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ABSTRACT

Quantum computing shows great potential for expanding the range of efficiently
solvable problems. This promise arises from the advantageous resource and run-
time scaling of certain quantum algorithms over classical ones. Quantum machine
learning (QML) seeks to extend these advantages to data-driven methods. Initial
evidence suggests quantum-based models can outperform classical ones in terms
of scaling, runtime and generalization capabilities. However, critics have pointed
out that many works rely on extensive feature reduction or use toy datasets to
draw conclusions, raising concerns about their applicability to larger problems.
Scaling up these results is challenging due to hardware limitations and the high
costs generally associated with encoding dense vector representations on quan-
tum devices. To address these challenges, we propose an efficient approach called
Hamiltonian classifier inspired by ground-state energy optimization in quantum
chemistry. This method circumvents the costs associated with data encoding by
mapping inputs to a finite set of Pauli strings and computing predictions as their
expectation values. In addition, we introduce two variants with different scal-
ing in terms of parameters and sample complexity. We evaluate our approach
on text and image classification tasks, comparing it to well-established classical
and quantum models. Our results show the Hamiltonian classifier delivers perfor-
mance comparable to or better than these methods. Notably, our method achieves
logarithmic complexity in both qubits and quantum gates, making it well-suited
for large-scale, real-world applications.

1 INTRODUCTION

In recent years, interest in quantum computing has grown significantly due to the provable ad-
vantages in computational complexity and memory usage some algorithms exhibit over their best
classical analogues (Nielsen & Chuang, 2000; Quetschlich et al., 2024; Biamonte et al., 2017).
For instance, efficient algorithms exist that can solve problems such as integer factorization (Shor,
1997), Fourier transform (Camps et al., 2021), and specific instances of matrix inversion (Harrow
et al., 2009) with an exponential speedup over the fastest known classical methods. Other notable
results include Grover’s algorithm, which performs an unstructured search achieving a O(

√
n) time

complexity, a quadratic improvement over the fastest classical approach that scales asO(n) (Grover,
1996). In parallel with these theoretical developments, the size of publicly accessible quantum ma-
chines has been steadily growing, and several companies have begun offering commercial cloud
access to these devices (Yang et al., 2023). Quantum machine learning is an offshoot of quantum
computing that seeks to extend its advantages to data-driven methods. The leading paradigm re-
volves around variational quantum circuits (VQCs), quantum algorithms whose parameters can be
adjusted with classical optimization to solve a specific problem (Cerezo et al., 2021). This approach
is sometimes referred to as quantum neural networks (QNNs) given the similarities with the classical
counterpart (Farhi & Neven, 2018; Killoran et al., 2019). Prior works have found some evidence that
QML algorithms can offer improvements over their classical analogues in terms of capacity (Abbas
et al., 2021), expressive power (Du et al., 2020), and generalization capabilities (Caro et al., 2022).

Despite the advancements of VQCs, a large-scale demonstration of advantage - the ability of a quan-
tum computer to solve a problem faster, with fewer resources or better performance than any clas-
sical counterpart - remains out of reach for QML algorithms. Current quantum machines, referred
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Figure 1: Comparison between the standard VQC training loop (left) and ours (right). In green,
components evaluated classically; in blue, components evaluated on quantum computers.

to as Noisy Intermediate-Scale Quantum (NISQ) devices (Preskill, 2018), are restricted both in size
and complexity of the operations they can perform (Zaman et al., 2023). Qubits, the basic units of
quantum computation, are hard to maintain in a state useful for computation, and scaling quantum
processors to a size suitable for QML remains a significant challenge. Moreover, the widespread use
of dense and unstructured vector representations in modern machine learning architectures (Bengio
et al., 2000) makes their translation into quantum equivalents challenging. Specifically, the processes
of loading data onto a quantum device, known as encoding, and extracting results from it, referred to
as measurement, can scale rapidly in terms of qubit requirements or computational costs (Schuld &
Killoran, 2022). These costs may grow prohibitively with input size, potentially negating any quan-
tum advantage. As a result, researchers are often forced to down-scale their experiments making it
unclear whether these findings generalize at larger scales (Bowles et al., 2024; Mingard et al., 2024).

Motivated by these limitations, we propose a scheme to efficiently encode and measure classical
data from quantum devices and demonstrate its effectiveness across different tasks. The method we
propose is a specific instance of a flipped model (Jerbi et al., 2024), a type of circuit which encodes
data as the observable of a quantum circuit rather than as a quantum state, effectively bypassing the
need for input encoding. From a linear algebra perspective, this corresponds to learning a vector
representation of the classification problem and using the input data to compute projections of this
vector. The magnitude of these projected vectors is then used to make predictions. In quantum-
mechanical terms, unstructured input data is mapped onto Pauli strings which are then combined to
construct a Hamiltonian. The classifier prediction is obtained as the expectation value of this Hamil-
tonian. This idea shares many similarities with variational quantum eigensolver (VQE), a type of
VQC widely used in quantum chemistry for solving the electronic structure problem (Peruzzo et al.,
2014; Tilly et al., 2022). We improve over the standard flipped model by providing a mapping from
inputs to observables that achieves a favourable logarithmic qubit and gate complexity relative to
the input dimensionality. We also introduce two variants that trade some classification performance
in exchange for smaller model size and better sample complexity, respectively. Most importantly,
the constant scaling in sample complexity of the second variant allows it to be efficiently adapted
for execution on quantum devices. In brief, this paper provides the following three contributions:

C1 A novel encoding scheme achieving logarithmic qubit and gate complexity;

C2 A thorough evaluation of our scheme on text and image classification tasks;

C3 An empirical and theoretical comparison of our method against other established quantum
and classical baselines.
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Section 2 provides an overview of data encoding, discusses the current state of QML, and describes
the key issues preventing large-scale experimentation from being performed. To address these chal-
lenges, we introduce in Section 3 our novel quantum encoding architecture. Specifically, in Section
3.6, we provide a theoretical comparison of the scaling behaviour of our method relative to other
quantum-based approaches. In Section 4 we benchmark its effectiveness against other quantum and
classical baselines, obtaining promising results. Our chosen datasets are SST, AG News, IMDb,
MNIST, Fashion-MNIST, and CIFAR, covering text and image domains in both the binary and
multi-class scenarios. Finally, in Section 5, we summarize our findings and discuss future direc-
tions.

