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Abstract

While large pre-trained visual-language models001
have shown promising results on traditional vi-002
sual question answering benchmarks, it is still003
challenging for them to answer complex VQA004
problems which requires diverse world knowl-005
edge. Motivated by the research of retrieval-006
augmented generation in the field of natural007
language processing, we use Dense Passage008
Retrieval (DPR) to retrieve related knowledge009
to help the model answer questions. However,010
DPR conduct retrieving in natural language011
space, which may not ensure comprehensive012
acquisition of image information. Thus, the013
retrieved knowledge is not truly conducive to014
helping answer the question, affecting the per-015
formance of the overall system. To address016
this issue, we propose a novel framework that017
leverages the visual-language model to select018
the key knowledge retrieved by DPR and an-019
swer questions. The framework consists of two020
modules: Selector and Answerer, where both021
are initialized by the MLLM and parameter-022
efficiently finetuned by self-bootstrapping: find023
key knowledge in the retrieved knowledge doc-024
uments using the Selector, and then use them to025
finetune the Answerer to predict answers; ob-026
tain the pseudo-labels of key knowledge docu-027
ments based on the predictions of the Answerer028
and weak supervision labels, and then finetune029
the Selector to select key knowledge; repeat.030
Our framework significantly enhances the per-031
formance of the baseline on the challenging032
open-domain Knowledge-based VQA bench-033
mark, OK-VQA, achieving a state-of-the-art034
accuracy of 62.83%.035

1 Introduction036

Recently, there has been an impressive advance-037

ment in large visual-language models (LVLM) (Li038

et al., 2023; Alayrac et al., 2022; Liu et al., 2023;039

Dai et al., 2023). They usually use a mapping040

network to inject visual features into the semantic041

space of the large language model (Brown et al.,042

2020; Zhang et al., 2022; Touvron et al., 2023; vic, 043

2023; Touvron et al., 2023) and demonstrate strong 044

capabilities on multimodal perception and reason- 045

ing. Thus, they achieve significant progress in con- 046

ventional visual question answering benchmarks 047

(Antol et al., 2015; Goyal et al., 2017; Hudson and 048

Manning, 2019) which primarily focus on address- 049

ing straightforward questions that only necessitate 050

visual perception and recognition. However, it is 051

still challenging for the LVLMs to answer visual 052

questions which require broader world knowledge 053

and common sense (Wang et al., 2017; Marino 054

et al., 2019; Schwenk et al., 2022). 055

Motivated by the research of retrieval- 056

augmented generation (Karpukhin et al., 2020a) 057

in the field of natural language processing, we 058

use Dense Passage Retrieval (DPR) to retrieve 059

related world knowledge to help the model 060

answer questions. However, when using DPR, 061

we need to transform the image into texts to 062

retrieve the related knowledge, which leads to the 063

underutilization of visual information. Thus, the 064

retrieved knowledge may be unfaithful and affects 065

the model performance. To address the issue, we 066

consider the LVLM as the knowledge selector to 067

find helpful knowledge from candidate retrieved 068

knowledge by DPR. Then the selected knowledge 069

is fed into the LVLM to predict the answer. 070

In this paper, we introduce a novel framework 071

where we adopt the visual-language model to per- 072

form knowledge selection and question answer- 073

ing. Our framework comprises two modules: a 074

Selector and an Answerer. We train two mod- 075

ules by repeating the following process: the Se- 076

lector first identifies important knowledge from 077

the candidate knowledge documents retrieved by 078

the pre-trained retriever; then, the Answerer takes 079

the key knowledge documents as the input knowl- 080

edge and is finetuned to generate the answer; next, 081

we generate pseudo-labels of key knowledge doc- 082

uments according to the Answerer’s predictions 083
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and weak supervision labels; finally, we refine the084

