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ABSTRACT

The depth of neural networks is a critical factor for their capability, with deeper
models often demonstrating superior performance. Motivated by this, significant
efforts have been made to enhance layer aggregation - reusing information from
previous layers to better extract features at the current layer, to improve the repre-
sentational power of deep neural networks. However, previous works have primar-
ily addressed this problem from a discrete-state perspective which is not suitable
as the number of network layers grows. This paper novelly treats the outputs from
layers as states of a continuous process and considers leveraging the state space
model (SSM) to design the aggregation of layers in very deep neural networks.
Moreover, inspired by its advancements in modeling long sequences, the Selec-
tive State Space Models (S6) is employed to design a new module called Selec-
tive State Space Model Layer Aggregation (S6LA). This module aims to combine
traditional CNN or transformer architectures within a sequential framework, en-
hancing the representational capabilities of state-of-the-art vision networks. Ex-
tensive experiments show that S6LA delivers substantial improvements in both
image classification and detection tasks, highlighting the potential of integrating
SSMs with contemporary deep learning techniques.

1 INTRODUCTION

In recent years, the depth of neural network architectures has emerged as a crucial factor influencing
performance across various domains, including computer vision, natural language processing, and
speech recognition. The network models are capable of capturing increasingly complex features and
representations from data as they become deeper, and various methods have emerged to utilize larger
numbers of layers to improve performance. For instance, the VGG network (Simonyan & Zisser-
man, 2015) achieves higher classification accuracy by increasing the number of layers, although its
foundation primarily relies on empirical results rather than systematical analysis. Other significant
advancements, such as those demonstrated by CNNs (He et al., 2016a; Ren et al., 2016; Tan & Le,
2020) and Transformers (Brown, 2020; Dosovitskiy, 2020; Touvron et al., 2021; Liu et al., 2021;
Wang et al., 2022), showcase how deeper architectures can enhance accuracy and generalization.

Growing evidence indicates that strengthening layer interactions can encourage the information
flow of a deep neural network. For CNN-based networks, ResNet (He et al., 2016a) employed skip
connections, allowing gradients to flow more easily by connecting non-adjacent layers. DenseNet
(Huang et al., 2018) extended this concept further by enabling each layer to access all preceding lay-
ers within a stage, fostering a rich exchange of information. Later, GLOM (Hinton, 2023) proposed
an intensely interactive architecture that incorporates bottom-up, top-down, and same-level connec-
tions to effectively represent part-whole hierarchies. Recently, some studies have begun to frame
layer interactions with recurrent models and attention mechanisms, such as RLA (Zhao et al., 2021)
and MRLA (Fang et al., 2023). All of the above models have been shown by empirical evidence
to outperform those without interdependence across layers, and their achievements are obtained by
treating the outputs of network layers as discrete states.

However, the perspective of discrete treatment may not be suitable when a neural network is very
deep; say, for example, ResNet-152 has 152 layers, and Queiruga et al. (2020) proposed that deep
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Figure 1: Schematic diagram of a Network with Selective State Space Model Layer Aggregation.

neural network models can learn to represent continuous dynamical systems, with this richer struc-
ture and properties, by embedding them into continuous perspective. Therefore, motivated by these
previous works, this paper proposes to conduct layer aggregation among numerous layers of a neural
network by alternatively assuming a continuous process to the outputs of layers.

Meanwhile, the State Space Model (SSM), a mathematical framework for continuously updating
physical systems, enabled the modeling of dynamic processes and temporal dependencies in deep
learning (Gu & Dao, 2023; Liu et al., 2024). Then, Mamba, a selective state space model (Gu &
Dao, 2023), proposed selective mechanism and hardware-aware algorithm, which was particularly
adept at addressing long sequence modeling challenges. The selection mechanism allows the model
to filter out irrelevant information and remember relevant information infinitely.

The significance of layer aggregation in deep models and the popularity of SSMs lead us to propose
a novel perspective: layer dynamics in very deep networks can be viewed as a continuous process
with long sequence modeling task solvable by selective state space model (S6). By leveraging in-
teractions between layers, outputs from different layers can be treated as sequential data input for
an S6, allowing the model to encapsulate a richer representation of the information derived from
the original data. By conceptualizing neural networks as state space models, we introduce a novel
structure that integrates traditional models into sequential architectures. This approach opens new
research avenues that connect traditional statistical methods with contemporary deep learning tech-
niques. Our proposed Selective State Space Model Layer Aggregation (S6LA) effectively harnesses
the benefits of layer interactions while incorporating statistical modeling into vision tasks, such as
those performed by CNNs and Vision Transformers (ViTs). A schematic of our model is illustrated
in Figure 1, with parameters (∆, A,B) indicating the influence of x on the implicit latent state h.
Here xt−1 represents the output at the (t− 1)-th layer, which can be either a hidden layer in a deep
CNN or an attention layer in a transformer model.

The main contributions of our work are given below: (1) For a deep neural network, we treat the
outputs from layers as states of a continuous process and attempt to leverage the SSM to design
the aggregation of layers. To our best knowledge, this is the first time such a perspective has been
presented. (2) This leads to a proposed lightweight module, the Selective State Space Model Layer
Aggregation (S6LA) module, and it conceptualizes a neural network as a selective state space model
(S6), hence solving the layer interactions by the long sequence modelling selective mechanism. (3)
Compared with other SOTA convolutional and transformer-based layer aggregation models, S6LA
demonstrates superior performance in classification, detection, and instance segmentation tasks.