2 PRELIMINARIES

Quantum computers differ fundamentally from classical computers, utilizing the principles of quan-
tum physics rather than binary logic implemented by transistors. For readers unfamiliar with the
topic, in Appendix A we offer a brief introduction to the notation and formalize the concepts of
qubit, gate and measurement. In this section, we instead discuss how these devices have been used
to tackle machine learning problems, as well as their limitations.

2.1 DATA ENCODING

The first step for quantum-based ML algorithms is representing input data as quantum states, a
process also known as state preparation. Most algorithms share similarities in how they achieve
this (Rath & Date, 2023). The choice of encoding severely impacts the runtime of the circuit as
well as its expressivity (Sim et al., 2019). Basis encoding is the simplest representation analogous to
classical bits. An n-element bit string [x1 x2 . . . xn] is represented in the basis states of n qubits
as

⊗n
i=1 |xi⟩ = |x1 . . . xn⟩ (e.g. 011 is represented as |011⟩). This representation requires O(n)

qubits. Angle encoding represents continuous data as the phase of qubits. A set of n continuous vari-
ables [x1 x2 . . . xn] can be represented over n qubits as

⊗n
j=1Rσ̂(xj) |0⟩ with Rσ̂(x) = e−ixσ̂

a so-called rotation gate, and σ̂ a Pauli matrix X,Y or Z that specifies the rotation axis. Amplitude
encoding represents a vector of N = 2n values [x1 x2 . . . xN ] over n qubits as

∑N−1
i=0 xi |i⟩,

where {|i⟩}Ni=1 corresponds to the canonical orthonormal basis written in a binary representation.

There is a trade-off between ease of encoding and qubit count: basis and angle encoding use O(n)
gates for O(n) values over O(n) qubits, while amplitude encoding handles N -dimensional inputs
but needs O(N) gates over O(n) qubits, an exponential increase in input size but also gates. Angle
encoding strategies often embed multiple features onto the same qubit to reduce qubit usage, effec-
tively a form of pooling (Pérez-Salinas et al., 2020; Du et al., 2020). Amplitude encoding, on the
other hand, is often performed using easy-to-prepare quantum states to mitigate its gate complex-
ity (Ashhab, 2022; Du et al., 2020). In text-related tasks, encoding schemes typically encode words
over a set number of qubits (Wu et al., 2021; Lorenz et al., 2021), while in image tasks, pixel values
are directly encoded as angles or amplitudes (Cong et al., 2019; Wei et al., 2022).

2.2 VARIATIONAL QUANTUM CIRCUITS

Once data has been encoded in a quantum computer, it is processed by a quantum circuit to obtain
a prediction. One of the leading paradigms for QML revolves around VQCs (also called quantum
ansätze, or parametrized quantum circuits), a type of circuit where gates are specified by classical
parameters. The training loop of a VQC (Figure 1) closely resembles that of classical neural net-
works (Cerezo et al., 2021): input data is encoded in the quantum device as a quantum state, several
layers of parametrized gates transform this state, a prediction is obtained via quantum measurement,
and finally a classical optimizer computes a loss and updates the parameters. Specialized optimiz-
ers allow backpropagating through a quantum circuit, but parameters are saved classically and the
process is otherwise the same (Wierichs et al., 2022). In VQCs applied to machine learning, mea-
surement usually plays the role of feature extractor, producing either features to be further processed
by downstream layers (Chen et al., 2022), or the final prediction (Farhi & Neven, 2018). VQCs have
shown better convergence properties during training (Abbas et al., 2021) as well as better expressive
power (Du et al., 2020) when compared with neural networks of similar size.
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Several VQC-based equivalents of classical architectures have been proposed ranging from simple
neurons (Cao et al., 2017) to more elaborate schemes like auto-encoders (Romero et al., 2017),
generative adversarial networks (Dallaire-Demers & Killoran, 2018), RNNs (Bausch, 2020; Li et al.,
2023), attention layers (Cherrat et al., 2022; Shi et al., 2023; Zhao et al., 2024), and convolutional
neural networks (Cong et al., 2019; Henderson et al., 2020).

2.3 QUANTUM MACHINE LEARNING LIMITATIONS

Despite these achievements, QML applications have yet to demonstrate a practical quantum ad-
vantage. Firstly, NISQ devices are limited in terms of the number of qubits in a single device,
connectivity between the qubits, noise in the computation, and coherence time (Zaman et al., 2023;
Anschuetz & Kiani, 2022). Secondly, quantum devices have fundamental difficulties in dealing with
the dense and unstructured vector representations around which ML revolves: loading (or encoding)
data into a quantum state either requires a large number of qubits (for angle and basis encoding)
or a prohibitive amount of gates (for amplitude encoding). Efficient methods for amplitude encod-
ing (Ashhab, 2022; Wang et al., 2009) incur trade-offs in the expressivity of vectors that have not
been explored sufficiently in the context of QML. Moreover, measurement is an expensive process
extracting only one bit of information per qubit measured. Extracting a real-valued vector from
a quantum computer generally requires exponentially many measurements (Schuld & Petruccione,
2021). As a result, many current QML experiments are limited in both scale and scope in order to fit
within the constraints of NISQ devices and simulators. Small datasets, typically consisting of only a
few hundred samples, are often used (Senokosov et al., 2024; Li et al., 2023; Liu et al., 2021; Chen,
2022). Additionally, aggressive dimensionality reduction is commonly performed to reduce data to
just a few dozen features (Bausch, 2020; Zhao et al., 2024). In contrast, even ”small” classical neural
networks by modern standards are several orders of magnitude larger in terms of parameters, dataset
size, and representation dimensionality (Mingard et al., 2024). These limitations have raised con-
cerns about the applicability of QML results to larger, more complex tasks. Some question whether
the observed performance is due to the quantum model itself or the upstream pre-processing (Chen
et al., 2021), while others highlight the difficulty of generalizing these results to larger datasets and
the challenges of fair benchmarking (Bowles et al., 2024; Mingard et al., 2024).

