
JINA EMBEDDINGS: A Novel Set of High-Performance Sentence
Embedding Models

Michael Günther and Louis Milliken and Jonathan Geuter
Georgios Mastrapas and Bo Wang and Han Xiao

Jina AI
Ohlauer Str. 43, 10999 Berlin, Germany

{michael.guenther,louis.milliken,jonathan.geuter,
georgios.mastrapas,bo.wang,han.xiao}@jina.ai

Abstract

JINA EMBEDDINGS constitutes a set of high-
performance sentence embedding models adept
at translating textual inputs into numerical rep-
resentations, capturing the semantics of the
text. These models excel in applications like
dense retrieval and semantic textual similar-
ity. This paper details the development of JINA
EMBEDDINGS, starting with the creation of
high-quality pairwise and triplet datasets. It
underlines the crucial role of data cleaning in
dataset preparation, offers in-depth insights into
the model training process, and concludes with
a comprehensive performance evaluation us-
ing the Massive Text Embedding Benchmark
(MTEB). Furthermore, to increase the model’s
awareness of grammatical negation, we con-
struct a novel training and evaluation dataset of
negated and non-negated statements, which we
make publicly available to the community.

1 Introduction

Sentence embedding models are an effective instru-
ment for encoding the semantic nuances of words,
phrases, and larger textual units into a continuous
vector space. They encapsulate the complexities
of contexts and lexical and grammatical interre-
lationships within a text, facilitating downstream
tasks like information retrieval, semantic similarity
evaluation, and text classification.

Despite the potential of these models, questions
remain about the effectiveness of different data
preprocessing strategies, the optimal loss function
for training sentence embedding models, and the
impact on performance of increasing the number
of model parameters. This paper addresses these
challenges.

We have develop a novel dataset specifically to
train our sentence embedding models. Furthermore,
we design a dataset specifically to sensitize our
models to distinguish negations of statements from
confirming statements. This paper also presents

JINA EMBEDDINGS, a set of high-performance sen-
tence embedding models trained on these datasets.
The JINA EMBEDDINGS set is expected to com-
prise five distinct models, ranging in size from 35
million to 6 billion parameters. Three of those
models are already trained and published. 1

The JINA EMBEDDINGS models employ con-
trastive training on the T5 architecture [Raffel et al.,
2020]. It’s important to note that we opt to use the
T5 model as our base due to its pre-training on a
mixed set of downstream tasks. We argue that in-
corporating this approach can potentially enhance
our ability to accurately gauge the effectiveness of
our training strategy.

Our large-scale contrastive fine-tuning approach
surpasses zero-shot T5 and delivers a performance
level on par with other leading T5-based sentence
embedding models such as Sentence-T5 [Ni et al.,
2022a] and GTR [Ni et al., 2022b]. Consequently,
this work demonstrates that high-quality sentence
embeddings can be achieved with the judicious use
of resources and innovative training methodologies.

2 Dataset Preparation

In order to develop models that excel across a
wide range of tasks, we collate a comprehensive
set of both public and custom datasets. These
datasets target various retrieval objectives, such
as e-commerce search, duplicate detection, web
retrieval, article retrieval for question-answering,
and text classification. Consolidating these datasets
into a unified format facilitates concurrent model
training for all tasks.

Definition of Format: Given the lack of non-
relevance information in many of the datasets, we
reformat each training item into pairs, designated
as (q, p) ∈ Dpairs . Each pair includes a query

1jina-small-v1 , jina-base-v1 , jina-large-v1 are
available at https://huggingface.co/jinaai, and are also
ranked in the MTEB leaderboard on Hugging Face: https:
//huggingface.co/spaces/mteb/leaderboard.

https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

string q and an associated target string p. To lever-
age explicit non-relevance judgments, we create an
auxiliary set of triplets (q, p, n) ∈ Dtriplets , which
pair a query string q with a match p (positive) and
a non-matching string n (negative).

Data Extraction: The methods used to extract
pairs and triplets are specific to each source dataset.
For example, given a question-answer dataset, we
use questions as query strings and answers as target
strings. Retrieval datasets often contain queries that
can serve as query strings and relevant and non-
relevant annotated documents which can operate as
matching and non-matching strings.

Training Steps: Our training process is a two-
step approach. Initially, we train on pairs and then
fine-tune the model using the triplets, as detailed in
Section 3.3.

2.1 Pairwise Data Preparation
The substantial size and inconsistent quality of
many large datasets necessitates a rigorous filtering
pipeline. We apply the following steps to filter
training data:

De-Duplication: Duplicated entries within train-
ing data can negatively impact model perfor-
mance [Hernandez et al., 2022], and potentially
lead to overfitting. Consequently, we remove du-
plicate entries from our dataset. Considering the
dataset’s volume, we employ hash functions to
identify and eliminate text pairs that map to du-
plicate hash values. We normalize whitespace
and capitalization before checking for duplicates.
Empty pairs and pairs with identical elements are
also removed.