Selector to assess the relevance of retrieved knowl-085

edge documents in answering the question. This086

strategy of self-bootstrapping enhances the ability087

of knowledge selection and answer generation con-088

sistently, enabling the model to accurately respond089

to knowledge-intensive questions.090

We conduct extensive experiments on the open-091

domain knowledge-based VQA benchmark (OK-092

VQA (Marino et al., 2019)) to validate the effective-093

ness of the proposed framework, where our method094

largely outperforms the baseline and achieves the095

state-of-the-art performance of 62.83%, only fine-096

tuning 0.16% parameters with LoRA (Hu et al.,097

2022a). We also conduct comprehensive ablations098

to validate the impact of different components of099

the proposed framework, including the Effect of100

Selector and Answerer, cycle training of the frame-101

work, varying the number of key knowledge doc-102

uments, the impact of vision information, and so103

on.104

Our contributions are summarized as follows:105

• We introduce a novel framework that lever-106

ages the large visual-language model to select107

key knowledge and use them to answer ques-108

tions, respectively.109

• We propose a new self-bootstrap learning110

method to train the Selector and Answerer,111

where the Selector chooses key knowledge112

documents for the Answerer and the Answerer113

provides pseudo-labels for the Selector.114

• We achieve a state-of-the-art performance of115

62.83% on the OK-VQA dataset, surpassing116

the previous state-of-the-art method. Notably,117

this improvement is achieved by fine-tuning118

only 0.16% of parameters using LoRA.119

2 Related work120

Large Visual-Language Models. Recently, large121

visual-language models (Li et al., 2023; Alayrac122

et al., 2022; Liu et al., 2023; Dai et al., 2023) have123

demonstrated remarkable visual-language under-124

standing and reasoning capabilities, owing to the125

advancement of larger language models (Brown126

et al., 2020; Zhang et al., 2022; Touvron et al.,127

2023; vic, 2023; Touvron et al., 2023). These meth-128

ods typically consist of a frozen visual encoder129

(Radford et al., 2021), a visual-language connec-130

tor (Li et al., 2023), and a large language model131

(Chung et al., 2022; Zhang et al., 2022; vic, 2023).132

The models are firstly pre-trained on large-scale 133

visual-text datasets to align visual features to the 134

language embedding space. After pretraining, the 135

large language model can understand the visual 136

details. Then, the model is finetuned to adapt to 137

various visual-language tasks. In this study, we 138

adopt BLIP2, one of the widely used models, as 139

our backbone for bootstrapping knowledge selec- 140

tion and question answering with it. 141

Knowledge-based VQA. Conventional VQA 142

benchmarks (Goyal et al., 2017; Hudson and Man- 143

ning, 2019) primarily focus on basic visual percep- 144

tion and reasoning tasks and numerous studies have 145

achieved promising results on these benchmarks 146

(Anderson et al., 2017; Zhang et al., 2021; Tan and 147

Bansal, 2019; Lu et al., 2019; Li et al., 2022; Wang 148

et al., 2022). Different from them, the knowledge- 149

based VQA task (Wang et al., 2017; Marino et al., 150

2019; Schwenk et al., 2022) requires models to in- 151

corporate diverse world knowledge to respond to 152

questions about visual content, which is more chal- 153

lenging. Recent studies (Gardères et al., 2020; Wu 154

et al., 2022; Lin and Byrne, 2022; Gui et al., 2021) 155

have explored various open-domain world knowl- 156

edge sources, such as ConceptNet (Speer et al., 157

2017), Wikipedia (Vrandečić and Krötzsch, 2014), 158

Google Search Corpus (Luo et al., 2021). They 159

retrieve the relevant knowledge documents from 160

the knowledge bases and integrate them into the an- 161

swering model to generate predictions. Except for 162

using explicit knowledge, some methods also take 163

GPT-3 (Brown et al., 2020) as an implicit knowl- 164

edge producer. They either prompt GPT-3 with 165

in-context examples to predict answers directly 166

(Yang et al., 2022; Hu et al., 2022b; Shao et al., 167

2023), or use GPT-3 to generate answer candidates 168

with evidence serving as textual implicit knowledge 169

bases (Gui et al., 2021; Lin et al., 2022), leading to 170

significant performance improvements. Different 171

from these approaches, we employ a large visual- 172

language model to select key retrieved knowledge 173

and reason on the knowledge to answer questions. 174

3 Method 175

In this section, we first introduce the preliminaries 176

of Knowledge Retrieval and LVLM, which are the 177

foundation of our framework. Then, we present the 178

design of the Selector and Answerer for knowledge 179

selection and question answering on knowledge re- 180

spectively. Finally, we illustrate the self-bootstrap 181

training method of two designed modules. 182
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Knowledge 1: …with two of the most famous voices in cartoons, both supplied by mel blanc, sylvester's sloppy "sufferin succotash" and tweety's baby-voiced "i tawt i taw a puddy tat…

Knowledge 2: …maybe one of the most widely known cat cartoon, garfield is one cat with attitude.  he isn't interested in much, except lasagna, napping, lasagna, teasing the dog…

…

Knowledge k: …why some of our favorite cartoon characters throughout the years have been feline in nature.  maybe one of the most widely known cat cartoon, garfield is one cat with attitude…

Sel Prompt: Does the retrieved knowledge document provide the key information to help answer the question?
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Figure 1: Our framework consists of two modules: a Selector and an Answerer. Selector (left) selects the top-T
knowledge documents for the Answerer (right), and the Answerer focuses on important knowledge information
to predict answers. Both modules utilize the same frozen visual module to extract image features. We train the
fully connected (FC) layer and fine-tune the language model using LoRA, which amounts to only 0.16% of the
total parameters. For detailed training procedures of the two modules, refer to Alg. 1. The original knowledge is
retrieved using DPR, and for brevity, we omit the retrieval process here (details can be found in Section 3.1).