Several other challenges remain, including how to mitigate barren plateaus (Larocca et al., 2024),
develop efficient optimization algorithms for VQCs (Wiedmann et al., 2023), and implement ef-
fective error correction schemes(Chatterjee et al., 2023). In this work, we show how limitations
pertaining encoding and measurement can be mitigated by changing the way inputs are represented
in a quantum device.

3 HAMILTONIAN CLASSIFIER

Recognizing the limitations of current encoding techniques and the need for more efficient methods
on current quantum devices, we introduce a novel approach: the Hamiltonian classifier. Instead of
relying on expensive state preparation procedures, our method maps inputs to a set of Pauli strings
that measured together yield a binary prediction. This approach is inspired from the Variational
Quantum Eigensolver formulation applied to quantum chemistry (Peruzzo et al., 2014) with the key
difference that the Hamiltonian is constructed from data instead of being derived from the quantum-
physical properties of the chemical system at hand. As in the general VQE setting, we then optimize
the objective function with classical methods. Independent works (Jerbi et al., 2024) have introduced
the theoretical framework for flipped models, a category that includes our Hamiltonian classifier. It
has been proven that certain types of flipped models, particularly when combined with classical
shadow techniques, can demonstrate a quantum advantage for specific tasks. Additionally, flipped
models have been previously explored in the context of quantum federated learning (Song et al.,
2023). Our work distinguishes itself as the first to apply flipped models to text classification and
to provide a thorough evaluation of such methods across multiple datasets, comparing against both
classical and quantum baselines. Moreover, we enhance the practicality of these methods by intro-
ducing an encoding scheme that sensibly lowers qubit requirements. We also propose variants that
further reduce model size and sample complexity with minimal impact on performance and extend
this method to the multi-class scenario. These factors make the Hamiltonian classifier applicable not
only to toy problems but also to real-world tasks.
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3.1 VARIATIONAL QUANTUM EIGENSOLVERS (VQES)

VQEs are a class of algorithms related to QML which have been extensively utilized in quantum
chemistry and condensed matter physics for finding the lowest-energy configuration in quantum
systems (Peruzzo et al., 2014; Tilly et al., 2022). VQEs are considered one of the most promising ap-
proaches for achieving a practical advantage in the NISQ era (Daley et al., 2022). In practice, VQEs
solve the ground state energy problem by approximating the lowest eigenstate of a Hamiltonian H ,
a Hermitian matrix describing a quantum system. This is achieved by classically optimizing a VQC
preparing a state ψθ for which the system energyE := ⟨H⟩ is minimal: Emin := minθ ⟨ψθ|H |ψθ⟩ .
For the electronic structure problem, these Hamiltonians are constructed from fundamental princi-
ples, resulting in a polynomial number of Pauli strings. Note that the vector input ψθ is never
expressed explicitly; instead, it is implemented on the quantum computer, serving as a central com-
ponent in the optimization process.

3.2 FULLY-PARAMETRIZED HAMILTONIAN (HAM)

Our Hamiltonian classifier (Fig. 2) takes as input a sequence of embeddings x =
[x1 x2 . . . xs] , xi ∈ Rd and outputs a prediction probability fθ,ϕ, a real number representing
the estimated class the input belongs to. Similarly to VQCs, we use gradient descent to optimize
the classifier parameters θ, ϕ on a given training set X with binary labels y. The classifier can en-
code embeddings of size at most N = 2n with the remaining N − d dimensions padded to 0. The
optimization problem can be summarized as follows:

argmin
θ,ϕ

1

|X|
∑

x∈X,y∈y

L(fθ,ϕ(x), y), (1)

fθ,ϕ(x) := σ(ψ†
θHϕ(x)ψθ) (2)

Hϕ(x) := H0
ϕ +

1

s

s∑
i=1

xix
⊤
i (3)

ψθ := Uθ |0⟩⊗n
= Uθ [1 0 · · · 0]

⊤
. (4)

Hϕ ∈ RN×N is the Hamiltonian of our system, and is constructed from embeddings x and a bias
term H0

ϕ ∈ RN×N (Eq. 3). The bias term is a fully parametrized Hermitian matrix, giving more
fine-grained control over the Hamiltonian. Uθ ∈ CN×N represents a VQC, and ψθ is the result of
applying said VQC to the starting state (Eq. 4). The specific choice of VQC is application-dependant
and we experiment with three qubit-efficient circuits during hyperparameter tuning, which we dis-
cuss in Appendix B. The prediction probability fθ,ϕ is regularized using the sigmoid function σ
(Eq. 2). Finally, parameters θ, ϕ are optimized classically to minimize the loss function L, the cross
entropy. When building Uθ and ψθ, they are not explicitly represented as dense matrices in clas-
sical form. Instead, they are constructed directly on quantum hardware from a manageable set of
parameters, avoiding the need for large-scale classical representations. By encoding inputs of size
d ≤ N over n qubits, we attain logarithmic scaling in the number of qubits and an overall sample
complexity that scales quadratically in the embedding size. We expand on this in Section 3.6.

3.3 PARAMETER-EFFICIENT HAMILTONIAN (PEFF)

The bias term H0
ϕ of HAM significantly contributes to its parameter count, resulting in a O(N2)

scaling. To lower the model size, we experiment with applying a bias term bϕ ∈ RN directly to the
input embeddings. This term skews the distribution in the vector space while only requiring O(d)
parameters. The Hamiltonian is then constructed as:

x̃i := xi + bϕ (5)

Hϕ(x̃) :=
1

s

s∑
i=1

x̃ix̃
⊤
i . (6)

Physically implementing the Hamiltonians of HAM and PEFF requires first decomposing them into
observables the quantum device can measure, a possibly computationally expensive process, and
then performing measurements for each observable separately. In the following, we show how this
can be performed, and how the model can be restructured to drastically reduce this cost.

