
A Near-Optimal Algorithm for Safe Reinforcement Learning Under
Instantaneous Hard Constraints

Ming Shi 1 Yingbin Liang 1 Ness Shroff 1 2

Abstract

In many applications of Reinforcement Learn-
ing (RL), it is critically important that the algo-
rithm performs safely, such that instantaneous
hard constraints are satisfied at each step, and
unsafe states and actions are avoided. However,
existing algorithms for “safe” RL are often de-
signed under constraints that either require ex-
pected cumulative costs to be bounded or assume
all states are safe. Thus, such algorithms could vi-
olate instantaneous hard constraints and traverse
unsafe states (and actions) in practice. Hence,
in this paper, we develop the first near-optimal
safe RL algorithm for episodic Markov Decision
Processes with unsafe states and actions under
instantaneous hard constraints and the linear mix-
ture model. It achieves a regret Õ(dH

3
√
dK

∆c
) that

nearly matches the state-of-the-art regret in the
setting with only unsafe actions and that in the un-
constrained setting, and is safe at each step, where
d is the feature-mapping dimension, K is the num-
ber of episodes, H is the episode length, and ∆c

is a safety-related parameter. We also provide
a lower bound Ω̃(max{dH

√
K, H

∆2
c
}), which in-

dicates that the dependency on ∆c is necessary.
Further, both our algorithm design and regret anal-
ysis involve several novel ideas, which may be of
independent interest.

1. Introduction
Reinforcement learning (RL) has been extensively studied
to improve the learning performance in sequential decision-
making problems for machine learning applications. These

1AI-EDGE Institute and Department of Electrical and Computer
Engineering, The Ohio State University, Columbus, OH, USA
2Department of Computer Science and Engineering, The Ohio
State University, Columbus, OH, USA. Correspondence to: Ming
Shi <shi.1796@osu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

decision making problems are usually modelled as a Markov
Decision Process (MDP), where an online learner interacts
with an unknown environment sequentially to achieve a
large expected cumulative reward. Many RL algorithms that
do not consider any constraint (and hence are allowed to
freely explore any state-action pair) with sample-complexity
guarantees have been proposed in the literature (Azar et al.,
2017; Jin et al., 2018; Agarwal et al., 2019; Jin et al., 2020;
Jia et al., 2020; Zhou et al., 2021b; He et al., 2022). More-
over, existing “safe” RL algorithms are usually designed
under the constraint that requires expected cumulative, i.e.,
not instantaneous, costs over all steps to be bounded (Yang
et al., 2019; Brantley et al., 2020; Ding et al., 2021; Pa-
ternain et al., 2022) (please see more related work in Sec-
tion 1.2). Thus, practical scenarios where unsafe states and
actions must be avoided at each time/step are not captured.

Instantaneous hard constraints are important in many practi-
cal scenarios, and any unsafe states and actions (and transi-
tions) should be avoided at each step. In safety-critical sys-
tems, violating such a constraint could result in catastrophic
consequences. For example, in power systems, it is well-
known that the states of blackouts (e.g., due to violating the
power-grid operation constraints) must be avoided (Amani
et al., 2019; Shi et al., 2022b). In autonomous driving, im-
proper operations that could cause dangerous states, e.g.,
crashing, must be avoided (Amani et al., 2021; Vamvoudakis
et al., 2021). In robotics, even a single bad action could
damage the machines and any undesirable state of failure
must be avoided (Turchetta et al., 2016; Wachi et al., 2018).

Recently, instantaneous hard constraints have been studied
in theoretical machine learning. Specifically, Amani et al.
(2019) and Pacchiano et al. (2021) studied bandits with
linear instantaneous constraints that require a linear safety
value of the chosen action to be bounded at each step. How-
ever, it is well-known that bandits are only a very special
case of MDP. Amani et al. (2021) studied safe linear MDP
with linear instantaneous hard constraints. However, they
still assume that only the actions could be unsafe, and hence
unsafe states (and transitions) are still not considered. Intu-
itively, when there are only unsafe actions, any action will
always lead to a state in any future step that is safe. Then,
we could consider the safety at each step separately. Indeed,
the existing idea in such a setting is to estimate the safe

1

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

actions at each step separately, without the need to consider
the impact from other steps. In sharp contrast, when one
allows for the more practical scenario when unsafe states
can also exist (as done in this paper), even though an action
is safe at a step, it may cause unsafe states in subsequent
steps. As a result, at each step, the impact from other steps
must be carefully handled. This results in significantly new
challenges in both the algorithm design and regret analysis.

Therefore, this paper studies an important open question: in
MDPs with unsafe states and actions (and transitions) under
instantaneous hard constraints, is it possible to design an
RL algorithm that not only still achieves a strong sample-
complexity guarantee, but is also safe (i.e., satisfies the
instantaneous hard constraint) at each step?

1.1. Our Contributions

In this paper, we make the first effort to address this ques-
tion. Specifically, we study episodic MDPs with unsafe
states and actions under instantaneous hard constraints and
the linear mixture model. We develop an RL algorithm,
called Least-Square Value Iteration by lookiNg ahEad and
peeking backWard (LSVI-NEW). LSVI-NEW achieves a
regret Õ(dH

3
√
dK

∆c
) that nearly matches the state-of-the-art

regret in the unsafe-action setting and that in the uncon-
strained setting, and is safe at each step, where d is the
feature-mapping dimension, K is the number of episodes,
H is the number of steps in each episode, and ∆c (which
is defined in Theorem 2) is a safety-related parameter. We
also provide a lower bound Ω̃(max{dH

√
K, H

∆2
c
}), which

indicates that the dependency on ∆c is necessary.

As discussed before, in our case, the coupling between steps
need to be carefully handled. To resolve the new challenges
due to this coupling, our algorithm in Section 3 involves
four important novel ideas. Idea I: constructing safe sub-
graphs (defined in Section 2.2). Remember that an action
that is safe at a step could cause unsafe future states. To
resolve this problem, we restrict LSVI-NEW to be inside
safe subgraphs of the state-transition diagram. These safe
subgraphs are constructed by estimating safe state-sets at
each step in a backward manner, such that the chosen action
could only result in future states that are estimated to be safe.
Idea II: encouraging to explore the transitions with higher
uncertainty. Due to our first idea for safety, the choices of
actions become restricted. In order to still achieve a sublin-
ear regret, the algorithm needs to be more optimistic in the
learning process. To resolve this new pessimism-optimism
dilemma, we construct a new bonus term in the estimated
Q-value function to encourage LSVI-NEW to explore tran-
sitions with higher uncertainty. Idea III: encouraging to
explore the future subsubgraphs with higher uncertainty.
Idea-II by itself is not sufficient, since each step could be
affected by the safety-learning process at future steps. For

example, even though the safety function at step h may
be precisely known, a bad learning quality at a future step
h′ > h could make the algorithm still not be able to really
execute the optimal safe action at step h. To resolve this
difficulty, we construct another new bonus term to encour-
age LSVI-NEW to explore future subsubgraphs with higher
uncertainty. Idea IV: encouraging to explore the past sub-
subgraphs with higher uncertainty. Similar to that in Idea
III, since each step h is also affected by past steps h′ < h,
we construct a new bonus term to encourage LSVI-NEW to
explore past subsubgraphs with higher uncertainty.

To show a sublinear regret of LSVI-NEW, our regret analy-
sis involves novel ideas for solving the following difficulties.
(Please see Section 4 for details.) Difficulty I: the invariant
in RL with the ergodicity property does not hold any more.
Due to our special design of safe subgraphs, the optimal pol-
icy and LSVI-NEW may visit different sets of states at each
step. Thus, the classical invariant that shows the estimated
V -value is larger than the optimal V -value at any state does
not hold. To resolve this problem, we construct the value
functions in a special way so that other useful interesting
invariants still hold. Difficulty II: how to quantify the impact
from other steps? Our idea is to consider the future and past
impacts separately. Then, we could quantify such impacts
based on our construction of the safe subgraphs.

1.2. Related Work

We provide more related work in this section. To the best
of our knowledge, none of existing work has addressed the
fundamental open problem that we consider in this paper.

RL with constraints: Constraints that require some ex-
pected cumulative costs over all steps to be bounded have
been widely studied in safe RL (Wu et al., 2016; Achiam
et al., 2017; Tessler et al., 2018; Yang et al., 2019; Efroni
et al., 2020; Ding et al., 2020; Brantley et al., 2020; Kala-
garla et al., 2021; Liu et al., 2021; Ding et al., 2021; Wei
et al., 2021; Xu et al., 2021; Shi et al., 2022a; Paternain
et al., 2022; Bai et al., 2022; Ghosh et al., 2022).

Instantaneous hard constraints with only unsafe actions:
First, Amani et al. (2019); Pacchiano et al. (2021) studied
safe linear bandits which require a linear safety value of the
chosen action to be bounded at each step. Second, Amani
et al. (2021) studied linear MDPs with instantaneous hard
constraints, while assuming only actions could be unsafe.
Third, another line of work focused on online optimiza-
tion with instantaneous hard constraints and unsafe actions,
e.g., Badiei et al. (2015); Li et al. (2020); Shi et al. (2021a;b).

Instantaneous hard constraints under deterministic tran-
sitions: Turchetta et al. (2016) and Wachi et al. (2018) stud-
ied instantaneous hard constraints with unsafe states, while
assuming the state transitions are deterministic.

2

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

2. Problem Formulation
In this section, we provide the problem formulation.

2.1. Episodic MDP Under Instantaneous Hard
Constraints and the Linear Mixture Model

We study the constrained episodic MDP, denoted by M =
(S,A, H,P, r, c), in an online setting with K episodes,
where S and A denote the state and action spaces, respec-
tively; H denotes the number of steps in each episode;
P = {Ph}Hh=1, r = {rh}Hh=1 and c = {ch}Hh=1 denote the
transition probability function, reward function and safety
function, respectively. Let T = HK denote the total num-
ber of steps. The learner interacts with the unknown en-
vironment as follows. At each step h of episode k, the
learner first chooses an action akh ∈ A for current state
skh. Then, the learner receives a reward rh(s

k
h, a

k
h), where

rh(·) : S × A → [0, 1] is known. Finally, according to
the unknown transition probability function Ph(·|skh, akh) :
S × A × S → [0, 1], the environment draws a next state
skh+1 and reveals it to the learner. Meanwhile, the learner
observes a noisy safety value ĉkh = ch(s

k
h, a

k
h, s

k
h+1) + ζkh ,

where ch(·) : S ×A× S → [0, 1] is unknown and ζkh is an
additive 0-mean σ-subGaussian random variable.

Instantaneous hard constraint: At each step h < H of
each episode k, the following constraint must be satisfied,

ch(s
k
h, a

k
h, s

k
h+1) ≤ c̄, (1)

where c̄ is a known constant, and ch(s
k
H) ≤ c̄ must be

satisfied at step H . The transition from skh through akh to
skh+1 is said to be unsafe if constraint (1) is violated. Due to
this constraint, some states and actions could also be unsafe.

• A state is said to be unsafe at step h, if there exists
no action, such that constraint (1) can be satisfied, i.e.,
mina∈A max{s′:Ph(s′|s,a)>0} ch(s, a, s

′) > c̄.

• An action is said to be unsafe for state s at step
h, if there is a non-zero probability to transit to a
state, such that constraint (1) will be violated, i.e.,
max{s′:Ph(s′|s,a)>0} ch(s, a, s

′) > c̄.

As discussed in Section 1, due to unsafe states and actions
caused by the instantaneous hard constraint, e.g., bad move-
ments and failures in robotics, crushing in autonomous driv-
ing and blackouts in power systems, new fundamental diffi-
culties need to be resolved, which is the focus of this paper.

Linear mixture MDP: Due to the ergodicity under the lin-
ear function approximation Ph(·|s, a) = ⟨µ∗

h(·),ϕ(s, a)⟩
from Jin et al. (2020), any state could be finally visited
from any other state. Thus, in such a linear MDP, no al-
gorithm can avoid the unsafe states under constraint (1).

Thus, instead we borrow the linear mixture MDP model
from Jia et al. (2020); Zhou et al. (2021a;b); Zhou & Gu
(2022); He et al. (2022). The importance and many ap-
plications of linear mixture MDPs have been provided
in these references. Specifically, the transition proba-
bility Ph(s

′|s, a) = ⟨µ∗
h,ϕ(s, a, s

′)⟩ and safety value
ch(s, a, s

′) = ⟨γ∗
h,ϕ(s, a, s

′)⟩ are linear functions of a
given feature mapping ϕ : S × A × S → Rd, where
µ∗

h ∈ Rd and γ∗
h ∈ Rd are unknown parameters. As typi-

cally assumed, for any bounded function Vh : S → [0, H]
and state-action pair (s, a), we have ∥ϕVh

(s, a)∥2 ≤ D,
where ϕVh

(s, a) =
∑

{s′:Ph(s′|s,a)>0} ϕ(s, a, s
′)Vh(s

′) ∈
Rd. Moreover, ∥µ∗

h∥2 ≤ L and ∥γ∗
h∥2 ≤ L.

2.2. State-Action Subgraphs and Performance Metric

Notice that the ergodicity property, (i.e., any state could fi-
nally be visited from any other state) in classical MDPs does
not hold any more under instantaneous hard constraint (1).
This is because if unsafe states can be visited from any other
state, it is impossible to satisfy (1) at all steps. Due to this
non-ergodicity, we define two important notions below.

First, we let Sh(s, a) denote the set of next-states that could
be transited to with non-zero probability from a state-action
pair (s, a) at step h, i.e., Sh(s, a) ≜ {s′ : Ph(s

′|s, a) > 0}.

Assumption 1. The next-state sets Sh(s, a) are known in
advance for all h, s, a.

Note that the transition kernel P is still unknown. More
importantly, Assumption 1 is necessary (even when the state
transition is deterministic (Wachi et al., 2018)), since if
Sh(s, a) is not known in advance, no safe algorithm can
achieve a sub-linear regret. Specifically, (i) if an unsafe
state s′ that will not be transited to is considered for a state-
action pair (s, a), the algorithm will lose the chance to
explore (s, a). For example, if P(s′|s, a) = 0 is unknown,
the algorithm would never choose (s, a) to avoid the unsafe
state s′. This could result in a linear-in-T regret when (s, a)
is actually optimal. (ii) If an unsafe state s′ that will be
transited to is missed for (s, a), the algorithm will suffer
from this unsafe state s′ when choosing a at state s.

