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Abstract. With the rapid therapeutic advancement in personalized
medicine, the role of pathologists for colorectal cancer has greatly ex-
panded from morphologists to clinical consultants. In addition to cancer
diagnosis, pathologists are responsible for multiple assessments based
on glandular morphology statistics, like selecting appropriate tissue sec-
tions for mutation analysis [6]. Therefore, we propose DoubleU-Net that
determines the initial gland segmentation and diagnoses the histologic
grades simultaneously, and then incorporates the diagnosis text data to
produce more accurate final segmentation. Our DoubleU-Net shows three
advantages: (1) Besides the initial segmentation, it offers histologic grade
diagnosis and enhanced segmentation for full-scale assistance. (2) The
textual features extracted from diagnosis data provide high-level guid-
ance related to gland morphology, and boost the performance of chal-
lenging cases with seriously deformed glands. (3) It can be extended to
segmentation tasks with text data like key clinical phrases or pathology
descriptions. The model is evaluated on two public colon gland datasets
and achieves state-of-the-art performance.

Keywords: Cancer diagnosis · Gland segmentation · Morphological fea-
ture guidance

1 Introduction

Colorectal cancer is among the leading causes of mortality and morbidity in
the world. It is the third most common cancer worldwide (following tumors of
the lung and breast), and the fourth most common cause of oncological death
[22]. More than 90% of the colorectal cancers are adenocarcinomas, which are
malignant tumors originating from glandular epithelium. It is determined by
pathologists on Hematoxylin and Eosin (H&E) stained tissue specimens. The
morphological information of intestinal glands, like architectural appearance and
gland formation, is one of the primary features in clinical to inform prognosis and
plan the treatment of individual patient [3]. Therefore, the automated segmenta-
tion methods that extract quantitative features with morphological statistics are
essential in clinical practice to boost assessing efficiency and reliability, reduc-
ing inter- and intra-observer variability, and handling the ever-increasing image
quantity and variety.
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Patient 15: benign, healthy Patient 7: malignant, moderately differentiated

Fig. 1: Examples of gland instance segmentation with different histologic grades
(i.e. benign or malignant) and differentiation levels. Malignant cases usually show
great morphological changes. Glands are denoted by different colors.

While previous approaches to address this problem focus on hand-crafted fea-
tures and prior knowledges of objects [1, 5, 7, 9, 14, 19–21], recent convolutional
neural networks have promoted this area by learning semantic features[4, 17,
24–26]. Besides glandular objects, the most advanced approaches focus more on
capturing the boundary of the gland with different network architecture or loss
function [8, 25, 26, 29, 30]. These methods show advancement in identifying clus-
tered and touching gland objects through detailed features, but fail to cope with
the morphological variance. The glandular morphology shows great diversity for
different histologic grades and differentiation levels, as shown in Fig.1. The sig-
nificant deformation in architectural appearance and glandular formation could
undermine the robustness of methods that focus on detailed local features.

Moreover, the morphological statistics of glandular objects play an increas-
ingly important role in clinical practice for colorectal cancer treatment, which
raises higher requirements to segmentation accuracy. With the rapid develop-
ment in personalized medicine, the role of pathologists has greatly expanded
from traditional morphologists to clinical consultants (for gastroenterologists,
colorectal surgeons, oncologists, and medical geneticists) [6]. Therefore, besides
providing accurate histopathologic diagnosis as a very first step, pathologists
are responsible for accurately assessing pathologic staging, analyzing surgical
margins, selecting appropriate tissue section for microsatellite instability (MSI)
testing and mutation analysis, searching for prognostic parameters, and assessing
therapeutic effect, with the aid of quantitative features of gland [6].

To address these challenges, we propose DoubleU-Net that diagnose colorec-
tal cancer and segment gland instance simultaneously, and utilize the diagnosis
text which emphasizes the high-level features and overall structural informa-
tion for more accurate gland instance segmentation. Our DoubleU-Net achieves
the state-of-the-art performances in segmentation on public dataset GlaS and
CRAG. Our major contributions of DoubleU-Net are listed as follows.

1. Besides the initial gland segmentation, we offer cancer diagnosis and greatly
improved segmentation results as full-scale assistance for pathologists ac-
cording to the clinical routine.