Language Filtering: Since we design
our embedding models for English, we use
the fasttext-language-identification
model2 based on the fasttext text classification
method [Joulin et al., 2017] to remove non-English
training items from the dataset.

Consistency Filtering: Consistency filtering
means excluding training pairs with low seman-
tic similarity. Previous studies suggest that elim-
inating low-similarity pairs using an auxiliary, al-
beit less precise, model boosts performance [Dai
et al., 2023, Wang et al., 2022]. We employ the
all-MiniLM-L6-v2 model3 for consistency filter-

2fasttext-language-identification (https:
//huggingface.co/facebook/fasttext-language-identification)

3all-MiniLM-L6-v2 model (https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2)

ing in this manner: We generate embeddings for
1M pairs (qi, pi)i randomly sampled from Dpairs.
For every pair (q, p) ∈ Dpairs in the dataset, we
verify whether p is among the top two passages
most similar to q based on the cosine similarity
of their embeddings compared to all passages pi,
i = 1, ..., 1M.

The application of these preprocessing steps re-
duces the size of the dataset from over 1.5 billion
mixed-quality pairs to 385 million high-quality
pairs. This reduction permits us to train our model
with significantly less data than typical embedding
models without sacrificing embedding quality.4

2.2 Triplet Data Preparation

For the triplet dataset, we forego de-duplication
and language filtering and we assume the quality
of these datasets already meets our quality require-
ments. However, we validate the relevance of the
“positive” item with respect to the “query” for each
triplet in a manner similar to consistency filtering.
Instead of contrasting the embedding cosine sim-
ilarity s(q, p) against a sample set, we compare it
solely with the similarity s(q, n) of the embeddings
derived from the same triplet (q, p, n) ∈ Dtriplets .
This is accomplished using a cross-encoder model,
which evaluates the pair directly without gener-
ating embedding representations. More specifi-
cally, we leverage the ms-marco-MiniLM-L-6-v2
model5 to verify whether the difference in retrieval
scores determined by the model exceeds a threshold
r(q, p)− r(q, n) > κ, with threshold κ = 0.2, and
eliminate all other pairs. This methodology draws
inspiration from the de-noising strategy proposed
in [Qu et al., 2021].

2.3 Negation Data Preparation

We observe that many embedding models strug-
gle to accurately embed negations. For instance,
when embedding the three sentences: “A couple
walks hand in hand down a street.”, “A couple is
walking together.”, and “A couple is not walking to-
gether.”, the first two should be embedded close to-
gether, while the second and third, contradictory in

4For instance, models like all-MiniLM-L6-v2 and
all-mpnet-base-v2 are trained on nearly 1.2 billion pairs,
whereas other T5-based models such as sentence-t5-base
or sentence-t5-large are trained on 2.2 billion pairs.

5ms-marco-MiniLM-L-6-v2 (https://huggingface.co/
cross-encoder/ms-marco-MiniLM-L-6-v2)

https://huggingface.co/facebook/fasttext-language-identification
https://huggingface.co/facebook/fasttext-language-identification
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

(a) Original Distribution after Filtering (b) Adjusted by Sampling Rates

Figure 1: The composition of 385 million pairwise data

Figure 2: The composition of 927,000 triplets data

meaning, should be positioned further apart.6 How-
ever, for instance, the all-MiniLM-L6-v2 model
assigns a cosine similarity of 0.7 to the first two
sentences, while attributing a similarity of 0.86 to
the second and third.7

We decide to address this problem by creating
our own negation dataset8. This dataset, based on
positive pairs from the SNLI dataset9 and negatives
created with GPT-3.5, comprises triplets (anchor,
entailment, negative) akin to the example given
above, where (anchor, entailment) form a positive
pair and the “negative” contradicts both the “an-
chor” and “entailment”, while remaining syntac-
tically very similar to “entailment”. This dataset
forms a subset of our aforementioned triplet dataset,
with training details provided in Section 3.3.

Our model evaluation on the negation dataset,
6Although it could be argued that for certain tasks, like

document retrieval, it might still be desirable for contradicting
texts to be embedded closely. Regardless, in this example, the
first two sentences should be assigned a higher similarity.

7Interestingly, our large model does correctly assign a co-
sine similarity of 0.77 to the positive pair, and only a similarity
of 0.62 to the negative pair, after fine-tuning with our negation
dataset.

8The negation dataset is available at https://
huggingface.co/datasets/jinaai/negation-dataset

9https://huggingface.co/datasets/snli

which includes a comparative analysis with other
popular open-source models, is presented in Sec-
tion 4.3.