State-action subgraph: While ergodicity does not hold, an
important property here is that, by executing a deterministic
policy π(s, h) : S × [1, H] → A, the learner follows a
closed directed state-action subgraph

Gπ ≜
{
(s1, π(s1, 1)), {(s2, π(s2, 2))}s2∈Sπ

2
, ...,Sπ

H

}
,

where Sπ
h denotes the set of states that are visited with

non-zero probability by policy π at step h. Note that each
episode ends at step H , and thus there is no further action
a taken at state s ∈ Sπ

H . Gπ may contain only a subset
of states in state space S. For simplicity, we assume all

3

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

ℎ = 1 ℎ = 2 ℎ = 3 ℎ = 4 ℎ = 5 ℎ = 6

𝐺)

𝐺*

𝐺+

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2 2 2 2

2

2

2 2

2

2

2

2

2

2

2

2

Figure 1. A sketch of subgraph examples. Squares represent states.
The red dashed square at step h = 5 is the unsafe state. Circles
represent actions. Arrows represent state transitions. There are
two actions a = 1, 2, as shown by the numbers in the circles.

episodes start from a fixed state s1, and drop π of Gπ when
it is clear from the context. In addition, we focus on the
setting where the feature space of all subgraphs is convex.

Please see Figure 1 for a simple sketch of subgraph exam-
ples. For example, when choosing action a = 1 at all steps,
the learner follows subgraph G1. Notice that G1 is a safe
subgraph, since the unsafe state at step h = 5 will not be
visited. As another example, the learner follows subgraph
G2 when choosing a = 2 at step h = 1, choosing a = 1 at
step h = 2, choosing a = 2 for the second state (i.e., the
second square from the top when h = 3) and a = 1 for the
third state (i.e., the third square from the top when h = 3)
at step h = 3, and choosing a = 2 at step h = 4 and step
h = 5. Notice that G2 is an unsafe subgraph, since the
unsafe state at h = 5 could be visited. For ease of under-
standing, in Figure 1, we only draw finite states, two actions
and three subgraphs. However, this paper considers the gen-
eral linear mixture MDP with d-dimension feature mapping
and convex subgraph feature space, where the number of
states s, actions a and subgraphs G could be infinite.

Performance metric: We use Gsafe to denote a safe sub-
graph, i.e., all state-action-state triplets (sh, ah, sh+1) in
Gsafe satisfy the instantaneous hard constraint (1). We let
Gsafe ≜ {Gsafe} denote the set of all safe subgraphs. Then,
the set of all possible safe deterministic policies is

Πsafe ≜
{
π : Gπ ∈ Gsafe

}
. (2)

Moreover, the Q-value (state-action-value) function and the
V -value (state-value) function are defined as follows:

Qπ
h(s, a) ≜ rh(s, a)

+ E

[
H∑

h′=h+1

rh′(sh′ , π(sh′ , h′))
∣∣∣sh = s, ah = a

]
, (3)

V π
h (s) ≜ E

[
H∑

h′=h

rh′(sh′ , π(sh′ , h′))
∣∣∣sh = s

]
. (4)

Therefore, our goal is to develop an RL algorithm π ≜
{πk}Kk=1 that (i) is safe: πk ∈ Πsafe for all k, i.e., con-
straint (1) is satisfied in all episodes k; (ii) achieves a sub-
linear regret, which is defined as

Rπ ≜
K∑

k=1

{
V ∗
1 (s1)− V πk

1 (s1)
}
, (5)

where V ∗
1 (s1) is the V -value of the optimal safe policy, i.e.,

V ∗
1 (s1) = max

π∈Πsafe
V π
1 (s1). (6)

3. A Near-Optimal Safe Algorithm
In this section, we present our algorithm, called Least-
Square Value Iteration by lookiNg ahEad and peeking back-
Ward (LSVI-NEW), as shown in Algorithm 1. Before intro-
ducing our algorithm, we present a necessary assumption.

Assumption 2. (Known seed safe subgraph) There exists
a known seed safe subgraph Gsafe,0 ∈ Gsafe with the known
safety value c0h for a state-action-state triplet (s0h, a

0
h, s

0
h+1)

at each step h of Gsafe,0.

A known seed safe subgraph is necessary for the existence
of safe RL algorithms under instantaneous hard constraints.
Without it, the unsafe states and actions cannot be avoided
in the first episode. Same assumptions on such a known safe
set are also made in related work (Pacchiano et al., 2021;
Amani et al., 2021). As pointed out there, such an assump-
tion is realistic since the known safe set can be obtained
from existing strategies or trials with possibly low rewards.

Next, we define some notations. First, we let Uh ≜
{αϕ(s0h, a0h, s0h+1) : α ∈ R} denote the span of the feature
ϕ(s0h, a

0
h, s

0
h+1). Let ψ(Uh,ϕ1) ≜ ⟨ϕ1, ϕ̃(s

0
h, a

0
h, s

0
h+1)⟩ ·

ϕ̃(s0h, a
0
h, s

0
h+1) denote the projection of a vector ϕ1 to Uh,

where ϕ̃(s, a, s′) ≜ ϕ(s,a,s′)
∥ϕ(s,a,s′)∥2

is the normalized vector of

ϕ(s, a, s′). Second, we let U⊥
h ≜ {ϕ3 ∈ Rd : ⟨ϕ3,ϕ2⟩ =

0,∀ϕ2 ∈ Uh} denote the orthogonal complement of Uh. Let
ψ(U⊥

h ,ϕ1) ≜ ϕ1 −ψ(Uh,ϕ1) denote the projection of ϕ1

to U⊥
h . Third, we let ϕk

h,h+1 = ϕ(skh, a
k
h, s

k
h+1) denote the

feature vector of the state-action-state triplet (skh, a
k
h, s

k
h+1).

Let ∥x∥Λ =
√
xTΛx denote the weighted 2-norm of x

with respect to Λ. Let I denote the identity matrix.

Our LSVI-NEW algorithm contains a simple initialization
phase and a more important learning phase that involves our
four ideas. In the initialization phase, LSVI-NEW purely
explores inside the known seed safe subgraph Gsafe,0, i.e.,
the first for-loop in Algorithm 1, where K ′ is a tunable
parameter. This initialization phase borrows the idea in
bandits with instantaneous hard constraints for obtaining and
preparing some parameter information for the later learning
phase (Amani et al., 2019).

4

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Algorithm 1 Least-Square Value Iteration by lookiNg
ahEad and peeking backWard (LSVI-NEW)

for k = 1 to K ′ do
At each step h, first choose the action akh = ah(s

k
h)

in the known seed safe subgraph Gsafe,0, then observe
the next state skh+1, finally observe the safety value
ch(s

k
h, a

k
h, s

k
h+1).

end for
for k = K ′ + 1 to K do

for h = H to 1 do
Step-1: Update the estimated safety parameter γk

h

according to (7) and the estimated safety function
c̃kh according to (8).
Step-2: Update the estimated safe state-set:

Sk,safe
h = {s ∈ S|∃a ∈ A, s.t. (9) and (10) hold},

and estimated safe action-set for states s ∈ Sk,safe
h :

Ak,safe
h (s) = {a ∈ A|(9) and (10) hold for state s}.

Step-3: Update the parameter wk
h according to (12).

Step-4: Update the estimated Q-values for all state-
action pairs (s, a) that are estimated to be safe, i.e.,
s ∈ Sk,safe

h and a ∈ Ak,safe
h (s), according to (13).

end for
for h = 1 to H − 1 do

Step-5: Observe the current state skh, and then
choose an action according to (17).

end for
end for

From now on, we focus on introducing the five steps in the
learning phase (i.e., the second for-loop in Algorithm 1)
that involves four important ideas. From a high-level point
of view, due to the instantaneous hard constraint, we need
to carefully construct restricted safe state and action sets,
such that by taking action a at state s, all subsequent steps
h′ ≥ h following (s, a) must be safe. Please see Idea
I, which corresponds to Step-2 in Algorithm 1. On the
other hand, because of such restrictions, the algorithm needs
to learn more optimistically. Thus, we develop another
three ideas for handling the impacts from current transitions,
future safety and past safety, respectively. Please see Ideas
II, III and IV, which correspond to Step-4 in Algorithm 1.
Specifically, in Step-1, LSVI-NEW updates the regularized
least-square estimator of the projected safety parameter
ψ(U⊥

h ,γ∗
h) as follows:

γk
h = (Λk

h,1)
−1
∑k−1

τ=1ψ(U⊥
h ,ϕτ

h,h+1)ψ(U⊥
h , ĉτh), (7)

where the Gram matrix Λk
h,1 = λψ(U⊥

h , I) +∑k−1
τ=1ψ(U⊥

h ,ϕτ
h,h+1)ψ

T(U⊥
h ,ϕτ

h,h+1), ψ(U⊥
h , I) = I −

ϕ̃(s0h, a
0
h, s

0
h+1)ϕ̃

T
(s0h, a

0
h, s

0
h+1), ψ(U⊥

h , ĉτh) = ĉτh −
⟨ψ(Uh,ϕ

τ
h,h+1),ϕ̃(s

0
h,a

0
h,s

0
h+1)⟩

∥ϕ(s0h,a
0
h,s

0
h+1)∥2

· c0h and λ ≥ d is a tunable
parameter. Then, we estimate the safety function as follows:

c̃kh(s, a, s
′) =

⟨ψ(Uh,ϕ1), ϕ̃(s
0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h

+ ⟨γk
h,ψ(U⊥

h ,ϕ1)⟩+ β∥ψ(U⊥
h ,ϕ1)∥(Λk

h,1)
−1 , (8)

where ϕ1 = ϕ(s, a, s′) and β is a tunable parameter given
in Theorem 2. Notice that, on the right-hand-side (RHS)
of (8), the first term is the projected safety value of (s, a, s′)
on Uh, the second term is the projected empirical safety
value of (s, a, s′) on U⊥

h , and the last term is an upper-
confidence-bound (UCB) bonus for the safety uncertainty.
Thus, the accuracy of the safety value c̃kh depends on how
accurate γk

h in (7) is and how small the safety uncertainty
is. Next, Step-2 in Algorithm 1 is based on c̃kh and involves
our first novel idea that is critical for guaranteeing safety.

Idea I: Constructing safe subgraphs by looking ahead. As
we discussed in Section 1, in bandits and RL with only
unsafe actions, the safety at each step can be estimated
separately. In sharp contrast, due to the unsafe states and
transitions in our setting, we must handle possible unsafe
future steps. Consider Figure 1 as an example. Even though
taking action a = 1 for the third state (the third square
from the top) at step h = 3 is safe for h = 3, by doing so,
the unsafe state (the red dashed square) at h = 5 will be
visited no matter what action would be taken at h = 4. To
resolve this new challenge, our idea is to construct special
safe subgraphs where any action only results in safe future
(not even just next) states. To achieve this, in Step-2, we
estimate the safe state-set Sk,safe

h and action-set Ak,safe
h (s)

in a backward manner based on the two conditions below:

Condition 1: max
s′∈Sh(s,a)

c̃kh(s, a, s
′) ≤ c̄. (9)

Condition 2: Sh(s, a) ⊆ Sk,safe
h+1 . (10)

Notice that, (i) condition 1 requires that by choosing action
a for state s, the instantaneous hard constraint is always
satisfied at step h; (ii) condition 2 requires that all possible
next states in Sh(s, a) must be safe for next step h + 1.
Thus, with conditions 1 and 2 satisfied simultaneously in a
backward manner, all (not just next) steps h′ ≥ h following
(s, a) must be safe. Please see Theorem 1 for the safety
performance of LSVI-NEW at all steps in any episode.

Moreover, since the linear mixture MDP induces a linear
form of the Q-value function as follows:

Q∗
h(s, a) = min{rh(s, a) + ⟨w∗

h,ϕV ∗
h+1

(s, a)⟩, H}, (11)

in Step-3 of Algorithm 1, we update the regularized least-
square estimator of the parameter w∗

h in (11) as follows:

wk
h = (Λk

h,2)
−1
∑k−1

τ=1 ϕ
τ
h,V τ

h+1
V τ
h+1(s

τ
h+1), (12)

5

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

where the Gram matrix Λk
h,2 = λI +

∑k−1
τ=1 ϕ

τ
h,V ϕ

τ,T
h,V and

ϕτ
h,V = ϕV (s

τ
h, a

τ
h). Then, in Step-4 of Algorithm 1, we

update the Q-values of the safe state-action pairs as follows:

Qk
h(s, a) = min

{
H, rh(s, a) + ⟨wk

h,ϕV k
h+1

(s, a)⟩

+ ϵ1 · ∥ϕV k
h+1

(s, a)∥(Λk
h,2)

−1

+ ϵh,2 · max
s′∈Sh(s,a)

∥ψ(U⊥
h ,ϕ(s, a, s′))∥(Λk

h,1)
−1

+ ϵh,3 max
(sh′ ,ah′ ,s′)∈Gh(s)

∥ψ(U⊥
h′ ,ϕ(sh′ , ah′ , s′))∥(Λk

h′,1)
−1

+ ϵ4 max
s′∈S1(s1,ak

1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1

}
, (13)

where ϵ1 = β + 1, ϵh,2, ϵh,3 and ϵ4 are given soon later,
and Gh(s) is the set of subsubgraphs starting from state s at
step h. Notice that (i) the term with ϵ1 on the RHS of (13)
is the standard Hoeffding bonus term; (ii) the terms with
ϵh,2, ϵh,3 and ϵ4 are three new bonus terms that we construct
for capturing the impacts from future and past steps. We
elaborate our novel ideas in these new bonus terms below.

Idea II: Encouraging to explore the transitions with higher
uncertainty (i.e., looking ahead). As we mentioned in Sec-
tion 1, there is a new pessimism-optimism dilemma in our
setting. Specifically, according to the optimism-in-face-of-
uncertainty principle (Azar et al., 2017), algorithms need
to learn optimistically to achieve a sublinear regret. How-
ever, to avoid the unsafe states and transitions in our setting,
algorithms have to be relatively pessimistic. To resolve
this new dilemma, we construct a bonus term to encour-
age LSVI-NEW to explore the transitions with higher un-
certainty. To achieve this, this new bonus term, i.e., the
term with ϵh,2 in (13), is designed to be the maximum UCB
bonus over all possible next-states s′ ∈ Sh(s, a).