3.1 Preliminaries183

Knowledge Retrieval. We adopt the Dense Pas-184

sage Retrieval (DPR) (Karpukhin et al., 2020b)185

to retrieve the knowledge documents. We trans-186

form the image into raw texts composed of cap-187

tions, objects, attributes, and OCR (Optical Char-188

acter Recognition). Then we compute the similar-189

ity scores between the query and knowledge doc-190

uments sim(qi, Dj) = qT
i · dj and exploit FAISS191

(Johnson et al., 2019) to index Top-k related knowl-192

edge documents Pi = {Pi,1, Pi,2, ..., Pi,k} for i-th193

query.194

Large Visual-Language Model. In our work, both195

knowledge selection and question-answering mod-196

ules adopt BLIP-2 (Li et al., 2023) as the back-197

bone. The architecture of BLIP-2 comprises a198

frozen image encoder (Dosovitskiy et al., 2020;199

Fang et al., 2023), a Q-Former (Li et al., 2023), and200

a pre-trained language model (Chung et al., 2022).201

Given an image Ii, the frozen image encoder out-202

puts a set of visual features {hi,1,hi,2, ...,hi,m}.203

Q-Former takes extracted visual features as in-204

put, and outputs language-aligned visual features205

{vi,1,vi,2, ...,vi,l}. These visual features are con-206

catenated with the textual word embeddings, which207

are fed into the language model for generation.208

Through pre-training on large-scale image-caption209

datasets, Q-Former can effectively project visual210

features into the feature space of the Language211

Large Model (LLM). We freeze the visual encoder212

and Q-former during training. We train the fully213

connected layer and use LoRA (Hu et al., 2022a) 214

to finetune the LLM (only finetune 0.16% of total 215

parameters). 216

3.2 Selector and Answerer 217

Selector. After obtaining the Top-k knowledge 218

documents using DPR for the i-th sample, we aim 219

to choose t most important knowledge documents 220

from the retrieved documents. where t is smaller 221

than k. As shown in Fig. 1, we firstly use the 222

frozen image encoder and Q-former to extract the 223

image features Vi, where these features are ex- 224

tracted once and then used by the Selector and the 225

Answerer. Then image features Vi are fed into the 226

independent fully-connected layer to obtain the vi- 227

sual embeddings Ev
i . We concatenate the question, 228

a retrieved knowledge document, and the Selec- 229

tion prompt "Does the retrieved knowledge docu- 230

ment provide the key information to help answer 231

the question?" into one sentence S. Next, visual 232

embeddings Ev
i and the text are concatenated and 233

fed into the LLM (Flan-T5 (Chung et al., 2022) 234

is adopted in our work). Last, we use the proba- 235

bility of generating the word ‘yes’ as the score of 236

each retrieved knowledge document Pi,j , denoted 237

as si,j = LLM(concat(Ev
i , Si)), and we select 238

top-t documents P̂i = {P̂i,1, P̂i,2, ..., P̂i,t} based 239

on the scores. The Selector can be conceptualized 240

as follows: 241

P̂i == Selector(Ii, Qi,Pi), |P̂i| = t (1) 242

Answerer. After obtaining the selected knowledge 243
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Algorithm 1 Pipeline of cycle training

Input:
KB-VQA dataset D = {Ii, Qi,Ai|i =
1, 2, . . . , N};
Retrieved knowledge documents Pi =
{P 1

i , P
2
i , . . . , P

k
i }; Ii, Qi, Pi, and Ai denote

image, question, document set, and answer set
of i-th sample
Output: Knowledge selection model Selector;
Question answering model Answerer
for sample in D do

Stage 1:
1: Using Selector to select top-t documents
P̂i from the retrieved knowledge documents
Pi as Eq. 1
2: Finetuning Answerer on {Ii, Qi, P̂i,Ai}
supervised by the ground-truth answer as
Eq. 3.
Stage 2:
1: Using Answerer to predict answers for
retrieved knowledge documents Pi as Eq. 2
2: Generating to pseudo labels {yi,j} for re-
trieved knowledge documents Pi as Eq. 4
3: Finetuning Selector on
{Ii, Qi,Pi, {yi,j}} supervised by the
pseudo label as Eq. 5.