2.4 Data Composition

Our dataset of text pairs, represented as Dpairs =
D1 ⊔ · · · ⊔Dn, is aggregated from 32 individual
datasets. This amounts to a total of 1.6 billion pairs
before filtering, which is subsequently reduced to a
robust 385 million high-quality pairs after rigorous
filtering.

In comparison, our dataset of triplets initially
comprises a total of 1.13 million entries before
filtering, streamlined to 927,000 triplets after filter-
ing.

The composition of our datasets after filtering is
illustrated in Figure 1a for the text pairs, and in Fig-
ure 2 for the triplets. Together, these form the final
dataset for the training of the JINA EMBEDDINGS

models.

3 Training

Training takes place in two distinct phases. The
first phase centers on training the model using the
voluminous quantity of text pairs, consolidating the
semantics of an entire text phrase into a single rep-
resentative embedding. The second phase uses the
relatively small triplet dataset, comprising an an-
chor, an entailment, and a hard-negative, teaching
it to differentiate between similar and dissimilar
text phrases.

3.1 Training on Pairwise Data

Each model within the JINA EMBEDDINGS set is
based on, and trained using, the zero-shot T5 mod-
els of corresponding size, as detailed in [Raffel
et al., 2020]. The zero-shot T5 models are com-
posed of encoder-decoder pairs. However, Ni et al.

https://huggingface.co/datasets/jinaai/negation-dataset
https://huggingface.co/datasets/jinaai/negation-dataset
https://huggingface.co/datasets/snli

[2022a] has demonstrated that it is more effective
to calculate text embeddings using only the encoder
component of the T5 models, as opposed to deploy-
ing both encoder and decoder. Consequently, the
JINA EMBEDDINGS models use only the encoders
of their respective T5 models.

During tokenization, JINA EMBEDDINGS mod-
els use SentencePiece [Kudo and Richardson,
2018] to segment input text and encode them into
WordPiece tokens [Kudo, 2018]. Following the en-
coder model, a mean pooling layer is implemented
to generate fixed-length representations from the
token embeddings.

For the training process involving pairs, we em-
ploy InfoNCE [van den Oord et al., 2018], a con-
trastive loss function. This function calculates the
loss for a pair (q, p) ∼ B within a batch B ∈ Dk

of text pairs, where the batch size is k, as follows:

Lpairs
NCE (B) := E(q,p)∼B

[
− ln

es(q,p)/τ∑k
i=1 e

s(q,pi)/τ

]

The loss is calculated by comparing the cosine sim-
ilarity between a given question q and its target p,
with the similarity to all other targets in the batch.
We found that calculating the loss in both direc-
tions results in greater improvements during train-
ing. Accordingly, the loss is defined as follows:

Lpairs(B) := Lpairs
NCE (B) + Lpairs

NCE
(B), where

Lpairs

NCE
(B) := E(q,p)∼B

[
− ln

es(p,q)/τ∑k
i=1 e

s(p,qi)/τ

]
.

Intuitively, Lpairs

NCE
matches the target string to

all query strings instead. The constant τ denotes a
temperature parameter which we set to τ = 0.05.
This method of calculating the loss is based on a
similar method in [Neelakantan et al., 2022].

3.2 Data Sampling in Pairwise Training

Rather than sequentially training on individual
datasets, we opt for a parallel approach, training
on all datasets concurrently. We postulate that this
parallel training promotes enhanced model gener-
alization across diverse tasks. Despite this, each
training batch is exclusively composed of data from
a single dataset. This ensures that loss calculations,
performed across the entire batch, do not conflate
data from different tasks.

Our dataloader operates by initially selecting a
dataset, followed by sampling the requisite number
of data points from it to constitute a batch for the
worker (refer to Section 4). Prior to training, the
pairs within the datasets are thoroughly shuffled.

Sampling a dataset Di follows a probability dis-
tribution ρ across all datasets Di. The probability
of sampling Di is ρ (Di) =

|Di|si∑n
j=1 |Dj |sj and is con-

tingent upon the dataset’s size |Di| and a scaling
factor si.

Given the disparity in dataset sizes, it is critical
to frequently sample from larger datasets to pre-
vent overfitting on the smaller ones. Furthermore,
we manipulate the sampling rates of datasets using
scaling factors to prioritize training on high-quality
datasets and achieve balance among text domains.
In scenarios where datasets with higher sampling
rates deplete their items before the completion of
a training epoch, the dataset is reset, enabling the
model to cycle through its items anew. This en-
sures that high-sampling-rate datasets contribute
multiple times within a single training epoch.