2 RELATED WORK

State Space Models. In the realm of state space models, considerable efforts have been directed
toward developing statistical theories. These models are characterized by equations that map a
1-dimensional input signal x(t) to an N -dimensional latent state h(t), with the details provided in
Equation 1. Inspired by continuous state space models in control systems and combined with HiPPO
initialization (Gu et al., 2020), LSSL (Gu et al., 2021b) showcased the potential of state space
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models in addressing long-range dependency problems. However, due to limitations in memory
and computation, their adoption was not widespread until the introduction of structured state space
models (S4) (Gu et al., 2021a), which proposed normalizing parameters into a diagonal structure.
S4 represents a class of recent sequence models in deep learning, broadly related to RNNs, CNNs
and classical state space models. Subsequently, Gu & Dao (2023) introduced the selective structured
state space model (S6), which builds upon S4 and demonstrates superior performance compared to
transformer backbones in various deep learning tasks, including natural language processing and
time series forecasting. More recently, VMamba (Liu et al., 2024) was developed, leveraging the S6
model to replace the transformer mechanism and employing a scanning approach to convert images
into patch sequences. Additionally, Graph-Mamba (Wang et al., 2024) represented a pioneering
effort to enhance long-range context modeling in graph networks by integrating a Mamba block
with an input-dependent node selection mechanism. These advancements indicate that state space
models have also been successfully applied to complex tasks across various domains.

Layer Interaction. The depth of neural network architectures has emerged as a crucial factor in-
fluencing performance. And Figure 4 of Appendix illustrates the enhanced performance of deeper
neural networks. To effectively address the challenges posed by deeper models, increasing efforts
have been directed toward improving layer interactions in both CNN and transformer-based archi-
tectures. Some studies (Hu et al., 2018; Woo et al., 2018; Dosovitskiy, 2020) lay much emphasis on
amplifying interactions within a layer. DIANet (Huang et al., 2018) employed a parameter-sharing
LSTM throughout the network’s depth to capture cross-channel relationships by utilizing informa-
tion from preceding layers. In RLANet (Zhao et al., 2021), a recurrent neural network module was
used to iteratively aggregate information from different layers. For attention mechanism, Fang et al.
(2023) proposed to strengthen cross-layer interactions by retrieving query-related information from
previous layers. Additionally, RealFormer (He et al., 2020) and EA-Transformer (Wang et al., 2021)
both incorporated attention scores from previous layers into the current layer, establishing connec-
tions through residual attention. However, these methods face significant memory challenges due to
the need to retain features from all encoders, especially when dealing with high-dimensional data
and they may lack robust theoretical supports.

3 PRELIMINARY AND PROBLEM FORMULATION

3.1 REVISITING STATE SPACE MODELS

The state space model is defined below, and it maps a 1-dimensional input signal x(t) to an N -
dimensional latent state h(t):

h′(t) = Ah(t) +Bx(t), (1)

where A ∈ RN×N and B ∈ RN×1 are the structured state matrix and weight of influence from input
to latent state, respectively. We then can obtain the discretization solution of the above equation:

ht = e∆Aht−1 +

∫ t

t−1

eA(t−τ)Bx(τ)dτ. (2)

Together with the zero-order hold (ZOH) condition (Karafyllis & Krstic, 2011), i.e. x(τ) is a con-
stant at intervals [t− 1, t] for all integers t, we have

ht = e∆Aht−1 + (∆A)−1(exp(∆A)− I) ·∆Bxt. (3)

As a result, the continuous process at Equation 1 can be replaced by the following discrete sequence:

ht = Aht−1 +Bxt with A = exp(∆A) and B = (∆A)−1(exp(∆A)− I) ·∆B. (4)

Following Gu & Dao (2023), we refine the approximation of B using the first-order Taylor series:

B = (∆A)−1(exp(∆A)− I) ·∆B ≈ (∆A)−1(∆A) ·∆B = ∆B. (5)

The formulas A = fA(∆, A) and B = fB(∆, A,B) are called the discretization rule, where B =
LinearN (x) is a linear projection of input x into N -dimension vector, and ∆ = Linear1(x); see Gu
et al. (2021a); Gu & Dao (2023) for details.

3
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3.2 CNN LAYER AGGREGATION

Consider a neural network, and let Xt−1 be the output from its tth layer. We then can mathemati-
cally formulate the layer aggregation at the tth layer below,

At = gt(X0,X1, · · · ,Xt−2,Xt−1), Xt = f t(At−1,Xt−1), (6)
where gt is used to summarize the first t layers, At is the aggregated information, and f t produces
the new layer output from the last hidden layer and the given aggregation which contains the previous
information. The Hierarchical Layer Aggregation proposed (Yu et al., 2018) can be shown to have
such similar mechanism which satisfies Equation 6.

This formulation could be generalized to the special case of CNNs. The traditional CNNs do not
contain layer aggregation since the layer output only depends on the last layer output, which over-
looks the connection between the several previous layers’ influence. DenseNet (Huang et al., 2018)
perhaps is the first one for the layer aggregation, and its output at tth layer can be formulated into

Xt = Conv3t[Conv1t(Concat(X0,X1, . . . ,Xt−1))]. (7)

Let At = Conv1t(Concat(X0,X1, . . . ,Xt−1)) and Xt = Conv3t(At), and then DenseNet can be
rewritten into our framework at Equation 6. RLA (Zhao et al., 2021) considers a more convenient
additive form for the layer aggregation, and it has the form of At =

∑t−1
i=0 Conv1t+1

i (Xi), where
the kernel weights of Conv1ti form a partition of the weights in Conv1t. As a result, a lightweight
aggregation can be formed:

Xt = Conv3t[At−1 + Conv1t
t−1(X

t−1)]. (8)

Without loss of generality, ResNets (He et al., 2016a;b) can also be treated as a layer aggregation.
Specifically, we can treat the update of Xt = Xt−1 + f t−1(Xt−1) with applying the update
recursively as At =

∑t−1
i=0 f

i(Xi) +X0 and Xt = At−1 +Xt−1.