end for

documents, we aim to reason on the knowledge to244

answer questions. As shown in Fig. 1, we process245

the same image features to obtain the different vi-246

sual embeddings Ev
i via the fully-connected layer247

of the Answerer. Next, we concatenate the question248

and the knowledge into one sentence S′ using the249

template "Question: {} Knowledge: {} Answer:250

". We concatenate the visual embeddings and the251

text, which are fed into the LLM with different252

LoRA parameters to get the answer. The model253

outputs corresponding answers based on different254

documents. The Answerer can be conceptualized255

as follows:256

ai = Answerer(Ii, Qi, P̂i) (2)257

Then the final answer is based on the majority258

vote. We also tried different knowledge reasoning259

methods, such as concatenating (the results can be260

seen in the ablation study).261

3.3 Self-Bootstrap Learning262

To enable the Selector and Answerer to select key263

knowledge and answer questions, we bootstrap264

them with each other in a style of cycle training. 265

We repeat the following process for the given i-th 266

sample {Ii, Qi,Pi,Ai} of the training dataset: 267

Answerer Training. We use Eq. 1 to get the 268

selected knowledge documents P̂i. The image Ii 269

is fed into the frozen ViT and Q-former to obtain 270

the image features Vi. We use the trainable FCans 271

layer to output the visual embeddings Ev
ans,i. We 272

concatenate the visual embedding, the question 273

Qi and each selected knowledge document P̂i,j 274

to construct t triplets for the sample, where j = 275

1, 2, . . . , t. Then we finetune the Answerer with 276

LoRA under the supervision of the ground truth 277

answer Ai: 278

Ev
ans,i = FCans(Vi),

Lans = −
t∑

j=1

logLLMans(a
∗
i |Ev

ans,i, Qi, P̂
j
i ),

(3) 279

where a∗i is the most frequent answer in the human- 280

annotated answer set Ai. 281

Selector Training. We first use Eq. 2 to pre- 282

dict answers based on each retrieved knowledge 283

document Pi,j . Then we assign pseudo labels to 284

the retrieved documents according to model pre- 285

dictions and weak supervision labels (Luo et al., 286

2021; Lin and Byrne, 2022; Lin et al., 2023). We 287

use "yes" and "no" as pseudo labels, where label a 288

document as positive knowledge if Answerer can 289

output the correct answer using that document and 290

the document contains any of the answers in Ai. 291

yi,j =


yes, if ai = a∗i∧

Pi,j contains an answer in Ai

no, else
(4) 292

After obtaining the pseudo label of each re- 293

trieved knowledge document, we use the trainable 294

FCsel layer to output the visual embeddings Ev
sel,i. 295

we concatenate the visual embedding, the ques- 296

tion Qi and each retrieved knowledge document 297

Pi,j to construct k triplets for the sample, where 298

j = 1, 2, . . . , k. Then we finetune the Selector 299

with LoRA under the supervision of pseudo labels: 300

Ev
sel,i = FCsel(Vi),

Lsel = −
k∑

j=1

logLLMsel(yi,j |Ev
sel,i, Qi, P

j
i )

(5) 301
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Table 1: Performance comparison with state-of-the-art (SOTA) methods on the OK-VQA dataset. Knowledge
Sources: ConceptNet (C); Wikipedia (W); Google Search (GS); Google Images (GI). The best result in the table is
bolded. The results show that our method achieves the state-of-the-art performance.

Models Large Models Ktrain Ktest Knowledge Resource Accuracy (%)
BAN+AN (Marino et al., 2019) - - - W 25.6
ConceptBERT (Gardères et al., 2020) - - - C 33.7
KRISP (Marino et al., 2021) - - - C+W 38.4
Visual Retriever-Reader (Luo et al., 2021) - 100 100 GS 39.2
MAVEx (Wu et al., 2022) - - - W+C + GI 39.4
PICa (Yang et al., 2022) GPT-3 (175B) - - GPT-3 48.0
TRiG(Ensemble) (Gao et al., 2022) T5-large (770M) 100 100 W 50.5
KAT(Single) (Gui et al., 2021) T5-large (770M) 40 40 W + GPT-3 53.1
KAT(Ensemble) (Gui et al., 2021) T5-large (770M) 40 40 W + GPT-3 54.4
RA-VQA (Lin and Byrne, 2022) T5-large (770M) 5 50 GS 54.5
REVIVE(Single) (Lin et al., 2022) T5-large (770M) 40 40 W+GPT-3 56.6
REVIVE(Ensemble) (Lin et al., 2022) T5-large (770M) 40 40 W+GPT-3 58.0
PromptCap (Hu et al., 2022b) GPT-3 (175B) - - GPT-3 60.4
Prophet (Shao et al., 2023) GPT-3 (175B) - - GPT-3+MCAN 61.1
FillingGap (Wang et al., 2023) GPT-3 (175B) - - GPT-3 61.3
SimpleBaseline (Xenos et al., 2023) LLaMA 2 (13B) - - LLaMA 2 61.2
Cola-FT (Chen et al., 2024) FLAN-T5(11B) - - BLIP+OFA 62.4
Flamingo (Alayrac et al., 2022) Flamingo (80B) - - Pretrain 57.8
InstructBLIP (Dai et al., 2023) InstructBLIP Vicuna (7B) - - Pretrain 62.1
Qwen-VL (Bai et al., 2023) Qwen-VL(Qwen-7B) - - Pretrain 58.6
MM-Reasoner (Khademi et al., 2023) Flamingo (80B) - - GPT-4 60.8
BLIP2 (fine-tuned) (Li et al., 2023) BLIP2 T5-XL (3B) - - Pretrain 55.44
RA-VQA-v2 (Lin et al., 2023) BLIP2 T5-XL (3B) 5 5 GS 62.1
PreFLMR (Lin et al., 2024) BLIP2 T5-XL (3B) 5 5 GS 61.88
Ours BLIP2 T5-XL (3B) 5 5 GS 62.83