2. It emphasizes high-level features including the structural and morphological
appearance of objects, and the significant improvement on shape similarity
validates the effectiveness of textual feature guidance.
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3. DoubleU-Net can well incorporate text and image from different domains
for medical image segmentation. The extracted textual features are applied
directly to image other than the text related tasks (e.g. label/report gen-
eration). It is also designed in a generalized way for segmentation with key
clinical phrases or pathology descriptions as supplementary text input.

2 Related Work

Gland Instance Segmentation. In the last few years, various methods have
been proposed for gland segmentation. Pixel-based methods [5, 14, 19, 21] and
structure-based methods [1, 7, 9, 20] make full use of the hand-crafted features
and prior knowledge of glandular structures. These methods achieved satisfying
results on benign objects, but not for the adenoma cases with diversity in size
and appearance. Recently, deep learning methods have shown remarkable per-
formance for histological image analysis. The popular U-Net [17] is a U-shaped
network with a symmetric encoder and decoder branch. Chen et al. proposed
DCAN [4] that focuses on both glandular object and boundary to separate clus-
tered glands, and won the 2015 MICCAI GlaS challenge [18]. Based on DCAN,
MILD-Net [8] introduced a loss function to retain maximal information during
feature extraction in training. Xu et al. [25, 26] applied a multi-channel multi-
task network for foreground segmentation, edge detection, and object detection
respectively. Besides, Yan et al. [29] proposed a shape-preserving loss function to
regularize the glandular boundary for the gland instance. Furthermore, several
methods aim at utilizing less manual annotations or computational expenses for
gland instance segmentation. For example, Yang et al. [30] presented a deep
active learning approach using suggestive annotation, and Zheng et al. [33] pro-
posed a representative annotation (RA) framework. Quantization performed on
FCNs [10] reduces computational requirement and overfitting while maintaining
segmentation accuracy [24]. Unannotated image data can be utilized effectively
by the proposed deep adversarial network [32] for considerably better results.

Text Related Image Processing. There exist close relationships between
language and visual attention in psychology according to recent studies [12].
This suggests that spoken or text language associated with a scene provides use-
ful information for visual attention in the scene [13]. Mu et al. [13] introduce
a text-guided model for image captioning, which learns visual attention from
associated exemplar captions for a given image, referred to as guidance cap-
tions, and enables to generate proper and fine-grained captions for the image.
TieNet [23] incorporates chest X-ray image with the associated medical report
for disease classification and reporting. MULAN [28] is a multi-task model for
lesion Detection, tagging, and segmentation. To mine training labels, Yan tok-
enizes the sentences in the radiological report and then match and filter the tags
in the sentences using a text mining module. Similarly, the training labels are
text-mined from radiology reports and further utilized in the training of lesion
annotation in LesaNet [27].
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It is worth noticing that the text data in these approaches are not directly
applied to images, they are processed for image captioning, tag extraction, and
label selection, which are related to text output or label generation. In this paper,
it is novel that the features from diagnosis text data directly control the high-
level visual features and the gland segmentation, which serve as the guidance on
gland morphology in the learning process.

3 Method

Our proposed DoubleU-Net consists of two encoders for feature extraction of
histological images and the corresponding text information, and two decoders
[4] for pixel-wise prediction of glandular region and boundary. The architecture
is similar to the shape of two Us connected at the bottom, therefore we name
it DoubleU-Net. It works in the following two steps: (1) diagnose histologic
grades and differentiation levels while performing initial gland segmentation, (2)
the diagnosis data is fed into a text-to-feature encoder for higher level feature
guidance, and the final gland instance segmentation results are obtained based
on the features from different information domain.

Fig. 2: Pipeline of the DoubleU-Net: (1) Colorectal cancer diagnosis and initial
gland segmentation are predicted, and then (2) the diagnosis text data is fed
into the text-to-feature encoder of DoubleU-Net, which provides morphological
feature guidance and yields largely improved segmentation results.

3.1 Colorectal Cancer Grading

In clinical practice, the pathologists initially determine the histologic grade and
differentiation level based on the glandular morphology. Similarly, DoubleU-Net
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performs colorectal cancer diagnosis by utilizing the visual features, and the ini-
tial segmentation results are provided as well. In Fig.3 the grading classifier is
connected to the bottom of DoubleU-Net, which consists of average pooling lay-
ers, convolutional layers, and a linear transformation layer. Besides, the feature
maps from two encoders (i.e. all features maps after the max-pooling layers) are
concatenated and fed into the classifier for cancer diagnosis.