3.3 ATTENTION LAYERS AGGREGATION

In this section, we show how to generalize the layer aggregation within a transformer. Consider a
simple attention layer with general input X ∈ RL×D and output O ∈ RL×D. Its query Q, key
K and value V are given by linear projections Wq ∈ RD×D, Wk ∈ RD×D and Wv ∈ RD×D,
i.e. QT = WqX, KT = WkX and VT = WvX. As a result, the output O has the following
mathematical formulation:

O = Self-Attention(X) = softmax(
QKT

√
D

)V. (9)

Let Xt ∈ RL×D with 1 ≤ t ≤ T be the output from tth layer, where L is the number of tokens, D
represents the channel of each token, and T is the number of attention layers. A vanilla transformer
can then be formulated into:

At = Xt−1 + Self-Attention(Xt−1), Xt = At + MLP(Norm(At)). (10)

Note that these simple self-attention layers can only capture the connection between the current layer
output and the last output; they are supposed to perform better if the information from previous layers
can be considered. To this end, we may leverage the idea given by CNN aggregation to concatenate
the previous outputs. Specifically, the vanilla transformer at Equation 10 has the form of:

Xt = f t(gt(X0, · · · ,Xt−1)), (11)
where gt is the attention layer, and f t is the Add & Norm layer for the t-th layer. Following Zhao
et al. (2021) at Equation 8, we may then use the recurrent mechanism to combine all the outputs
given by attention layers, i.e. replacing At = gt(X0, · · · ,Xt−1) by At = At−1 + gt−1(Xt−1).

4 LAYER AGGREGATION VIA SELECTIVE STATE SPACE MODEL

4.1 THE FORMULA OF S6LA

Denote a sequence X = {X1, · · · ,XT }, where Xt is the output from tth layer, say Convolutional
layers/blocks or Attention layers, of a deep neural network, and T is the number of layers. In

4
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Figure 2: Detailed operations in S6LA module with Convolutional Neural Network. The green
arrow shows the hidden state connection, while the grey arrow indicates layers communications.

financial statistics, time series models with discrete states are employed for low-frequency data,
while the diffusion model with continuous processes is a standard tool for high-frequency data. In
previous literature (Queiruga et al., 2020), all existing methods for layer aggregation treat Xt’s to
be discrete states, and hence they all correspond to time series tools in statistics. However, for a very
deep neural network, it is more like the scenario of high-frequency data, and hence a continuous
process is more suitable for the sequence X (Queiruga et al., 2020). This section further conducts
layer aggregation by considering state space models in Section 3.1; see Figure 1 for the illustration.

Specifically, we utilize the Mamba model (Gu & Dao, 2023) due to its effectiveness in processing
long sequences. This model is based on S6 models and can provide a better interpretation on how to
leverage the previous information and then how to store it based on its importance. Moreover, it has
been demonstrated to have a better performance than traditional transformers and RNNs. Following
its principle, we propose our selective state space model layer aggregation below:

ht = gt(ht−1,Xt−1), Xt = f t(ht−1,Xt−1), (12)

where ht is a hidden state similar to At in Equation 6, and it represents the recurrently aggregated
information up to (t − 1)th layer. We may consider an additive form, as in Equation 8, for ht.
Moreover, gt is the relation function between the current SSM hidden layer state and previous hidden
layer state with input. As a result, similar to Equation 4, the update of ht can be formulated as:

ht = Aht−1 +BXt, Xt = f t(ht−1,Xt−1). (13)

The choice of function f t is different for CNNs and Transformer-based models, and they are detailed
in the following two subsections; see Figures 2 and 3 for their illustrations, respectively.

4.2 APPLICATION TO DEEP CNNS

For CNNs backbones, we adopt ResNet (He et al., 2016a) as the baseline architecture. We propose
to concatenate the input at each layer, say Xt ∈ RH×W×D, where H and W represent the height
and width, and D indicates the embedding dimension. For each CNN layer, the input to each
block in ResNet—comprising a combination of 1D and 3D convolutional operations—is formed
by concatenating Xt−1 with the state ht−1 ∈ RH×W×N from the previous layer, where N is
the dimension of latent states. This integration effectively incorporates SSM information into the
convolutional layers, enhancing the network’s capacity to learn complex representations.

For the specific implementation of S6LA in CNNs, we initialize the SSM state h0 using Kaiming
normal initialization method (He et al., 2015). This initialization technique is crucial for ensuring
effective gradient flow throughout the network, and we will further clarify this point in ablation
studies. Next, we employ a selective mechanism to derive two components, the coefficient B for
input and the interval ∆ as specified in Equation 4. For transition matrix A, the initial setting is
same as in Mamba models (Gu & Dao, 2023). Then with Equation 4, we can get the next hidden
layer ht based on the last ht−1 and Xt−1 for each layer in CNNs.

Utilizing Equation 4, we compute the subsequent latent state ht based on the previous state ht−1

and the input Xt−1 for each layer within the CNN architecture. This methodological framework
facilitates improved information flow and retention across layers, thereby enhancing the model’s

5
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Figure 3: Diagram of the S6LA architecture with Transformer. The green arrow shows the hidden
state connection, while the grey arrow indicates communication between layers. The input consists
of image patch tokens (Xt−1

p ) and a class token (Xt−1
c ), processed through positional embedding

and attention. The class token is cloned as Xt−1′

c , and parameters W∆ and WB update the hidden
state (ht). Updated patch tokens are combined with the class token to form the next input (Xt).

performance. Therefore, the specifics of leveraging our S6LA method with CNNs backbones can be
outlined as follows:

Input Treatment: We begin by merging the input Xt−1 and the hidden state ht−1 through a simple
concatenation along the feature dimension. This concatenated representation allows us to generate
the output Ot−1 with the CNNs backbone (such as ResNet).

Latent State Update: For the input state update, we define Xt as the sum of Xt−1 and Ot−1.
For the hidden state, ht is derived as a function of these two components, following the formulation
provided in Equation 4. The equations are as follows with two trainable parameters W∆ and WB

(for the t− 1 layer):
ht = e(∆A)ht−1 +∆BOt−1, (14)

where ∆ = W∆(Conv(Ot−1)), B = WB(Conv(Ot−1)).

Output Computation: The output component Ot−1 from the input treatment step, contributes to
the next input Xt and the computation is: Xt = Ot−1 +Xt−1.