5
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Figure 2: The HAM (left) and SIM (right) variants of our Hamiltonian Classifier at a glance. In
green, parts that are stored classically, in blue, parts that can be represented on quantum computers.

3.4 PAULI DECOMPOSITION

The 2 × 2 Pauli matrices, P = {X,Y, Z, I}, or more generally multi-body Pauli operators, also
called Pauli strings, Pn = {

⊗n
i=1Oi|Oi ∈ P} form a basis for Hermitian matrices of dimension

2n × 2n. Consequently, any Hermitian matrix H of size 2n × 2n can be expressed as a linear
combination of Pauli strings:

H =
∑
i

αiPi where αi ∈ R and Pi ∈ Pn.

This decomposition results in O(4n) unique Pauli strings, each representing a physical property
that can be measured using quantum devices. In VQE settings, typical Hamiltonians consist of a
polynomial number of Pauli strings. We take inspiration from this fact to rework our model.

3.5 SIMPLIFIED HAMILTONIAN (SIM) VARIANT

To address the computational challenges we describe above, we propose an extension of PEFF that
constructs the Hamiltonian from a small number p of Pauli strings, circumventing the need for an
expensive decomposition and reducing the number of necessary measurements to O(p) (Figure 2).
We define p Pauli strings P1, P2, . . . Pp ∈ Pn (in practice, they can be chosen at random) and use
them to compute the corresponding coefficients α1, α2, . . . αp from H:

x̃ :=
1

s

s∑
i=1

xi + bϕ (7)

Hϕ(x̃) := x̃x̃⊤ (8)

αi =
1

2n
Tr(PiHϕ) =

1

2n
x̃⊤Pix̃ (9)

H̃ϕ(x̃) :=

p∑
j=1

αjwjPj , (10)

where wj ∈ R is a learned parameter that re-weights the effect of Pauli strings. Pj and Hϕ in Eq. 9
are generally large matrices, but several algorithms exist that side-step the costs of full multiplication
by exploiting the structure of the Pauli string (Koska et al., 2024; Hantzko et al., 2024). In this paper,
we choose to redefine Hϕ (Eq. 7 and 8) in a way that allows replacing the expensive matrix-matrix
product PiHϕ with two more efficient vector-matrix products x̃⊤Pix̃, thus improving scaling. A re-
lated approach is discussed in Huang & Rebentrost (2024), which focuses on enhancing variational
strategies rather than directly addressing the challenges of input encoding. We believe these two
methods could be synergistically combined to further reduce overall computational costs.

6
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Table 1: Theoretical scaling comparison of various VQCs, with d input size, l number of layers, and
p number of Pauli strings to measure (defined as a hyperparameter).

Model Reference Qubit count Gate complexity Sample complexity

QCNN Henderson et al. (2020) O(d) O(d2) O(2d)
Cong et al. (2019) O(log d) O(d+ l log d) O(p)

QLSTM Chen et al. (2022) O(d) O(ld) O(d)
QNN Farhi & Neven (2018) O(d) O(l) O(1)

Mitarai et al. (2018) O(d) O(ld) O(1)
Schuld et al. (2020) O(log d) O(d+ l log d) O(1)

HAM Ours O(log d) O(l log d)/O(l log(d)2) O(d2)
PEFF Ours O(log d) O(l log d)/O(l log(d)2) O(d2)
SIM Ours O(log d) O(l log d)/O(l log(d)2) O(p)

To emphasize the underlying transformation, we recast the expectation value computation in SIM:

fθ,ϕ(x̃) = σ
( 1

2n

p∑
j=1

x̃†Pj x̃wjψ
†
θPjψθ

)
. (11)

Equation 11 shows that SIM computes a weighted sum of several feature maps x̃†Pj x̃, where the
weights are determined by both the learned term wj and the factor ψ†

θPjψθ. These two terms concur
to select the feature maps most relevant for solving the problem. During our exploration, we observe
that removing wj significantly degrades performance. We speculate this occurs because ψ†

θPjψθ is
constrained to the range [−1, 1], whereas the presence of wj introduces a notion of magnitude that
facilitates training.

All proposed methods output a prediction probability fθ,ϕ to be interpreted as a binary label. We
can extend this to a scenario with c distinct classes by using a one-vs-many approach: either Uθ, bϕ
or w can be tied to a specific class to obtain a class-specific discriminator. We choose a setup that
learns c distinct re-weightings w1, w2, . . . wc and build c separate Hamiltonians H̃1

ϕ, H̃
2
ϕ, . . . H̃

c
ϕ so

that each one discriminates a single class:

argmin
θ,ϕ

1

|X|
∑

x∈X,y∈y

c∑
k=1

L(fkθ,ϕ(x), y) (12)

fkθ,ϕ(x) := σ(ψ†
θH̃

k
ϕ(x)ψθ) (13)

H̃k
ϕ(x̃) :=

p∑
j=1

αjw
k
jPj . (14)

Parameter count scales as O(c), although different choices of parameter sharing strongly affect the
final number. Since our setup learns different weights for the same Pauli strings across classes,
expectation values on a real quantum device can be computed only once and then post-processed to
obtain probabilities for all classes.

3.6 COMPLEXITY ANALYSIS

In this section, we compare the theoretical qubit count, gate complexity, and sample complexity
of our classifier with other established models from the literature. We consider a subset of imple-
mentations from the literature that we consider representative of the current discourse. Our three
variants all achieve a qubit count that scales as the logarithm of the input dimensionality. This is
determined by the number of qubits required to encode a large enough Hamiltonian. For our models,
gate complexity depends entirely on the chosen circuit Uθ. The ansätze we consider throughout our
experiments result in a linear or quadratic scaling. Sample complexity, defined as the total number
of Pauli strings to measure in order to obtain a prediction, both HAM and PEFF necessitate a full
evaluation of the Hamiltonian, resulting in a complexity of O(4n). Since 4log2(d) = 2log2(d

2), we
conclude that the sample complexity is O(d2). Notably, SIM combines the logarithmic scaling in

7
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qubit and gate complexity of the other variants with a constant sample complexity made possible
by simplifying the Hamiltonian, making it a strong candidate for practical implementation on NISQ
devices. The full comparison is shown in Table 1. For readability, we omit a discussion on precision
when running these methods on quantum hardware. All our models incur an additional 1/ϵ2 term
in sample complexity, where ϵ is the desired precision. We acknowledge that this discussion is lim-
ited, as it overlooks inductive biases and other factors not captured by scaling alone. Nonetheless,
we provide this comparison as a useful reference for understanding the computational trade-offs of
different quantum models.