Figure 1b displays the proportion of each dataset
used based on their sampling rates. Following the
creation of this adjusted distribution, the frequency
of sampling from larger datasets significantly di-
minishes, resulting in only 180 million pairs actu-
ally being used during training.

3.3 Training on Triplet Data

Following the completion of pairwise training, the
model progresses to the next phase which involves
training on the triplet datasets. This phase uses
a different loss function, leveraging negatives for
improved model performance.

We experimented with various triplet loss func-
tions and found that the best results are achieved
through a combination of multiple commonly used
triplet loss functions. Specifically, we use the
extended version of the InfoNCE loss Ltriplets

NCE+ ,
given by (2), which employs additional nega-
tives [Reimers, 2023], the reverse InfoNCE loss
Ltriplets

NCE
from the initial training phase as given by

(3), and the triplet margin loss function Ltriplets
3 as

presented in (4) [Chechik et al., 2010].
The triplet function Ltriplets

3 determines the co-
sine similarity difference between the query and
target s(q, n), and the query and negative match
s(q, n). Furthermore, it establishes a minimal mar-
gin ε = 0.05 between these two values. If the
negative is more similar to the query or the margin

is violated, Ltriplets
3 returns a positive value. Oth-

erwise, it yields 0, which is achieved through the
application of the ReLU activation function. For
the temperature parameter, we opted for a value of
τ = 0.05.

4 Evaluation

We conduct a comprehensive evaluation to compare
our models against other state-of-the-art models
(Section 4.1), investigate the impact of our filtering
pipeline (Section 4.2), and evaluate the models’
sensitivity to negation of statements (Section 4.3).
Section 6 mentions details about the training.

To provide comprehensive results on the per-
formance of models on various downstream tasks
applicable to embeddings, we rely on the MTEB
benchmark frameworks introduced by Muen-
nighoff et al. [2023]. This also compromises all the
retrieval tasks included in the BEIR [Thakur et al.,
2021] benchmark. We also publish the code for
executing it on our models on the Hugging Face
pages of our model10. For evaluating models on
the negation dataset, we use our own separate eval-
uation tool11.

4.1 Performance Against State-of-the-Art
Models

To gauge the performance of the JINA EMBED-
DINGS set in relation to other similarly sized open-
source and close-sourced models, we select repre-
sentative models from five distinct size categories,
as depicted in Table 1. Additionally, we include
sentence-t5 and gtr-t5 xl and xxl models, which are
based on T5 models with 3 billion and 11 billion
parameters, respectively. This inclusion allows in-
vestigating the performance variation with models
of such massive scales.

Table 6 presents the scores for MTEB’s sentence
similarity tasks, wherein the models within the
JINA EMBEDDINGS set outshine their similarly
sized counterparts across numerous tasks. Notably,
the jina-large-v1 model consistently delivers
comparable, if not superior, results to models in
the billion-parameter scale. jina-base-v1 and
jina-small-v1 also exhibit competitive perfor-
mances with models of analogous sizes, exceeding

10https://huggingface.co/jinaai/
jina-embedding-b-en-v1/blob/main/mteb_
evaluation.py

11https://huggingface.co/jinaai/
jina-embedding-b-en-v1/blob/main/negation_
evaluation.py

Model Parameters
Embedding
Dimensions

sentence-t5-xxl 4.9b 768
gtr-t5-xxl 4.9b 768
gtr-t5-xl 1.2b 768
sentence-t5-xl 1.2b 768

jina-large-v1 330m 1024
gtr-t5-large 330m 768
sentence-t5-large 330m 768

all-mpnet-base-v2 110m 768
jina-base-v1 110m 768
gtr-t5-base 110m 768
sentence-t5-base 110m 768

jina-small-v1 35m 512
all-MiniLM-L6-v2 23m 384

Table 1: Model sizes and output dimensions

their peers on the BIOSSES12 task. This highlights
the benefits of training with highly diverse data
sources.

jina-base-v1 consistently demonstrates perfor-
mances similar to or better than gtr-t5-base, which
was trained specifically for retrieval tasks [Ni et al.,
2022b]. However, it seldom matches the scores of
sentence-t5-base, which was trained on sentence
similarity tasks [Ni et al., 2022a].

The evaluation of model performances on re-
trieval tasks, presented in Table 8, reflects a similar
relationship among gtr-t5, sentence-t5, and JINA

EMBEDDINGS. Here, gtr-t5 models, which have
been specially trained on retrieval tasks, consis-
tently score the highest for their respective sizes.
JINA EMBEDDINGS models follow closely behind,
whereas sentence-t5 models trail significantly. The
JINA EMBEDDINGS set’s capability to maintain
competitive scores across these tasks underscores
the advantage of multi-task training.

