyperparameters in comparison to the baseline.

2. Reducing the number of updated parameters allows for more communication rounds under the same
budget and enhances utility–privacy trade-offs by decreasing sensitivity, which in turn lowers the noise
needed for differential privacy.

3. Changing the optimization method to avoid local gradient drifting due to data heterogeneity and DP.

Despite the different approaches improving the baseline significantly the gap between the best results of
Track 2 (ANLS of 0.6225 at ϵ = 8) and the non-DP results in Track 1 (ANLS of 0.8891) remains large.

The takeaways have a strong link to prior work. Prior work recommended tuning the hyperparameters (Pono-
mareva et al., 2023; Li et al., 2022c) and decreasing the number of parameters (Yu et al., 2022; Tobaben
et al., 2023; Kerkouche et al., 2021a;b).

6 Lessons Learnt and Recommendations for Future FL and DP Competitions

In this section we present lessons learnt from organizing this competition and discuss best practices that
could be considered for organizing competitions in the future.
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6.1 Ensuring that the Track 2 Submissions Are DP

The track 2 of this competition required participants to provide a model checkpoint trained under DP.
Additionally, we asked the participants to provide a privacy proof outlining how their method is formally
differential private and requested the source code.

Formal privacy proof Asking for a privacy proof from the participants results in two things: (i) The
organizers can check that a new proposed method is DP; and (ii) The participating team can reflect on
ensuring that their method is actually DP. Insufficient formal analysis in prior work has lead to response
papers (Carlini et al., 2021; 2022) that corrected the wrong analysis.

Ensuring that the implementations are DP While the privacy proof ensures that theoretically the
submissions are DP, even small mistakes in the implementation of DP methods can invalidate or severely
weaken the DP guarantees (Tramèr et al., 2022; Ganev et al., 2025). Among these are the clipping of the
updates, the correct noise addition and scaling as well as the subsampling. Thus, members of the organizing
team have inspected the implementations of the best scoring methods but this is a manual process that does
not scale to competitions with a large number of participants. The code reviews could be complemented with
automatic tests that increase the chance of finding bugs in the implementation. Established DP libraries
such as Opacas (Yousefpour et al., 2021) use unit tests but these tests are custom to the implementation
that are testing and writing new tests requires much more manual labour than plain code reviews. Using
only established implementations (e.g., like Opacus) for critical parts of the code would reduce the risk of
bugs but also limit the possible solutions.

Automation of the validation of DP methods and implementations When scaling up the participant
numbers of a competition, processes need to be automated. One example for that is our automatic utility
evaluation on the secret test set. Automating the validation of DP methods and implementations is less
straightforward: There are methods for auditing DP implementations (Jagielski et al., 2020; Nasr et al.,
2023) but they are computationally expensive. Recent advancements have significantly reduced the cost of
DP auditing (Steinke et al., 2023). One option would be auditing new submissions to assist in DP validation
but it is unclear how computationally costly that would be. Auditing cannot conclusively prove something
DP, so it should only be used to complement privacy proofs and code checks, not replace them.

6.2 Lowering the Threshold for Participation

Referring to Table 1 one can see that the competition has received some interest. Also, it led to the data
set being adopted in the privacy community (Wu et al., 2024) and increased the awareness in the document
intelligence community (Biescas et al., 2024). Participants were required to be able to train a state-of-the-
art Document Visual Question Answering model in a federated learning setting (under DP). The number
of potential participants that have the required skill set is not as high as in other challenges. Thus it is
important that the threshold for participation is as low as possible. We discuss measures that we took to
lower the threshold for participation.

Starting Kit All solutions that are described in this analysis report utilized the provided starting kit to
some extent. Based on the feedback from the participants, we think that the starting kit was crucial for them
to participate. We can recommend to future organizers to test and document the starting kit extensively
and include convenience functions (e.g., to compute communication cost or DP noise).

Computational Cost Simulating the FL setting and even just fine-tuning large pre-trained models requires
a significant amount of compute. This is especially true under DP (Beltran et al., 2024) as the privacy/utility
trade-off can be improved by training longer (Ponomareva et al., 2023) and using larger batch sizes (Räisä
et al., 2024). We aimed to lower the threshold for participation by reducing the size of the client datasets and
utilizing not the largest pre-trained model available. Still, executing the baselines with consumer hardware
is hard if not impossible. One possible avenue for the future would be to open separate tracks for consumer
hardware and provide cloud compute to teams that could otherwise not participate. The recent NeurIPS
2023 challenge on LLMs5 introduced some of these measures.

5LLM Efficiency Challenge: 1LLM+1GPU+1Day:https://llm-efficiency-challenge.github.io/
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7 Conclusion & Outlook

The challenge is a benchmark and remains open for future submissions. In the future, we will host a red
team challenge at SaTML 2025, where teams run privacy attacks against models from this challenge.

Broader Impact This challenge invited the community to design novel creative solutions for real-life use
cases. This has significant positive impact on users training ML models on personal data. The best practices
and our setup can be used to improve further challenges.