We provide the overall training pipeline in Alg. 1.302

Through continuous iteration, the Selector will pro-303

vide more crucial knowledge for the Answerer to304

accurately respond to questions. Meanwhile, the305

improvement in the Answerer’s reasoning ability306

will also result in more precise pseudo-labeling, fur-307

ther enhancing the Selector’s discriminative power.308

During the inference stage, we utilize the Selec-309

tor to choose key knowledge, and then instruct the310

Answerer to respond to questions based on this311

knowledge.312

4 Experiments313

4.1 Experimental Setup314

Dataset. We conduct extensive experiments on315

OK-VQA (Marino et al., 2019) to evaluate the ef-316

fectiveness of our method. OK-VQA is a challeng-317

ing open-domain knowledge-based VQA dataset318

that requires models to leverage various exter-319

nal knowledge sources to answer questions. The320

dataset contains 14,055 questions and 14,031 im-321

ages, whereas the training set and testing set have322

9k and 5k image-question pairs, respectively. Due323

to no knowledge base being provided for OK-VQA,324

we need to choose the proper knowledge base for325

the dataset. In this paper, we adopt Google Search326

Corpus (Luo et al., 2021) as the knowledge base 327

which is collected in the websites using the Google 328

Search API. 329

Evaluation Metric. We use the standard VQA 330

metric (Antol et al., 2015) to evaluate the perfor- 331

mance of the model. Given the prediction of the 332

question a and the groudtruth answer set A, the 333

VQA accuracy is calculated as: 334

Accuracy(a,A) = min(
#A(a)

3
, 1), (6) 335

where the groudtruth answer set A is annotated by 336

different humans, #A(a) denotes the occurrence 337

of a in A. 338

Implementation Details. In our experiment, we 339

adopt BLIP2 T5-XL (3B) (Li et al., 2023) to ini- 340

tialize the Selector and Retriever. We freeze the 341

image encoder and Q-former, with both the Se- 342

lector and Retriever sharing the same visual mod- 343

ule. We finetune the fully connected layer and 344

use LoRA (Hu et al., 2022a) to train the LLM. 345

We use the default huggingface-PEFT setting: r=8, 346

lora_alpha=32, lora_dropout=0.1. We use Adam 347

as the optimizer and set the batch size to 8. We 348

use the warm-up strategy which trains the model 349

with an initial learning rate of 1e-4 and warm-up 350
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factor of 0.05 for 1000 steps and then utilizes a351