The automated histologic and differentiation grading in model achieves its
underlying advantages and purposes as follows: (1) Directly offer final diagno-
sis results with glandular morphology statistics to pathologists as reference and
assistance for cancer grading. (2) The joint supervision of prediction and segmen-
tation increases the learning ability of the model and alleviate the over-fitting
during training. (3) The predicted diagnosis data (or revised data by patholo-
gists, if possible) can further control the abstract higher-level features to improve
segmentation accuracy for other treatments by pathologists, like selecting appro-
priate tissue sections for MSI testing and mutation analysis [6].

Besides, the gland segmentation is usually performed on image patches ex-
tracted from the original digitalized H&E stain slides (up to 100002 pixels) to
focus on the region of interests, and current datasets also contain image patches
instead of the whole slides. Therefore, the model is required to maintain clas-
sification consistency for different images from the same patient, which is also
crucial in clinical routine to perform automated segmentation and prediction on
image level. Instead of appending an algorithm to unify the output grades, the
patient ID of corresponding histological images can be further utilized. With pa-
tient ID as an additional input, the model is able to learn the similarity among
images from the same patient, and gradually exploit the interdependency among
glandular features, diagnosis grades, and patients. As shown in Table 3, text
encoder with additional input significantly promotes the diagnosis accuracy in
GlaS dataset. Then the predicted cancer grades and patient ID together served
as text input to further refine the gland segmentation, and the grade classifier
is deactivated in the remaining process.

3.2 Text-Guided Feature Control

The colorectal cancer is diagnosed based on the morphological statistics of colon
gland instance by pathologists, and DoubleU-Net also predicts the cancer grades
based on the visual features of glands. Since the diagnosis data like moderately
differentiated suggests changes in the gland structure and appearance, we could
further utilize these diagnosis data for more accurate segmentation.

Word Embedding. Diagnosis text data is fed into the network as an addi-
tional input to dominate high-level features from corresponding histological im-
ages, and word embedding is the very first step to represent these words as low
dimensional vectors. Given limited text information for each image, the simple
one-hot encoding is a straightforward option. However, it has the following limi-
tations: (1) Most values of the one-hot encoding will be zero, which is inefficient
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Fusion Block ResBlock

Fig. 3: Overall architecture of DoubleU-Net. It consists of two encoders for
feature extraction of histological images and corresponding text information,
and two decoders [4] for pixel-wise prediction of glandular region and boundary.

and fails to boost the learning ability of the network for text data. (2) It is not
sufficient enough to reveal the semantic relationship between different phrases,
because the vectors obtained by one-hot encoding are orthogonal to each other.
This independent representation is suitable for histologic grade benign and ma-
lignant that have opposite meanings, but it fails to demonstrate the similarity
among benign, moderately differentiated and moderately-to-poorly differentiated.
(3) Furthermore, word embedding is a more generalized approach that can be
used for a different and larger amount of text data like pathology descriptions
of histological slides.

To fully capture the semantic, syntactic similarity of the word, and relation
with other words, we adopt popular word2vec [11] from Google for distributed
representation. This model is trained on a huge text corpus (one billion words) to
construct vocabulary and learns the vector representation of words. Besides the
excellent representation capability, the other advantage of word2vec is that the
encoded vectors can be meaningfully combined using simple vector summation.
We now formulate the word embedding of clinical data as follows:

vi =
∑
j

G(mij ;θ ), (1)

v = v0 ‖ v1 ‖ v2 ‖ ... ‖ vn, (2)

where G denotes the word2vec model with parameter θ. mij represents the jth
word in ith sentence (or phrase in our case). vi is the corresponding vector
representation of the phrase (summation of word vector representation), and all
n vectors are concatenated (denoted by ‖) to form the textual feature v. In Table
1, we show the cosine distance of vectors encoded by word2vec, where histologic
and differentiation grades are from several different histology images.
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Table 1: Semantic similarity of encoded diagnosis text from GlaS dataset.
Semantic

similarity
healthy adenomatous

moderately

differentiated

moderately-to-

poorly differentiated

benign 0.7113 0.5578 0.5341 0.5273

Visual and Textual Feature Fusion. For each histological image, textual
features are extracted from the corresponding encoded text data. To fully utilize
the high-level clinical information for dense pixel-wise prediction, it is necessary
to well incorporate the textual features with the visual ones. Therefore, the
original input image is concatenated with the textual features after max-pooling
and convolutional layer, as formulated in the equation below:

y = F(v;θα) ‖ F(x;θβ), (3)

where F denotes the convolution with corresponding weights θ. x represents the
down-sample original input image, and v is the encoded text feature.