4.3 APPLICATION TO DEEP VITS

In our exploration of S6LA implementation in deep ViT backbones, we draw parallels between
the integration of the state space model (SSM) state and the mechanisms used in convolutional
neural networks (CNNs). However, the methods of combining inputs within transformer blocks
differ significantly from those in CNNs. Like the treatment of attention mechanism, we utilize
multiplication combination instead of simply concatenating to deal with the input Xt−1 and ht−1 in
transformer-based models. This approach enhances the interaction between input features and SSM,
enabling richer feature representation. Then the next paragraghs gives the specifics of leveraging
our S6LA method with ViTs backbones as follows:

Input Treatment: We begin by combining the class token and input, alongside the application
of positional embeddings. Then following the attention mechanism, Xt−1

input ∈ R(L+1)×D appeared
where L is the number of patches and D is the embedding dimension, and it is split into two com-
ponents next: image patch tokens Xt−1

p ∈ RL×D and a class token Xt−1
c ∈ R1×D.

Xt−1
input = Add&Norm(MLP(Add&Norm(Attn(Xt−1)))); Xt−1

p ,Xt−1
c = Split(Xt−1

input ). (15)

The class token plays a crucial role in assessing the correlation between Xt−1 and ht−1. Our
model setting can effectively bridge the features extracted from the patches with the SSM state by
facilitating a better integration into the hidden state since it could be considered as a summary feature
of the image in sequential layers.

6
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Table 1: Comparisons of the Top-1 and Top-5 accuracy on the ImageNet-1K validation set with
CNNs. All the results are reproduced by us with 4 GeForce RTX 3090 GPUs with the same param-
eters. The bold fonts denote the best performance.

Model Method Params FLOPs Top-1 Acc. Top-5 Acc.

ResNet-50

Vanilla (He et al., 2016a) 25.6 M 4.1 B 76.1 92.9
+ SE (Hu et al., 2018) 28.1 M 4.1 B 76.7 93.4
+ CBAM (Woo et al., 2018) 28.1 M 4.1 B 77.3 93.7
+ A2 (Chen et al., 2018) 34.6 M 7.0 B 77.0 93.5
+ AA (Bello et al., 2019) 27.1 M 4.5 B 77.4 93.6
+ 1 NL (Wang et al., 2018) 29.0 M 4.4 B 77.2 93.5
+ 1 GC (Cao et al., 2019) 26.9 M 4.1 B 77.3 93.5
+ all GC (Cao et al., 2019) 29.4 M 4.2 B 77.7 93.7
+ ECA (Wang et al., 2020b) 25.6 M 4.1 B 77.4 93.6
+ RLA (Zhao et al., 2021) 25.9 M 4.3 B 77.2 93.4
+ MRLA (Fang et al., 2023) 25.7 M 4.6 B 77.5 93.7
+ S6LA (Ours) 25.8 M 4.4 B 78.0 94.2

ResNet-101

Vanilla (He et al., 2016a) 44.5 M 7.8 B 77.4 93.5
+ SE (Hu et al., 2018) 49.3 M 7.8 B 77.6 93.9
+ CBAM (Woo et al., 2018) 49.3 M 7.9 B 78.5 94.3
+ AA (Bello et al., 2019) 47.6 M 8.6 B 78.7 94.4
+ ECA (Wang et al., 2020b) 44.5 M 7.8 B 78.7 94.3
+ RLA (Zhao et al., 2021) 45.0 M 8.2 B 78.5 94.2
+ MRLA (Fang et al., 2023) 44.9 M 8.5 B 78.7 94.4
+ S6LA (Ours) 45.0 M 8.3 B 79.1 94.8

ResNet-152

Vanilla (He et al., 2016a) 60.2 M 11.6 B 78.3 94.0
+ SE (Hu et al., 2018) 66.8 M 11.6 B 78.4 94.3
+ CBAM (Woo et al., 2018) 66.8 M 11.6 B 78.8 94.4
+ AA (Bello et al., 2019) 66.6 M 11.9 B 79.0 94.6
+ ECA (Wang et al., 2020b) 60.2 M 11.6 B 78.9 94.5
+ RLA (Zhao et al., 2021) 60.8 M 12.1 B 78.8 94.4
+ MRLA (Fang et al., 2023) 60.7 M 12.4 B 79.1 94.6
+ S6LA (Ours) 60.8 M 12.2 B 79.4 94.9

Latent State Update: Given the split class token in last step, the hidden state is updated similar
to application in CNNs:

ht = e(∆A)ht−1 +∆BXt−1
c , (16)

where ∆ and B are calculated from class token with selective mechanism:

∆ = W∆(X
t−1
c ), B = WB(X

t−1
c ). (17)

Output Computation: At the same time, the new patch tokens X̂t−1
p are computed as the sum of

the previous patch tokens and the product of the previous patch tokens with ht:

X̂t−1
p = Xt−1

p +WXt−1
p ht. (18)

Then the next input, Xt, is derived from the concatenation of the updated patch and class tokens:

Xt = Concat(X̂t−1
p ,Xt−1

c ). (19)

5 EXPERIMENT

This section evaluates our S6LA model in image classification, object detection, and instance seg-
mentation tasks, and provides an ablation study. All models are implemented by the PyTorch toolkit
on 4 GeForce RTX 3090 GPUs. More implementation details, and comparisons are provided in
Appendix C.

5.1 EXPERIMENTS ON IMAGE CLASSIFICATION

Backbone. For the dataset, we use Imagenet-1K dataset ? directly. For the CNN backbone, we
choose different layers of ResNet He et al. (2016a). For transformer-based model, DeiT (Touvron
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Table 2: Comparisons of the Top-1 and Top-5 accuracy on the ImageNet-1K validation set with
vision transformer-based models. All the results are reproduced by us with 4 GeForce RTX 3090
GPUs with the same parameters. The bold fonts denote the best performance.