Limitations This challenge only focused on training models but does not focus on other parts of machine
learning systems that may be vulnerable to privacy attacks as well (Debenedetti et al., 2024). Furthermore,
we did not run any membership inference attacks, gradient inversion attacks or auditing methods to em-
pirically assess the privacy leakage of the approaches but prior work (Tito et al., 2024; Pinto et al., 2024)
has shown that DocVQA models leak sensitive information about the training dataset. We do not consider
settings where the data of a provider is split among multiple nodes, which would require more advanced
composition methods under DP and methods to detect providers that are shared among nodes. The observed
settings do not focus on async/sync FL communication settings but assume simpler communication settings.

Author Contributions

The competition report is written jointly by the organizers of the competition, the winners of the competition,
and the runner up teams.

The organizers The organizing team consisted of Marlon Tobaben, Mohamed Ali Souibgui, Rubèn Tito,
Khanh Nguyen, Raouf Kerkouche, Kangsoo Jung, Joonas Jälkö, Lei Kang, Andrey Barsky, Vincent Poulain
d’Andecy, Aurélie JOSEPH, Josep Llados, Ernest Valveny, Antti Honkela, Mario Fritz, and Dimosthenis
Karatzas. The organizers designed the challenge, provided the baseline results and ran the challenge. The
organizers did not participate in the challenge. The organizers coordinated the writing of the competition
report and wrote all sections in the manuscript apart from the Sections 4.3, 4.4, 5.3 and 5.4 (and the
appendices belonging to it) as they were written by the winning teams.

The participants The participants do not have any connection to the organizers, and did not have access
to the test data before the end of the competition. The participants were invited by the organizers to
contribute to the writing of the manuscript. The participants contributions are as follows:
• Section 4.3 was written by Aashiq Muhamed, Kevin Kuo, and Virginia Smith who proposed the method

that won track 1.
• Section 4.4 was written by Kenta Niwa, Hiro Ishii, Yusuke Yamasaki, Takumi Fukami, Iifan Tyou, and

Rio Yokota as their proposed method was the second best entry in track 1.
• Section 5.3 was written by Ragul N and Rintu Kutum that won the track 2 with their method.
• Section 5.4 was written by Takumi Fukami, Yusuke Yamasaki, Kenta Niwa, and Iifan Tyou that scored

the second place in track 2 with their method.

Acknowledgments

This work has been funded by the European Lighthouse on Safe and Secure AI (ELSA) from the European
Union’s Horizon Europe programme under grant agreement No 101070617. MT, JJ and AH have been sup-
ported by the Research Council of Finland (Flagship programme: Finnish Center for Artificial Intelligence,
FCAI; as well as grants 356499 and 359111) and the Strategic Research Council at the Research Council of
Finland (Grant 358247). Part of this work has been performed using resources provided by the CSC – IT
Center for Science, Finland, and the Finnish Computing Competence Infrastructure (FCCI). MAS, RT, KN,
LK, AB, JL, EV and DK have been supported by the Consolidated Research Group 2021 SGR 01559 from
the Research and University Department of the Catalan Government, and by project PID2023-146426NB-
100 funded by MCIU/AEI/10.13039/501100011033 and FSE+. RK would like to acknowledge Mphasis F1
Foundation for the computing infrastructure and financial support. Views and opinions expressed are how-
ever those of the author(s) only and do not necessarily reflect those of the European Union or the European
Commission. Neither the European Union nor the granting authorities can be held responsible for them.

16



Published in Transactions on Machine Learning Research (06/2025)

References
Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 308–318. ACM, 2016.

Srikar Appalaraju, Peng Tang, Qi Dong, Nishant Sankaran, Yichu Zhou, and R. Manmatha. Docformerv2:
Local features for document understanding. In Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, pp. 709–718. AAAI
Press, 2024.

Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis testing interpretations
and renyi differential privacy. In The 23rd International Conference on Artificial Intelligence and Statistics,
AISTATS 2020, volume 108 of Proceedings of Machine Learning Research, pp. 2496–2506. PMLR, 2020.

Sebastian Rodriguez Beltran, Marlon Tobaben, Joonas Jälkö, Niki A. Loppi, and Antti Honkela. Towards
efficient and scalable training of differentially private deep learning. ArXiv preprint, abs/2406.17298, 2024.

Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and Nicholas D. Lane. Flower:
A friendly federated learning research framework. ArXiv preprint, abs/2007.14390, 2020.

Nil Biescas, Carlos Boned, Josep Lladós, and Sanket Biswas. Geocontrastnet: Contrastive key-value edge
learning for language-agnostic document understanding. In Document Analysis and Recognition - ICDAR
2024 - 18th International Conference, volume 14804 of Lecture Notes in Computer Science, pp. 294–310.
Springer, 2024.

Ali Furkan Biten, Rubèn Tito, Andrés Mafla, Lluís Gómez, Marçal Rusiñol, Minesh Mathew, C. V. Jawa-
har, Ernest Valveny, and Dimosthenis Karatzas. ICDAR 2019 competition on scene text visual question
answering. In 2019 International Conference on Document Analysis and Recognition, ICDAR 2019, pp.
1563–1570. IEEE, 2019a.