cosine annealing learning strategy with an initial352

learning rate of 1e-4 and a final learning rate of 0353

after 10 epochs. We use top-30 knowledge docu-354

ments retrieved by a pre-trained DPR (Karpukhin355

et al., 2020b) as candidates for Selector and use356

the selected top-5 documents from the 30 docu-357

ments for the Answerer to train and infer, denoted358

as Kcandidate = 30,Ktrain = 5,Ktest = 5. We359

use 2 Nvidia A800 GPUs (80G) for all experiments.360

And our codes will be released upon paper accep-361

tance.362

4.2 Comparison with State-of-the-art363

Methods364

As shown in Tab. 1, we can see early models365

(BAN+AN (Marino et al., 2019), ConceptBERT366

(Gardères et al., 2020), KRISP (Marino et al.,367

2021), Visual Retriever-Reader (Luo et al., 2021),368

and MAVEx (Wu et al., 2022)) have a weak perfor-369

mance, achieving a VQA accuracy from 25.6% to370

39.4%. Recently, by introducing larger models (T5-371

large, GPT-3, LLaMA, Vicuna) and diverse knowl-372

edge resources (ConceptNet, Wikipedia, Google373

Web Search and Google Images), the performance374

has a significant performance improvement, achiev-375

ing a VQA accuracy of 62.4%. Our method aims to376

augment the reasoning ability to answer knowledge-377

intensive questions of the large visual-language378

model. When directly finetuning BLIP2 T5-XL379

on OKVQA, the model has a low performance380

of 55.44%. By introducing external knowledge,381

the performance has a significant performance im-382

provement. Different from RA-VQA-v2 (Lin et al.,383

2023) and PreFLMR (Lin et al., 2024), we do not384

train a multimodal retriever from scratch which385

requires expensive annotations and high computa-386

tional costs. We directly leverage the large visual-387

language model to select key knowledge from the388

retrieved knowledge by DPR like the process of re-389

ranking. With the same knowledge resources (i.e.,390

Google Search), our method can achieves 62.83%391

accuracy, outperforming other state-of-the-art mod-392

els. It is worth noting that we do not use GPT-3 and393

we only train the 0.16% parameters of the model.394

These results demonstrate the effectiveness of the395

proposed approach.396

4.3 Ablation Study397

We conduct the ablation studies to evaluate differ-398

ent components of our framework on OK-VQA.399

Table 2: Ablation study on the Selector. We select 5
knowledge documents from top-30 knowledge candi-
dates retrieved by DPR. ’DPR Score’ refers to selecting
top-5 knowledge based on similarity scores. ’Random
Selection’ means randomly selecting 5 knowledge doc-
uments from 30 candidate knowledge documents. ’Se-
lector’ denotes choosing 5 key knowledge documents
by the Selector.

Ktrain Ktest Knowledge Selection Accuracy (%)
5 1 Random Selection 50.45
5 1 DPR Score 58.80
5 1 Selector 61.62
5 5 Random Selection 55.05
5 5 DPR Score 60.69
5 5 Selector 62.83

Effect of Selector. We conduct the ablation study 400

to evaluate the effectiveness of Selector in our 401

method. We show the results in Tab. 2. From the re- 402

sults, we can observe: Our framework, leveraging 403

key knowledge documents selected by the Selec- 404

tor, consistently outperforms the Answerer when 405

using the same number of documents retrieved by 406

DPR. We improve the performance by 2.14% and 407

1.88% with 1 and 5 test knowledge documents, 408

compared to DPR-based retrieval. When using the 409

randomly selected documents, the model performs 410

worst. These results demonstrate that top-ranked 411

knowledge documents based on DPR scores are 412

not optimal for question answering and our key 413

knowledge selection module can identify relevant 414

documents for accurate question answering, en- 415

suring the coherence of knowledge retrieval and 416

question-answering processes. 417

Effect of Answerer. In Tab. 3, we present a com- 418

parison of our Answerer using different knowledge 419

reasoning methods. The results show that the per- 420

formance using the strategy of voting surpasses that 421

of concatenating under different knowledge selec- 422

tion settings. We argue that directly combining all 423

the knowledge documents into a lengthened docu- 424

ment makes it difficult for the Answerer to reason 425

on them, which is easily influenced by noisy infor- 426

mation. In contrast, it is easier for the Answerer 427

to reason on each document to predict the answer. 428

Simple voting can choose the best answer. 429

Effect of Self-Bootstrap Learning. To evalu- 430

ate the effectiveness of our self-bootstrap learning 431

method, we compare the method with the strat- 432

egy of independent training of two modules. We 433

finetune the Answerer with the knowledge docu- 434
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Table 3: Ablation study on different knowledge rea-
soning methods of Answerer. ’Concatenating’ denotes
that we combine the key knowledge documents into
one sentence and feed it into the Answerer to predict
the final answer. ’Voting’ means that we feed different
key knowledge documents into the Answerer to predict
different answers and choose the best answer based on
majority voting.

Method Backbone Accuracy (%)
Concatenating BLIP2 (fine-tuned)

w knowledge from DPR
59.11

Voting 60.69
Concatenating Ours

w knowledge from Selector
62.06

Voting 62.83

Table 4: Ablation study on different training methods
of our framework.