We explain the fusion block from the following three aspects. First, image
and text data are from different information domains and deliver features of
different levels. Without thorough incorporation, text data contains no object
localization could fail to guide the visual features on the pixel level. Our multiple
fusion blocks adaptively combine spatial features with appearance features from
clinical text information, where local details and overall glandular morphology
are gradually fused and balanced. Second, the feature integration strengthens the
interdependency of glandular morphology and histologic grades, and improve the
capability of the network to learn and distinguish the visual features for different
cancer grades. Furthermore, combining feature maps and original input images,
the network preserves detailed information that may be lost during the feature
extraction.

Feature Guidance and Attention. The high-level features extracted from
images are closely related to the glandular structure and morphology, which
can be considered as a response to the histologic grades. On the other hand,
the clinical diagnosis is also determined based on the architectural appearance
and glandular formation. Therefore, we guide the extracted features to accu-
rately focus on the gland morphology and structure during training, with the
aid of features from known clinical text data. The emphasis on global structures
and shapes enables the network to distinguish the gland instance from different
cancer differentiation grades.

To provide structural information for the local feature extraction process, we
employ feature maps from the text encoder as attention maps. Given a feature
u ∈ RC×H×W from the text encoder, we perform two-dimensional softmax to
the each channel of the feature maps, and calculate the attention weight for
each spatial location (channels, h,w). Therefore, we are able to control the local
feature with spatial attention map by element-wise multiplication. The feature
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guidance by attention unit can be formulated as below:

yk,l = F(xk,lak,l;θ), (4)

ak,l =
exp(uk,l/τ)∑H

k=1

∑W
l=1 exp(uk,l/τ)

, (5)

where x = {xk,l} denotes feature from the image encoder, and u = {ul.l} from
the text branch. a = {ak,l} represents corresponding attention probability dis-
tribution over each channel of feature map, and followed by the convolutional
layer F with weight θ. τ is a temperature parameter. For high temperatures
(τ →∞ ), all actions have nearly the same probability. For lower temperatures
(τ → 0+), the probability of the action with the highest expected reward tends
to 1, which may cause gradient issues in training.

As shown in Table 4, the increasing amount of text input effectively promotes
the gland segmentation performance and especially the object-level Hausdorff
distance, which validates our explanation that the clinical text data controls
and emphasizes the glandular structure and morphology.

3.3 Loss

The task of our model varies with the two training phases of DoubleU-Net.
Initially, it performs gland instance segmentation and cancer grade classification
simultaneously with total loss Lseg +Lgrading. Secondly, we improve the segmen-
tation task with the incorporation of clinical text input, with loss Lseg only. The
loss function of cancer grading (denoted as g) is an image level cross-entropy:

Lgrading = −
∑
i∈I

∑
m∈M

λg log pg,m(i, yg,m(i);θg), (6)

where λg is the weight of task g to the total loss. For any input image i in the
dataset I, pg,m(i, yg,m(i)) represents the image-based softmax classification of
true labels yg,c(i) for class m inM. θg is the weight parameters of grading task.

As for segmentation, unlike DCAN [4] that merged the final output of gland
region and boundary manually, we integrate the combination step into the net-
work by performing additional convolutional layers and softmax function. The
total loss function for segmentation has three cross-entropy for different sub-
tasks: gland foreground, gland boundary, and the final combined segmentation
task (denoted as f, b, c respectively). The loss function is written as:

Lseg =
∑

k∈{f,b,c}

λkw · Lk (7)

