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Abstract
In drug discovery, mapping interactions between genes within cellular systems is a crucial early
step. Such maps are not only foundational for understanding the molecular mechanisms under-
lying disease biology but also pivotal for formulating hypotheses about potential targets for new
medicines. Recognizing the need to elevate the construction of these gene-gene interaction net-
works, especially from large-scale, real-world datasets of perturbed single cells, the CausalBench
Challenge was initiated. This challenge aimed to inspire the machine learning community to en-
hance state-of-the-art methods, emphasizing better utilization of expansive genetic perturbation
data. Using the framework provided by the CausalBench benchmark, participants were tasked with
refining the current methodologies or proposing new ones. This report provides an analysis and
summary of the methods submitted during the challenge to give a partial image of the state of the
art at the time of the challenge. Notably, the winning solutions significantly improved performance
compared to previous baselines, establishing a new state of the art for this critical task in biology
and medicine.

1. Introduction

Causal gene interaction networks, visualized as directed graphs, visually elucidate the complex in-
teractions of genes within a cell, revealing cell specific cellular function and regulation. These
networks are not only instrumental in differentiating normal and aberrant cellular processes but also
illuminate pathways perturbed in various diseases. By studying these networks, we gain insights
that can guide the identification of potential drug targets (Nelson et al., 2015; Yu et al., 2004; Chai
et al., 2014; Akers and Murali, 2021; Hu et al., 2020). More crucially, deriving these interactions
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allows researchers to anticipate potential unsafe downstream effects of targets, ensuring that thera-
peutic interventions are both effective and safe. The ability to accurately infer these networks from
experimental data, therefore, holds profound implications for biological research and medicine.

Recent strides in single-cell transcriptomics have ushered in tools that directly target and sup-
press gene expression (Dixit et al., 2016; Datlinger et al., 2017, 2021). Given that those perturba-
tions represent actual interventions in the cell system, the experimental data produced holds great
promise to reveal the underlying causal mechanisms dictating cell function (Pearl, 2009). Causal
discovery methods that leverage interventional data by explicitly modeling the interventional sig-
nal are thus primed candidate approaches to infer gene interaction networks. CausalBench, intro-
duced by Chevalley et al. (2022), was envisaged to evaluate network inference methodologies using
single-cell perturbation gene expression data. CausalBench operates on two recent expansive public
CRISPR-based perturbation datasets (Replogle et al., 2022) of unprecedented scale and introduces
novel evaluation metrics that are biologically relevant. However, early evaluations revealed a stark
surprise. Notably, the performance of leading-edge inference methods plateaued despite the in-
creased perturbation data. Even more surprisingly, methods incorporating interventional data were
observed not to outperform methods that did not utilize such data, indicating only marginal utility
from interventional signals opposing the common belief that interventional data is all you need to
resolve the ambiguity in causal inference tasks with existing methods (Hauser and Bühlmann, 2012;
Eberhardt et al., 2006; Yang et al., 2018).

These observations suggest a large gap for interventional causal discovery methods between
their reported performance on synthetic and real-world data. Indeed, many researchers have prior-
itized evaluation on synthetic datasets due to the allure of having an available ground-truth, which
seemingly facilitates method comparison. However, as recently highlighted by benchmark eval-
uation such as CausalBench, the reported performance on synthetic data often does not translate
well to real-world settings. This discrepancy might deter practitioners due to the unpredictability
of success in real-world settings. And even more disconcerting is the prospect of blind reliance on
synthetic data results. Given the actual poor performance of those models in real-world setting, this
could culminate in large misplaced resources in terms of time, money, and missed opportunities.

To bridge this gap and spearhead advancements in gene interaction network inference, we or-
ganized a machine learning community challenge named the CausalBench Challenge (CBC2023)
https://www.gsk.ai/causalbench-challenge/. The aim behind the challenge was
to lower the bar of engagement and inspire the machine learning community to work on this critical
task and elevate the current state of the art. In this report, we delineate how the methods proposed
by the participants have remarkably advanced the state of the art performance on this essential
endeavor. This epitomizes the effect of community scientific competition such as CBC2023 on pre-
cipitating scientific breakthroughs. Within a limited timeframe, we witnessed advancements that
might otherwise have required a significantly longer time frame to conduct. Given the significance
of gene network inference in pivotal domains like drug discovery, any expedited progress can yield
profound societal benefits.

To facilitate the application of the new methods as well as future research, the method im-
plementations have been open sourced. Furthermore, participants have provided detailed reports
on each method, available at the challenge’s OpenReview venue https://openreview.net/
group?id=GSK.ai/2023/CBC.