Backbone Method Params FLOPs Top-1 Top-5

DeiT

DeiT-Ti (Touvron et al., 2021) 5.7 M 1.2 B 72.6 91.1
+ MRLA (Fang et al., 2023) 5.7 M 1.4 B 73.0 91.7
+ S6LA (Ours) 6.1 M 1.5 B 73.3 92.0
DeiT-S (Touvron et al., 2021) 22.1 M 4.5 B 79.9 95.0
+ MRLA (Fang et al., 2023) 22.1 M 4.6 B 80.7 95.3
+ S6LA (Ours) 23.3 M 4.8 B 81.3 96.0
DeiT-B (Touvron et al., 2021) 86.4 M 16.8 B 81.8 95.6
+ MRLA (Fang et al., 2023) 86.5 M 16.9 B 82.9 96.3
+ S6LA (Ours) 86.9 M 17.1 B 83.3 96.5

Swin

Swin-T (Liu et al., 2021) 28.3 M 4.5 B 81.0 95.4
+ MRLA (Fang et al., 2023) 28.9 M 4.5 B 80.9 95.2
+ S6LA (Ours) 30.5 M 4.5 B 81.5 95.6
Swin-S (Liu et al., 2021) 49.6 M 8.7 B 82.8 96.1
+ MRLA (Fang et al., 2023) 50.9 M 8.7 B 82.5 96.0
+ S6LA (Ours) 52.5 M 8.7 B 83.3 96.5
Swin-B (Liu et al., 2021) 87.8 M 15.4 B 83.2 96.4
+ MRLA (Fang et al., 2023) 89.8 M 15.5 B 82.9 96.3
+ S6LA (Ours) 91.3 M 15.5 B 83.5 96.6

PVTv2

PVTv2-B0 (Wang et al., 2022) 3.4 M 0.6 B 70.0 89.7
+ MRLA (Fang et al., 2023) 3.4 M 0.9 B 70.6 90.0
+ S6LA (Ours) 3.8 M 0.6 B 70.8 90.2
PVTv2-B1 (Wang et al., 2022) 13.1 M 2.3 B 78.3 94.3
+ MRLA (Fang et al., 2023) 13.2 M 2.4 B 78.9 94.9
+ S6LA (Ours) 14.5 M 2.2 B 78.8 94.6

PVTv2-B2 (Wang et al., 2022) 25.4 M 4.0 B 81.4 95.5
+ MRLA (Fang et al., 2023) 25.5 M 4.2 B 81.6 95.2
+ S6LA (Ours) 26.1 M 4.1 B 82.3 95.9

et al., 2021), Swin Transformer (Liu et al., 2021) and PVTv2 (Wang et al., 2022) are considered.
We compare our S6LA with baselines and other layer aggregation SOTA methods with different
backbones alone as the baseline models.

Experimental settings. The hyperparameter of state space model channel N shown in Section
4.2 is introduced to control the dimension of feature of h in per S6LA hidden layer module. After
comparison of different N = 16, 32, 64 for ResNet, we choose 32 as our baseline feature channel,
for others we talk about in Section 5.3. In order to compare the baseline models and the models
enhanced by S6LA fairly, we use the same data augmentation and training strategies as in their
original papers (Zhao et al., 2021; Fang et al., 2023) in all our experiments.

Main results. The performance of our main results, along with comparisons to other methods,
is presented in Tables 1 and 2. To ensure a fair comparison, all results for the models listed in
these tables were reproduced using the same training setup on our workstation. Notably, our model
outperforms nearly all baseline models. We specifically compare our S6LA model with other layer
interaction methods using ResNets as baselines. The results in Table 1 demonstrate that our S6LA
surpasses several layer aggregation methods on CNN backbones, including SENet (Hu et al., 2018),
CBAM (Woo et al., 2018), A2-Net (Chen et al., 2018), NL (Wang et al., 2018), ECA-Net (Wang
et al., 2020b), RLA-Net (Zhao et al., 2021) and MRLA (Fang et al., 2023). Additionally, we find that
our model consistently outperforms them, achieving nearly a 2% improvement in Top-1 accuracy
with only 0.3 B FLOPs compared to vanilla ResNet models. Moreover, in comparison with the
latest state-of-the-art method MRLA (Fang et al., 2023), our approach demonstrates fewer FLOPs
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Table 3: Object detection results of different methods on MS COCO2017. The bold fonts denote
the best performance.

Method Detector AP bb AP bb
50 AP bb

75 AP bb
S AP bb

M AP bb
L

ResNet-50 (He et al., 2016a)

Faster
R-CNN

36.4 58.2 39.2 21.8 40.0 46.2
+ SE (Hu et al., 2018) 37.7 59.1 40.9 22.9 41.9 48.2
+ ECA (Wang et al., 2020b) 38.0 60.6 40.9 23.4 42.1 48.0
+ RLA (Zhao et al., 2021) 38.8 59.6 42.0 22.5 42.9 49.5
+ MRLA (Fang et al., 2023) 40.1 61.3 43.8 24.0 43.9 52.2
+ S6LA (Ours) 40.3 61.7 43.8 24.2 44.0 52.5
ResNet-101 (He et al., 2016a) 38.7 60.6 41.9 22.7 43.2 50.4
+ SE (Hu et al., 2018) 39.6 62.0 43.1 23.7 44.0 51.4
+ ECA (Wang et al., 2020b) 40.3 62.9 44.0 24.5 44.7 51.3
+ RLA (Zhao et al., 2021) 41.2 61.8 44.9 23.7 45.7 53.8
+ MRLA (Fang et al., 2023) 41.3 62.9 45.0 24.7 45.5 53.8
+ S6LA (Ours) 41.7 63.0 45.2 24.6 45.6 53.9
ResNet-50 (He et al., 2016a)