= −
∑

k∈{f,b,c}

∑
x∈X

λkw(x) log pk(x, yk(x);θk) (8)

w(x) = w0 ·
1

max(dist(x), d0) + µ
, (9)
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where Lk, θk and λk are the loss function, corresponding weight parameters, and
coefficient of task k. pk(x, yk(x);θk) represents the pixel-based softmax classi-
fication at task k for true labels yk(x). x denotes a given input pixel in image
space X . To better identify the clustered gland instance, a weight map w is
constructed in pixel-wise fashion and performed to emphasize the boundary in
the segmentation task. In Equation 9, given the input pixel x, dist(x) is the Eu-
clidean distance from x to the nearest gland. d0 is the maximum distance that
a pixel within d0 range of the boundary will be considered. In our experiments,
w0 is set to 3, d0 to 15 and µ equals to 1. The loss coefficient is [1, 1, 1.5, 2] for
task g, f, b, c respectively.

Additionally, to address the variation of gland size and obtain effective re-
ceptive fields, we adopt Autofocus block [16] in our model. It consists of parallel
dilated convolutional [31] branches with different rates and combined with learn-
able weights. In our experiments, we implement 4 branches with rates 2, 6, 10,
and 14 respectively.

4 Experiments

We evaluated DoubleU-Net on two publicly available datasets of colon histologi-
cal images: the Gland Segmentation (GlaS) dataset [18] from MICCAI challenge,
and an independent colorectal adenocarcinoma gland (CRAG) dataset [8] orig-
inally used by Awan et al. [2]. Both datasets are from the University Hospitals
Coventry and Warwickshire (UHCW) NHS Trust in Coventry, United Kingdom.

Datasets and Pre-processing. GlaS dataset is composed of 165 histological
images from the H&E stained slides of 16 patients with a wide range of cancer
grades (2 histologic grades, 5 differentiation levels). It consists of 85 training
(37 benign(BN) and 48 malignant(MT) from 15 patients) and 80 test images
(33 BN and 27 MT in Part A, 4 BN and 16 MT in Part B, from 12 patients).
Most images are of size 775× 522, and all the histological images are associated
with instance-level annotation, corresponding patient ID, histologic grade and
differentiation level. In CRAG dataset, 213 H&E images from different cancer
grades are split into 173 training and 40 testing images. All images are asso-
ciated with instance-level annotation and are mostly of size 1512 × 1516, and
no text information is provided. For both datasets, we split 20% of the training
images for validation during training to adjust hyperparameters. According to
Graham et al. [8], both training and testing images are from different cancer
grades. In our experiments, we augmented the images on the fly by performing
elastic transformation, random rotation, random flip, Gaussian blur and color
distortion. Eventually, we randomly cropped patches of size 480× 480 as input.

Evaluation Criteria. We evaluated the performance of DoubleU-Net by the
metrics used in MICCAI GlaS challenge from different aspects: F1 score for ob-
ject detection, object-level Dice index for instance segmentation, and object-level
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original images probability maps
of DoubleU-Net

DoubleU-Net ground truth No text encoder

Fig. 4: Segmentation examples of benign (top two cases) and malignant cases
(bottom two cases) on GlaS dataset, and gland morphology is well recognized.

Table 2: Performance on GlaS dataset in comparison with other methods.

Method
F1 Score Object Dice Object Hausdorff

Part A Part B Part A Part B Part A Part B

DoubleU-Net 0.935 0.871 0.929 0.875 27.835 76.045
Mild-Net [8] 0.914 0.844 0.913 0.836 41.540 105.890
Quantization [24] 0.930 0.862 0.914 0.859 41.783 97.390
Shape Loss [29] 0.924 0.844 0.902 0.840 49.881 106.075
Suggestive Annotation[30] 0.921 0.855 0.904 0.858 44.736 96.976
Multichannel [26] 0.893 0.843 0.908 0.833 44.129 116.821
DCAN [4] 0.912 0.716 0.897 0.781 45.418 160.347

Hausdorff distance for glandular shape similarity. All these evaluation metrics
are conducted on gland instance instead of image level. For example, the object-
level Dice index is a weighted summation of the Dice index for all the glandular
objects in this image, where the weights are determined by the relative area of
the glands. Equations and details can be found in the challenge paper [18].