Ali Furkan Biten, Rubèn Tito, Andrés Mafla, Lluís Gómez i Bigorda, Marçal Rusiñol, C. V. Jawahar,
Ernest Valveny, and Dimosthenis Karatzas. Scene text visual question answering. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, pp. 4290–4300. IEEE, 2019b.

Nicholas Carlini, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and Florian
Tramèr. Neuracrypt is not private. ArXiv preprint, abs/2108.07256, 2021.

Nicholas Carlini, Vitaly Feldman, and Milad Nasr. No free lunch in "privacy for free: How does dataset
condensation help privacy". ArXiv preprint, abs/2209.14987, 2022.

Yannis Cattan, Christopher A. Choquette-Choo, Nicolas Papernot, and Abhradeep Thakurta. Fine-tuning
with differential privacy necessitates an additional hyperparameter search. ArXiv preprint, abs/2210.02156,
2022.

Christopher A. Choquette-Choo, Florian Tramèr, Nicholas Carlini, and Nicolas Papernot. Label-only mem-
bership inference attacks. In Proceedings of the 38th International Conference on Machine Learning, ICML
2021, volume 139 of Proceedings of Machine Learning Research, pp. 1964–1974. PMLR, 2021.

Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili, Anas Z Abidin, Andrew Liu,
Anthony Beardsworth Costa, Bradford J Wood, Chien-Sung Tsai, et al. Federated learning for predicting
clinical outcomes in patients with covid-19. Nature medicine, 27(10):1735–1743, 2021.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle. Unlocking high-accuracy
differentially private image classification through scale. ArXiv preprint, abs/2204.13650, 2022.

Edoardo Debenedetti, Giorgio Severi, Milad Nasr, Christopher A. Choquette-Choo, Matthew Jagielski, Eric
Wallace, Nicholas Carlini, and Florian Tramèr. Privacy side channels in machine learning systems. In
33rd USENIX Security Symposium, USENIX Security 2024. USENIX Association, 2024.

17



Published in Transactions on Machine Learning Research (06/2025)

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, 2023.

Minxin Du, Xiang Yue, Sherman S. M. Chow, Tianhao Wang, Chenyu Huang, and Huan Sun. Dp-forward:
Fine-tuning and inference on language models with differential privacy in forward pass. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security, CCS 2023, pp. 2665–
2679. ACM, 2023.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. In COLT 2010 - The 23rd Conference on Learning Theory, pp. 257–269. Omni-
press, 2010.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3-4):211–407, 2014.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, our-
selves: Privacy via distributed noise generation. In Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, volume
4004 of Lecture Notes in Computer Science, pp. 486–503. Springer, 2006.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity in
private data analysis. J. Priv. Confidentiality, 7(3):17–51, 2016.

Ahmed Roushdy Elkordy and Amir Salman Avestimehr. Heterosag: Secure aggregation with heterogeneous
quantization in federated learning. IEEE Trans. Commun., 70(4):2372–2386, 2022.

Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X. Liu,
and Ting Wang. Label inference attacks against vertical federated learning. In 31st USENIX Security
Symposium, USENIX Security 2022, pp. 1397–1414. USENIX Association, 2022.

Filippo Galli, Sayan Biswas, Kangsoo Jung, Tommaso Cucinotta, and Catuscia Palamidessi. Group privacy
for personalized federated learning. In Proceedings of the 9th International Conference on Information
Systems Security and Privacy, ICISSP 2023, pp. 252–263. SciTePress, 2023.

Georgi Ganev, Meenatchi Sundaram Muthu Selva Annamalai, and Emiliano De Cristofaro. The elusive pur-
suit of reproducing PATE-GAN: Benchmarking, auditing, debugging. Transactions on Machine Learning
Research, 2025. ISSN 2835-8856.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients - how easy
is it to break privacy in federated learning? In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization.
In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, volume 80 of
Proceedings of Machine Learning Research, pp. 1837–1845. PMLR, 2018.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, volume 97 of Proceedings of
Machine Learning Research, pp. 2790–2799. PMLR, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth International Conference
on Learning Representations, ICLR 2022, 2022a.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. Membership
inference attacks on machine learning: A survey. ACM Comput. Surv., 54(11s):235:1–235:37, 2022b.

18



Published in Transactions on Machine Learning Research (06/2025)

Matthew Jagielski, Jonathan R. Ullman, and Alina Oprea. Auditing differentially private machine learning:
How private is private sgd? In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu. Prac-
tical and private (deep) learning without sampling or shuffling. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, volume 139 of Proceedings of Machine Learning Research,
pp. 5213–5225. PMLR, 2021a.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih
Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný,
Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal,
Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar,
Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han
Yu, and Sen Zhao. Advances and open problems in federated learning. Found. Trends Mach. Learn., 14
(1-2):1–210, 2021b.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. SCAFFOLD: stochastic controlled averaging for federated learning. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020, volume 119 of Proceedings
of Machine Learning Research, pp. 5132–5143. PMLR, 2020.

Raouf Kerkouche, Gergely Ács, Claude Castelluccia, and Pierre Genevès. Compression boosts differentially
private federated learning. In IEEE European Symposium on Security and Privacy, EuroS&P 2021, pp.
304–318. IEEE, 2021a.