RetinaNet

35.6 55.5 38.2 20.0 39.6 46.8
+ SE (Hu et al., 2018) 37.1 57.2 39.9 21.2 40.7 49.3
+ ECA (Wang et al., 2020b) 37.3 57.7 39.6 21.9 41.3 48.9
+ RLA (Zhao et al., 2021) 37.9 57.0 40.8 22.0 41.7 49.2
+ MRLA (Fang et al., 2023) 39.1 58.6 42.0 23.6 43.3 50.8
+ S6LA (Ours) 39.3 59.0 41.9 23.7 42.9 51.0
ResNet-101 (He et al., 2016a) 37.7 57.5 40.4 21.1 42.2 49.5
+ SE (Hu et al., 2018) 38.7 59.1 41.6 22.1 43.1 50.9
+ ECA (Wang et al., 2020b) 39.1 59.9 41.8 22.8 43.4 50.6
+ RLA (Zhao et al., 2021) 40.3 59.8 43.5 24.2 43.8 52.7
+ MRLA (Fang et al., 2023) 41.0 60.0 43.5 24.3 44.1 52.8
+ S6LA (Ours) 41.2 60.4 43.8 24.9 45.1 53.0

and higher accuracy. As indicated in Table 2, our S6LA achieves nearly a 1.5% improvement in
Top-1 accuracy on vanilla vision transformer-based backbones such as DeiT (Touvron et al., 2021),
Swin Transformer (Liu et al., 2021), and PVTv2 (Wang et al., 2022), with only a slight increase in
parameters (+0.2 M) and FLOPs (+0.3 B), all within acceptable limits for hardware. Again, when
compared to the latest SOTA method MRLA (Fang et al., 2023), our model shows fewer FLOPs and
better performance.

5.2 EXPERIMENTS ON OBJECT DETECTION AND INSTANCE SEGMENTATION

This subsection validates the transferability and the generalization ability of our model on object
detection and segmentation tasks using the three typical detection frameworks: Faster R-CNN (Ren
et al., 2016), RetinaNet (Lin et al., 2018) and Mask R-CNN (He et al., 2018).

Experimental settings. For the dataset, we choose MS COCO 2017 (Lin et al., 2014) for exper-
iments. All the codes are based on the toolkits of MMDetection (Chen et al., 2019). The hyperpa-
rameter of state space model channel N is introduced to control the dimension of feature of h in per
S6LA hidden layer module same to the settings in classification tasks.

Results of object detection and instance segmentation. For the results of object detection task,
Table 9 illustrates the details about AP of bounding box with the notation AP bb. It is apparent
that the improvements on all metrics are significant. Also compared with the other stronger back-
bones and detectors, our method outperforms in this task while we only add a little parameters and
FLOPs which can be overlooked by the servers. Meanwhile, Table 4 illustrates our S6LA method’s
improvements about AP of bounding box and mask on all the metrics with Mask R-CNN as the
framework. Also similar to the advantages in object detection task, our method balance the param-
eters and FLOPs with traditional backbones. From the tables’ results, it is proved that our S6LA
model is feasible.

5.3 ABLATION STUDY

Different variants of S6LA. Due to resource limitations, we only experiment with the ResNet-
50 and DeiT models on the ImageNet dataset. Our investigation considers several factors: (a) the
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Table 4: Object detection and instance segmentation results of different methods on MS COCO2017
with Mask R-CNN as a framework. The bold fonts denote the best performance.

Method Params AP bb AP bb
50 AP bb

75 APm APm
50 APm

75

ResNet-50 (He et al., 2016a) 44.2 M 37.2 58.9 40.3 34.1 55.5 36.2
+ SE (Hu et al., 2018) 46.7 M 38.7 60.9 42.1 35.4 57.4 37.8
+ ECA (Wang et al., 2020b) 44.2 M 39.0 61.3 42.1 35.6 58.1 37.7
+ 1 NL (Wang et al., 2018) 46.5 M 38.0 59.8 41.0 34.7 56.7 36.6
+ GC (Cao et al., 2019) 46.9 M 39.4 61.6 42.4 35.7 58.4 37.6
+ RLA (Zhao et al., 2021) 44.4 M 39.5 60.1 43.4 35.6 56.9 38.0
+ MRLA (Fang et al., 2023) 44.4 M 40.4 61.8 44.0 36.9 57.8 38.3
+ S6LA (Ours) 44.9 M 40.6 61.5 44.2 36.7 58.3 38.3
ResNet-101 (He et al., 2016a) 63.2 M 39.4 60.9 43.3 35.9 57.7 38.4
+ SE (Hu et al., 2018) 67.9 M 40.7 62.5 44.3 36.8 59.3 39.2
+ ECA (Wang et al., 2020b) 63.2 M 41.3 63.1 44.8 37.4 59.9 39.8
+ 1 NL (Wang et al., 2018) 65.5 M 40.8 63.1 44.5 37.1 59.9 39.2
+ GC (Cao et al., 2019) 68.1 M 41.1 63.6 45.0 37.4 60.1 39.6
+ RLA (Zhao et al., 2021) 63.6 M 41.8 62.3 46.2 37.3 59.2 40.1
+ MRLA (Fang et al., 2023) 63.6 M 42.5 63.3 46.1 38.1 60.3 40.6
+ S6LA (Ours) 64.0 M 42.7 63.3 46.2 38.3 60.5 41.0

influence of X on h (where the opposite is h randomized for each iteration); (b) the hidden state
channels set to 16, 32, and 64; (c) the selective mechanism involving the interval ∆ and coefficient
B; (d) for the Transformer-based method, using simple concatenation instead of multiplication.

From our analysis of the results presented in Tables 5 and 6, several key findings emerge. Firstly,
models incorporating our S6LA framework demonstrate superior performance compared to those
without it. Notably, using a trainable parameter h (h is influenced by X) yields better performance.
Secondly, regardless of whether we use ResNet or DeiT, we find that a channel dimension of N = 32
yields the best results. Finally, the selective mechanism is crucial for our model; specifically, for the
vision Transformer method (in this case, DeiT), the multiplication of X and h outperforms simple
concatenation used in CNN backbones.

Table 5: The influence of trainable h and se-
lective mechanism of ∆ and B.

Model Params Top-1

ResNet S6LA 25.8 M 78.0
w/o trainable h 25.8 M 77.4

DeiT-Ti S6LA 6.1 M 73.3
w/o trainable h 6.1 M 72.5

ResNet S6LA 25.8 M 78.0
w/o selective 25.8 M 77.3

DeiT-Ti S6LA 6.1 M 73.3
w/o selective 6.1 M 72.7

Table 6: The influence of latent dimension N
and the treatment of DeiT-Ti.