Implementation Details. Our method is implemented with PyTorch [15]. We
adopt Gaussian distribution (µ = 0, σ = 0.01) for weight initialization and train
with Adam optimization of initial learning rate 8×10−4, with batch size of 2. We
choose skip-gram architecture for the word2vec with hierarchical softmax train-
ing approach. The dimensionality of each word vector is 300 and then reshaped
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original images probability maps
of DoubleU-Net

DoubleU-Net ground truth No text encoder

Fig. 5: Segmentation results of DoubleU-Net on challenging cases with major
improvement on GlaS dataset. DoubleU-Net with text encoder captures the
structure and shape of seriously deformed glands and recognizes the mislead-
ing background. Top four rows: malignant. Bottom row: benign.

as 15 × 20. For cancer grading, our model infers the histologic grade based on
the predicted differentiation levels, because each differentiation level is mapped
to exactly one histologic grade. There is no text data in CRAG dataset (and
there is no other public gland dataset with text, to the best of our knowledge),
we diagnose colorectal cancer by the text encoder trained on GlaS dataset and
then utilize the data for gland instance segmentation. The model is trained and
tested on an NVIDIA Titan X Pascal for both datasets.

4.1 Results

Our DoubleU-Net achieves the best performances compared to the state-of-the-
art methods on two public datasets. The morphological feature guidance from
text encoder largely promotes the overall cancer diagnosis accuracy and segmen-
tation results for seriously deformed cases.

GlaS Dataset. Table 2 shows the segmentation performances on GlaS dataset
in comparison with the state-of-the-art methods. Among these approaches, the
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Table 3: Accuracy of colorectal cancer diagnosis on GlaS dataset.
Method Histologic Grade Differentiation Level

DoubleU-Net 1.000 0.925
Without Text Encoder 0.950 0.725

Table 4: Ablation study of text encoder on GlaS dataset.

Method
F1 Score Object Dice Object Hausdorff

Part A Part B Part A Part B Part A Part B

Without text encoder 0.926 0.857 0.916 0.859 41.454 96.473
Text encoder + ID 0.926 0.859 0.918 0.858 41.198 96.074
Text encoder + grade 1 0.928 0.866 0.922 0.865 34.456 86.325
Text encoder + grade 2 0.930 0.862 0.924 0.864 32.645 82.654
Text encoder + ID & grade 1 0.928 0.868 0.925 0.866 33.325 85.435
Text encoder + ID & grade 2 0.935 0.863 0.925 0.869 31.754 81.446
Text encoder + grade 1 & 2 0.934 0.867 0.929 0.871 28.723 78.943

DoubleU-Net 0.935 0.871 0.929 0.875 27.835 76.045

quantization model [24] and Mild-Net [8] currently achieve the best results, and
DCAN[4] won the MICCAI GlaS challenge 2015. Other methods focus on differ-
ent aspects of gland segmentation as reviewed previously [29, 30, 26]. As shown
in Table 2, our DoubleU-Net achieves the best results on F1, the Dice index
Hausdorff distance on object-level. More importantly, DoubleU-Net outperforms
other approaches by a large margin in glandular shape similarity, which vali-
dates the effectiveness of high-level feature guidance on glandular morphology
and structure by abstract information from text domain. Figure 4 shows ex-
emplary visual results from DoubleU-Net on the GlaS test images for benign
and malignant cases, where glands with various structures, shapes and texture
can be well-identified. The corresponding probability maps with clear glandu-
lar boundaries indicate the local details are well preserved while the high-level
features are emphasized.

Seriously Deformed Cases. Figure 5 shows the challenging cases that are
seriously deformed. The center of the deformed malignant glands is very similar
to the white background in other cases. Our model without text encoder has
failed to identify these white areas, and some papers presented similar results
and even list these as failure cases [29, 26]. The possible reason is that the network
fails to balance the local details and high-level features from a wider contextual
range, and focuses more on the boundary than the overall gland structure. Our
DoubleU-Net emphasizes exactly on the glandular morphology and appearance,
and successfully identify these misleading areas and deformed glands with high
confidence as shown in the probability maps. Besides, based on our analysis of
the experimental results, the success on extremely complex cases (like Figure 5)
contribute a major improvement to the overall results of DoubleU-Net, especially
the object-level Hausdorff distance.
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Table 5: Performance on CRAG dataset in comparison with other methods.
Method F1 Score Object Dice Object Hausdorff

DoubleU-Net 0.835 0.890 117.25
Mild-Net[8] 0.825 0.875 160.14
DCAN[4] 0.736 0.794 218.76

Colorectal Cancer Grading. Table 3 presents classification results on his-
tologic grade and differentiation level on GlaS dataset. With the text encoder
and additional patient ID, the model achieves 100% accuracy on the histologic
grade and 92.5% on the differentiation level. Therefore, DoubleU-Net is aware of
the interdependencies among images from the same histological slide and main-
tain classification consistency for images from the same patient. Besides, due to
the number of classes, it is more challenging for both methods to identify the
differentiation level than the binary histologic grade.