Then, another new difficulty here is how to quantify the
parameter ϵh,2 for such a bonus term, such that a sublinear
regret can be achieved. To resolve this problem, we set

ϵh,2 =

4βH

δ̃

c̄−c̄0
h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)

c̄− c̄0h′ −∆ϕ(c)−
c̄−c̄0

h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)
κ
, (14)

where c̄0h′ = maxh≤h′≤H c0h′ , ∆ϕ(c) = L ·
maxs,a,h maxs′,s′′∈Sh(s,a)∥ϕ(s, a, s′)−ϕ(s, a, s′′)∥2, and
δ̃ and κ are scalars given in Theorem 2. Notice that when
all states are assumed to be safe, all terms related to next
state s′ would be 0. Then, ϵh,2 would be 4βH

c̄−c0h
, which is the

same as the parameter used in the setting with only unsafe
actions (Amani et al., 2021). However, one difference here
is that we need to handle the worst transition. Thus, the
denominator needs to capture the smallest safety balance,
i.e., c̄ − c̄0h′ −∆ϕ(c), that is left for exploration. Another
difference is that even though the safety balance at current
step is small, if the safety balance in future steps is large, the

algorithm should still be encouraged to explore. To capture
such a new special impact from future steps, we add the

term c̄−c̄0
h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)
, such that ϵh,2 increases with the ratio

between future safety balance c̄− c̄0h′ −∆ϕ(c) and current
balance c̄− c0h −∆ϕ(c). Please see Appendix B for details.

Idea III: Encouraging to explore the future subsubgraphs
with higher uncertainty (i.e., looking ahead). Idea II by itself
is not sufficient to achieve a sublinear regret. This is because
future uncertainty could prevent the algorithm from choos-
ing the optimal action at current step. Consider Figure 1 as
an example and assume G1 is the optimal subgraph. Even
though the safety value at h = 1 has been precisely known,
the algorithm may still not choose the optimal action a = 1
due to future uncertainty, e.g., it is uncertain whether the
first two states at h = 2 are safe or not. This is another criti-
cal difference compared with the case without instantaneous
constraints or with only unsafe actions. Hence, at each step,
the algorithm should be encouraged to explore the state that
induces a future subsubgraph with higher uncertainty. To
achieve this, we construct a new bonus term (the term with
ϵh,3 in (13)) that is the maximum UCB bonus over all future
subsubgraphs Gh(s), where

ϵh,3 =
4βH/δ̃

c̄− c̄0h′ −∆ϕ(c)− κ
. (15)

Differently from ϵh,2 in (14), the term c̄−c̄0
h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)
does

not appear in ϵh,3, because the maximization in this bonus
term is taken over all states and actions in Gh(s), which
already captures the impacts from future steps.

Idea IV: Encouraging to explore the past subsubgraphs with
higher uncertainty (i.e., peeking backward). Surprisingly,
with Ideas II and III alone, a sublinear regret may still not
be achieved. This is because of the tricky impact from
past steps. Intuitively, by choosing a different action at
step h = 1, what will happen in future steps could be
completely different. To resolve this new challenge, we
construct a new bonus term, i.e., the term with ϵ4 in (13),
to encourage LSVI-NEW to explore the past subsubgraphs
with higher uncertainty, where

ϵ4 =
4βH

c̄− c01 −∆ϕ(c)
. (16)

Differently from ϵh,3 in (15), the denominator here depends
on c01 (not c̄0h′) at step h = 1 that affects all future steps.

Finally, in Step-5, LSVI-NEW chooses an action

akh = argmaxa∈Ak,safe
h (s,a)Q

k
h(s

k
h, a). (17)

4. Theoretical Results
In this section, we provide the safety and regret guarantees
for our LSVI-NEW algorithm, and a regret lower-bound.

6

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Before these, we make two assumptions for obtaining
good theoretical performance in our setting. Assump-
tion 3 below is from Amani et al. (2021). We let
Φα(s, a) ≜ [α(s′)ϕ(s, a, s′)]s′∈S(s,a) denote a matrix with
α(s′)ϕ(s, a, s′) in each column, where α(s′) is a scalar.

Assumption 3. (Star convexity) For all states sh at
step h, the set D(sh) ≜ {Φ1(sh, a) : a ∈ A} ∪
{Φ1(s

0
h, a

0
h) : Φ1(s

0
h, a

0
h, ·) = ϕ(s0h, a

0
h, s

0
h+1)} is a star

convex set around the safe feature ϕ(s0h, a
0
h, s

0
h+1), i.e., for

all Φ1(sh, a) ∈ D(sh) and α : Sh(sh, a) → [0, 1] with
∥α∥1 = 1, we have Φα(sh, a) + Φ1−α(s

0
h, a

0
h) ∈ D(sh),

where 1 denotes a vector with all entries equal to 1.

Next, we let fh(ϕ1−ϕ2) ≜
∥ϕ1−ϕ2∥2

∥ϕ(s∗h,a
∗
h,s

∗
h+1)−ϕ(s

0
h,a

0
h,s

0
h+1)∥2

denote the L2-distance between features ϕ1 and ϕ2, nor-
malized by the L2-distance between the unknown opti-
mal feature ϕ(s∗h, a

∗
h, s

∗
h+1) and the known safe feature

ϕ(s0h, a
0
h, s

0
h+1) at step h. Let g(rh,1 − rh,2) ≜

|rh,1−rh,2|
rh(s∗h,a

∗
h)

denote reward difference |rh,1 − rh,2|, normalized by the
reward of the unknown optimal state-action pair at step h.

Assumption 4. (Lipschitz rewards and transitions) There
exists δ ∈ (0, 1), s.t., for any two safe state-action pairs
(s(i), a(i)) and (s(j), a(j)) at step h,

g (rh(s(i), a(i))− rh(s(j), a(j)))

≤ δfh (ϕ(s(i), a(i), ·)− ϕ(s(j), a(j), ·)) , (18)
fh′ (ϕ(sh′(i), ah′(i), ·)− ϕ(sh′(j), ah′(j), ·))

≤ δfh (ϕ(s(i), a(i), ·)− ϕ(s(j), a(j), ·)) , (19)

where (sh′(i), ah′(i)) (h′ > h) is the descendant of the
state-action pair (s(i), a(i)) in the safe subgraphs.

Note that (18) implies that rewards are δ-Lipschitz: as fea-
ture differences (RHS of (18)) become smaller, reward dif-
ferences (LHS of (18)) become smaller; and (19) implies
that safe transitions are δ-Lipschitz: as feature differences
at current step (RHS of (19)) become smaller, feature differ-
ences at future steps h′ (LHS of (19)) become smaller.

When the unsafe states and transitions are taken into con-
sideration, to still achieve a sublinear regret, Assumption 4
is required. This is because (i) if rewards are not Lipschitz,
even though a feature vector close to the optimal one is
learned to be safe, the learner could still suffer from a large
reward gap compared with the optimal safe decision, which
could result in a linear-in-T regret; (ii) if safe transitions
are not Lipschitz, even though the optimal safe decision at
a step has been learned, the learner could still be far away
from optimum in future steps, and hence suffer from a large
reward gap, which could also result in a linear-in-T regret.

4.1. Performance Guarantees and A Lower Bound

In Theorem 1 below, we show that LSVI-NEW is safe.

Theorem 1. (Safety) For any p ∈ (0, 1), with probability
1− p, our LSVI-NEW algorithm satisfies the instantaneous
hard constraint (1) at all steps h of all episodes k.

Thanks to our Idea I in Section 3 for guaranteeing safety, the
proof of Theorem 1 (in Appendix A) focuses on quantifying
the accuracy of the estimated safety value in (8). Below, The-
orem 2 provides the regret upper-bound of LSVI-NEW.

Theorem 2. (Regret) By setting δ̃ = δ, λ = d, β =

max

{
σ

√
d log

(
2+2TD2/λ

p

)
+

√
λL, bβdH

√
log
(

dT
p

)}
,

K ′ = 4βD
√
T log

(
d
p

)
, where T = HK, κ = 4βD

λ+λ0K′

and ∆c = c̄ − c̄01 − ∆ϕ(c), then there exist absolute
constants bβ > 0 and λ0 > 0, with probability 1 − p, the
regret of LSVI-NEW is upper-bounded by[

ϵ1 + ϵ4 +max
h

(ϵh,2 + ϵh,3)

]
·
√
2dHT log (1 + T)

+ 2H

√
T log

(
2dT

p

)
+HK ′ +

D

λ0

(
K

K ′ − 1

)
. (20)

The regret in (20) is dominated by the first term (the first
line in (20)) that results from the aforementioned new chal-
lenges due to the instantaneous hard constraint. Thus, in-
corporated with the values of the parameters, Theorem 2
indicates that the regret of LSVI-NEW is upper-bounded
by Õ

(
dH3

√
dK

c̄−c̄01−∆ϕ(c)

)
. Notably, it nearly matches the state-

of-the-art regret Õ
(

dH3
√
dK

c̄−c̄01−∆ϕ(c)

)
in the setting with only

unsafe actions (Amani et al., 2021) and Õ(dH2
√
K) in the

unconstrained linear mixture MDP (Jia et al., 2020), while
comparing with different optimal policies. To the best of
our knowledge, this is the first such result in the literature.
Further, we provide a lower bound in Theorem 3 below.

Theorem 3. (A lower bound) Assuming K ≥ 32R. The
regret of any safe algorithm π is lower-bounded as follows:

Rπ ≥ R ≜ max

{
dH

√
K

16
√
2

,
H/24

(c̄− c̄01 −∆ϕ(c))2

}
. (21)

Theorem 3 implies that the dependency of the regret
of LSVI-NEW on c̄ − c̄01 − ∆ϕ(c) is necessary. In addi-
tion, the regret of LSVI-NEW matches the lower bound
within a factor of Õ(H2

√
d). Same as in the setting with

only unsafe actions, we conjecture that this gap can be fur-
ther reduced by applying Bernstein inequality and leave this
as future work. Please see Appendix F for the proof.

4.2. Proof Sketch for Theorem 2

In this subsection, we provide the high-level ideas for prov-
ing Theorem 2 (please see Appendix E for the proof). Be-

7

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

cause of the new challenges from instantaneous hard con-
straints and our novel ideas in the algorithm design, there
are several new difficulties in the regret analysis. The key
ones are: (I) Differently from MDPs without constraints
or with only unsafe actions, in our case, different policies
could visit very different sets of states at each step. Hence,
the commonly-used invariant on V -values that relies on the
ergodicity property no longer holds. (II) How to quantify the
impacts when looking ahead and peeking backward. Below,
we introduce our new analytical ideas, which may be of
independent interest.

Step-I: Solving difficulty I by constructing new invari-
ants. We construct new forms of V -value functions for
different policies below. We let S∗

h denote the state set
at step h in the optimal safe subgraph. Let Sk

h denote
the state set at step h in the subgraph followed by pol-
icy πk of LSVI-NEW in episode k. Moreover, we let
f̃h(s, a) ≜ fh(ϕ(s, a, ·) − ϕ(s∗h, a∗h, ·)) denote the gap of
transitions compared with optimal transitions. Let Ãk

h(s) ≜
{a ∈ Ak,safe

h (s) : f̃h(s, a) ≤ ᾱ0} ∪ {akh(s)} capture the
safe actions with transitions close to the optimal transitions,
where ᾱ0 is the maximum of α0 in (28) and the RHS of (29).
Let S̃k

h ≜ {s ∈ Sk,safe
h : ∃a ∈ Ak,safe

h (s), s.t., f̃h(s, a) ≤
ᾱ0}∪Sk

h capture the safe states with transitions close to the
optimal transitions. Next, we define the V -value functions
of the optimal policy, estimated policy and policy πk to be

V ∗
h (s) ≜ Q∗

h(s, a
∗
h(s)),∀s ∈ S∗

h, (22)

V k
h (s) ≜ max

a∈Ãk
h(s)

Qk
h(s, a),∀s ∈ S̃k

h , (23)

V πk

h (s) ≜ Qπk

h (s, akh(s)),∀s ∈ Sk
h , (24)

respectively. Then, the regret RLSVI-NEW can be decomposed
into two parts, i.e., the values in the two brackets [·] below:

K∑
k=1

{
[V ∗

1 (s1)− V k
1 (s1)] + [V k

1 (s1)− V πk

1 (s1)]
}
. (25)

To upper-bound the regret, we prove that, with high proba-
bility, (i) the value in the first bracket of (25) is non-positive;
(ii) the value in the second bracket can be upper-bounded.
Result (ii) can be obtained by upper-bounding the bonus
terms, which can further be proven by slightly modifying
existing techniques in linear mixture MDP. The main dif-
ficulty is to prove result (i). To resolve this difficulty, we
construct two new invariants that hold at each step.
Lemma 1. (New invariants) At each step h of each episode,
(i) for any state s, s.t., s ∈ S∗

h and s ∈ S̃k
h , we have

V k
h (s) ≥ V ∗

h (s); (26)

(ii) for any state s, s.t., s ∈ S∗
h and s /∈ S̃k

h , and any state ŝ,
s.t., ŝ ∈ S̃k

h and ŝ /∈ S∗
h, we have

V k
h (ŝ) ≥ V ∗

h (s). (27)

Invariant (i) shows that, if the optimal state has been found,
the estimated V -value must be higher than the optimal V -
value. Notice that if the optimal safe action has also been
found, (26) trivially holds. If it has not been found, thanks
to our new bonus terms that essentially capture the distance
from the optimal action, (26) still holds. Moreover, invariant
(ii) shows that, if the optimal state has not been found, the
V -value of the sub-optimal state in S̃k

h is still larger than
the optimal V -value. This is intuitively because S̃k

h only
contains safe states with transitions close to the optimal
transitions, and the distance is captured by our new bonus
terms. Please see Appendix D for details and the proof.

Step-II: Solving difficulty II by quantifying future impacts.
The impact when looking ahead can be characterized by
quantifying the impacts from future steps.

Lemma 2. (Impacts from future steps) For any state s, s.t.,
s ∈ S∗

h and s ∈ S̃k
h , if a∗h(s) /∈ Ãk

h(s), there must exist an
action a0 ∈ Ãk

h(s), s.t.,

f̃h(s, a0|s∗h = s) ≤ α0, (28)

where α0 = 1 − (c̄−c0h−∆ϕ(c)−l1)(c̄−c̄0
h′−∆ϕ(c)−l2)

(c̄−c0h−∆ϕ(c)+l1)(c̄−c̄0
h′−∆ϕ(c)+l2)

,

l1 = 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1 and l2 =

2β max
{h<h′≤H,(s∗

h′ ,a
∗
h′),s

′}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1 .