4 EXPERIMENTS

4.1 DATASETS & PRE-PROCESSING

To evaluate the capabilities of our models, we select a diverse set of tasks encompassing both text
and image data, covering binary and multi-class scenarios. To facilitate replicability, our scripts
automatically download all datasets on the first execution.

Text datasets We first consider the GLUE Stanford Sentiment Treebank (SST) dataset as obtained
from HuggingFace1 (Socher et al., 2013; Wang et al., 2019). It consists of ∼ 70k single sentences ex-
tracted from movie reviews whose sentiment (positive/negative) was annotated by 3 human judges.
We also evaluate our method on the IMDb Large Movie Review Dataset (Maas et al., 2011) con-
taining 50k highly polar movie reviews evenly split into training and test sets. Additionally, we
also consider the AG News (Zhang et al., 2015) classification task as a benchmark for our multi-
class model. AG News consists of ∼ 128k news articles divided by topic (world, sports, business,
sci/tech). These are commonplace datasets reasonably close to real-world applications. Our meth-
ods and baselines all require inputs to be converted to vector representations. For text datasets, we
remove all punctuation, lowercase all text, tokenize with a whitespace strategy, and finally embed
tokens with word2vec2 to obtain a sequence x. The resulting embedding has size d = 300 and,
therefore, requires n = 9 qubits to be represented in our methods.

Image datasets As a sanity check, we consider a binary version of MNIST which only includes
digits 0 and 1. We then consider Fashion-MNIST (Xiao et al., 2017), a dataset of 60k grayscale
images of clothes subdivided into 10 classes. Feeding images directly to our models results in d =
784 and n = 10. We further experiment on a binarized version of the CIFAR-10 dataset (Krizhevsky,
2009) we name CIFAR-2 obtained by grouping the original ten classes into two categories: vehicles
and animals. The 32 × 32 RGB images result in d = 3 × 1024 features over n = 12 qubits. We
also note that no further pre-processing or dimensionality reduction is performed to preserve the
original properties of the data. MNIST and Fashion-MNIST representations are not sequential and
therefore are considered by our model as a special case with s = 1, while in CIFAR-2 each channel
is considered as a different element of a sequence with s = 3.

4.2 BASELINES

We compare our classifiers (HAM, PEFF, SIM) with three quantum baselines: a QLSTM (Chen
et al., 2022), a QCNN (Cong et al., 2019), and a simple circuit ansatz (CIRC). QLSTM and QCNN
have been adapted from implementations of the original papers. CIRC is our implementation and
consists of an amplitude encoding for the input, the same hardware-efficient ansätze of HAM, and
a linear regression on the circuit’s output state. Note that running CIRC in practice would require
state tomography, this setup is therefore not meant to be efficient or scalable but rather to give a
best-case scenario of a VQC of similar complexity to our classifier. We also compare with out-of-
the-box classical baselines: a multi-layer perception (MLP), a logistic regression (LOG), an RNN,
an LSTM, and a CNN. MLP and LOG act on the mean-pooled embedding of the sequence.

1https://huggingface.co/datasets/stanfordnlp/sst2
2https://code.google.com/archive/p/word2vec/
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Table 2: Accuracies across text datasets. Results are averaged over 10 runs or (*) run achieving
lowest training loss.

SST2 IMDb AG News
Model # Params Train Acc Test Acc* # Params Train Acc Test Acc # Params Train Acc Test Acc

LOG 301 84.7 80.4 301 85.8 85.5 1204 90.1 89.2
MLP 180901 97.5 80.2 180901 88.1 85.8 40604 90.2 89.1
LSTM 241701 97.8 84.4 241600 99.3 88.4 242004 91.5 90.5
RNN 40301 89.6 80.1 60501 79.7 78.1 40604 88.8 88.1
CIRC 923 85.2 80.1 923 86.1 85.8 2387 89.7 89.2
QLSTM 2766 89.9 84.4 4679 76.8 67.9 3582 87.2 86.7
HAM 130854 91.2 82.3 130926 91.0 88.1 - - -
PEFF 410 81.8 80.0 410 84.0 83.8 - - -
SIM 1338 80.6 79.0 1410 86.0 85.3 4416 89.4 88.6

Table 3: Accuracies across image datasets. Results are averaged over 10 runs.

MNIST2 CIFAR2 Fashion
Model # Params Train Acc Test Acc # Params Train Acc Test Acc # Params Train Acc Test Acc

LOG 785 100.0 100.0 1025 73.9 72.9 1025 85.5 83.5
MLP 88701 100.0 99.9 112701 89.0 83.4 89610 87.9 85.8
CNN 26065 100.0 100.0 75329 96.3 94.1 130250 95.4 90.7
CIRC 1841 99.9 99.9 2081 85.1 84.6 11094 89.2 86.5
QCNN 169 99.8 99.8 169 84.9 84.7 558 76.7 76.3
HAM 523808 100.0 99.9 523818 89.6 81.0 - - -
PEFF 916 99.9 99.9 1056 79.3 78.7 - - -
SIM 1826 100.0 99.9 2156 68.9 68.2 10934 87.6 84.4

4.3 EXPERIMENTAL SETTING

We first perform a random search on hyperparameters such as learning rate, batch size, number of
qubits, and number of layers to identify the best configuration of each architecture. Because of
space constraints, a more detailed discussion is moved to Appendix B. After identifying the best
hyperparameters, we train 10 models for each architecture with randomized seeds on the original
training split and average their performance on the test split. The only exception is the SST2 dataset
for which no test set is provided. In this case, we select the run achieving the lowest training
loss and submit it to GLUE’s website to get a test score. Submitting all 10 runs for each model
would require an unfeasible amount of time given the maximum 2 daily submissions imposed by the
platform. Appendix C shows additional experiments in which we further investigate architectural
choices such as bias, state preparation, and number of Pauli strings. With the exception of QCNN
which is implemented in PennyLane, all quantum operations are simulated in PyTorch as it allows
batching several Hamiltonians thus enabling efficient training. We do not simulate noise in order to
assess the performance of our approach under an ideal scenario. For all tasks we use a cross-entropy
loss during training.