Ablation Study. Table 4 shows the effectiveness of text encoder on improving
the gland segmentation on GlaS dataset. Based on the network architecture of
Double-Net, we gradually feed more text data and evaluate the performances.
In Table 4, ID denotes the 16 patient IDs (i.e. 1 to 16) of histological slides;
grade 1 means the 2 histologic grades (i.e. benign and malignant); grade 2 repre-
sents the 5 differentiation levels (i.e. healthy, adenomatous, moderately differen-
tiated, moderately-to-poorly differentiated, and poorly differentiated). Comparing
to DoubleU-Net without text encoder, the attention maps from the textual fea-
tures significantly boosts the performance in all three evaluation metrics. We find
out the patient ID brings more improvement on the classification task (Table 3)
over segmentation, which by maintaining consistency and building interdepen-
dency for the images of the same slide. Both two diagnosis grades associated with
gland appearance promote the segmentation results evidently, and especially on
Hausdorff distance that measures the shape similarity. The slight advantage of
grade 2 over grade 1 is probably because of the more detailed classification cri-
teria brings more information into appearance features. With text encoder and
all text data involved, we achieve the best gland segmentation performance with
remarkable improvement.

GRAG Dataset. Table 5 shows the segmentation performance on CRAG
dataset. The dataset is recently released by Graham et al. [8], and we report their
segmentation results together with DCAN [4]. Similarly, DoubleU-Net achieves
the best results on the F1 score and object-level Dice index, and a major ad-
vancement in Hausdorff distance because of the control on the overall glandular
structure. As mentioned earlier, there is no text description or diagnosis infor-
mation in CRAG dataset, and we use the text encoder trained on GlaS dataset
to determine the histologic grades and then utilize them as feature guidance.
Despite all this, DoubleU-Net still manages to promote the glandular shape sim-
ilarity.



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV

#6
ECCV

#6

14 ECCV-20 submission ID 6

original images probability maps DoubleU-Net ground truth

Fig. 6: Failure segmentation results by DoubleU-Net on GlaS dataset.

In Figure 6 we also investigate some poorly segmented cases by DoubleU-
Net. Besides the extreme complexity of these gland structures, there are limited
similar training samples in the dataset, which could be the major reason for the
failure. In addition, our DoubleU-Net outputs some unclear or rough glandular
boundaries, and some connecting glands for some challenging cases, appropriate
post-processing or regularization on the edges can be further considered.

Discussions. The pathologists diagnose cancer based on the morphology of the
gland. Since the diagnosis data like moderately differentiated suggest changes
in the gland structure and appearance, we could further utilize the diagnosis
data for more accurate segmentation. The diagnosis accuracy and segmentation
performance validate the effectiveness of textual features. Without given clinical
text data, our model also demonstrates its robustness by enhancing the segmen-
tation performance based on predicted cancer grades in CRAG dataset. This
work is an attempt to incorporate information from different domains for seg-
mentation task (current methods utilize text for label/report generation that is
not directly applied to images), and achieves the best performances because of
the significant improvement in very complicated and misleading cases. We hope
to see more approaches that make sufficient use of clinical text data or even
other types of information for accurate medical image segmentation in future.

5 Conclusion

We establish a pipeline to offer the pathologists initial segmentation statistics,
histologic grades, differentiation levels, and greatly improved segmentation re-
sults for full-scale assistance in the clinical assessment routine of colorectal can-
cer. Applying features extracted from diagnosis text data to visual cues directly,
our proposed DoubleU-Net effectively guides and controls the extracted high-
level features to the precise gland structure and morphology. With a major im-
provement on the extremely deformed and misleading cases, we achieve the best
performances among the state-of-the-art methods on the two publicly available
colon gland datasets and a significant advancement in object-level Hausdorff
distance.
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