Methods Accuracy (%)
Baseline 60.69

Independent training 59.02
Cycle training 62.83

ments retrieved by DPR as the baseline. Indepen-435

dent training means that we train the Selector and436

the Answerer respectively. Initially, we train the437

Answerer module utilizing knowledge documents438

retrieved by DPR. Subsequently, employing the439

trained Answerer, we generate answers for each440

retrieved knowledge document, thereby generat-441

ing pseudo-labels for the retrieved knowledge. We442

then proceed to train the Selector module super-443

vised by these pseudo-labels. Finally, we conduct444

finetuning of the Answerer once more, incorpo-445

rating new knowledge documents selected by the446

Selector. The results in Tab. 4 show that the model447

with cycle training outperforms the model with it-448

erative refinement by 3.81%. The VQA score of449

using independent training is even lower than the450

baseline. These results demonstrate that our cycle451

training method can effectively boost the Selector452

and Answerer each other, which makes the model453

find key knowledge documents and leverage the454

knowledge to answer questions.455

Effect of different methods of pseudo-labeling.456

In Tab. 5, we compare the model performance with457

different methods of pseudo-labeling. When using458

the model predictions as guidance, the model has a459

VQA score of 62.31%. When adding the weak su-460

pervision as the guidance, the model’s VQA score461

increases from 62.31% to 62.83%. The results462

demonstrate that using weak supervision labels pre-463

serves potentially useful documents, aiding the An-464

Table 5: Ablation study on different methods of pseudo-
labeling.

Model predictions Weak supervision labels Accuracy (%)
✓ 62.31
✓ ✓ 62.83

Table 6: Ablation study on different numbers of candi-
date documents and selected documents.

Kcandidate Ktrain Ktest Accuracy (%)
5 1 1 57.90
5 1 5 58.32
10 1 1 58.61
10 1 5 59.40
10 5 5 61.86
15 5 5 62.31
30 5 5 62.83
30 5 1 61.62

swerer in accurately answering questions. 465

Effect of key knowledge documents ranges and 466

quantities. In Tab. 6, we evaluate key knowledge 467

document selection using various numbers of can- 468

didate documents and selected documents. From 469

the results, we have the following findings: (1) As 470

the number of selected documents increases, the 471

model’s performance improves. This indicates that 472

using more documents to train and test contributes 473

to answering questions. (2) Using more documents 474

for training can improve the performance a lot (the 475

2nd line v.s. the last line). However, using more 476

documents for testing has almost no improvement 477

(the 3rd line v.s. 4th line). (3) When the number 478

of candidate documents increases, the model’s per- 479

formance improves. The result demonstrates that 480

low-ranked documents based on DPR scores may 481

contain useful information for question answering. 482

It is necessary for the model to select key knowl- 483

edge documents. 484

Effect of different knowledge documents selec- 485

tion in Answerer fine-tuning. Tab. 7 compares the 486

Table 7: Ablation study on different documents selec-
tion in Answerer fine-tuning.

Knowledge Selection
Accuracy (%)

Training Inference
DPR Selector 62.31

Selector DPR 60.75
Selector Selector 62.83
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Q: What is a famous example of 

the item in the middle of the 

picture?

…composition depicts a range of religious iconography rendered in michelangelo's distinctive 

style, making it one of the most cherished masterpieces in the world…

BLIP2 (fine-tuned) w knowledge from DPR  

…a lightning conductor, like some kind of provincial eiffel tower (the fascination of which 

was never far from van gogh's nocturnes)…

… big ben is the name given to the massive bell inside the clock tower, which weighs more 

than 13 tons (13,760 kg)…

Ours w knowledge from Selector 

… here's some background information about big ben, the clock and bell in elizabeth tower at 

the houses of parliament in london…

… the elizabeth tower, aka big ben, is among london's most iconic landmarks – a ‘must see' 

for anyone visiting london…

… here's some background information about big ben, the clock and bell in elizabeth tower at 

the houses of parliament in london…

st petersburg

eiffel tower

big ben

big ben

big ben

big ben

Q: At the end of which movie 

featuring dick van dyke does 

this activity occur?

…in one vietnam war scene, gump carries bubba away from an incoming napalm attack.  to 

create the effect, stunt actors were initially used for compositing purposes…

BLIP2 (fine-tuned) w knowledge from DPR  

…it is a sequel to the 1982 film tron, whose director steven lisberger returned to produce.  to 

the film, kosinski filmed a high-concept…

… i was expecting some resentment towards billy madison, but i thought we could at least 

wait a few exchanges before that, but if you want it, it's on…

Ours w knowledge from Selector 

… he will survive because the opening chapter of the kite runner takes place in december 2001, 

and the narrative has not reached that point yet…

… "let's go fly a kite" is a song from walt disney's 1964 film mary poppins, composed by 

richard m.  sherman and robert b.  shermanrobert b.…

… a "mary poppins" movie poster is prominent in the backgroud of the scene outside the 

movie theater as the kids get their tickets…

gump

tron

kite fly

kite runner

mary poppins

mary poppins

Q: What is a famous cartoon 

animal of this type?