4.4 RESULTS

In Tables 2 and 3, we report train and test accuracy for the text and image datasets respectively. All
models successfully achieve perfect scores in the MNIST2 setup, validating our setup and confirm-
ing that HAM, PEFF, and SIM learn correctly. In the SST2 task, HAM performs competitively with
baseline methods using a similar number of parameters, outperforming simpler models like LOG,
MLP and RNN, and ranking just below the LSTM and QLSTM. AG News and IMDb turn out to
be easier tasks, with SIM achieving scores comparable to the baselines and accuracy being high for
all models. CIFAR2 proves to be a hard task: while HAM and PEFF score relatively higher than
the LOG baseline, SIM underperforms possibly due to its relatively simple decision boundary. On
Fashion, SIM performs better than LOG but worse than other baselines. Notably, CIRC achieves
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Figure 3: Performance on the test sets for different number of Pauli strings in the SIM model. First
10 epochs out of 30 shown.

relatively high performance. Across tasks, PEFF and SIM attain performance comparable with the
baseline despite the low parameter count. PEFF confirms our intuition that simply skewing points
in the embedding space can substitute the bulky bias term over the whole Hamiltonian, while SIM
confirms that performance can be retained even with a Hamiltonian composed of few Pauli strings.
The high parameter count of HAM in MNIST2 is necessary to encode the full 28× 28 pixel images,
resulting in large Hamiltonians.

Across quantum models, we find no clear link between entangling circuits and performance; non-
entangling baselines often perform best, aligning with prior findings (Bowles et al., 2024). QLSTM
and QCNN struggle to learn and display a less stable hyperparameter tuning, making it challenging
to find well-performing configurations.

We perform additional experiments in Appendix C and find evidence that the number of Pauli strings
is strongly linked with better performance. Specifically, larger models with more Pauli strings ex-
hibit higher accuracy and more stable training dynamics (Figure 3). Notably, between 500 and 1000
Pauli strings are already sufficient to match the performance of classical baselines on most tasks.
However, for more complex datasets like CIFAR2, where performance currently lags, we believe
increasing the number of Pauli strings beyond 1000 could significantly improve results. This is
suggested by Eq. 11, which shows how increasing the number of Pauli strings enables the model
to capture more complex features. Furthermore, we find that removing the bias term significantly
worsens performance, underlining the importance of this component.

5 DISCUSSION AND FUTURE WORK

This works highlights how measurement can become a central part of quantum computation while
at the same time alleviating the costs of data manipulation on quantum devices. Our Hamilto-
nian classifier achieves promising results on several domains, competing with classical baselines.
It demonstrates how alternative encoding strategies can bypass some hardware limitations while
scaling sufficiently well for real-world problems. The proposed HAM design encodes input data
directly as a measurement, obtaining performance comparable with other specialized models. The
PEFF variant reduces its parameter complexity, and the SIM variant additionally reduces its sam-
ple complexity, offering a scheme that may be more efficiently implemented on quantum hardware.
Notably, our method already scales well enough to allow meaningful studies on large datasets using
simulators. The Hamiltonian classifier is presently a proof of concept meant to illustrate a novel
input scheme for quantum devices with the ultimate goal of expanding the tools available to QML
researchers. Future works could characterize the effectiveness of our approach on even larger prob-
lems and its integration with existing classical pipelines. Other studies could focus on how different
choices of Pauli strings affect the final outcome. For example, exploring ways to integrate induc-
tive biases tailored to specific tasks, or consider local strings in conjunction with classical shadow
techniques to lower sample complexity. A way of learning more complex functions could be to
stack several layers of Hamiltonian encoding, possibly performing nonlinear transformations. Other
directions deserving a paper of their own are noise simulation and physical implementations on real
quantum hardware.
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Océane Koska, Marc Baboulin, and Arnaud Gazda. A tree-approach pauli decomposition algorithm
with application to quantum computing. In ISC High Performance 2024 Research Paper Pro-
ceedings (39th International Conference), pp. 1–11, 2024. doi: 10.23919/ISC.2024.10528938.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Martin Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J Coles,
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A QUANTUM COMPUTING FUNDAMENTALS

Quantum computers are conceptually and physically different devices from classical computers.
Instead of basing their logic on binary data representations implemented by transistors, they utilize
the rules of quantum physics as a substrate for computation. For this reason, in what follows we
describe the building blocks of quantum computation.

Dirac notation Quantum computing makes extensive use of Dirac notation (also called bra-ket
notation) to simplify the representation of linear transformations which are commonplace in the
theory. The fundamental elements of this notation are bras and kets. A ket, denoted as |ψ⟩, represents
a column vector ψ in a Hilbert space. A bra, denoted as ⟨ϕ|, represents instead a vector in the dual
space (the complex conjugate transpose of a ket). The inner product of two vectors ϕ and ψ, which
results in a scalar, is written as ⟨ϕ⟩ψ. Conversely, the outer product |ψ⟩ ⟨ϕ|, forms a matrix or an
operator.
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Quantum systems The basic unit of information in a quantum computer is a two-dimensional quan-
tum bit (qubit) which is mathematically modelled by a normalized column vector, the state vec-
tor, in a two-dimensional vector space equipped with an inner-product, or Hilbert space. A state
vector is usually expressed concisely in Dirac notation as |ψ⟩ = [α β]