As illustrated in Table 7, jina-large-v1 also
achieves exceedingly high scores on reranking
tasks, often outperforming larger models. Similarly,
jina-base-v1 surpasses gtr-t5-large and sentence-
t5-large on several reranking tasks, which could
once again be attributed to the specific training
tasks of sentence-t5 and gtr-t5.

12https://tabilab.cmpe.boun.edu.tr/BIOSSES/
DataSet.html

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/mteb_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/mteb_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/mteb_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/negation_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/negation_evaluation.py
https://huggingface.co/jinaai/jina-embedding-b-en-v1/blob/main/negation_evaluation.py
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html
https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html

Ltriplets(B) := Ltriplets
NCE+ (B) + Ltriplets

NCE
(B) + Ltriplets

3 (B), where (1)

Ltriplets
NCE+ (B) := E(q,p,n)∼B

[
− ln

exp(s(q, p)/τ)∑k
i=1 exp(s(q, pi)/τ) + exp(s(q, ni)/τ)

]
, (2)

Ltriplets

NCE
(B) := E(q,p,n)∼B

[
− ln

exp(s(p, q)/τ)∑k
i=1 exp(s(p, qi)/τ)

]
, (3)

Ltriplets
3 (B) := E(q,p,n)∼B

[
ReLU

(
s(q, n)− s(q, p) + ε

)]
. (4)

Model RR RT STS

sentence-t5-xxl 56.42 42.24 82.63
gtr-t5-xxl 56.66 48.48 78.38
gtr-t5-xl 55.96 47.96 77.80
sentence-t5-xl 54.71 38.47 81.66

jina-large-v1 56.42 44.81 80.96
gtr-t5-large 55.36 47.42 78.19
sentence-t5-large 54.00 36.71 81.83

all-mpnet-base-v2 59.36 43.81 80.28
jina-base-v1 55.84 44.03 79.93
gtr-t5-base 54.23 44.67 77.07
sentence-t5-base 53.09 33.63 81.14

jina-small-v1 53.07 38.91 78.06
all-MiniLM-L6-v2 58.04 41.95 78.90

Table 2: Average Scores for Reranking (RR), Retrieval
(RT) and sentence similarity tasks (STS)

4.2 Impact of Filtering Steps

We evaluate the effectiveness of our dataset prepro-
cessing pipeline by performing an ablation study.
In this study, we fine-tune our smallest model on
the Reddit dataset, where various preprocessing
steps are individually applied. The corresponding
results are presented in Table 3.

The ablation study’s results underscore the value
of both language and consistency filtering as cru-
cial preprocessing steps. Their combined applica-
tion results in the highest performance across the
majority of benchmarks.

Specifically for the Reddit dataset, we observe a
significant performance boost with the application
of consistency filtering, while language filtering
only marginally enhances the performance. We
can account for this disparity by noting that the
language filter removes only 17.4% of the Reddit

data, while consistency filtering screens out 84.313.
Reddit samples are primarily in English, but many
are positive pairs with very low similarity, making
consistency filtering more effective than language
filtering.

The effectiveness of these preprocessing steps,
however, does exhibit variability across different
datasets.

4.3 Effectiveness of Negation Data

To determine the effectiveness of our models on
negation data, we evaluate them against the test
split of our negation dataset, comparing the results
with other open source models. We measure per-
formance with respect to two metrics: one mea-
sures the percentage of samples where the model
positions the anchor and entailment closer than
the anchor and negative (which is an easy task, as
the anchor and negative are syntactically dissim-
ilar), the other measures the percentage of sam-
ples where the model positions the anchor and
entailment closer than the entailment and negative
(which is a hard task, as the entailment and negative
are syntactically more similar than the anchor and
entailment). The former is denoted by EasyNega-
tion, the latter by HardNegation. The outcomes
of these evaluations are displayed in Table 4. We
assess our models both before and after fine-tuning
on the triplet data, denoted as <model>pairwise and
<model>all, respectively.

From the results, we observe that across all
model sizes, fine-tuning on triplet data (which in-
cludes our negation training dataset) dramatically
enhances performance, particularly on the Hard-
Negation task. Our models are on par with other
state-of-the-art open-source models in terms of per-

13It is pertinent to note that the subsets filtered out overlap,
thus the combined application of language and consistency
filtering filters out only 86.8% of the data.

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1

Retrieval
Data Preparation Quora SciFact Trec-Cov

No Extra Filter 0.734 0.218 0.242
Language 0.741 0.218 0.250
Consistency 0.805 0.381 0.297
Language + Consistency 0.806 0.379 0.306

Sentence Similarity
Data Preparation STS12 STS13 STS14 STS15 STS16 STS17 STS22

No Extra Filter 0.558 0.668 0.573 0.694 0.706 0.764 0.606
Language 0.561 0.668 0.579 0.697 0.704 0.765 0.609
Consistency 0.652 0.728 0.652 0.760 0.755 0.808 0.610
Language + Consistency 0.653 0.727 0.656 0.764 0.757 0.810 0.609

Table 3: Evaluation of Data-Preparation Effectiveness on the Reddit Dataset. Retrieval evaluated on nDCG@10,
Sentence Similarity on Spearman.

formance, while achieving this with only a fraction
of the training data required by their counterparts.