Raouf Kerkouche, Gergely Ács, Claude Castelluccia, and Pierre Genevès. Constrained differentially private
federated learning for low-bandwidth devices. In Proceedings of the Thirty-Seventh Conference on Uncer-
tainty in Artificial Intelligence, UAI 2021, volume 161 of Proceedings of Machine Learning Research, pp.
1756–1765. AUAI Press, 2021b.

Raouf Kerkouche, Gergely Ács, and Mario Fritz. Client-specific property inference against secure aggregation
in federated learning. In Proceedings of the 22nd Workshop on Privacy in the Electronic Society, WPES
2023, pp. 45–60. ACM, 2023.

Kevin Kuo, Arian Raje, Kousik Rajesh, and Virginia Smith. Sparsity for communication-efficient lora. In
5th Workshop on practical ML for limited/low resource settings, 2024.

Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis, and Abhradeep Thakurta.
Toward training at imagenet scale with differential privacy. ArXiv preprint, abs/2201.12328, 2022.

Jordy Van Landeghem, Rafal Powalski, Rubèn Tito, Dawid Jurkiewicz, Matthew B. Blaschko, Lukasz Borch-
mann, Mickaël Coustaty, Sien Moens, Michal Pietruszka, Bertrand Anckaert, Tomasz Stanislawek, Pawel
Józiak, and Ernest Valveny. Document understanding dataset and evaluation (DUDE). In ICCV, pp.
19471–19483. IEEE, 2023a.

Jordy Van Landeghem, Rubèn Tito, Lukasz Borchmann, Michal Pietruszka, Dawid Jurkiewicz, Rafal Powal-
ski, Pawel Józiak, Sanket Biswas, Mickaël Coustaty, and Tomasz Stanislawek. ICDAR 2023 competition
on document understanding of everything (DUDE). In ICDAR (2), volume 14188 of Lecture Notes in
Computer Science, pp. 420–434. Springer, 2023b.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos, Urvashi
Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot parsing as
pretraining for visual language understanding. In International Conference on Machine Learning, pp.
18893–18912. PMLR, 2023.

19



Published in Transactions on Machine Learning Research (06/2025)

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pp. 707–710, 1966.

Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. DiT: Self-supervised pre-training
for document image transformer. In MM ’22: The 30th ACM International Conference on Multimedia,
pp. 3530–3539. ACM, 2022a.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith, and Chong
Wang. Label leakage and protection in two-party split learning. In The Tenth International Conference
on Learning Representations, ICLR 2022, 2022b.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE Signal Process. Mag., 37(3):50–60, 2020.

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can be strong
differentially private learners. In The Tenth International Conference on Learning Representations, ICLR
2022, 2022c.

Zheng Li and Yang Zhang. Membership leakage in label-only exposures. In CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, pp. 880–895. ACM, 2021.

Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learning via
generative gradient leakage. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, pp. 10122–10132. IEEE, 2022d.

Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking. In Federated
Learning, volume 12500 of Lecture Notes in Computer Science, pp. 240–254. Springer, 2020.

Virendra J. Marathe and Pallika Kanani. Subject granular differential privacy in federated learning. ArXiv
preprint, abs/2206.03617, 2022.

Minesh Mathew, Rubèn Tito, Dimosthenis Karatzas, R. Manmatha, and C. V. Jawahar. Document visual
question answering challenge 2020. ArXiv preprint, abs/2008.08899, 2020.

Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for VQA on document
images. In IEEE Winter Conference on Applications of Computer Vision, WACV 2021, pp. 2199–2208.
IEEE, 2021.

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V. Jawahar.
Infographicvqa. In IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, pp.
2582–2591. IEEE, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, AISTATS 2017, volume 54 of Proceed-
ings of Machine Learning Research, pp. 1273–1282. PMLR, 2017a.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, AISTATS 2017, volume 54 of Proceed-
ings of Machine Learning Research, pp. 1273–1282. PMLR, 2017b.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent
language models. In 6th International Conference on Learning Representations, ICLR 2018, 2018.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In IEEE Symposium on Security and Privacy, pp. 691–706. IEEE, 2019.

20



Published in Transactions on Machine Learning Research (06/2025)

Yinbin Miao, Rongpeng Xie, Xinghua Li, Ximeng Liu, Zhuo Ma, and Robert H. Deng. Compressed federated
learning based on adaptive local differential privacy. In Annual Computer Security Applications Conference,
ACSAC 2022, pp. 159–170. ACM, 2022.

Ilya Mironov. Rényi differential privacy. In 30th IEEE Computer Security Foundations Symposium, CSF
2017, pp. 263–275. IEEE Computer Society, 2017.

Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differential privacy of the sampled gaussian mechanism.
ArXiv preprint, abs/1908.10530, 2019.

Mohammad Moshawrab, Mehdi Adda, Abdenour Bouzouane, Hussein Ibrahim, and Ali Raad. Reviewing
federated learning aggregation algorithms; strategies, contributions, limitations and future perspectives.
Electronics, 12(10):2287, 2023.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning: Passive
and active white-box inference attacks against centralized and federated learning. In IEEE Symposium on
Security and Privacy, pp. 739–753. IEEE, 2019.

Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas Carlini,
and Andreas Terzis. Tight auditing of differentially private machine learning. In 32nd USENIX Security
Symposium, USENIX Security 2023, pp. 1631–1648. USENIX Association, 2023.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry
Huba. Federated learning with buffered asynchronous aggregation. In International Conference on Artifi-
cial Intelligence and Statistics, AISTATS 2022, volume 151 of Proceedings of Machine Learning Research,
pp. 3581–3607. PMLR, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, pp. 8024–8035, 2019.

Balázs Pejó and Gergely Biczók. Quality inference in federated learning with secure aggregation. IEEE
Trans. Big Data, 9(5):1430–1437, 2023.

Francesco Pinto, Nathalie Rauschmayr, Florian Tramèr, Philip Torr, and Federico Tombari. Extracting
training data from document-based VQA models. In Forty-first International Conference on Machine
Learning, ICML 2024, 2024.

Natalia Ponomareva, Sergei Vassilvitskii, Zheng Xu, Brendan McMahan, Alexey Kurakin, and Chiyaun
Zhang. How to dp-fy ML: A practical tutorial to machine learning with differential privacy. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, pp. 5823–
5824. ACM, 2023.

Le Qi, Shangwen Lv, Hongyu Li, Jing Liu, Yu Zhang, Qiaoqiao She, Hua Wu, Haifeng Wang, and Ting Liu.
Dureader vis: A chinese dataset for open-domain document visual question answering. In Findings of
the Association for Computational Linguistics: ACL 2022, pp. 1338–1351. Association for Computational
Linguistics, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Ossi Räisä, Joonas Jälkö, and Antti Honkela. Subsampling is not magic: Why large batch sizes work for
differentially private stochastic optimisation. In Forty-first International Conference on Machine Learning,
ICML 2024, 2024.

21



Published in Transactions on Machine Learning Research (06/2025)

Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gradient descent algorithm for
multiparty classification. In Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2012, volume 22 of JMLR Proceedings, pp. 933–941. JMLR.org, 2012.

Vipula Rawte, Amit P. Sheth, and Amitava Das. A survey of hallucination in large foundation models.
ArXiv preprint, abs/2309.05922, 2023.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In 53rd Annual Allerton Conference
on Communication, Control, and Computing, Allerton 2015, pp. 909–910. IEEE, 2015.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against
machine learning models. In IEEE Symposium on Security and Privacy, pp. 3–18. IEEE Computer Society,
2017.

Hira Shahzadi Sikandar, Huda Waheed, Sibgha Tahir, Saif UR Malik, and Waqas Rafique. A detailed survey
on federated learning attacks and defenses. Electronics, 12(2):260, 2023.

Štěpán Šimsa, Milan Šulc, Michal Uřičář, Yash Patel, Ahmed Hamdi, Matěj Kocián, Matyáš Skalickỳ, Jiří
Matas, Antoine Doucet, Mickaël Coustaty, et al. Docile benchmark for document information localization
and extraction. In International Conference on Document Analysis and Recognition, pp. 147–166. Springer,
2023.

Jinhyun So, Corey J. Nolet, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E. Ali, Basak Guler, and Salman
Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in federated learning.
In MLSys, 2022.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with differentially
private updates. In IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013, pp.
245–248. IEEE, 2013.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run. In Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, 2023.

Anshuman Suri, Pallika Kanani, Virendra J. Marathe, and Daniel W. Peterson. Subject membership infer-
ence attacks in federated learning. ArXiv preprint, abs/2206.03317, 2022.

Ryota Tanaka, Kyosuke Nishida, and Sen Yoshida. Visualmrc: Machine reading comprehension on document
images. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, pp. 13878–13888. AAAI Press, 2021.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic gradient
descent with double-pass error-compensated compression. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, volume 97 of Proceedings of Machine Learning Research, pp.
6155–6165. PMLR, 2019.

Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny. Document collection visual question answering. In
ICDAR (2), volume 12822 of Lecture Notes in Computer Science, pp. 778–792. Springer, 2021a.

Rubèn Tito, Minesh Mathew, C. V. Jawahar, Ernest Valveny, and Dimosthenis Karatzas. ICDAR 2021
competition on document visual question answering. In ICDAR (4), volume 12824 of Lecture Notes in
Computer Science, pp. 635–649. Springer, 2021b.

Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny. Hierarchical multimodal transformers for multipage
docvqa. Pattern Recognit., 144:109834, 2023.

22



Published in Transactions on Machine Learning Research (06/2025)

Rubèn Tito, Khanh Nguyen, Marlon Tobaben, Raouf Kerkouche, Mohamed Ali Souibgui, Kangsoo Jung,
Joonas Jälkö, Vincent Poulain D’Andecy, Aurélie Joseph, Lei Kang, Ernest Valveny, Antti Honkela, Mario
Fritz, and Dimosthenis Karatzas. Privacy-aware document visual question answering. In Document Anal-
ysis and Recognition - ICDAR 2024 - 18th International Conference, volume 14809 of Lecture Notes in
Computer Science, pp. 199–218. Springer, 2024.