⊤ ∈ C2. We say that a
qubit |ψ⟩ := α |0⟩ + β |1⟩ is in a coherent quantum superposition of two orthonormal basis states
|0⟩ := [1 0]

⊤ and |1⟩ := [0 1]
⊤, such that the complex coefficients in the basis expansion sat-

isfy normalization constraint |α|2 + |β|2 = 1. This constraint originates from physics: in order
to extract any information from a quantum state, we need to measure it in a chosen basis, which
destroys the superposition in the measured basis by projecting the state |ψ⟩ on one of the basis el-
ements. If we measure state |ψ⟩ in the {|0⟩ , |1⟩} basis, we get outcome ”0” with probability |α|2
and the post-measurement state becomes |0⟩, and respectively, we get ”1” with probability |β|2 and
post-measurement state |1⟩.
Multi-qubit systems In order to model a quantum system with multiple qubits, we use the so-called
Kronecker product (⊗) to combine many individual state vectors into a single larger one. An n-
qubit system can be represented by a vector of size N = 2n, |ψ1 . . . ψn⟩ := |ψ1⟩ ⊗ · · · ⊗ |ψn⟩. In
a chosen basis, the entries of this vector describe the probability of observing that outcome. Many
QML approaches aim to gain a quantum advantage by manipulating only a few qubits to access
an exponentially large Hilbert space. To give an example, if two qubits |ψ1⟩ and |ψ2⟩ are both
initialized in (|0⟩ + |1⟩)/

√
2, the joint state is given by an equal superposition of all the possible

n = 2 bit string vectors

|ψ1⟩ ⊗ |ψ2⟩ =
|00⟩+ |01⟩+ |10⟩+ |11⟩

2
.

In this setup, measurement can performed separately on each qubit, resulting in a n-element bit-
string.

Quantum circuits Quantum computation is achieved by manipulating qubits. This is done using
quantum gates. Any n-qubit gate can be represented as a unitary matrix U ∈ CN×N which acts
on the n-qubit input state |ψ⟩ via the usual matrix-vector multiplication, giving output U |ψ⟩. Intu-
itively, quantum gates can be considered as rotations that conserve the length of a state vector. A
sequence of gates applied on one or many qubits is called a quantum circuit. By construction, uni-
tary circuits perform linear operations. Non-linear computation requires workarounds like running
the computation on a larger Hilbert space and measuring output qubits in a subspace or re-uploading
input data (Killoran et al., 2019; Pérez-Salinas et al., 2020; Subasi et al., 2023).

B HYPERPARAMETER TUNING

For each architecture and for each dataset in our evaluation, we perform a randomised search for
the best parameters: we randomly select 50 configurations, train them on the task and evaluate their
performance on the development set. To avoid overfitting, we perform early stopping on the training
if development loss does not decrease for five consecutive epochs. Troughout all experiments, we
utilize the Adam optimizer provided by PyTorch. Since our largest model HAM has at most ∼ 500k
parameters (dictated by the embedding space), we limit the random search to configuration with
less-than or equal number of parameters to ensure a fair comparison. In practice, we find RNNs,
LSTMs and CNNs perform very well with as low as 40k parameters. What follows is a list of all
hyperparameters we evaluated:

• Batch size: [64, 128, 256];
• Learning rate: [10−2, 10−3, 10−4];
• Hidden size: For RNNs and LSTMs, the size of the hidden representation [100, 300, 500];
• Layers: For RNNs and LSTMs, the number of layers of the recurrent block [1, 4, 8]. For

MLP, the total number of layers including input and output [3, 4, 5]. For CNNs, the total
number of convolutional layers [3, 4, 5]. For HAM, PEFF, SIM and CIRC, the number of
repeated applications of the ansatz, analogous to the number of layers [8, 16, 32];

• Channels: For CNNs, the number of output channels of each convolutional layer
[8, 16, 32, 64, 128];
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Figure 4: Circuit ansätze explored in the experiment. For the sake of visualization, the image shows
ansätze for n = 3. Since the experiments use different values, we extend the patterns to act on more
qubits. (a) Non-entangling ansatz (b) Ring ansatz (c) All-to-all ansatz. (b) and (c) are respectively
circuit 14 and 6 from (Sim et al., 2019)

• Kernel size: For CNNs, the kernel dimension of each convolutional layer [3, 5, 7];

• Circuit: The ansatz Uθ used to prepare state ψ. We experiment with three hardware-
efficient ansätze inspired by circuits from Sim et al. (2019) and illustrated in Figure 4.
These ansätze are designed to explore different levels of entanglement (the quantum coun-
terpart of correlation) and gate complexity. The first is a non-entangling circuit composed
of single-qubit rotations, exhibiting linear complexity with respect to the number of qubits.
The second is an entangling circuit arranged in a ring configuration, also scaling linearly
in gate count. The third is an all-to-all entangling circuit, which scales quadratically.
[Baseline, Ring, All-to-all].

• # Pauli strings: For SIM, the number of Pauli strings composing the Hamiltonian
[50, 100, 500, 1000].

Tables 4 and 5 shows the final selection of best-performing hyperparameters used in the main exper-
iment of Section 4.3.

C SUPPLEMENTARY EXPERIMENTS

C.1 A LEARNED BIAS BOOSTS PERFORMANCE

To further evaluate our models and assess the impact of key design choices, we conduct an ablation
study using the SST2 dataset. As in the main experiment, we begin with the optimal set of hyper-
parameters identified in Appendix B, apply changes to the architecture, and run 10 separate runs.
Finally, we report the test set performance of the run achieving the lowest loss as reported on the
GLUE website.