5 Related Work

The field of embedding models has seen significant
advanced over the years, with the development of
various models featuring diverse architectures and
training pipelines. For instance, Sentence-BERT
[Reimers and Gurevych, 2019] uses BERT to gen-
erate sentence embeddings. Similarly, Sentence-T5
[Ni et al., 2022a], based on the encoder architec-
ture of T5, demonstrates superior performance over
Sentence-BERT on numerous benchmarks. The
study underscores the effectiveness of encoders
for sentence embeddings, contrasting with another
approach that explores the use of decoders [Muen-
nighoff, 2022].

Knowledge distillation [Hinton et al., 2015] of-
fers an alternative approach to model training. In
this setup, a larger, pre-trained model acts as a
mentor, instructing a smaller model during training.
This methodology can be seamlessly integrated
with a contrastive loss function, presenting an av-
enue for future investigation.

Embedding models can also be characterized
based on their functionality. For instance, while
some models are designed to solely embed queries,
others are trained to embed queries along with spe-
cific instructions, generating task-dependent em-
beddings [Su et al., 2023]. An example of this
using a T5-based model is the large dual encoder
[Ni et al., 2022b], which is fine-tuned for retrieval
tasks and computes a retrieval score directly.

Recent studies [Neelakantan et al., 2022, Wang
et al., 2022] emphasize the benefits of contrastive
pre-training coupled with fine-tuning on hard neg-
atives. Both approaches have achieve state-of-the-
art results on multiple benchmarks, with [Wang
et al., 2022] also employing consistency filtering
as part of their preprocessing pipeline.

6 Training Details

For training, we employ A100 GPUs and leverage
the DeepSpeed stage 2 distributed training strategy
[Rajbhandari et al., 2020] for effective multi-device
management. For training our models we use the
AdamW optimizer, coupled with a learning rate
scheduler that adjusts the learning rate during the
initial stages of training. The hyperparameters used
across all three models throughout the training pro-
cess are listed in Table 5.

7 Conclusion

This paper introduces the JINA EMBEDDINGS set
of embedding models, demonstrating that competi-
tive performance on various tasks can be achieved
while substantially reducing the amount of training
data, when compared to other models with compa-
rable backbones. Through an extensive evaluation
on the MTEB benchmark, we show that employ-
ing judicious data filtering techniques can lead to
enhanced performance in comparison to training
with a larger, yet lower-quality dataset. These find-
ings significantly shift the paradigm, indicating that
training large language models for embedding tasks
can be conducted with less data than previously as-

EasyNegation HardNegation Parameters Training samples

jina-small-v1pairwise 88.4% 8.4% 35m 385m
jina-base-v1pairwise 93.0% 13.8% 110m 385m
jina-large-v1pairwise 94.6% 16.6% 330m 385m
jina-small-v1all 96.6% 35.2% 35m 386m
jina-base-v1all 97.8% 54.6% 110m 386m
jina-large-v1all 98.2% 65.4% 330m 386m

all-MiniLM-L6-v2 94.8% 29.4% 23m 1170m
all-mpnet-base-v2 97.4% 67.6% 110m 1170m
sentence-t5-base 96.0% 55% 110m 2275m
sentence-t5-large 98.2% 64.0% 330m 2275m

Table 4: Evaluating a Range of Models on the Negation Dataset: A Benchmark Analysis of JINA EMBEDDINGS
Trained on Both Pairwise-Only and Combined Pairwise and Triplet Data. The negation dataset is available at
https://huggingface.co/datasets/jinaai/negation-dataset

Hyperparameters Value

of devices 8
Sequence length 512
Model precision 32 bit
Learning rate 0.00005
of steps for learning rate warm-up 500
Batch size for jina-small-v1 4096
Batch size for jina-base-v1 2048
Batch size for jina-large-v1 1024

Table 5: Hyperparameters

sumed, leading to potential savings in training time
and resources.

However, we acknowledge the limitations of the
current methodologies and the performance of the
JINA EMBEDDINGS set. During the training on
pairs, the sampling rate selection was based on
a heuristic approach. Given the vast size of the
search space for these sampling rates, we leaned
on our intuition and dataset familiarity to prioritize
higher-value datasets over their lower-value coun-
terparts. This subjective approach, however, points
to the need for more objective methods for future
advancements.