Lemma 2 implies that when k increases, the UCB terms l1
and l2 decrease to be closer to 0, and thus α0 gets closer
to 0. Then, the gap between LSVI-NEW’s decision and the
optimal decision, i.e., f̃h(s, a0|s∗h = s) on the LHS of (28),
gets closer to 0. This is consistent with the intuition that as
more safety values revealed, we should be able to get closer
to the optimal action. Moreover, when there is no constraint
on states, all terms related to the next state s′ in α0 would be
0. Then, α0 would be reduced to be 1− c̄−c0h−2β∥ϕ(s,a∗

h(s))∥
c̄−c0h

,
which results in a parameter same to that used in the case
with only unsafe actions (Amani et al., 2021). However, due
to unsafe states and transitions, impacts from future steps
h′ > h are captured in α0 here, which results in a different
parameter ϵh,2 in our Idea II and a new parameter ϵh,3 in
Idea III. Please see Appendix B for details and the proof.

Step-III: Solving difficulty II by quantifying past impacts.
The impact when peeking backward can be characterized
by quantifying the impacts from past steps.

Lemma 3. (Impacts from past steps) For any state ŝ, s.t.,
ŝ ∈ S̃k

h and ŝ /∈ S∗
h, there must exist an action a0 ∈ Ãk

h(ŝ)
and 1 ≤ h′ ≤ h, s.t.,

f̃h(ŝ, a0) ≤ 1− c̄−c0
h′−∆ϕ(c)−l3

δ(c̄−c0
h′−∆ϕ(c)+l3)

, (29)

where l3 = 2βmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1 .

8

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Table 1. Comparison of the average rewards (RW) and constraint
violations (CV) in synthetic environments.

LSVI-NEW UCRL SLUCB-QVI SMDP

RW 1.53 1.78 1.59 0.85
CV 0 0.91 0.83 0

Differently from Lemma 2, Lemma 3 quantifies the impacts
from past steps, i.e., h′ ≤ h. This special impact results in
the new bonus term with parameter ϵ4 in our Idea IV in Sec-
tion 3. Moreover, Lemma 3 implies that when the number of
episodes k increases, the UCB term l3 decreases to be closer
to 0, and thus the RHS of (29) in Lemma 3 gets closer to 0.
This implies that f̃h(ŝ, a0) on the LHS of equation (29) gets
closer to 0. Notice that f̃h(ŝ, a0) represents the gap between
the decision of the policy πk used by LSVI-NEW and the
optimal decision. In addition, in the RHS of equation (29),
l3 characterizes the transition uncertainty. Therefore, the
above implication is consistent with the intuition that as
more safety values are revealed, we should be able to get
closer to the optimal action. See Appendix C for the proof.

These new difficulties are also the reasons that all ϵh,2, ϵh,3
and ϵ4 are different from the parameter used in the setting
with only unsafe actions (Amani et al., 2021).

5. Numerical Results
In this section, we provide some numerical results. We
simulate two types of environments: (i) synthetic environ-
ments and (ii) robot path planning environments (Wachi
et al., 2018). In these experiments, we compare
our LSVI-NEW algorithm with the UCRL algorithm in Jia
et al. (2020), the SLUCB-QVI algorithm from Amani et al.
(2021) and the sMDP algorithm in Wachi et al. (2018). For
all algorithms, we compare their average (averaged over the
number K of episodes) rewards (RW) and number of con-
straint violations (CV), in terms of the average number of
episodes that the instantaneous hard constraint is violated.

(i) Synthetic environments: To generate the environments,
we set the dimension d = 5, length of each episode H = 3,
number of episodes K = 10000, and the safety threshold
c̄ = 0.5. The transition-probability parameterµ∗

h and safety-
value parameter γ∗

h are generated according to the truncated
multivariate Gaussian distribution N (0,1d). From Table 1,
we can see that although UCRL and SLUCB-QVI (which
disregard the instantaneous hard constraint) obtain higher
reward, they violate the constraint for most episodes. In con-
trast, our LSVI-NEW algorithm satisfies the constraint all
the time. On the other hand, although the sMDP algorithm
does not violate the constraint, its reward is low since it
is too conservative. In contrast, our LSVI-NEW algorithm
achieves a larger reward in our simulated environments.

Table 2. Comparison of the average rewards (RW) and constraint
violations (CV) in robot path planning environments.

LSVI-NEW UCRL SLUCB-QVI SMDP

RW 53.6 59.6 54.9 33.1
CV 0 0.81 0.71 0

(ii) Robot path planning environments: We consider a 10×
10 2D-map. The state represents the location of the robot in
the map. The action at each location represents the degree of
the robot’s searching direction. The unsafe states correspond
to the location where there exists a rock or a cliff. Differently
from Wachi et al. (2018) where a deterministic transition
is assumed, we consider the uncertainty between the real
motion and the command. That is, by taking an action with
a degree of x, the robot could either move directly in the
targeting direction or deviate from the targeting direction by
a certain degree. Moreover, we change the episode length
to be H = 100. Similarly to the conclusion in synthetic
environments, from Table 2, we can see that LSVI-NEW is
better in satisfying the instantaneous hard constraint and
obtaining a higher reward in our simulated environments.

6. Conclusion
In this paper, we make the first effort to resolve the chal-
lenges due to unsafe states and actions under instantaneous
hard constraints in RL. We develop an RL algorithm that
achieves a regret that nearly matches the state-of-the-art
regret in the setting with only unsafe actions and that in
the unconstrained setting (while comparing with different
optimal policies), and is safe (i.e., satisfies the instantaneous
hard constraint) at each step. We also provide a lower bound
of the regret that indicates that the dependency of the regret
of our algorithm on the safety parameters is necessary. Fur-
ther, both our algorithm design and regret analysis involve
several novel ideas, which may be of independent interest.
An interesting future work is to study the impact of number
N of instantaneous hard constraints on the regret. Note
that the construction for the bonus terms will need to be
more careful, e.g., the bonus terms need to increase with
logN . Thus, we conjecture that the final regret will depend
on logN , which would be similar to that in the setting with
soft cumulative constraints (HasanzadeZonuzy et al., 2021).

Acknowledgements
This work has been partly supported by NSF grants NSF
AI Institute (AI-EDGE) CNS-2112471, RINGS-2148253,
CNS-2106933, 2007231, CNS-1955535, and CNS-1901057,
and by Army Research Office under Grant W911NF-21-1-
0244.

9

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. Advances in
neural information processing systems, 24, 2011.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International conference on ma-
chine learning, pp. 22–31. PMLR, 2017.

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-
forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, pp. 10–4, 2019.

Amani, S., Alizadeh, M., and Thrampoulidis, C. Linear
stochastic bandits under safety constraints. Advances in
Neural Information Processing Systems, 32, 2019.

Amani, S., Thrampoulidis, C., and Yang, L. Safe rein-
forcement learning with linear function approximation.
In International Conference on Machine Learning, pp.
243–253. PMLR, 2021.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pp. 263–272. PMLR, 2017.

Badiei, M., Li, N., and Wierman, A. Online convex op-
timization with ramp constraints. In 2015 54th IEEE
Conference on Decision and Control (CDC), pp. 6730–
6736. IEEE, 2015.

Bai, Q., Bedi, A. S., Agarwal, M., Koppel, A., and Ag-
garwal, V. Achieving zero constraint violation for con-
strained reinforcement learning via primal-dual approach.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 36, pp. 3682–3689, 2022.

Brantley, K., Dudik, M., Lykouris, T., Miryoosefi, S., Sim-
chowitz, M., Slivkins, A., and Sun, W. Constrained
episodic reinforcement learning in concave-convex and
knapsack settings. Advances in Neural Information Pro-
cessing Systems, 33:16315–16326, 2020.

Ding, D., Zhang, K., Basar, T., and Jovanovic, M. Natu-
ral policy gradient primal-dual method for constrained
markov decision processes. Advances in Neural Informa-
tion Processing Systems, 33:8378–8390, 2020.

Ding, D., Wei, X., Yang, Z., Wang, Z., and Jovanovic, M.
Provably efficient safe exploration via primal-dual policy
optimization. In International Conference on Artificial
Intelligence and Statistics, pp. 3304–3312. PMLR, 2021.

Efroni, Y., Mannor, S., and Pirotta, M. Exploration-
exploitation in constrained mdps. arXiv preprint
arXiv:2003.02189, 2020.

Ghosh, A., Zhou, X., and Shroff, N. Provably efficient
model-free constrained rl with linear function approxima-
tion. arXiv preprint arXiv:2206.11889, 2022.

HasanzadeZonuzy, A., Bura, A., Kalathil, D., and Shakkot-
tai, S. Learning with safety constraints: Sample complex-
ity of reinforcement learning for constrained mdps. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 7667–7674, 2021.

He, J., Zhou, D., and Gu, Q. Near-optimal policy optimiza-
tion algorithms for learning adversarial linear mixture
mdps. In International Conference on Artificial Intelli-
gence and Statistics, pp. 4259–4280. PMLR, 2022.

Jia, Z., Yang, L., Szepesvari, C., and Wang, M. Model-based
reinforcement learning with value-targeted regression. In
Learning for Dynamics and Control, pp. 666–686. PMLR,
2020.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? Advances in neural infor-
mation processing systems, 31, 2018.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020.

Kalagarla, K. C., Jain, R., and Nuzzo, P. A sample-
efficient algorithm for episodic finite-horizon mdp with
constraints. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 8030–8037, 2021.

Kaufmann, E., Cappé, O., and Garivier, A. On the com-
plexity of best-arm identification in multi-armed bandit
models. The Journal of Machine Learning Research, 17
(1):1–42, 2016.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Li, Y., Qu, G., and Li, N. Online optimization with pre-
dictions and switching costs: Fast algorithms and the
fundamental limit. IEEE Transactions on Automatic Con-
trol, 66(10):4761–4768, 2020.

Liu, T., Zhou, R., Kalathil, D., Kumar, P., and Tian, C.
Learning policies with zero or bounded constraint viola-
tion for constrained mdps. Advances in Neural Informa-
tion Processing Systems, 34:17183–17193, 2021.

Pacchiano, A., Ghavamzadeh, M., Bartlett, P., and Jiang,
H. Stochastic bandits with linear constraints. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2827–2835. PMLR, 2021.

10

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Paternain, S., Calvo-Fullana, M., Chamon, L. F., and
Ribeiro, A. Safe policies for reinforcement learning via
primal-dual methods. IEEE Transactions on Automatic
Control, 2022.

Shi, M., Lin, X., and Fahmy, S. Competitive online convex
optimization with switching costs and ramp constraints.
IEEE/ACM Transactions on Networking, 29(2):876–889,
2021a.

Shi, M., Lin, X., and Jiao, L. Combining regularization with
look-ahead for competitive online convex optimization.
In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, pp. 1–10. IEEE, 2021b.

Shi, M., Lin, X., and Jiao, L. Power-of-2-arms for ban-
dit learning with switching costs. In Proceedings of the
Twenty-Third International Symposium on Theory, Algo-
rithmic Foundations, and Protocol Design for Mobile
Networks and Mobile Computing, pp. 131–140, 2022a.

Shi, Y., Qu, G., Low, S., Anandkumar, A., and Wierman, A.
Stability constrained reinforcement learning for real-time
voltage control. In 2022 American Control Conference
(ACC), pp. 2715–2721. IEEE, 2022b.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward con-
strained policy optimization. In International Conference
on Learning Representations, 2018.

Turchetta, M., Berkenkamp, F., and Krause, A. Safe explo-
ration in finite markov decision processes with gaussian
processes. Advances in Neural Information Processing
Systems, 29, 2016.

Vamvoudakis, K. G., Wan, Y., Lewis, F. L., and Cansever,
D. Handbook of Reinforcement Learning and Control.
Springer, 2021.

Wachi, A., Sui, Y., Yue, Y., and Ono, M. Safe exploration
and optimization of constrained mdps using gaussian
processes. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Wei, H., Liu, X., and Ying, L. A provably-efficient model-
free algorithm for constrained markov decision processes.
arXiv preprint arXiv:2106.01577, 2021.

Wu, Y., Shariff, R., Lattimore, T., and Szepesvári, C. Conser-
vative bandits. In International Conference on Machine
Learning, pp. 1254–1262. PMLR, 2016.

Xu, T., Liang, Y., and Lan, G. Crpo: A new approach for
safe reinforcement learning with convergence guarantee.
In International Conference on Machine Learning, pp.
11480–11491. PMLR, 2021.

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J.
Projection-based constrained policy optimization. In
International Conference on Learning Representations,
2019.

Zhou, D. and Gu, Q. Computationally efficient horizon-free
reinforcement learning for linear mixture mdps. Advances
in Neural Information Processing Systems, 35, 2022.

Zhou, D., Gu, Q., and Szepesvari, C. Nearly minimax
optimal reinforcement learning for linear mixture markov
decision processes. In Conference on Learning Theory,
pp. 4532–4576. PMLR, 2021a.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforce-
ment learning for discounted mdps with feature mapping.
In International Conference on Machine Learning, pp.
12793–12802. PMLR, 2021b.

11

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

A. Proof of Theorem 1
Remember that our Idea I in Section 3 is mainly designed for guaranteeing safety. As we discussed there, (i) condition 1
in (9) implies that by choosing action a for state s at step h, the instantaneous hard constraint is guaranteed to be satisfied
at step h; (ii) condition 2 in (10) implies that all possible next states in Sh(s, a) (i.e., the next states that could be visited
with non-zero probability) must be safe for next step h + 1. Thus, with conditions 1 and 2 satisfied simultaneously in a
backward manner, all step h′ ≥ h (not even just next step h+ 1) following (s, a) must be safe. Hence, the probability of
our LSVI-NEW algorithm being safe depends on the accuracy of the estimated safety value c̃kh in (8).

Moreover, remember that, on the RHS of (8), the first term is the projected safety value of (s, a, s′) on Uh, the second
term is the projected empirical safety value of (s, a, s′) on U⊥

h , and the last term is a UCB bonus for the safety uncertainty.
In addition, the second term there relies on the accuracy of the regularized least-square estimator of the projected safety
parameter ψ(U⊥

h ,γ∗
h). Thus, the accuracy of c̃kh further depends on how accurate γk

h in (7) is and how small the safety
uncertainty is.

Therefore, we first prove Lemma 4 below for quantifying the accuracy of the estimated safety parameter γk
h in (7).

Lemma 4. (Accuracy of the estimated safety parameter) For any p ∈ (0, 1), with probability 1− p, we have that, for all
steps h of all episode k, ∥∥ψ(U⊥

h ,γ∗
h)− γk

h

∥∥
Λk

h,1

≤ β1, (30)

where β1 = σ

√
d log

(
2+ 2TD2

λ

p

)
+
√
λL.

Proof. (Proof of Lemma 4) First, according to (7), we have that the estimated safety parameter is equal to

γk
h =

(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1

·
k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)

(
ĉτh −

⟨ψ(Uh,ϕ
τ
h,h+1), ϕ̃(s

0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h

)

=

(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1 k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)

[〈
ψ(U⊥

h ,γ∗
h),ψ(U⊥

h ,ϕτ
h,h+1)

〉
+ ζτh

]
.