Model Params Top-1

ResNet
N = 16 25.8 M 77.9
N = 32 25.8 M 78.0
N = 64 25.9 M 77.7

DeiT-Ti
N = 16 5.9 M 72.7
N = 32 6.1 M 73.3
N = 64 6.3 M 72.9

DeiT-Ti (S6LA) 6.1 M 73.3
DeiT-Ti (Concatenation) 6.1 M 72.6

6 CONCLUSION

In conclusion, we have demonstrated an enhanced representation of information derived from the
original data by treating outputs from various layers as sequential data inputs to a state space model
(SSM). The proposed Selective State Space Layer Aggregation (S6LA) module uniquely combines
layer outputs with a continuous perspective, allowing for a more profound understanding of deep
models while employing a selective mechanism. Empirical results indicate that the S6LA module
significantly benefits classification and detection tasks, showcasing the utility of statistical theory in
addressing long sequence modeling challenges. Looking ahead, we aim to optimize our approach
by reducing parameters and FLOPs while enhancing accuracy. Additionally, we see potential for
integrating further statistical models into computer science applications, suggesting a promising
convergence in these fields.
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A THE CORRELATION BETWEEN ACCURACY AND LAYER SIZE
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Figure 4: The correlation between accuracy and layer size with model PVT-v2.

Figure 4 illustrates that deeper neural networks can get better performance.

B PSEUDO CODE

In this section we will propose our pseudo of our method for CNNs and transformers.

Algorithm 1 S6LA used in CNNs
Input: Output of the first CNN block X1 ∈ R1×H×W×D, latent state dimension N .
Output: Output of the T -th CNN block XT ∈ R1×H×W×D.

1: Initial the latent state h0, the trainable structured state matrices A;
2: for each t ∈ [1, T ] do
3: // h influence X
4: Concatenate the t− 1-th output Xt−1 and the t− 1-th latent state ht−1;
5: Get the information Ot−1 concluding the two parts with CNNs and residuals;
6: Treat with Conv1d and average pooling to the next step;
7: // selective mechanism
8: Through linear projection to get the selective parameters ∆ and B from the last step;
9: // X influence h

10: Calculate the next output Xt and the update latent state ht with Xt = Ot−1 +Xt−1.
11: end for
12: return Outputs XT .

C EXPERIMENTS

C.1 IMAGENET CLASSIFICATION

C.1.1 IMPLEMENTATION DETAILS

ResNet For training ResNets with our method, we follow exactly the same data augmentation and
hyper-parameter settings in original ResNet (He et al., 2016a). Specifically, the input images are
randomly cropped to 224 × 224 with random horizontal flipping. The networks are trained from

14
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Algorithm 2 S6LA used in Vision Transformers
Input: Output of the first CNN block X1 ∈ R1×L×D, latent state dimension N .
Output: Output of the T -th CNN block XT ∈ R1×L×D.

1: Initial the latent state h0, the trainable structured state matrices A;
2: for each t ∈ [1, T ] do
3: Combine the class token with the t− 1-th output Xt−1 and add positional embeddings;
4: Attention mechanism with Xt−1

input = Add&Norm(Attn(Xt−1)) and get Xt−1
input ∈ R(L+1)×D;

5: Split Xt−1
input and get the two components Xt−1

p ,Xt−1
c ;

6: // h influence X , multiplication not simple concatenation
7: The new patch tokens: X̂t−1

p = Xt−1
p +WXt−1

p ht;
8: // selective mechanism
9: Through linear projection to get the selective parameters ∆ and B from the class token:

∆ = W∆(X
t−1
c ), B = WB(X

t−1
c );

10: // X influence h
11: Calculate the next output XT and the update latent state hT : ht = e(∆A)ht−1 + ∆BXt−1

c

and Xt = Concat(X̂t−1
p ,Xt−1

c ).
12: end for
13: return Outputs XT .

scratch using SGD with momentum of 0.9, weight decay of 1e-4, and a mini-batch size of 256. The
models are trained within 100 epochs by setting the initial learning rate to 0.1, which is decreased by
a factor of 10 per 30 epochs. Since the data augmentation and training settings used in ResNet are
outdated, which are not as powerful as those used by other networks, strengthening layer interactions
leads to overfitting on ResNet. Pretraining on a larger dataset and using extra training settings can
be an option.

DeiT, Swin Transformer, PVTv2 We adopt the same training and augmentation strategy as that
in DeiT. All models are trained for 300 epochs using the AdamW optimizer with weight decay of
0.05. We use the cosine learning rate schedule and set the initial learning rate as 0.001 with batch
size of 1024. Five epochs are used to gradually warm up the learning rate at the beginning of the
training. We apply RandAugment (Cubuk et al., 2020), repeated augmentation (Hoffer et al., 2020),
label smoothing (Szegedy et al., 2016) with ϵ = 0.1, Mixup (Zhang, 2017) with 0.8 probability,
Cutmix (Yun et al., 2019) with 1.0 probability and random erasing (Zhong et al., 2020) with 0.25
probability. Similarly, our model shares the same probability of the stochastic depth with the MHSA
and FFN layers of DeiT/CeiT/PVTv2.

C.1.2 MODEL COMPLEXITY WITH RESPECT TO INPUT RESOLUTION

Figure 5 illustrates the FLOPs induced by our model S6LA with respect to input resolution. We use
the model PVTv2-b1 as the backbone and then derive the differences under various settings of input
resolution. From this, it is apparent that complexity of our method is linear to input resolution.

C.1.3 COMPARISONS WITH RELEVANT NETWORKS

Layer-interaction networks For the comparison of layer-interaction-based models using CNNs,
we first compare our method S6LA with Densenet (Huang et al., 2018), DIANet (Huang et al.,
2020), RLA (Zhao et al., 2021) and MRLA (Fang et al., 2023). The comparison on the ImageNet-
1K validation set are given in Table 1. From the table, it is obvious that our method outperforms
in the classification task and also compared with the similar model size of DenseNet, our model
performs better.