Additionally, the JINA EMBEDDINGS set fell
short on some tasks. For instance, calculating
sentence similarity on our negation dataset (as de-
scribed in Section 4.3) didn’t meet our expectations
(see Table 4) nor achieves competitive scores for
classification and clustering tasks on the MTEB
benchmark. These performance shortcomings sug-
gest a possible deficit in the representation of these

types of tasks in our training data, necessitating
further investigation.

Looking ahead, we aim to refine our training
processes to deliver models with improved perfor-
mance and greater sequence length. Our future
endeavors also include generating bilingual train-
ing data and training an embedding model capable
of understanding and translating between two lan-
guages, thereby expanding the utility and versatility
of the JINA EMBEDDINGS set.

References
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of trans-
fer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):
5485–5551, 2020.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang.
Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1864–1874, 2022a.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith
Hall, Ming-Wei Chang, et al. Large dual encoders
are generalizable retrievers. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 9844–9855, 2022b.

Danny Hernandez, Tom Brown, Tom Conerly, Nova
DasSarma, Dawn Drain, Sheer El-Showk, Nelson
Elhage, Zac Hatfield-Dodds, Tom Henighan, Tris-
tan Hume, et al. Scaling laws and interpretabil-
ity of learning from repeated data. arXiv preprint
arXiv:2205.10487, 2022.

https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/datasets/jinaai/negation-dataset
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1

Armand Joulin, Édouard Grave, Piotr Bojanowski, and
Tomáš Mikolov. Bag of tricks for efficient text clas-
sification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, pages
427–431, 2017.

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith
Hall, and Ming-Wei Chang. Promptagator: Few-shot
dense retrieval from 8 examples. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=
gmL46YMpu2J.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. Rocketqa: An optimized training
approach to dense passage retrieval for open-domain
question answering. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 5835–5847, 2021.

Taku Kudo and John Richardson. Sentencepiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 66–71, 2018.

Taku Kudo. Subword regularization: Improving neural
network translation models with multiple subword
candidates. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 66–75, 2018.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018. URL http:
//arxiv.org/abs/1807.03748.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy,
Johannes Heidecke, Pranav Shyam, Boris Power,
Tyna Eloundou Nekoul, Girish Sastry, Gretchen

Krueger, David Schnurr, Felipe Petroski Such,
Kenny Hsu, Madeleine Thompson, Tabarak Khan,
Toki Sherbakov andcalculating Joanne Jang, Pe-
ter Welinder, and Lilian Weng. Text and code
embeddings by contrastive pre-training. CoRR,
abs/2201.10005, 2022. URL https://arxiv.org/
abs/2201.10005.

Nils Reimers. http://plastimatch.org/doxygen/
classHausdorff__distance.html##details
Last Access: 14th July 2023, 2023.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Ben-
gio. Large scale online learning of image similarity
through ranking. Journal of Machine Learning Re-
search, 11(3), 2010.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. Mteb: Massive text embedding bench-
mark, 2023.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. Beir: A
heterogenous benchmark for zero-shot evaluation of
information retrieval models, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–
3992, 2019.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings
for semantic search, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network, 2015.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. One embed-
der, any task: Instruction-finetuned text embeddings,
2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In SC20: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE,
2020.

https://openreview.net/forum?id=gmL46YMpu2J
https://openreview.net/forum?id=gmL46YMpu2J
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
http://plastimatch.org/doxygen/classHausdorff__distance.html####details
http://plastimatch.org/doxygen/classHausdorff__distance.html####details

Appendix

Model BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS
Benchm.

sentence-t5-xxl 80.43 80.47 78.85 88.94 84.86 89.32 84.67 89.46 65.33 84.01
sentence-t5-xl 73.12 79.98 79.02 88.80 84.33 88.89 85.31 88.91 64.32 83.93
gtr-t5-xxl 81.91 74.29 70.12 82.72 78.24 86.26 81.61 85.18 65.76 77.73
gtr-t5-xl 78.94 73.63 69.11 81.82 77.07 86.01 82.23 84.90 66.61 77.65
sentence-t5-large 78.93 80.34 79.11 87.33 83.17 88.28 84.36 88.99 62.39 85.36
gtr-t5-large 84.86 73.39 70.33 82.19 77.16 86.31 81.85 83.93 64.30 77.60
jina-large-v1 84.43 79.20 74.53 83.16 78.09 86.91 83.65 90.16 64.89 84.60
sentence-t5-base 75.89 80.18 78.05 85.85 82.19 87.46 84.03 89.57 62.66 85.52
gtr-t5-base 79.00 71.45 68.59 79.09 74.64 84.85 81.57 85.80 66.17 79.58
all-mpnet-base-v2 80.43 80.59 72.63 83.48 78.00 85.66 80.03 90.60 67.95 83.42
jina-base-v1 83.58 79.14 75.06 80.86 76.13 85.55 81.21 88.98 66.22 82.57
all-MiniLM-L6-v2 81.64 77.58 72.37 80.60 75.59 85.39 78.99 87.59 67.21 82.03
jina-small-v1 82.96 76.33 74.28 78.55 73.84 83.71 80.03 87.49 64.25 79.20
text-emb-ada-002* 86.35 80.60 69.80 83.27 76.09 86.12 85.96 90.25 68.12 83.17