Marlon Tobaben, Aliaksandra Shysheya, John Bronskill, Andrew Paverd, Shruti Tople, Santiago Zanella
Béguelin, Richard E. Turner, and Antti Honkela. On the efficacy of differentially private few-shot image
classification. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Florian Tramèr, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas Carlini.
Debugging differential privacy: A case study for privacy auditing. ArXiv preprint, abs/2202.12219, 2022.

Florian Tramèr, Gautam Kamath, and Nicholas Carlini. Position: Considerations for differentially private
learning with large-scale public pretraining. In Forty-first International Conference on Machine Learning,
ICML 2024, 2024.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A
hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on
Artificial Intelligence and Security, AISec@CCS 2019, pp. 1–11. ACM, 2019.

Iifan Tyou, Tomoya Murata, Takumi Fukami, Yuki Takezawa, and Kenta Niwa. A localized primal-dual
method for centralized/decentralized federated learning robust to data heterogeneity. IEEE Trans. Signal
Inf. Process. over Networks, 10:94–107, 2024.

Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens Keim, Carlos Garcia Cordero, Ephraim Zimmer, Tim
Grube, Kristian Kersting, and Max Mühlhäuser. User-level label leakage from gradients in federated
learning. Proc. Priv. Enhancing Technol., 2022(2):227–244, 2022.

Tong Wu, Ashwinee Panda, Jiachen T. Wang, and Prateek Mittal. Privacy-preserving in-context learning
for large language models. In The Twelfth International Conference on Learning Representations, ICLR
2024, 2024.

Jinjin Xu, Wenli Du, Yaochu Jin, Wangli He, and Ran Cheng. Ternary compression for communication-
efficient federated learning. IEEE Trans. Neural Networks Learn. Syst., 33(3):1162–1176, 2022.

Prateek Yadav, Leshem Choshen, Colin Raffel, and Mohit Bansal. Compeft: Compression for communicating
parameter efficient updates via sparsification and quantization. ArXiv preprint, abs/2311.13171, 2023.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? In Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, pp. 3320–3328, 2014.

Yeojoon Youn, Zihao Hu, Juba Ziani, and Jacob D. Abernethy. Randomized quantization is all you need for
differential privacy in federated learning. ArXiv preprint, abs/2306.11913, 2023.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani Malek,
John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and Ilya Mironov. Opa-
cus: User-friendly differential privacy library in PyTorch. ArXiv preprint, abs/2109.12298, 2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang. Dif-
ferentially private fine-tuning of language models. In The Tenth International Conference on Learning
Representations, ICLR 2022, 2022.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi, Sanjiv Kumar,
and Suvrit Sra. Why are adaptive methods good for attention models? In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, 2020.

23



Published in Transactions on Machine Learning Research (06/2025)

Xiaojin Zhang, Yan Kang, Kai Chen, Lixin Fan, and Qiang Yang. Trading off privacy, utility, and efficiency
in federated learning. ACM Trans. Intell. Syst. Technol., 14(6):98:1–98:32, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients. ArXiv
preprint, abs/2001.02610, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, pp. 14747–14756, 2019.

24



Published in Transactions on Machine Learning Research (06/2025)

A General Appendix

A.1 Dataset

This section contains additional information regarding the dataset. The data set is described in more detail
in Tito et al. (2024) and is available to download. The Dataset is based on images from the DocILE
dataset (Šimsa et al., 2023), which was published under the MIT License, but has new annotations for
these images. The new annotations are the OCR transcriptions (using Amazon Textract) and the pairs of
question/answer. The dataset has been published under the Licence CC-BY-4.0.
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Figure A.1: Data split of the PFL-DocVQA dataset.

Dataset Client (Subset) Provider Document Page Question/Answer

Train

0 400 2224 5930 19465
1 418 2382 6694 22229
2 404 2296 6667 21673
3 414 2358 6751 22148
4 429 4543 12071 32472
5 423 2378 6984 22361
6 423 2700 7406 23801
7 416 1951 5617 18462
8 401 1932 5421 17868
9 421 2136 6353 20840

Valid - 2231 3536 9150 30491

Test In-Distribution 1390 2875 8088 25603
Out-of-Distribution 977 1912 5375 17988

Table A1: Statistics on the base PFL-DocVQA Dataset in terms of number of
Providers/Documents/Pages/Question-Answers.
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Figure A.2: Distribution of documents per provider split by client in the used version of the PFL-DocVQA
dataset. Note that two providers are missing as they are significant outliers: In client 6 there is one with
531 documents and in client 4 one with 2283 documents.
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A.2 Additional information on the model

The pre-trained model (Tito et al., 2023) can be found at https://huggingface.co/rubentito/
vt5-base-spdocvqa. It is licensed under the gpl-3.0 license.

A.3 Training details for baselines

The hyperparameters for the baseline were chosen using a combination of grid search and manual search.
The assumption for the baselines is not to have optimal hyperparameters but rather reasonable baselines.

We utilize two NVIDIA A40 (40 GB VRAM each) and train for some hours to obtain the baselines. The
exact runtime depends on the hyperparamters being used.