…unlike new yorker cartoons, in which, you are actually missing the joke, garfield is in fact 

not even designed to be funny (jerry knight) by rose eveleth smithsonianmag…

BLIP2 (fine-tuned) w knowledge from DPR  

…with two of the most famous voices in cartoons, both supplied by mel blanc, sylvester's
sloppy "sufferin succotash" and tweety's baby-voiced "i tawt i taw a puddy tat…

… sylvester james pussycat, sr.  is a tuxedo cat who appears in the looney tunes and merrie 
melodies series of cartoons…

Ours w knowledge from Selector 

… unlike new yorker cartoons, in which, you are actually missing the joke, garfield is in fact 

not even designed to be funny (jerry knight) by rose eveleth smithsonianmag…

… maybe one of the most widely known cat cartoon, garfield is one cat with attitude.  he isn't 

interested in much, except lasagna, napping, lasagna, teasing the dog.

…why some of our favorite cartoon characters throughout the years have been feline in nature.  

maybe one of the most widely known cat cartoon, garfield is one cat with attitude..

garfield

sylvester

sylvester

garfield

garfield

garfield

Figure 2: Qualitative results on the test split of OK-VQA. We compared our method with a model that fine-tunes
BLIP2 with knowledge ranked by DPR. The middle segment of the graph represents knowledge from various
methods used to answer questions. On the right side of the graph, different answers are depicted when using distinct
knowledge. Green and red colors indicate whether the selected final answer is correct.

Answerer fine-tuning with different document se-487

lection strategies. The results show that our frame-488

work performs optimally when utilizing Selector in489

both Answerer training and inference. This is likely490

because the Selector provides more informative key491

knowledge documents and using both Selector en-492

sures the consistency between the training domain493

and testing domain.494

4.4 Qualitative Analysis495

In Fig. 2, We present a case study comparing our496

method with a model that fine-tunes BLIP2 using497

knowledge ranked by DPR. In the first case, top-498

ranked knowledge documents from DPR misguide499

the model, resulting in incorrect predictions. How-500

ever, our method’s Selector chooses key knowledge501

documents that aid in predicting correct answers.502

In the second case, each knowledge document from503

DPR contains irrelevant information, leading to an504

incorrect final answer. Despite the top-1 document505

from the Selector resulting in a wrong answer, our506

method identifies other key knowledge documents507

for generating correct answers. Through majority 508

voting, the final selected answer is correct. These 509

cases demonstrate our method’s ability to extract 510

informative knowledge from retrieved documents 511

to support accurate question answering. 512

5 Conclusion 513

In this paper, we propose a novel framework that 514

leverages the large visual-language model to con- 515

struct two modules: (1) Selector for finding key re- 516

trieved knowledge and (2) Answerer for reasoning 517

on the knowledge to predict answers. We design 518

a self-bootstrap learning method to improve their 519

abilities, where the Selector chooses key knowl- 520

edge documents for the Answerer and the Answerer 521

provides pseudo-labels for the Selector. Compared 522

with state-of-the-art methods, our method achieves 523

better performance on a challenging open-domain 524

knowledge-based VQA benchmark (OK-VQA) and 525

we conduct a comprehensive analysis to evaluate 526

the effectiveness of our method. 527
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6 Limitations528

Although our framework can effectively select key529

knowledge documents for answering question, it is530

inevitable that the knowledge still contains noise.531

In some cases, the model itself can answer the532

question without external knowledge, introducing533

extra knowledge may affect the performance. In534

the future, we can explore to dynamically select535

required knowledge to help itself answer questions.536
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A Appendix 805

A.1 Experiments on other datasets. 806

We also evaluate our method on FVQA (Fang 807

et al., 2023) and A-OKVQA (Schwenk et al., 2022) 808

to demonstrate the effectiveness of our method. 809

FVQA is a VQA dataset that mostly contains 810

questions requiring external knowledge to answer, 811

and provides supporting fact triplets alongside the 812

image-question-answer triplets. A-OKVQA is an 813

augmented successor of OK-VQA, containing 25K 814

image-question pairs that require broader common- 815

sense and world knowledge to answer. Due to A- 816

OKVQA does not provide the knowledge source, 817

we use Wikipedia (Vrandečić and Krötzsch, 2014) 818

as the knowledge base. 819

As shown in Tab. 8, our method surpasses previ- 820

ous state-of-the-art methods, which demonstrates 821

the effectiveness and generalization of our method. 822

Tab. 9 shows the comparative results on the chal- 823

lenging A-OKVQA dataset. Our method achieved 824

competitive results, which demonstrates the effec- 825

tiveness of our method. 826
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