Other relevant networks The methods in the last part, they all use the same implemental settings
from ours in the training of Imagenet. However for some other models, such as BA-Net (Zhao
et al., 2022), adopted other settings. It applied cosine learning schedule and label smoothing in their
training process. However, the different settings of our method and their method will give the unfair
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Figure 5: The GFLOPs induced by our method with respect to input resolution with backbone PVT-
v2-b1.

comparison. Therefore, we adopt the results given in MRLA (Fang et al., 2023) since our method
settings are same to this paper. The results are given in Table 8.

Table 7: Performances of layer-interaction-based models on ImageNet-1K validation dataset. The
bold one denotes the best performance. (The performances of DIANet and DenseNet are from the
two papers)

Model Params FLOPs Top-1 Acc. Top-5 Acc.

ResNet-50 (He et al., 2016a) 25.6 M 4.1 B 76.1 92.9
+ DIA (Huang et al., 2020) 28.4 M - 77.2 -
+ RLA (Zhao et al., 2021) 25.9 M 4.5 B 77.2 93.4

+ MRLA (Fang et al., 2023) 25.7 M 4.6 B 77.5 93.7
+ S6LA (Ours) 25.8 M 4.4 B 78.0 94.2

ResNet-101 (He et al., 2016a) 44.5 M 7.8 B 77.4 93.5
+ DIA (Huang et al., 2020) 47.6 M - 78.0 -
+ RLA (Zhao et al., 2021) 45.0 M 8.4 B 78.5 94.2

+ MRLA (Fang et al., 2023) 44.9 M 8.5 B 78.7 94.4
+ S6LA (Ours) 45.0 M 8.3 B 79.1 94.8

DenseNet-161 (k=48) (Huang et al., 2018) 27.4 M 7.9 B 77.7 93.8
DenseNet-264 (k=32) (Huang et al., 2018) 31.8 M 5.9 B 77.9 93.8

Table 8: Performances of BA-Net model on ImageNet-1K validation dataset under our settings. The
bold one denotes the best performance.

Model Params FLOPs Top-1 Acc. Top-5 Acc.

BA-Net-50 (Zhao et al., 2022) 28.7 M 4.2 B 77.8 93.7
ResNet-50 + S6LA (Ours) 25.8 M 4.4 B 78.0 94.2
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C.2 OBJECT DETECTION AND INSTANCE SEGMENTATION ON COCO DATASET

Implementation details We adopt the commonly used settings by Hu et al. (2018); Wang et al.
(2020b); Cao et al. (2019); Wang et al. (2021); Zhao et al. (2021); Fang et al. (2023), which are
same to the default settings in MMDetection toolkit (Chen et al., 2019). For the optimizer, we use
SGD with weight decay of 1e-4, momentum of 0.9 and batchsize of 16 for all experiments. The
learning rate is 0.02 and is decreased by a factor of 10 after 8 and 11 epochs for within the total 12
epochs. For RetinaNet, we modify the initial learning rate to 0.01 to avoid training problems. For
the pretrained model, we use the model trained in ImageNet tasks.

Results For the experiments of detection tasks in the similar settings models, it is illustrated in
Table 4 and 9. For almost backbone models, our model performs better and it proves that our model
is also useful in detection tasks. For some other implemental settings such as ResNeXT (Xie et al.,
2017) RelationNet++ (Chi et al., 2020), our method also outperforms in object detection results.

Table 9: Object detection results of different methods on MS COCO2017. The bold one denotes the
best performance.

Backbone Model AP bb AP bb
50 AP bb

75 AP bb
S AP bb

M AP bb
L

ResNet-101 (He et al., 2016a) 37.7 57.5 40.4 21.2 42.2 49.5
ResNeXT-101-32x4d (Xie et al., 2017) 39.9 59.6 42.7 22.3 44.2 52.5
RelationNet++ (Chi et al., 2020) 39.4 58.2 42.5 - - -
+ S6LA (Ours) 40.3 61.7 43.8 24.2 44.0 52.5

C.3 VISUALIZATIONS

To investigate how S6LA contributes to representation learning in convolutional neural networks
(CNNs), we utilize the ResNet-50 model (He et al., 2016a) as our backbone. In this study, we
visualize the feature maps using score-weighted visual explanations generated by ScoreCAM (Wang
et al., 2020a), as illustrated in Figure 6 and 7.

We specifically focus on the final convolutional layer of the ResNet-50 model and our S6LA-
enhanced model. This choice is grounded in our observation that the feature maps from the ini-
tial three layers of both models exhibit remarkable similarity. In the visualization, the first column
presents the original images, the second column displays the ScoreCAM images, and the third col-
umn showcases the combination of the original images and their corresponding ScoreCAM. Both
two images in our analysis are randomly selected from the ImageNet validation set, ensuring a di-
verse representation of the data. According to the definition of the CAM method, areas highlighted
in warmer colors indicate stronger contributions to the classification decision.

From our visualizations, it is evident that models enhanced with S6LA exhibit larger warm regions,
which align more closely with the classification labels. In contrast, the vanilla ResNet-50 model
struggles to identify all relevant object areas compared to our method. This disparity suggests that
our approach not only improves the localization of important features but also enhances the model’s
overall classification performance.

The findings presented in the figure provide direct evidence of the efficacy of our method in the
classification task. By leveraging S6LA, we can significantly improve the interpretability of CNNs,
allowing for better insights into how these models make decisions based on the features they learn.
In summary, our results highlight the advantages of incorporating S6LA into standard architectures
like ResNet-50, ultimately leading to more robust and accurate classification outcomes.
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Figure 6: The visualizations of the feature maps extracted from the end convolutional layer of
ResNet, RLA, MRLA and our S6LA. The left ones are original images, the middle colomn is the
CAM and the right ones are the combinations of left and middle. Compared with others, the red
areas of our method are concentrated in the more critical regions of the object (fish) of classification
task.
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Figure 7: The visualizations of the feature maps extracted from the end convolutional layer of
ResNet, RLA, MRLA and our S6LA. The left ones are original images, the middle colomn is the
CAM and the right ones are the combinations of left and middle. Compared with others, the red
areas of our method are concentrated in the more critical regions of the object of classification task.
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