By opening the bracket [·], and adding and subtracting the term λψ(U⊥
h , I), we have

γk
h =

(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)

·ψ(U⊥
h ,γ∗

h)−

(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1

λψ(U⊥
h , I)ψ(U⊥

h ,γ∗
h)

+

(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1 k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ζ
τ
h .

Thus, we have

γk
h = ψ(U⊥

h ,γ∗
h)−

(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1

λψ(U⊥
h , I)ψ(U⊥

h ,γ∗
h)

+

(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1 k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ζ
τ
h . (31)

12

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

According to (31), the square of the left-hand-side of (30) is equal to

∥∥∥ψ(U⊥
h ,γ∗

h)− γk
h

∥∥∥2
Λk

h,1

=
[(
ψ(U⊥

h ,γ∗
h)− γk

h

)
Λk

h,1

]T
(
λψ(U⊥

h , I) +

k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ψ
T(U⊥

h ,ϕτ
h,h+1)

)−1

·

(
λψ(U⊥

h , I)ψ(U⊥
h ,γ∗

h)−
k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ζ
τ
h

)
.

Then, according to the Cauchy-Schwarz inequality, we have∥∥∥ψ(U⊥
h ,γ∗

h)− γk
h

∥∥∥2
Λk

h,1

≤
∥∥∥ (ψ(U⊥

h ,γ∗
h)− γk

h

)
Λk

h,1

∥∥∥
(Λk

h,1)
−1

·

∥∥λψ(U⊥
h , I)ψ(U⊥

h ,γ∗
h)
∥∥
(Λk

h,1)
−1 +

∥∥∥∥∥
k−1∑
τ=1

ψ(U⊥
h ,ϕτ

h,h+1)ζ
τ
h

∥∥∥∥∥
(Λk

h,1)
−1

 .

Notice that the smallest eigenvalue of Λk
h,1 is λmin(Λ

k
h,1) = λ. Hence, according to Theorem 1 in Abbasi-Yadkori et al.

(2011), we have that, with probability 1− p for any p ∈ (0, 1),

∥∥∥ψ(U⊥
h ,γ∗

h)− γk
h

∥∥∥2
Λk

h,1

≤
∥∥∥ (ψ(U⊥

h ,γ∗
h)− γk

h

)
Λk

h,1

∥∥∥
(Λk

h,1)
−1

·

σ
√√√√d log

(
2 + 2kD2

λ

p

)
+
√
λL

 . (32)

Finally, by rearranging the terms in (32), we have

∥∥∥ψ(U⊥
h ,γ∗

h)− γk
h

∥∥∥
Λk

h,1

≤ σ

√√√√d log

(
2 + 2kD2

λ

p

)
+

√
λL ≤ β1.

This concludes the proof of Lemma 4.

Lemma 4 shows that with high probability, the estimated safety parameter γk
h is close enough to the projected true safety

parameter ψ(U⊥
h ,γ∗

h). Now, we prove Theorem 1 based on our Idea I in Section 3 and Lemma 4 above.

Proof. (Proof of Theorem 1) We let Gk,safe
h denote the set of safe subsubgraphs constructed at step h in episode k

by LSVI-NEW using our Idea I. Then, using mathematical induction, we prove that Gk,safe
h is safe, i.e., any state-action-state

triplet (skh′ , akh′ , skh′+1), where h ≤ h′ ≤ H , in Gk,safe
h satisfies the instantaneous hard constraint (1).

(i) Base case: when h = H , according to Lemma 4 and the Cauchy-Schwarz inequality, we have〈
ψ(U⊥

h ,γ∗
h)− γk

h,ψ(U⊥
h ,ϕ(skH))

〉
≤ β1

∥∥∥ψ(U⊥
h ,ϕ(skH))

∥∥∥
(Λk

h,1)
−1
. (33)

From (33), we have〈
ψ(U⊥

h ,γ∗
h),ψ(U⊥

h ,ϕ(skH))
〉
≤
〈
γk
h,ψ(U⊥

h ,ϕ(skH))
〉
+ β1

∥∥∥ψ(U⊥
h ,ϕ(skH))

∥∥∥
(Λk

h,1)
−1
. (34)

Next, since the left-hand-side of (34) is equal to〈
ψ(U⊥

h ,γ∗
h),ψ(U⊥

h ,ϕ(skH))
〉
=
〈
γ∗
h,ϕ(s

k
H)
〉
−
〈
γ∗
h,ψ(Uh,ϕ(s

k
H))
〉

=
〈
γ∗
h,ϕ(s

k
H)
〉
− ⟨ψ(Uh,ϕ(s

k
H)), ϕ̃(s0H)⟩

∥ϕ(s0H)∥2
· c0H ,

13

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

we have 〈
γ∗
h,ϕ(s

k
H)
〉
≤ ⟨ψ(Uh,ϕ(s

k
H)), ϕ̃(s0H)⟩

∥ϕ(s0H)∥2
· c0H +

〈
γ∗
h,ϕ(s

k
H)
〉
+ β1

∥∥∥ψ(U⊥
h ,ϕ(skH))

∥∥∥
(Λk

h,1)
−1
. (35)

Notice that, since the parameter β used for the estimated safety value c̃kH(skH) in (8) is larger than or equal to β1, the
right-hand-side of (35) is less than or equal to c̃kH(skH), which is less than or equal to c̄ due to our condition 1 in (9). Hence,
we have cH(skH) ≤ c̄.

(ii) Induction step: we hypothesize that Gk,safe
h is safe when h = h0. Then, we prove that Gk,safe

h is safe for h = h0 − 1
similar to the base case, while condition 2 that we construct in (10) becomes important here. First, according to Lemma 4
and the Cauchy-Schwarz inequality, we have〈

ψ(U⊥
h ,γ∗

h)− γk
h,ψ(U⊥

h ,ϕ(skh, a
k
h, s

k
h+1))

〉
≤ β1

∥∥∥ψ(U⊥
h ,ϕ(skh, a

k
h, s

k
h+1))

∥∥∥
(Λk

h,1)
−1
. (36)

From (36), we have〈
ψ(U⊥

h ,γ∗
h),ψ(U⊥

h ,ϕ(skh, a
k
h, s

k
h+1))

〉
≤
〈
γk
h,ψ(U⊥

h ,ϕ(skh, a
k
h, s

k
h+1))

〉
+ β1

∥∥∥ψ(U⊥
h ,ϕ(skh, a

k
h, s

k
h+1))

∥∥∥
(Λk

h,1)
−1
.

(37)

Next, since the left-hand-side of (37) is equal to〈
ψ(U⊥

h ,γ∗
h),ψ(U⊥

h ,ϕ(skh, a
k
h, s

k
h+1))

〉
=
〈
γ∗
h,ϕ(s

k
h, a

k
h, s

k
h+1)

〉
−
〈
γ∗
h,ψ(Uh,ϕ(s

k
h, a

k
h, s

k
h+1))

〉
=
〈
γ∗
h,ϕ(s

k
h, a

k
h, s

k
h+1)

〉
−

⟨ψ(Uh,ϕ(s
k
h, a

k
h, s

k
h+1)), ϕ̃(s

0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h,

we have〈
γ∗
h,ϕ(s

k
h, a

k
h, s

k
h+1)

〉
≤

⟨ψ(Uh,ϕ(s
k
h, a

k
h, s

k
h+1)), ϕ̃(s

0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h +

〈
γ∗
h,ϕ(s

k
h, a

k
h, s

k
h+1)

〉
+ β1

∥∥∥ψ(U⊥
h ,ϕ(skh, a

k
h, s

k
h+1))

∥∥∥
(Λk

h,1)
−1
.

(38)

Notice that, the right-hand-side of (38) is less than or equal to the estimated safety value c̃kh(s
k
h, a

k
h, s

k
h+1) in (8), which is

less than or equal to c̄ due to our condition 1 in (9). Thus, we have ch(skh) ≤ c̄. In addition, according to condition 2 that we
construct in (10) and the induction hypothesis, sh+1 must also be safe. Hence, Gk,safe

h is safe.

B. Proof of Lemma 2
As we discussed in Section 4.2, Lemma 2 implies that when k increases, the UCB terms l1 and l2 decrease to be closer to 0,
and thus α0 on the right-hand-side of (28) gets closer to 0. Then, f̃h(s, a0|s∗h = s) on the left-hand-side of (28) gets closer
to 0. Notice that f̃h(s, a0|s∗h = s) represents the gap between the decision of the policy πk used by LSVI-NEW and the
optimal decision. In addition, in α0, l1 characterizes the transition uncertainty and l2 characterizes the uncertainty from
future steps. Thus, the above implication from Lemma 2 is consistent with the intuition that as more safety values revealed,
we should be able to get closer to the optimal action.

Moreover, when there is no constraint on states, all terms related to the next state s′ in α0, e.g., l2, c̄0h′ and ∆ϕ(c), would be

0. Then, α0 would be reduced to be in a much simpler form 1− c̄−c0h−2β∥ϕ(s,a∗
h(s))∥

c̄−c0h
, which results in a parameter that is

same to that used for the UCB bonus term in the case with only unsafe actions (Amani et al., 2021). However, due to unsafe
states and transitions in our case, the impacts from the future steps h′ > h are characterized in α0 here, which results in a
different parameter ϵh,2 in our Idea II and a new parameter ϵh,3 in our Idea III in Section 3.

14

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Further, as stated in Lemma 2, we only need to show there exists such a safe action a0 ∈ Ãk
h(s). Thus, we only need to

prove the existence of an estimated safe subgraph, such that this state-action pair (s, a0) is contained. Hence, (28) does not
depends on the estimation accuracy of the Q-value parameter w∗

h.

In this section, we provide the complete proof for Lemma 2. Please see Appendix D for our discussions and proofs on how
the new impacts from future steps captured in α0 affect the requirements for choosing the parameters ϵh,2 and ϵh,3.

To prove Lemma 2, we first provide another new lemma below, which proves to be important. We let

∆h(s, a, s
′) ≜ max

s′′∈Sh(s,a)
{ch(s, a, s′′)− ch(s, a, s

′)} (39)

denote the maximum difference between the true safety value ch(s, a, s
′′) of the state-action-state triplet (s, a, s′′) for any

next state s′′ ∈ Sh(s, a) of the state-action pair (s, a) and the true safety value ch(s, a, s
′) of the given state-action-state

triplet (s, a, s′). Let

∆̃k
h(s, a, s

′) ≜ max
s′′∈Sh(s,a)

{
c̃kh(s, a, s

′′)− c̃kh(s, a, s
′)
}

(40)

denote the maximum difference between the estimated safety value c̃kh(s, a, s
′′) of the state-action-state triplet (s, a, s′′)

for any next state s′′ ∈ Sh(s, a) of the state-action pair (s, a) and the estimated safety value c̃kh(s, a, s
′) of the given

state-action-state triplet (s, a, s′).

Lemma 5. (Relating the true and estimated safety differences) The estimated safety difference ∆̃k
h(s, a, s

′) can be
upper-bounded by the true safety difference ∆h(s, a, s

′) as follows:

∆̃k
h(s, a, s

′) ≤ ∆h(s, a, s
′) + 2β

∥∥ψ(U⊥
h ,ϕ(s, a, s̃′max))

∥∥
(Λk

h,1)
−1 , (41)

where s̃′max is the maximizer of (40).

Proof. (Proof of Lemma 5) We let s′max denote the maximizer of (39). Notice that s′max could be different from s̃′max (the
maximizer of (40)). First, the true safety difference is equal to

∆h(s, a, s
′) = max

s′′∈Sh(s,a)
{ch(s, a, s′′)− ch(s, a, s

′)} = ch(s, a, s
′
max)− ch(s, a, s

′)

= ⟨γ∗
h,ϕ(s, a, s

′
max)⟩ − ⟨γ∗

h,ϕ(s, a, s
′)⟩ . (42)

Next, the estimated safety difference is equal to

∆̃k
h(s, a, s

′) = max
s′′∈Sh(s,a)

{
c̃kh(s, a, s

′′)− c̃kh(s, a, s
′)
}

=
⟨ψ(Uh,ϕ(s, a, s̃

′
max)), ϕ̃(s

0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h +

〈
γk
h,ψ(U⊥

h ,ϕ(s, a, s̃′max))
〉
+ β

∥∥ψ(U⊥
h ,ϕ(s, a, s̃′max))

∥∥
(Λk

h,1)
−1

−
⟨ψ(Uh,ϕ(s, a, s

′)), ϕ̃(s0h, a
0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h −

〈
γk
h,ψ(U⊥

h ,ϕ(s, a, s′))
〉
− β

∥∥ψ(U⊥
h ,ϕ(s, a, s′))

∥∥
(Λk

h,1)
−1 . (43)

Considering the second term, third term, and the last two terms on the right-hand-side of (43) together, we have〈
γk
h,ψ(U⊥

h ,ϕ(s, a, s̃′max))
〉
+ β

∥∥ψ(U⊥
h ,ϕ(s, a, s̃′max))

∥∥
(Λk

h,1)
−1

−
〈
γk
h,ψ(U⊥

h ,ϕ(s, a, s′))
〉
− β

∥∥ψ(U⊥
h ,ϕ(s, a, s′))

∥∥
(Λk

h,1)
−1

=
〈
γk
h − γ∗

h,ψ(U⊥
h ,ϕ(s, a, s̃′max))

〉
+
〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a, s̃′max))
〉
+ β

∥∥ψ(U⊥
h ,ϕ(s, a, s̃′max))

∥∥
(Λk

h,1)
−1

+
〈
γ∗
h − γk

h,ψ(U⊥
h ,ϕ(s, a, s′))

〉
−
〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a, s′))
〉
− β

∥∥ψ(U⊥
h ,ϕ(s, a, s′))

∥∥
(Λk

h,1)
−1

≤
〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a, s̃′max))
〉
−
〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a, s′))
〉
+ 2β

∥∥ψ(U⊥
h ,ϕ(s, a, s̃′max))

∥∥
(Λk

h,1)
−1 , (44)

15

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

where the inequality is by applying Lemma 4 and the Cauchy-Schwarz inequality to the first term in the third line and the
first term in the fourth line in (44) above, and the fact that β

∥∥ψ(U⊥
h ,ϕ(s, a, s′))

∥∥
(Λk

h,1)
−1 ≥ 0. Next, by combining (43)

and (44), we have

∆̃k
h(s, a, s

′) ≤
⟨ψ(Uh,ϕ(s, a, s̃

′
max)), ϕ̃(s

0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h +

〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a, s̃′max))
〉

−
⟨ψ(Uh,ϕ(s, a, s

′)), ϕ̃(s0h, a
0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h −

〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a, s′))
〉
+ 2β

∥∥ψ(U⊥
h ,ϕ(s, a, s̃′max))

∥∥
(Λk

h,1)
−1

≤ ∆h(s, a, s
′) + 2β

∥∥ψ(U⊥
h ,ϕ(s, a, s̃′max))

∥∥
(Λk

h,1)
−1 ,

where the last inequality is because of the definition of the true safety difference ∆h(s, a, s
′) in (39).