Table 6: Spearman Correlation for Sentence Similarity Tasks

Model AskUbuntu-
DupQuestions

MindSmall-
Reranking SciDocsRR StackOverflow-

DupQuestions
sentence-t5-xxl 66.16 30.60 76.09 52.85
sentence-t5-xl 62.86 29.77 75.16 51.05
gtr-t5-xxl 63.23 31.93 77.96 53.50
gtr-t5-xl 63.08 31.50 76.49 52.79
sentence-t5-large 61.51 30.27 74.88 49.34
gtr-t5-large 61.64 31.84 76.39 51.58
jina-large-v1 62.83 31.48 80.97 50.38
sentence-t5-base 59.73 30.20 73.96 48.46
gtr-t5-base 60.86 31.33 73.71 51.01
all-mpnet-base-v2 65.85 30.97 88.65 51.98
jina-base-v1 62.40 31.56 79.31 50.11
all-MiniLM-L6-v2 63.48 30.80 87.12 50.76
jina-small-v1 60.25 30.68 74.16 47.18
text-emb-ada-002* 62.05 31.45 81.22 50.54

Table 7: Mean Average Precision (mAP@10) for Reranking Tasks

* text-emb-ada-002 appears in a separate category since no model size is known and the embedding size is much higher
compared to other models.

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1
https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1

Model FEVER HotpotQA MSMARCO NQ Quora
Retrieval SciFact TREC

COVID
Argu
Ana

Climate
FEVER DBPedia FiQA

2018 NFCorpus SCIDOCS Touche
2020

sentence-t5-xxl 51.20 42.14 27.67 52.87 85.96 55.38 59.48 39.85 14.63 39.19 46.68 35.08 17.17 21.65
sentence-t5-xl 36.12 37.17 25.17 46.29 85.85 50.91 54.77 39.40 10.61 33.65 44.71 33.18 15.97 22.51
gtr-t5-xxl 74.08 59.67 44.05 57.24 89.09 66.77 51.90 53.77 27.21 41.28 46.78 34.18 15.88 26.76
gtr-t5-xl 72.18 58.91 43.52 56.16 88.91 64.2 60.09 52.81 27.01 39.74 44.19 33.34 15.71 25.26
sentence-t5-large 36.21 33.95 23.96 42.02 85.73 49.91 46.11 39.27 11.36 31.55 43.55 31.10 15.38 21.63
gtr-t5-large 72.66 57.85 42.73 55.09 88.47 63.42 56.68 52.09 26.90 39.55 42.79 32.63 15.51 28.29
jina-large-v1 71.90 54.95 40.34 51.40 88.09 59.76 57.25 46.48 21.26 34.13 37.27 32.24 18.45 20.73
sentence-t5-base 26.17 33.20 20.70 36.32 85.49 45.76 40.70 44.85 10.37 27.77 34.83 28.65 14.15 20.30
gtr-t5-base 68.93 54.93 41.16 50.47 87.98 59.74 56.05 50.83 24.88 35.24 35.15 30.22 14.00 25.89
all-mpnet-base-v2 50.86 39.29 39.75 50.45 87.46 65.57 51.33 46.52 21.97 32.09 49.96 33.29 23.76 19.93
jina-base-v1 73.29 52.78 37.77 47.87 87.63 59.40 60.57 49.01 21.48 32.44 34.06 30.38 17.63 18.59
all-MiniLM-L6-v2 51.93 46.51 36.54 43.87 87.56 64.51 47.25 50.17 20.27 32.33 36.87 31.59 21.64 16.90
jina-small-v1 69.12 47.48 31.80 38.89 85.69 52.40 52.30 43.57 17.25 28.28 25.19 25.96 15.29 16.67
text-emb-ada-002* 74.99 60.90 40.91 51.58 87.60 72.75 68.47 57.44 21.64 39.39 44.41 36.97 18.36 21.61

Table 8: Normalized Discounted Cumulative Gain (nDCG@10) for retrieval tasks

https://huggingface.co/jinaai/jina-embedding-l-en-v1
https://huggingface.co/jinaai/jina-embedding-b-en-v1
https://huggingface.co/jinaai/jina-embedding-s-en-v1