To summarize, in this report:
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THE CAUSALBENCH CHALLENGE

• We demonstrate that Machine Learning contests can be effective tools to engage the com-
munity on impactful problems. Notably, many participants had no prior experience in gene
network inference or even in biology.

• We describe how the participants were able to focus on technical innovation. This was
achieved through the establishment of clear, targeted goals, suitable computing infrastruc-
ture, and the use of a curated benchmark as a development platform.

• We conduct a thorough analysis of the best solutions to establish a new state of the art in
the task of gene network inference. By providing a comprehensive overview of key ideas,
discussing remaining limitations, and making the method implementations open-source, we
hope to pave the way for further major advancements in this vital area.

2. Benchmark Setup

CausalBench (Chevalley et al., 2022) is a comprehensive benchmarking suite designed to evalu-
ate network inference methods for gene regulatory networks (GRNs) from real-world single-cell
perturbation data. The benchmark is built on large-scale, high-dimensional datasets obtained from
single-cell RNA sequencing (scRNA-seq) experiments (Replogle et al., 2022), where genes are
perturbed using CRISPR technology to observe gene expression changes. This setup provides a
more realistic evaluation of causal inference methods compared to traditional synthetic benchmarks
(Gentzel et al., 2019).

Datasets The CausalBench benchmark relies on two large-scale perturbational datasets, each con-
sisting of gene expression data from individual cells in two cell lines: RPE1 (retinal pigment ep-
ithelial cells) and K562 (human chronic myelogenous leukemia cells). These datasets contain over
200,000 interventional data points, where each perturbation corresponds to the knockout or knock-
down of a specific gene using CRISPR technology (Dixit et al., 2016; Datlinger et al., 2017, 2021).
Observational data is collected without interventions, while the interventional data includes targeted
gene perturbations.

Task The primary goal of the task is to infer the true causal graph G between a set of variables from
empirical data. In the context of gene regulatory networks (GRNs), these variables represent genes,
and the causal graph encodes the functional dependencies between them. Each node in the graph
corresponds to a gene gi, and a directed edge from node gi to node gj signifies a causal influence
of gene gi on gene gj . The challenge lies in reconstructing this true graph G from observed data,
typically involving both observational data (where no interventions are applied) and interventional
data (where specific genes are perturbed).

We define several notations that will be used throughout the paper. V represents the set of all
genes in the network. The true causal graph is denoted G = (V,E), where E is the set of di-
rected edges between genes, representing causal relationships. For each gene gi, xgi ∈ Rn refers
to the observed data, with n being the number of samples (cells). The full observed data for all
genes is represented by x = (xg1 ,xg2 , . . . ,xgm), where m denotes the total number of genes in
the dataset. P ∅(xgj ) is the marginal probability distribution of gene gj under no interventions (ob-
servational distribution), representing the natural state of gene expression without perturbation, and
P σ(xgi )(xgj ) denotes the probability distribution of gene gj under the intervention on gene gi, where
σ(xgi) represents an intervention on gene gi.
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The goal is to infer the graph G from the data x, ideally reconstructing the correct edges that
reflect true causal relationships in the biological system. We denote a predicted graph Gp. To
accomplish this, both observational data x and interventional data xσ are used. Observational data
provides information about the natural relationships between genes, while interventional data allows
us to better identify causal effects by perturbing specific genes. The challenge in causal discovery
lies in utilizing both types of data to uncover the underlying causal graph, while addressing the
complexities and limitations inherent in real-world biological systems.

Metrics CausalBench incorporates two evaluation approaches: a biologically-motivated evalu-
ation and a statistical evaluation. The biologically-motivated evaluation uses known biological
databases, such as CORUM (Giurgiu et al., 2019) and STRING (Von Mering et al., 2005; Snel
et al., 2000; Von Mering et al., 2007; Jensen et al., 2009; Mering et al., 2003; Szklarczyk et al.,
2010, 2015, 2016, 2019, 2021; Franceschini et al., 2012, 2016), to compare the predicted gene-gene
interactions with established interactions. This allows for precision and recall measures based on
known relationships, but it is limited by lack of cell-specific data, and may not cover all causal
relationships in the system.