Lemma 5 shows that the estimated safety difference is only larger than the true safety difference by a term, i.e.,
2β
∥∥ψ(U⊥

h ,ϕ(s, a, s̃′max))
∥∥
(Λk

h,1)
−1 , that decreases to 0 as the number of learning episodes k increases. This is con-

sistent with the intuition that, as k increases, the estimated safety difference ∆̃k
h(s, a, s

′) should get closer to the true safety
difference ∆h(s, a, s

′). Below, based on Lemma 5, we prove Lemma 2.

Proof. (Proof of Lemma 2) Recall that f̃h(s, a0|s∗h = s) represents the gap between the decision of the policy πk used
by LSVI-NEW and the optimal decision. Thus, now we characterize the relation between the safety values based on the
state-action pair (s, a0) and the optimal state-action pair (s, a∗h(s)). First, according to the definition of estimated safety
value in (8) and Assumption 3, the estimated safety value of any state-action-state triplet (s, a0, s′(s, a0)) induced by the
state-action pair (s, a0) is equal to

c̃kh(s, a0, s
′(s, a0))

=
⟨ψ(Uh,ϕ(s, a0, s

′)), ϕ̃(s0h, a
0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h +

〈
γk
h,ψ(U⊥

h ,ϕ(s, a0, s
′))
〉
+ β

∥∥ψ(U⊥
h ,ϕ(s, a0, s

′))
∥∥
(Λk

h,1)
−1

=
⟨ψ(Uh, αs′ϕ(s

0
h, a

0
h, s

0
h+1) + (1− αs′)ϕ(s, a

∗
h(s), s

′(s, a∗h(s)))), ϕ̃(s
0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h

+
〈
γk
h,ψ(U⊥

h , αs′ϕ(s
0
h, a

0
h, s

0
h+1) + (1− αs′)ϕ(s, a

∗
h(s), s

′(s, a∗h(s))))
〉

+ β
∥∥ψ(U⊥

h , αs′ϕ(s
0
h, a

0
h, s

0
h+1) + (1− αs′)ϕ(s, a

∗
h(s), s

′(s, a∗h(s))))
∥∥
(Λk

h,1)
−1 . (45)

where we drop (s, a0) from s′(s, a0) for simplicity. Since ψ(Uh,ϕ(s
0
h, a

0
h, s

0
h+1)) = ϕ(s0h, a

0
h, s

0
h+1) and

ψ(U⊥
h ,ϕ(s0h, a

0
h, s

0
h+1)) = 0, from (45), we have

c̃kh(s, a0, s
′(s, a0)) = αs′(s,a0) ·

⟨ϕ(s0h, a0h, s0h+1), ϕ̃(s
0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h

+ (1− αs′(s,a0)) ·

[
⟨ψ(Uh,ϕ(s, a

∗
h(s), s

′(s, a∗h(s)))), ϕ̃(s
0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h +

〈
γk
h,ψ

(
U⊥
h ,ϕ

(
s, a∗h(s), s

′(s, a∗h(s))
))〉

+ β

∥∥∥∥∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′(s, a∗h(s)))
)∥∥∥∥∥

(Λk
h,1)

−1

]
. (46)

16

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Let us focus on the terms in the bracket [·] of (46). Notice that, (i) we have

⟨ψ(Uh,ϕ(s, a
∗
h(s), s

′(s, a∗h(s)))), ϕ̃(s
0
h, a

0
h, s

0
h+1)⟩

∥ϕ(s0h, a0h, s0h+1)∥2
· c0h +

〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a∗h(s), s
′(s, a∗h(s))))

〉
=
〈
γ∗
h,
〈
ψ(Uh,ϕ(s, a

∗
h(s), s

′(s, a∗h(s)))), ϕ̃(s
0
h, a

0
h, s

0
h+1)

〉
ϕ̃(s0h, a

0
h, s

0
h+1)

〉
+
〈
γ∗
h,ψ(U⊥

h ,ϕ(s, a∗h(s), s
′(s, a∗h(s))))

〉
= ⟨γ∗

h,ϕ(s, a
∗
h(s), s

′(s, a∗h(s)))⟩
= ch(s, a

∗
h(s), s

′(s, a∗h(s)))

≤ c̄−∆h(s, a
∗
h(s), s

′(s, a∗h(s))), (47)

where the inequality is (a) because (s, a∗h(s)) is safe, and hence ch(s, a∗h(s), s
′) ≤ c̄ for all s′ ∈ Sh(s, a

∗
h(s)); (b) according

to the definition of the true safety difference in (39). (ii) According to Lemma 4, we have〈
γk
h − γ∗

h,ψ(U⊥
h ,ϕ(s, a∗h(s), s

′(s, a∗h(s))))
〉
≤ β

∥∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′(s, a∗h(s))))
∥∥
(Λk

h,1)
−1 . (48)

By combining (46), (47) and (48), we have

c̃kh(s, a0, s
′(s, a0))

≤ αs′(s,a0)c
0
h + (1− αs′(s,a0))

[
c̄−∆h(s, a

∗
h(s), s

′(s, a∗h(s))) + 2β
∥∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′(s, a∗h(s))))

∥∥
(Λk

h,1)
−1

]
.

(49)

Next, since the optimal action a∗h(s) has not been found by the algorithm, there must exist at least one next-state s′ ∈ Sh(s, a),
such that the instantaneous hard constraint (1) is violated. Thus, we must have

c̃kh(s, a
∗
h(s), s̃

′
max) > c̄. (50)

Combining (50) and Lemma 5, we have that, for all next state s′(s, a∗h(s)) ∈ Sh(s, a
∗
h(s)),

c̃kh(s, a
∗
h(s), s

′(s, a∗h(s))) > c̄−∆h(s, a
∗
h(s), s

′(s, a∗h(s)))− 2β
∥∥ψ(U⊥

h ,ϕ(s, a, s̃′max))
∥∥
(Λk

h,1)
−1 . (51)

However, as we discussed in our Idea II and Idea III in Section 3, due to possible unsafe transitions and unsafe states in our
problem, such a safety value in (51) may not be achieved by the algorithm. This is a critical difference compared with the
case without instantaneous constraints or with only unsafe actions. Therefore, in the following, we first quantify the gap
between the state-action pair (s, a′0) that achieves the safety value in (51) and the optimal state-action pair (s, a∗h(s)). Then,
we quantify the smallest gap between the safe state-action pair (s, a0) and such a possibly unsafe state-action pair (s, a′0).
Specifically, for the state-action pair (s, a′0) that takes the safety value in (51), from (49), we have

αs′(s,a′
0)

≤ 1−
c̄− c0h −∆h(s, a

∗
h(s), s

′(s, a∗h(s)))− 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

c̄− c0h −∆h(s, a∗h(s), s
′(s, a∗h(s))) + 2βmaxs′∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

. (52)

Since the right-hand-side of (52) increases with ∆h(s, a
∗
h(s), s

′(s, a∗h(s))), we have

αs′(s,a′
0)

≤ 1−
c̄− c0h −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

c̄− c0h −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

. (53)

Note that (53) quantifies the gap between the state-action pair (s, a′0) that achieves the safety value in (51) and the optimal
state-action pair (s, a∗h(s)). Next, we quantify the smallest gap between the safe state-action pair (s, a0) and such a possibly
unsafe state-action pair (s, a′0). According to (53), there must exists a safe action a′h′,0 for only step h′, s.t.,

αs′(s,a′
h′,0)

≤ 1−
c̄− c0h′ −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

c̄− c0h′ −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

. (54)

17

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Then, let f̂h(s, a) ≜ fh(ϕ(s, a, ·) − ϕ(s0h, a
0
h, s

0
h+1)) denote the normalized L2-distance between the features of the

transitions associated with the state-action pair (s, a) and the known safe feature ϕ(s0h, a
0
h, s

0
h+1). According to (54)

and (19), there must exists an action a0 that induces at least one safe subsubgraph Gk,safe
h (s, a0), s.t.,

f̂h(s, a0)

f̂h(s, a′0)
≥

c̄− c̄0h′ −∆ϕ(c)− 2βmax{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

c̄− c̄0h′ −∆ϕ(c) + 2βmax{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

. (55)

Finally, by combining (53) and (55), since the subgraph feature space is convex, we have that the left-hand-side of (28) can
be upper-bounded as follows:

f̃h(s, a0|s∗h = s) = 1− f̂h(s, a0|s∗h = s)

f̂h(s, a′0|s∗h = s)
· f̂h(s, a′0|s∗h = s)

≤ 1−
c̄− c0h −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

c̄− c0h −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

·
c̄− c̄0h′ −∆ϕ(c)− 2βmax{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

c̄− c̄0h′ −∆ϕ(c) + 2βmax{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

.

C. Proof of Lemma 3
As we mentioned in Section 4.2, compared with Lemma 2, the main difference in Lemma 3 is that Lemma 3 quantifies the
impacts from past steps, i.e., h′ ≤ h. This special new impact results in the bonus term with parameter ϵ4 in our Idea IV
in Section 3.

Notice that Lemma 3 implies that when k increases, the UCB terms l3 decreases to be closer to 0, and thus the right-hand-
side (29) get closer to 0. Then, f̃h(ŝ, a0) on the left-hand-side of (29) gets closer to 0. Notice that f̃h(ŝ, a0) represents the
gap between the decision of the policy πk used by LSVI-NEW and the optimal decision. In addition, on the right-hand-side
of (29), l3 characterizes the uncertainty from past steps. Thus, the above implication from Lemma 3 is consistent with the
intuition that as more safety values revealed, we should be able to get closer to the optimal action.

In this section, we provide the complete proof for Lemma 3. Please see Appendix D for our discussions and proofs on
how this special new impact from past steps results in a new bonus term in our Idea IV in Section 3 and how it affects the
requirements for choosing the parameters ϵ4.

Proof. According to Lemma 5 and (54), there must exists a safe action ah′,0 at step h′ ≤ h, s.t.,

αs′(s,ah′,0)
≤ 1−

c̄− c0h′ −∆ϕ(c)− 2βmaxs′∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

c̄− c0h′ −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

. (56)

Then, according to Assumption 4, there must exists a safe action a0 at step h, s.t.,

αs′(ŝ,a0) ≤ 1−
c̄− c0h′ −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

δ
(
c̄− c0h′ −∆ϕ(c) + 2βmaxs′∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

) . (57)

Finally, since f̃h(ŝ, a0) ≤ αs′(ŝ,a0), we have

f̃h(ŝ, a0) ≤ 1−
c̄− c0h′ −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

δ
(
c̄− c0h′ −∆ϕ(c) + 2βmaxs′∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

) .

18

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

D. Proof of Lemma 1
In this section, we provide the proof of Lemma 1. The proof replies on Lemma 2 and Lemma 3. Recall from Section 4.2
that invariant (i) shows that, if the optimal state has been found, the estimated V -value must be higher than the optimal
V -value. From a high-level point of view, if the optimal safe action has also been found, invariant (i) trivially holds. If it has
not been found, thanks to our new bonus terms that essentially capture the distance between the estimated safe actions and
the optimal action, invariant (i) still holds. Moreover, invariant (ii) shows that, if the optimal state has not been found, the
V -value of the sub-optimal state in S̃k

h is still larger than the optimal V -value. This is intuitively because S̃k
h only contains

safe states with transitions close enough (within a small gap captured by the small constant ᾱ0) to the optimal transitions,
and the distance is captured by our new bonus terms.

Proof. We prove Lemma 1 by mathematical induction.

(i) Base case: when h = H + 1, both invariants are trivially true, since V ∗
h (s) = V k

h (s) = 0.

(ii) Induction step: we hypothesize that the two invariants are true when h = h0. Then, we prove that they are true for
h = h0 − 1.

(ii-a) Step-a: note that invariant (i) trivially holds for h = H since V ∗
h (s) = V k

h (s) = rH(s). Next, we prove invariant (i)
for h < H by considering the following two cases, based on whether the optimal action a∗h(s) has been found in Ãk

h(s) and
chosen or not.

(ii-a-1) Case-1: If the optimal action a∗h(s) has been found in Ãk
h(s) and chosen by πk, i.e., akh(s) = a∗h(s), based on

Section D.4 in (Jia et al., 2020), we have

V k
h (s) = Qk

h(s, a
k
h(s)) = Qk

h(s, a
∗
h(s)) ≥ Q∗

h(s, a
∗
h(s)) = V ∗

h (s), (58)

where the inequality is because of the definition of V k
h (s) in (23) and the induction hypothesis of invariant (i) at step h0.

Notice that this step is different from the analysis in the case without constraints or with only unsafe actions. Here, the
optimal action a∗h(s) must already be chosen, i.e., it is not enough to simply find that the action is safe. This is because, if the
optimal action a∗h(s) is simply found to be safe while not chosen by the algorithm, a future subsubgraph that is completely
different from that of the optimal policy could be visited by πk.

(ii-a-2) Case-2: If the optimal action a∗h(s) has not been chosen by πk, i.e., akh(s) ̸= a∗h(s), we consider the following two
subcases based on whether the optimal action a∗h(s) has been found in Ãk

h(s) or not.

(ii-a-2-I) Subcase-2-I: If the optimal action a∗h(s) has been found in Ãk
h(s) by πk, i.e., a∗h(s) ∈ Ãk

h(s), we have

V k
h (s) = max

a∈Ãk
h(s)

Qk
h(s, a) = Qk

h(s, a
∗
h(s)|V k

h+1) ≥ Q∗
h(s, a

∗
h(s)|V k

h+1) ≥ Q∗
h(s, a

∗
h(s)) = V ∗

h (s), (59)

where the second inequality is because of the definition of V k
h (s) in (23) and the induction hypothesis of invariant (ii) at step

h0. Recal from (11) that Q∗
h(s, a) = rh(s, a) + ⟨w∗

h,ϕV ∗
h+1

(s, a)⟩, which depends on the V -value V ∗
h+1 at next step. Thus,

we write such a dependency explicitly for Qk
h and Q∗

h in (59).