B Privacy Analysis of baseline track 2

The privacy analysis of our differentially private baseline is discussed in this section. The provided python
script to compute the privacy budget ε is derived from the following analysis.

B.1 Definitions

Definition B.1 (Differential Privacy Dwork & Roth (2014)). A randomized mechanism M with range R
satisfies (ε, δ)-differential privacy, if for any two adjacent datasets E and E′, i.e., E′ = E ∪ {x} for some x
in the data domain (or vice versa), and for any subset of outputs O ⊆ R, it holds that

Pr[M(E) ∈ O] ≤ eε Pr[M(E′) ∈ O] + δ (A1)

Intuitively, DP guarantees that an adversary, provided with the output of M, can draw almost the same
conclusions (up to ε with probability larger than 1 − δ) about any group no matter if it is included in the
input of M or not Dwork & Roth (2014). This means, for any group owner, a privacy breach is unlikely to
be due to its participation in the dataset.

In Federated Learning, the notion of adjacent (neighboring) datasets used in DP generally refers to pairs of
datasets differing by one client (client-level DP), or by one group of one user (group-level DP), or by one
data point of one user (record-level DP). Our challenge focuses on the group-level DP Galli et al. (2023),
where each group refers to a provider.

We use the Gaussian mechanism to upper bound privacy leakage when transmitting information from clients
to the server.
Definition B.2. (Gaussian Mechanism Dwork & Roth (2014)) Let f : Rn → Rd be an arbitrary function
that maps n-dimensional input to d logits with sensitivity being:

S = max
E,E′
∥f(E)− f(E′)∥2 (A2)

over all adjacent datasets E and E′ ∈ E . The Gaussian Mechanism Mσ, parameterized by σ, adds noise
into the output, i.e.,

Mσ(x) = f(x) +N (0, σ2I). (A3)

As in Abadi et al. (2016); Mironov et al. (2019), we consider the Sampled Gaussian Mechanism (SGM) —a
composition of subsampling and the additive Gaussian noise (defined in B.5)— for privacy amplification.
Moreover, we first compute the SGM’s Renyi Differential Privacy as in Mironov et al. (2019) and then we
use conversion Theorem B.8 from Balle et al. (2020) for switching back to Differential Privacy.
Definition B.3 (Rényi divergence). Let P and Q two distributions on X defined over the same probability
space, and let p and q be their respective densities. The Rényi divergence of a finite order α ̸= 1 between P
and Q is defined as follows:
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Dα (P ∥ Q) ∆= 1
α− 1 ln

∫
X

q(x)
(

p(x)
q(x)

)α

dx .

Rényi divergence at orders α = 1,∞ are defined by continuity.

Definition B.4 (Rényi differential privacy (RDP)). A randomized mechanism M : E → R satisfies (α, ρ)-
Rényi differential privacy (RDP) if for any two adjacent inputs E, E′ ∈ E it holds that

Dα (M(E) ∥ M(E′)) ≤ ρ

In this work, we call two datasets E, E′ to be adjacent if E′ = E ∪ {x} (or vice versa).

Definition B.5 (Sampled Gaussian Mechanism (SGM)). Let f be an arbitrary function mapping subsets of
E to Rd. We define the Sampled Gaussian mechanism (SGM) parametrized with the sampling rate 0 < q ≤ 1
and the noise σ > 0 as

SGq,σ
∆= f ({x : x ∈ E is sampled with probability q}) +N (0, σ2Id),

where each element of E is independently and randomly sampled with probability q without replacement.

As for the Gaussian Mechanism, the sampled Gaussian mechanism consists of adding i.i.d Gaussian noise
with zero mean and variance σ2 to each coordinate value of the true output of f . In fact, the sampled
Gaussian mechanism draws vector values from a multivariate spherical (or isotropic) Gaussian distribution
which is described by random variable N (0, σ2Id), where d is omitted if it is unambiguous in the given
context.

B.2 Analysis

The privacy guarantee of FL-GROUP-DP is quantified using the revisited moment accountant Mironov et al.
(2019) that restates the moments accountant introduced in Abadi et al. (2016) using the notion of Rényi
differential privacy (RDP) defined in Mironov (2017).

Let µ0 denote the pdf of N (0, σ2) and let µ1 denote the pdf of N (1, σ2). Let µ be the mixture of two
Gaussians µ = (1− q)µ0 + qµ1, where q is the sampling probability of a single record in a single round.
Theorem B.6. Mironov et al. (2019). Let SGq,σ be the Sampled Gaussian mechanism for some function
f and under the assumption ∆2f ≤ 1 for any adjacent E, E′ ∈ E. Then SGq,σ satisfies (α, ρ)-RDP if

ρ ≤ 1
α− 1 log max(Aα, Bα) (A4)

where Aα
∆= Ez∼µ0 [(µ(z)/µ0(z))α] and Bα

∆= Ez∼µ[(µ0(z)/µ(z))α]

Theorem B.6 states that applying SGM to a function of sensitivity (Equation B.2) at most 1 (which also
holds for larger values without loss of generality) satisfies (α, ρ)-RDP if ρ ≤ 1

α−1 log(max{Aα, Bα}). Thus,
analyzing RDP properties of SGM is equivalent to upper bounding Aα and Bα.