For the CausalBench challenge, however, we focus on the statistical evaluation, which avoids
relying on prior knowledge. This approach leverages the mean Wasserstein distance (Ramdas et al.,
2017) and false omission rate (FOR) metrics proposed in CausalBench, which are computed on a
held-out test dataset. The Mean Wasserstein Distance metric measures the divergence between the
observational and interventional distributions of gene expressions. A higher Wasserstein distance
indicates stronger causal effects for the predicted edges. Formally, it is computed as:

MeanWasserstein =
1

|Gp|
∑

(i,j)∈Gp

W1(P
σ(Xgi )(xgj ), P

∅(xgj )) (1)

where P σ(Xgi )(xgj ) is the distribution fo gene gj under intervention of gene gi, and P ∅(xgj ) is
marginal distribution of gj under no interventions (observational distribution).

The FOR metric evaluates the rate at which true causal interactions are missed by the model. It
helps evaluate the balance between precision and recall in the predicted network. Intuitively, there is
a trade-off between maximizing the mean Wasserstein distance and minimizing the FOR. Formally,
the FOR is defined as

FOR =
False Negatives

False Negatives + True Negatives
. (2)

This ratio is estimated by finding false negatives with a two-sided Mann–Whitney U rank test
(Mann and Whitney, 1947; Bucchianico, 1999) on sampled negative pairs. Negative pairs of gene
(gi, gj) are variable for which there is no directed path in the predicted causal graph Gp. The
statistical test is performed on P σ(Xgi )(xgj ) and P ∅(xgj ). The focus on statistical evaluation allows
for an objective and empirical assessment of the methods, particularly for real-world interventional
data, where true causal graphs are not available.

The CausalBench Challenge In the original CausalBench study, several limitations of existing
methods were identified, which motivated the design of the CausalBench Challenge. Two key lim-
itations were observed. First, many existing methods struggled to scale to large gene networks,
especially in the context of high-dimensional single-cell data, which is essential for gene regula-
tory network inference at scale. Second, despite the availability of rich interventional data, many
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methods did not fully leverage this information, leading to suboptimal performance when compared
to methods trained solely on observational data. The CausalBench Challenge was specifically de-
signed to address these limitations by incentivizing participants to develop methods that could better
scale to large networks and more effectively utilize interventional data. Details about the challenge
design are described in appendix A. By focusing on the statistical evaluation metrics, the challenge
sought to push the boundaries of current methods and improve their ability to handle the complex,
high-dimensional nature of the datasets. The results of the challenge demonstrated significant im-
provements over previous methods, particularly in terms of scalability and the use of interventional
information. These advancements highlight the importance of improving both the scalability and
the ability to integrate interventional data in causal network inference, which are key factors for
advancing the field.

Limitations While CausalBench offers an important advancement in benchmarking causal dis-
covery methods, it also has some limitations. One key limitation is the difficulty in distinguishing
between direct and indirect causal relationships using the statistical metrics. The mean Wasserstein
distance, while useful for measuring the strength of causal effects, does not differentiate between di-
rect and indirect relationships, which can impact the interpretation of the results. Additionally, since
there is no true causal graph, the evaluation provides relative assessments of method performance
based on known biological interactions, which may not encompass all true causal relationships in
the system. These limitations, particularly the inability of the statistical metrics to distinguish direct
from indirect causal effects, must be taken into account when analyzing the evaluated performance.
The metrics in CausalBench inherently test for a different property compared to traditional metrics
like Structural Hamming Distance (SHD) and Structural Intervention Distance (SID), which require
a known ground truth. The metrics of CausalBench were developed to address the absence of ground
truth in this real-world setting. However, the statistical approach may offer a more nuanced com-
parison of methods by weighting predictions and errors according to the strength of causal effects,
rather than treating all edge errors equally. More research is needed to better understand how these
metrics influence the interpretation of method performance and how they compare to traditional
benchmarks.

3. Methods

We here summarize the theoretical ideas behind the best-submitted solutions. More details for each
method can be found in the reports submitted to the challenge public venue hosted on OpenReview
https://openreview.net/group?id=GSK.ai/2023/CBC.

BetterBoost - Inference of Gene Regulatory Networks with Perturbation Data (Nazaret and
Hong, 2023) BetterBoost builds upon GRNBoost to harness the power of interventional data ob-
tained from Perturb-seq experiments. While GRNBoost ranks directed interactions between genes
based on their predictiveness, BetterBoost takes it a step further by incorporating perturbation data
and its underlying causal structure to create a new score for ranking interactions.

In GRNBoost, each directed interaction from a gene gi to a gene gj is assigned a score Gi,j ,
indicating the predictive capability of gene gi for the target gene gj . This score is computed us-
ing boosted trees, which predict the expression of gene gj based on all other genes. A feature-
importance metric then scores each potential parent gene gi ̸= gj . However, this approach is purely
prediction-based and lacks the incorporation of causal relationships. With BetterBoost, we integrate
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perturbation data and its underlying causal structure to establish a new score for ranking interactions,
denoted as Hi,j .