(ii-a-2-II) Subcase-2-II: If the optimal action a∗h(s) has not been found in Ãk
h(s) by πk, i.e., a∗h(s) /∈ Ãk

h(s), we consider
the following two subsubcases, based on the reason the optimal action a∗h(s) has not been found in Ãk

h(s) by πk.

(ii-a-2-II-A) Subsubcase-2-II-A: If the optimal action a∗h(s) has not been found in Ãk
h(s) by πk because condition 1 in (9) is

violated, we have

max
s′∈Sh(s,a∗

h(s))
c̃kh(s, a

∗
h(s), s

′) > c̄,

Note that V k
h (s) = maxa∈Ãk

h(s)
Qk

h(s, a) ≥ Qk
h(s, a0) and the bonus term ϵ4 ·

maxs′∈S1(s1,ak
1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1 in (13) is non-negative, we have

V k
h (s) ≥ min

{
rh(s, a0) +

〈
wk

h,ϕV k
h+1

(s, a0)
〉
+ ϵ1 · ∥ϕV k

h+1
(s, a0)∥(Λk

h,2)
−1

+ ϵh,2 · max
s′∈Sh(s,a0)

∥ψ(U⊥
h ,ϕ(s, a0, s

′))∥(Λk
h,1)

−1 + ϵh,3 · max
(sh′ ,ah′ ,s′)∈Gh(s)

∥ψ(U⊥
h′ ,ϕ(sh′ , ah′ , s′))∥(Λk

h′,1)
−1 , H

}
.

19

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Then, according to Section D.4 in (Jia et al., 2020), we have

V k
h (s) ≥ min

{
rh(s, a0) +

〈
w∗

h,ϕV k
h+1

(s, a0)
〉
+ (ϵ1 − 1) · ∥ϕV k

h+1
(s, a0)∥(Λk

h,2)
−1

+ ϵh,2 · max
s′∈Sh(s,a0)

∥ψ(U⊥
h ,ϕ(s, a0, s

′))∥(Λk
h,1)

−1 + ϵh,3 · max
(sh′ ,ah′ ,s′)∈Gh(s)

∥ψ(U⊥
h′ ,ϕ(sh′ , ah′ , s′))∥(Λk

h′,1)
−1 , H

}
.

(60)

Moreover, according to Lemma 2, there must exists an action a0 ∈ Ãk
h(s), s.t.,

f̃h(s, a0|s∗h = s) ≤ 1−
c̄− c0h −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

c̄− c0h −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

·
c̄− c̄0h′ −∆ϕ(c)− 2βmax{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

c̄− c̄0h′ −∆ϕ(c) + 2βmax{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

.

(61)

By combining (60) and (61), and according to Assumption 4 and invariant (ii) at the next step h0, we have

V k
h (s) ≥ min

{
c̄− c0h −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

c̄− c0h −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

·
c̄− c̄0h′ −∆ϕ(c)− 2βmax{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

c̄− c̄0h′ −∆ϕ(c) + 2βmax{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

· δ
[
rh(s, a

∗
h(s))

+
〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉
+ (ϵ1 − 1) · ∥ϕV ∗

h+1
(s, a∗h(s))∥(Λk

h,2)
−1 + ϵh,2

· max
s′∈Sh(s,a∗

h(s))
∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1 + ϵh,3 · max

(s∗
h′ ,a

∗
h′ ,s

′)∈Gh(s)
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

]
, H

}
.

Since ϵ1 is set to be equal to β + 1, we have ϵ1 − 1 ≥ 0. Thus, (ϵ1 − 1) · ∥ϕV ∗
h+1

(s, a∗h(s))∥(Λk
h,2)

−1 ≥ 0. Thus, we have

V k
h (s) ≥ min

{
c̄− c0h −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

c̄− c0h −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

·
c̄− c̄0h′ −∆ϕ(c)− 2βmax{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

c̄− c̄0h′ −∆ϕ(c) + 2βmax{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

· δ
[
rh(s, a

∗
h(s))

+
〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉
+ ϵh,2 · max

s′∈Sh(s,a∗
h(s))

∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

+ ϵh,3 · max
(s∗

h′ ,a
∗
h′ ,s

′)∈Gh(s)
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

]
, H

}
. (62)

Thus, to prove that V k
h (s) ≥ V ∗

h (s), we need to prove that

δ
[
c̄− c0h −∆ϕ(c)− 2βmax

s′
∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

]
·
[
c̄− c̄0h′ −∆ϕ(c)− 2β max

{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]
·
[
Q∗

h(s, a
∗
h(s)) + ϵh,2 · max

s′∈Sh(s,a∗
h(s))

∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

+ ϵh,3 · max
(s∗

h′ ,a
∗
h′ ,s

′)∈Gh(s)
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

]
≥
[
c̄− c0h −∆ϕ(c) + 2βmax

s′
∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

]
·
[
c̄− c̄0h′ −∆ϕ(c) + 2β max

{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]
·Q∗

h(s, a
∗
h(s)). (63)

20

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

By rearranging the terms in (63), we have

δ
[
c̄− c0h −∆ϕ(c)− 2βmax

s′
∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

]
·
[
c̄− c̄0h′ −∆ϕ(c)− 2β max

{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]
·
[
ϵh,2 · max

s′∈Sh(s,a∗
h(s))

∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1 + ϵh,3 · max
(s∗

h′ ,a
∗
h′ ,s

′)∈Gh(s)
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

]
≥ 4β

[
(c̄− c̄0h′ −∆ϕ(c))max

s′
∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

+ (c̄− c0h −∆ϕ(c)) max
{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]
·Q∗

h(s, a
∗
h(s)).

Since Q∗
h(s, a

∗
h(s)) ≤ H for all states s and steps h, we have

ϵh,2 · max
s′∈Sh(s,a∗

h(s))
∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1 + ϵh,3 · max

(s∗
h′ ,a

∗
h′ ,s

′)∈Gh(s)
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

≥ 4βH

δ

[
c̄− c̄0h′ −∆ϕ(c)

c̄− c0h −∆ϕ(c)
max
s′

∥∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))
∥∥
(Λk

h,1)
−1

+ max
{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]

·
[
c̄− c̄0h′ −∆ϕ(c)−

c̄− c̄0h′ −∆ϕ(c)

c̄− c0h −∆ϕ(c)
2βmax

s′

∥∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))
∥∥
(Λk

h,1)
−1

− 2β max
{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]−1

. (64)

Note that (64) indicates that, to have V k
h (s) ≥ V ∗

h (s), we need

ϵh,2 ≥
4βH

c̄−c̄0
h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)

δ(c̄− c̄0h′ −∆ϕ(c)−
c̄−c̄0

h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)
κ)

and ϵh,3 ≥ 4βH

δ(c̄− c̄0h′ −∆ϕ(c)− κ)
.

This is reason we set the parameters ϵh,2 and ϵh,3 in our Idea II and Idea III to be in the form in (14) and (15), respectively.

(ii-a-2-II-B) Subsubcase-2-II-B: If the optimal action a∗h(s) has not been found in Ãk
h(s) by πk because (although condition

1 in (9) is satisfied) condition 2 in (10) is violated, we have

Sh+1(s, a
∗
h(s)) ̸⊆ Sk,safe

h+1 .

In this subsubcase, we can leverage the knowledge from the satisfied condition 1 to prove V k
h (s) ≥ V ∗

h (s). The proof then
could follow the similar inductions in the proof for subsubcase-2-II-A. For completeness, we provide the proof steps below.
First, since the bonus term ϵ4 ·maxs′∈S1(s1,ak

1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1 in (13) is non-negative, according to Section
D.4 in (Jia et al., 2020), we have

V k
h (s) ≥ min

{
rh(s, a0) +

〈
w∗

h,ϕV k
h+1

(s, a0)
〉
+ (ϵ1 − 1) · ∥ϕV k

h+1
(s, a0)∥(Λk

h,2)
−1

+ ϵh,2 · max
s′∈Sh(s,a0)

∥ψ(U⊥
h ,ϕ(s, a0, s

′))∥(Λk
h,1)

−1 + ϵh,3 · max
(sh′ ,ah′ ,s′)∈Gh(s)

∥ψ(U⊥
h′ ,ϕ(sh′ , ah′ , s′))∥(Λk

h′,1)
−1 , H

}
.

21

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Next, according to Assumption 4, invariant (ii) at next step h+ 1 and (ϵ1 − 1) · ∥ϕV ∗
h+1

(s, a∗h(s))∥(Λk
h,2)

−1 ≥ 0, we have

V k
h (s) ≥ min

{
c̄− c0h −∆ϕ(c)− 2βmaxs′∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1

c̄− c0h −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

·
c̄− c̄0h′ −∆ϕ(c)− 2βmax{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

c̄− c̄0h′ −∆ϕ(c) + 2βmax{h<h′≤H,(s∗
h′ ,a

∗
h′ (s),s

′)∈Gh(s)}∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk

h′,1)
−1

· δ
[
rh(s, a

∗
h(s))

+
〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉
+ ϵh,2 · max

s′∈Sh(s,a∗
h(s))

∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

+ ϵh,3 · max
(s∗

h′ ,a
∗
h′ ,s

′)∈Gh(s)
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

]
, H

}
.

Then, to prove V k
h (s) ≥ V ∗

h (s), based on (63) and since Q∗
h(s) ≤ H , we have

ϵh,2 · max
s′∈Sh(s,a∗

h(s))
∥ψ(U⊥

h ,ϕ(s, a∗h(s), s
′))∥(Λk

h,1)
−1 + ϵh,3 · max

(s∗
h′ ,a

∗
h′ ,s

′)∈Gh(s)
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

≥ 4βH

δ

[
c̄− c̄0h′ −∆ϕ(c)

c̄− c0h −∆ϕ(c)
max
s′

∥∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))
∥∥
(Λk

h,1)
−1

+ max
{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]

·
[
c̄− c̄0h′ −∆ϕ(c)−

c̄− c̄0h′ −∆ϕ(c)

c̄− c0h −∆ϕ(c)
2βmax

s′

∥∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))
∥∥
(Λk

h,1)
−1

− 2β max
{h<h′≤H,(s∗

h′ ,a
∗
h′ (s),s

′)∈Gh(s)}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′(s), s′))∥(Λk
h′,1)

−1

]−1

,

which provides the same requirements on the parameters ϵh,2 and ϵh,3.

(ii-b) Step-b: differently from invariant (i) that trivially holds for h = H , we need to carefully handle the correctness of
invariant (ii) at step h = H . Next, we prove invariant (ii) for all steps h ≤ H as follows.

First, since the bonus terms ϵh,2 · maxs′∈Sh(s,a)∥ψ(U⊥
h ,ϕ(s, a, s′))∥(Λk

h,1)
−1 and ϵh,3 ·

max(sh′ ,ah′ ,s′)∈Gh(s)∥ψ(U⊥
h′ ,ϕ(sh′ , ah′ , s′))∥(Λk

h′,1)
−1 in (13) are non-negative, to prove V k

h (ŝ) ≥ V ∗
h (s), we

need to prove that

rh(ŝ, â) + ⟨wk
h,ϕV k

h+1
(ŝ, â)⟩+ ϵ1 · ∥ϕV k

h+1
(ŝ, â)∥(Λk

h,2)
−1 + ϵ4 · max

s′∈S1(s1,ak
1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1

≥ rh(s, a
∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉
, (65)

for some â ∈ Ãk
h(ŝ). To prove (65), we prove[

rh(s, a
∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉]

−
[
rh(ŝ, â) + ⟨wk

h,ϕV k
h+1

(ŝ, â)⟩
]

≤ ϵ1 · ∥ϕV k
h+1

(ŝ, â)∥(Λk
h,2)

−1 + ϵ4 · max
s′∈S1(s1,ak

1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1 . (66)

By adding and subtracting rh(ŝ, â) + ⟨w∗
h,ϕV ∗

h+1
(ŝ, â)⟩, we decompose the left-hand-side of (66) into two parts that are

easier for analysis in the following special way,[
rh(s, a

∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉]

−
[
rh(ŝ, â) + ⟨wk

h,ϕV k
h+1

(ŝ, â)⟩
]

=
[
rh(s, a

∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉]

−
[
rh(ŝ, â) + ⟨w∗

h,ϕV ∗
h+1

(ŝ, â)⟩
]

+
[
rh(ŝ, â) + ⟨w∗

h,ϕV ∗
h+1

(ŝ, â)⟩
]
−
[
rh(ŝ, â) + ⟨wk

h,ϕV k
h+1

(ŝ, â)⟩
]
. (67)

22

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Notice that by decomposing in this way, the value in the first two brackets [·] on the right-hand-side of (67) characterizes how
the policy executed by our LSVI-NEW algorithm learns about and searches towards the optimal safe subgraph. The value in
the last two brackets [·] on the right-hand-side of (67) characterizes how the policy executed by our LSVI-NEW algorithm
learns and estimates the optimal Q-value parameter w∗

h. Next, according to invariant (ii) at next step h0, the value in the last
two brackets [·] on the right-hand-side of (67) can be upper-bounded as follows,[

rh(ŝ, â) + ⟨w∗
h,ϕV ∗

h+1
(ŝ, â)⟩

]
−
[
rh(ŝ, â) + ⟨wk

h,ϕV k
h+1

(ŝ, â)⟩
]

≤
[
rh(ŝ, â) + ⟨w∗

h,ϕV k
h+1

(ŝ, â)⟩
]
−
[
rh(ŝ, â) + ⟨wk

h,ϕV k
h+1

(ŝ, â)⟩
]
≤ ϵ1 · ∥ϕV k

h+1
(ŝ, â)∥(Λk

h,2)
−1 .

Then, to prove (66), we need to prove[
rh(s, a

∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉]

−
[
rh(ŝ, â) + ⟨w∗

h,ϕV ∗
h+1

(ŝ, â)⟩
]

≤ ϵ4 · max
s′∈S1(s1,ak

1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1 . (68)

Therefore, below we focus on bounding the value in the first two brackets on the right-hand-side of (67). According to the
definition of V k

h (s) and Lemma 3, there must exist an action â ∈ Ãk
h(ŝ) and 1 ≤ h′ ≤ h, s.t.,

f̃h(ŝ, â) ≤ 1−
c̄− c0h′ −∆ϕ(c)− 2βmax

s′
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

δ(c̄− c0h′ −∆ϕ(c) + 2βmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1)

.