From Corollary 7. in Mironov et al. (2019), Aα ≥ Bα for any α ≥ 1. Therefore, we can reformulate A4 as

ρ ≤ ξN (α|q) := 1
α− 1 log Aα (A5)

To compute Aα, we use the numerically stable computation approach proposed in Mironov et al. (2019)
(Sec. 3.3) depending on whether α is expressed as an integer or a real value.
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Theorem B.7 (Composability Mironov (2017)). Suppose that a mechanism M consists of a sequence of
adaptive mechanisms M1, . . . ,Mk where Mi :

∏i−1
j=1Rj × E → Ri. If all the mechanisms in the sequence

are (α, ρ)-RDP, then the composition of the sequence is (α, kρ)-RDP.

In particular, Theorem B.7 holds when the mechanisms themselves are chosen based on the (public) output
of the previous mechanisms. By Theorem B.7, it suffices to compute ξN (α|q) at each step and sum them up
to bound the overall RDP privacy budget of an iterative mechanism composed of single DP mechanisms at
each step.
Theorem B.8 (Conversion from RDP to DP Balle et al. (2020)). If a mechanism M is (α, ρ)-RDP then it
is ((ρ + log((α− 1)/α)− (log δ + log α)/(α− 1), δ)-DP for any 0 < δ < 1.
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C Details on Track 1

Algorithm 1 Update rules of FedShampoo
1: ▷ Initialization wi, Li,b = I, Ri,b = I, ρL = ρR = 1e−4

2: for r ∈ {1, . . . , R} (Outer loop round) do
3: ▷ (i) Global model update in central server
4: ▷ Averaging of aggregated local models

w̄ = 1
K

∑K

i=1 wi

5: ▷ Transmit global model to clients
Transmitserver→client(w̄)

6: ▷ (ii) Local model updates in each client
7: for i ∼ [N ] (K = 2 client sampling) do
8: ▷ Initialization of local model

wi ← w̄
9: for t ∈ {1, . . . , T} (Inner loop iteration) do

10: ▷ Local stochastic gradient gi ∈ Rd

11: for b ∈ {1, . . . , B} (Layer-wise iteration) do
12: ▷ Reshaping elements of gi regarding b-th layer to be a matrix form

Gi,b ∈ Rdin,b×dout,b

13: if mod(t, 10) == 0 then
14: ▷ Local update of preconditioning matrices using moving average

Li,b ← Li,b + Gi,b[Gi,b]⊤, Ri,b ← Ri,b + [Gi,b]⊤Gi,b

15: end if
16: if mod(t, 100) == 0 then
17: ▷ Computing of local preconditioning matrices

L̃i,b ← [Li,b + ρLI]−1/4

R̃i,b ← [Ri,b + ρRI]−1/4

18: end if
19: ▷ Local model update using element-wise clipping

Wi,b ←Wi,b − η Clip(L̃i,bGi,bR̃i,b, C)
20: end for
21: end for
22: ▷ Reshaping model in a matrix form into a vector

wi ← Vec([Wi,1, . . . , Wi,B ])
23: ▷ Transmit local model to central server

Transmitclientk→server(wi)
24: end for
25: end for
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Figure A.3: Hyperparameter tuning for FedShampoo

Figure A.4: Convergence curves for the global model using (Left) validation loss, (Center) validation accuracy,
and (Right) validation ANLS.
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D Details on Track 2

Algorithm 2 Update rules of DP-CLGECL
1: Server:
2: Initialize common model w0
3: for t = 1 to R do
4: Select set K of clients randomly
5: for each client k in K do
6: uk

t = Clientk(wt−1)
7: end for
8: wt = wt−1 + 1

|K|
∑

k uk
t

9: end for
10: Output: Global model wt

11: Clientk(wt−1):
12: Gk is a set of predefined disjoint groups of records in Dk

13: Select M ⊆ Gk randomly
14: if t == 1 then
15: Randomly initialize λ0
16: else
17: λt−1 ← λt−2 + wt−1 − w′

t−2.
18: end if
19: for each group G in M do
20: w′ = wt−1
21: ∆wG

t = AdamW(G, w′, Tgd)− wt−1 + λt−1

22: ∆ŵG
t = wG

t / max(1,
∥wG

t ∥2
S )

23: end for
24: w′

t = wt−1 + 1
|M|
(∑

G ∆ŵG
t +N (0, Iσ2)

)
25: Output: Client model w′

t − wt−1
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Figure A.5: convergence curve evaluating using the global model. (a) validation ANLS at ε = 1, (b)
validation ANLS at ε = 4, (c) validation ANLS at ε = 8. We used clipping radius S = 0.5, the number of
client sampling C = 2, the learning rate η = 0.0002, and the number of communication round R = 14 for
hyperparameter selection.

Figure A.6: convergence curve evaluating using the global model at ε = 1. (Left) Validation accuracy,
(right) Validation ANLS. We used clipping radius S = 0.5, the number of client sampling C = 2, learning
rate η = 0.0004, and the number of communication round R = 12.
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