In this ablation study, we examine the role of the bias term in contributing to downstream perfor-
mance. Our best-performing model, HAM, delivers strong results but does so with a large number
of parameters. In contrast, PEFF offers slightly lower performance but significantly reduces the
parameter count, as detailed in Section 4.4. To explore the impact of the bias term we completely
remove it and assess the performance of the resulting model, referring to this variant as NOBIAS:

Hϕ(x) :=
1

s

s∑
i=1

xix
⊤
i . (15)

The results, summarized in Table 6, show a marked decrease in performance. The 71.9% accuracy
achieved by NOBIAS is nonetheless surprising given the model is stripped of almost all parameters.
We hypothesize that, in HAM, the bias term influences the eigenvalues of the Hamiltonian, directly
affecting the final expectation value. For PEFF, the bias appears to shift the embeddings into a region
more favorable for classification. We further speculate that NOBIAS could achieve results similar
to PEFF by simply unfreezing the input embeddings during training, this would allow them to shift
as in the other variants.
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Table 4: Best hyperparameters across all baseline models and tasks

LOG
Dataset Batch size Learning rate

SST2 64 10−3

IMDb 64 10−2

AG News 64 10−2

MNIST2 128 10−3

CIFAR2 256 10−3

Fashion 64 10−3

MLP
Dataset Batch size Learning rate Hidden size Layers

SST2 64 10−4 300 3
IMDb 64 10−3 300 3
AG News 64 10−3 100 3
MNIST2 256 10−4 100 3
CIFAR2 128 10−4 100 3
Fashion 256 10−3 100 3

LSTM
Dataset Batch size Learning rate Hidden size Layers

SST2 64 10−2 100 2
IMDb 128 10−2 100 2
AG News 128 10−3 100 2

RNN
Dataset Batch size Learning rate Hidden size Layers

SST2 64 10−4 100 1
IMDb 256 10−4 100 2
AG News 256 10−4 100 1

CNN
Dataset Batch size Learning rate Layers Channels Kernel Size

MNIST2 64 10−3 5 16 5
CIFAR2 64 10−4 4 32 5
Fashion 64 10−3 4 16 3

CIRC
Dataset Batch size Learning rate Circuit Layers

SST2 256 10−3 All-to-all 8
AG News 128 10−3 Baseline 16
IMDb 128 10−3 All-to-all 16
MNIST2 128 10−3 Baseline 8
CIFAR2 64 10−3 Baseline 8
Fashion 256 10−3 Ring 32
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Table 5: Best hyperparameters across all Hamiltonian models and tasks

HAM
Dataset Batch size Learning rate Circuit Layers

SST2 128 10−3 Ring 8
IMDb 256 10−3 All-to-all 32
MNIST2 256 10−2 Baseline 32
CIFAR2 64 10−3 Ring 8

PEFF
Dataset Batch size Learning rate Circuit Layers

SST2 64 10−2 All-to-all 8
IMDb 64 10−2 All-to-all 8
MNIST2 64 10−3 All-to-all 8
CIFAR2 256 10−2 Baseline 16

SIM
Dataset Batch size Learning rate Circuit Layers # Pauli strings

SST2 256 10−3 Ring 32 1000
IMDb 256 10−2 All-to-all 16 1000
AG News 128 10−3 All-to-all 16 1000
MNIST2 256 10−2 Ring 32 1000
CIFAR2 64 10−3 All-to-all 32 1000
Fashion 256 10−2 All-to-all 8 1000

Table 6: Accuracies of additional variants on SST2. Results are averaged over 10 runs or (*) run
achieving best train accuracy.

# Params Train Acc Test Acc*

HAM 130854 91.2 82.3
PEFF 410 81.8 80.0
SIM 9410 84.5 80.1
STATEIN 130854 92.0 80.2
NOBIAS 38 70.0 71.9

C.2 ADDITIONAL STATE PREPARATION LEADS TO OVERFITTING

In this section we investigate whether combining our HAM architecture with a standard state prepa-
ration routine improves model performance. Also in this experiment we consider SST2, with the
configuration of the main text unchanged but for the additional state preparation. We call this setup
STATEIN (short for STATE INput):

x̃ :=
1

s

s∑
i=1

x̃i (16)

ψθ := Uθ |x̃⟩ (17)

In this configuration, Uθ acts not on the zero-state, but on an initial state |x̃⟩ in which the input data
has been amplitude-encoded. We hypothesize that applying Uθ directly to the encoded inputs might
enable the model to better identify useful features for classification. Results displayed in Table 6
show a slight improvement in training accuracy, with STATEIN achieving an average of 92.0% over
10 runs compared to 91.1% for HAM. However, the test accuracy only marginally exceeds that of
PEFF and is noticeably lower than HAM, suggesting that the combination of Hamiltonian encoding
and amplitude-encoded inputs may lead to overfitting. While these results provide some insights, a
more thorough analysis of the interaction between state preparation and input-encoded measurement
is needed, which we leave for future research.
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Figure 5: Performance on the train set for different number of Pauli strings in the SIM model. Error
bars are shown for all choices but grow thin for the two largest models. First 10 epochs out of 30
shown.

C.3 THE NUMBER OF PAULI STRINGS CORRELATES WITH PERFORMANCE

Rewriting the SIM model leads to a bilinear form where each Pauli string acts as a transformation on
the input (Eq. 11). During hyperparameter tuning, we consistently observe that the best-performing
SIM models use 1000 Pauli strings across all experiments. We believe this is not a coincidence, as
each Pauli string introduces a distinct transformation, enriching the model’s feature set. This raises
some questions: does increasing the number of Pauli strings, and thus the number of transformations,
lead to better performance? Moreover, how does the generalization capability scale with the number
of Pauli strings?

To explore this, we use the same configurations found for the AG News and Fashion datasets but
vary the number of Pauli strings. Results are displayed in Figures 3 and 5. Low string count do not
perform much better than chance, but accuracy steadily increases and eventually plateaus at 1000
strings, reaching levels comparable to other models like MLP and CIRC. Increasing the number of
strings also leads to a more stable training process as highlighted by the error bars growing thin for
p = 500 and 1000. This suggests the loss landscape may become smoother as more transforma-
tions are added, facilitating training. This is a promising outcome: it suggests that transformations
induced by Pauli strings actively contribute to learning by creating more complex features. It also
indicates that a relatively small number of strings can effectively substitute for a full decomposition.
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