Thus, we have

rh(ŝ, â) +
〈
w∗

h,ϕV ∗
h+1

(ŝ, â)
〉

≥
c̄− c0h′ −∆ϕ(c)− 2βmax

s′
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

c̄− c0h′ −∆ϕ(c) + 2βmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1

[
rh(s, a

∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉]

. (69)

Notice that (69) indicates that the left-hand-side of (68) can be upper-bounded as follows,[
rh(s, a

∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉]

−
[
rh(ŝ, â) + ⟨w∗

h,ϕV ∗
h+1

(ŝ, â)⟩
]

≤
4βmax

s′
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

c̄− c0h′ −∆ϕ(c) + 2βmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1

[
rh(s, a

∗
h(s)) +

〈
w∗

h,ϕV ∗
h+1

(s, a∗h(s))
〉]

≤
4βHmax

s′
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

c̄− c0h′ −∆ϕ(c) + 2βmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1

, (70)

where the last inequality is because V ∗
h (s) ≤ H for all states s and steps h. (70) indicates that to prove (68), we need

(c̄− c0h′ −∆ϕ(c) + 2βmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1) · ϵ4 · max

s′∈S1(s1,ak
1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1

≥ 4βHmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1 . (71)

Note that (71) shows that, to prove V k
h (ŝ) ≥ V ∗

h (s), we need

ϵ4 ≥ 4βH

c̄− c01 −∆ϕ(c)
.

This is the reason we set the parameter ϵ4 in our Idea IV to be in the form in (16).

23

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

E. Proof of Theorem 2
As we mentioned in Section 4.2, because of the new challenges from the instantaneous hard constraint (1) and our novel
ideas in the algorithm design, there are several new difficulties in the regret analysis, which is shown in this section. The key
ones are: (I) Differently from the unconstrained setting or the setting with only unsafe actions, in our case, the states that
could be visited with non-zero probability by different policies could be completely different at each step h. Hence, the
commonly-used invariant on V -values, i.e., V k

h (s) ≥ V ∗
h (s) for all h and s, that relies on the ergodicity property no longer

holds in our case. This difficulty is resolved by Lemma 1. (II) How to quantify the impacts when looking ahead and peeking
backward. This difficulty is resolved by Lemma 2 and Lemma 3.

Proof. First, for the convenience of the reader, we restate our new construction for the V -values functions of different
policies. We let S∗

h denote the state set at step h in the optimal safe subgraph. Let Sk
h denote the state set at step h in the

subgraph followed by policy πk of LSVI-NEW in episode k. Moreover, we let f̃h(s, a) ≜ fh(ϕ(s, a, ·) − ϕ(s∗h, a∗h, ·))
denote the gap between the transitions associated with the state-action pair (s, a) and the optimal transitions. Let Ãk

h(s) ≜
{a ∈ Ak,safe

h (s) : f̃h(s, a) ≤ ᾱ0} ∪ {akh(s)} denote the union of the safe actions with transitions close to the optimal
transitions and the action chosen by πk for a safe state s at step h, where

ᾱ0 = max

{
1−

c̄− c0h −∆ϕ(c)− 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

c̄− c0h −∆ϕ(c) + 2βmaxs′∥ψ(U⊥
h ,ϕ(s, a∗h(s), s

′))∥(Λk
h,1)

−1

·
c̄− c̄0h′ −∆ϕ(c)− 2β max

{h<h′≤H,(s∗
h′ ,a

∗
h′),s

′}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

c̄− c̄0h′ −∆ϕ(c) + 2β max
{h<h′≤H,(s∗

h′ ,a
∗
h′),s

′}
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

,

1−
c̄− c0h′ −∆ϕ(c)− 2βmax

s′
∥ψ(U⊥

h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk
h′,1)

−1

δ(c̄− c0h′ −∆ϕ(c) + 2βmax
s′

∥ψ(U⊥
h′ ,ϕ(s∗h′ , a∗h′ , s′))∥(Λk

h′,1)
−1)

}

is a small value that decreases to be closer to 0 when the number of learning episodes k increases. Let S̃k
h ≜ {s ∈ Sk,safe

h :

∃a ∈ Ak,safe
h (s), s.t., f̃h(s, a) ≤ ᾱ0}∪Sk

h denote the union of the safe states with transitions close to the optimal transitions
and the state set at step h in the subgraph followed by policy πk of LSVI-NEW in episode k. Next, we define the V -value
functions of the optimal policy, estimated policy and policy πk to be

V ∗
h (s) ≜ Q∗

h(s, a
∗
h(s)),∀s ∈ S∗

h, (72)

V k
h (s) ≜ max

a∈Ãk
h(s)

Qk
h(s, a),∀s ∈ S̃k

h , (73)

V πk

h (s) ≜ Qπk

h (s, akh(s)),∀s ∈ Sk
h , (74)

respectively. Then, the regret RLSVI-NEW can be decomposed into two parts as follows:

RLSVI-NEW =

K∑
k=1

{
V ∗
1 (s1)− V πk

1 (s1)
}
=

K∑
k=1

{[
V ∗
1 (s1)− V k

1 (s1)
]
+
[
V k
1 (s1)− V πk

1 (s1)
]}

. (75)

To upper-bound the regret, we prove that, with high probability, (i) the value in the first bracket on the right-hand-side
of (25) is non-positive; (ii) the value in the second bracket on the right-hand-side of (75) can be upper-bounded. Note
that, according to Lemma 1, we have the value in the first bracket on the right-hand-side of (75) must be non-positive, i.e.,
V ∗
1 (s1)−V k

1 (s1) ≤ 0 for all episodes k. The value in the second bracket on the right-hand-side of (75) can be upper-bounded
by slightly modifying existing techniques for the linear mixture MDP. Specifically, according to the Azuma-Hoeffding

24

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

inequality, we have

K∑
k=1

{
V k
1 (s1)− V πk

1 (s1)
}
≤

K∑
k=1

H∑
h=1

{
ϵ1 · ∥ϕV k

h+1
(s, a)∥(Λk

h,2)
−1 + ϵh,2 · max

s′∈Sh(s,a)
∥ψ(U⊥

h ,ϕ(s, a, s′))∥(Λk
h,1)

−1

+ ϵh,3 · max
(sh′ ,ah′ ,s′)∈Gh(s)

∥ψ(U⊥
h′ ,ϕ(sh′ , ah′ , s′))∥(Λk

h′,1)
−1 + ϵ4 · max

s′∈S1(s1,ak
1)
∥ψ(U⊥

1 ,ϕ(s1, a
k
1 , s

′))∥(Λk
1,1)

−1

}
+ 2H

√
HK log

(
2dHK

p

)
+HK ′

≤
K∑

k=1

H∑
h=1

{
β + 1 +

4βH

δ̃

c̄−c̄0
h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)

c̄− c̄0h′ −∆ϕ(c)−
c̄−c̄0

h′−∆ϕ(c)

c̄−c0h−∆ϕ(c)
κ
+

4βH/δ̃

c̄− c̄0h′ −∆ϕ(c)− κ
+

4βH

c̄− c01 −∆ϕ(c)

}

·
√
2dHK log (1 +HK) + 2H

√
HK log

(
2dHK

p

)
+HK ′ +

D

λ0

(
K

K ′ − 1

)
,

where the last inequality is because of Lemma D.2 in (Jin et al., 2020) and Lemma 1 in (Amani et al., 2019).

F. Proof of Theorem 3
In this section, we provide the proof for Theorem 3. The proof is based on the lower bound in the unconstrained horizon-free
linear mixture MDP setting (Zhou & Gu, 2022) and the lower bound in the constrained bandit setting (Pacchiano et al.,
2021). Note that these existing lower bounds do not show the dependency on the episode length H and the safety parameter
∆ϕ(c) that are captured in our lower bound.

Proof. Notice that in Theorem 3, we assume K ≥ 32R. Under this assumption, Lemma 25 in Zhou et al. (2021a)

indicates that in the linear bandit problems that are parameterized by the vector µ∗ =

{
−
√

δ/K

4
√
2
,

√
δ/K

4
√
2

}d

and with the

action space A = {−1, 1}d and Bernoulli distributed reward r ∼ B(δ + ⟨µ∗, a⟩), where 0 < δ ≤ 1
3 , the regret of any

algorithm is lower-bounded by dH
√
K

8
√
2

. Next, consider an instance with three states {s1, s2, s3}, one action a, and the reward
rh(s1, a) = rh(s2, a) = 0 and rh(s3, a) = 1 for each h. Then, by using the same transition probability in Section C.3
of Zhou & Gu (2022), we have that the regret of any algorithm for linear mixture MDPs with H steps in each episode is
lower-bounded by dH

√
K

16
√
2

. Since the linear mixture MDP with instantaneous hard constraints subsumes (when the cost

ch(s, a, s
′) = 0 for all state-action-state triplets) the unconstrained case, dH

√
K

16
√
2

is also a lower bound of the regret in our
case.

Further, to quantify the impact of the safety term c̄− c̄01 −∆ϕ(c) on the lower bound, in the following, we focus on showing
that, when the instantaneous hard constraint with threshold c̄ is considered, the regret is at least H

24(c̄−c̄01−∆ϕ(c))2
. We prove

this by contradiction. Assume there exists a safe algorithm that can achieve a regret R0 < H
24(c̄−c̄01−∆ϕ(c))2

for any instance
of the problem that we consider. Let us consider the following transition probability function: At step h = 1, the transition
probability is equal to P1(s2(i)|s1, a(i)) = 1 for all i, and P1(s2(i)|s1, a(j)) = 0 for all i ̸= j; at step h > 1, the transition
probability is equal to Ph(sh+1(i)|sh(i), a(j)) = 1 for all i and j, and Ph(sh+1(j)|sh(i), a(l)) = 0 for all i ̸= j and all l,
where i, j and l are the indices of the states and actions.

Now, let us consider an instance where the safety value function is as follows: at step h = 1, the safety value is equal
to c1(s1, a(1), s

′) = c̄01, c1(s1, a(2), s′) = 2c̄ − c̄01, c1(s1, a(3), s′) = c̄01, c1(s1, a(4), s′) = 2c̄ − c̄01 − ∆ϕ(c) and
c1(s1, a(i), s

′) = 2c̄− c̄01 for all i > 4. Notice that a(1) and a(3) are safe actions, while a(2), a(4) and other actions are
unsafe for state s1 at step h = 1. Moreover, at step h > 1, for all i, the safety value is equal to ch(sh(1), a(i), s

′) = c̄01,
c1(sh(2), a(i), s

′) = 2c̄ − c̄01, c1(sh(3), a(i), s′) = c̄01, c1(sh(4), a(i), s′) = 2c̄ − c̄01 − ∆ϕ(c) and c1(sh(j), a(i), s
′) =

2c̄− c̄01 for all j > 4. Notice that sh(1) and sh(3) are safe states, while sh(2), sh(4) and other states are unsafe at each step
h > 1. The reward value function is as follows: at step h = 1, the reward is equal to r1(s1, a(1)) =

1
8 , r1(s1, a(2)) = 1,

25

A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

r1(s1, a(3)) = 0 and r1(s1, a(i)) =
1
2 for all i > 3; at step h > 1, for all i, the reward is equal to rh(sh(1), a(i)) =

1
8 ,

r1(sh(2), a(i)) = 1, r1(sh(3), a(i)) = 0 and r1(sh(j), a(i)) =
1
2 for all j > 3. Since for any algorithm that chooses action

a(1) at step h = 1 less than half of the total episodes with probability p1, the regret is at least p1HK
2 . Moreover, since the

regret of assumed algorithm is R0 < H
24(c̄−c̄01−∆ϕ(c))2

, we have that, for this algorithm,

p1 ≤ 1

12K(c̄− c̄01 −∆ϕ(c))2
.

Next, let us consider another instance where the safety value function is as follows: at step h = 1, the safety value
is equal to c1(s1, a(1), s

′) = c̄01, c1(s1, a(2), s′) = 2c̄ − c̄01, c1(s1, a(3), s′) = c̄01, c1(s1, a(4), s′) = c̄01 + ∆ϕ(c) and
c1(s1, a(i), s

′) = 2c̄− c̄01 for all i > 4. Notice that a(1), a(3) and a(4) are safe actions, while a(2) and other actions are
unsafe for state s1 at step h = 1. Moreover, at step h > 1, for all i, the safety value is equal to ch(sh(1), a(i), s

′) = c̄01,
c1(sh(2), a(i), s

′) = 2c̄− c̄01, c1(sh(3), a(i), s′) = c̄01, c1(sh(4), a(i), s′) = c̄01 +∆ϕ(c) and c1(sh(j), a(i), s
′) = 2c̄− c̄01

for all j > 4. Notice that sh(1), sh(3) and sh(4) are safe states, while sh(2) and other states are unsafe at each step
h > 1. The reward value function is as follows: at step h = 1, the reward is equal to r1(s1, a(1)) =

1
8 , r1(s1, a(2)) = 1,

r1(s1, a(3)) = 0 and r1(s1, a(i)) = 1
2 for all i > 3; at step h > 1, the reward is equal to rh(sh(1), a(i)) = 1

8 ,
r1(sh(2), a(i)) = 1, r1(sh(3), a(i)) = 0 and r1(sh(j), a(i)) =

1
2 for all j > 3. Since for any algorithm that chooses action

a(1) at step h = 1 more than half of the total episodes with probability p2, the regret is at least 3p2HK
16 . Moreover, since the

regret of the assumed algorithm is R0 < H
24(c̄−c̄01−∆ϕ(c))2

, we have, for this algorithm,

p2 ≤ 2

9K(c̄− c̄01 −∆ϕ(c))2
.

Notice that the main difference between this two instances is change of the safety of action a(4) for state s1 at step
h = 1. Specifically, in instance 1, action a(4) is unsafe, while in instance 2 it becomes safe and incurs the largest
reward. Thus, we can quantify the total variation distance between the statistical distributions between these two instances,
which can further be upper-bounded by the Kullback–Leibler (KL) divergence. More specifically, according to Lemma
1 in Kaufmann et al. (2016) and Lemma 15.1 in Lattimore & Szepesvári (2020), we have that this KL divergence is at
least q(4) ·DKL

(
N (2c̄− c̄01 −∆ϕ(c), I)∥N (c̄01 +∆ϕ(c), I)

)
= 2q(4)(c̄− c̄01−∆ϕ(c))

2 ≥ 1
2 , where q(4) is the expected

number of times of choosing action a(4) at step h = 1 in instance 1. Thus, we have

q(4) ≥ 1

4(c̄− c̄01 −∆ϕ(c))2

For the algorithm choosing action a(4) for at least q(4) times in average for instance 1, the regret is at least q(4)· 12 ·
1
3 = 1

6q(4).
This contradicts with our assumption that the regret of this algorithm is R0 < H

24(c̄−c̄01−∆ϕ(c))2
.

26