Intuitively, if a candidate gene is a parent of the target, it should be a good predictor for the
target, as GRNBoost assumes. But with additional labeled interventional data, one can attempt to
identify the true causal parents of a target gene gj by looking at the effects of interventions on the
candidate parents for gi. In particular, for a true causal parent gi, we expect that when gi is knocked
down, there will be a statistically significant shift in the distribution of observed Unique Molecular
Identifiers (UMIs) of gene gj between observational and interventional data. Since we hold no
priors on the nature of causal effects, we choose to use the Kolmogorov-Smirnov (KS) test to test
these distributional shifts between observational and interventional data. Furthermore, we correct
the p-values for multiple testing with the Benjamini-Hochberg procedure.

To formulate the new score utilized by BetterBoost in ranking the impact of gene gi on gene
gj , we compute the predictive score Gi,j obtained from GRNBoost and the Benjamini-Hochberg
corrected p-value pi,j from the KS test, which measures the impact of knocking down gene gi on
gene gj . In cases where no perturbation data for gene gi is available, we set all p-values pi,∗ to
0.05. This choice aims to neither strongly accept nor reject hypotheses regarding these interactions.
Consequently, we define the score Bi,j = (−pi,j , Gi,j), which we sort in descending order (using
lexicographic order). It should be noted that alternative methods of combining pi,j and Gi,j could
be explored in future research.

When a desired number of edges, denoted as K, is specified, BetterBoost returns the top K ′

candidate edges with the highest H score and acceptable p-values (where K ′ is K if there is enough
acceptable p-values ≤ 0.05, or is less otherwise). These candidate edges will possess the smallest
p-values for the KS test up to 0.05 (included), including gene pairs without available interventional
data and hence with default p-values of 0.05. By setting the p-values of these gene pairs to 0.05,
the ranking primarily favors edges with small p-values (derived from combined interventional and
observational data), followed by edges with the highest GRNBoost scores Gi,j (obtained solely
from observational data). Typically, this results in more of the final edges being chosen by p-value
than by GRNBoost score as more labeled interventional data becomes available.

Guanlab: A Supervised LightGBM-Based Approach (Deng and Guan, 2023) The basic idea
of our LightGBM-based approach was transforming the task of detecting gene pairs with causal
relationships into a supervised learning problem. Given the gene pairs that were more confident to
have causalities, a supervised-learning model should be able to retrieve the expression properties
that determined such relationships. We chose the LightGBM as the base learner, a tree-based learn-
ing algorithm that was widely used in various classification tasks, and build a new dataset from the
observational and interventional data for training and evaluation. A major challenge in constructing
this dataset was to determine the positive samples. We used the absolute correlations between the
expression of two different genes to quantify the causality strengths. A gene pair with a stronger
negative or positive expression correlation was more likely to be affected by each other. And the
correlation values were also available when there was no interventional data.

We calculated the Pearson correlations for all directed gene pairs ⟨gi, gj⟩ which indicated gi
affect gj . gi and gj were genes with expression measurements from the columns of the expression
matrix E and i ̸= j. Let the i, j be the column indexes of gi and gj , i

′, j′ be the row indexes for
all records intervened by gi and gj , and n be the row indexes of all observational records, we first
retrieved the intervened expression data: Ei′,i and Ei′,j , and concatenated the observational data
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Table 1: LightGBM hyper-parameters

Parameter Value

boosting type gbdt
objective binary
metric binary logloss
num leaves 5
max depth 2
min data in leaf 5
learning rate 0.05
min gain to split 0.01
num iterations 1000

sampled from En,i and En,j with the same lengths as the interventional data. The correlation value
was from these two concatenated expression vectors. When the interventional data was unavailable,
the two vectors for correlation were only the observational data En,i and En,j . Gene pairs with
correlation values larger than 0.1 were considered positive samples.

Features of each gene pair were also retrieved from their expression data. We first row-wise
normalized the expression matrix with the z-score normalization, and for the gene pair ⟨gi, gj⟩, we
extracted four features: En,i, En,j , the average observational expression of gi and gj , and Ei′,i,
Ei′,j , the average intervened expression by gi. When the interventional data was unavailable, we
filled the last two with 0 and NaN.

Finally, we initialized the LightGBM model with the parameters in Table 1, and trained and
inferred on the entire dataset, which generated the optimal results in our experiments. Sorting the
gene pairs descending according to the model inferred scores. For the challenge, the top 1000 pairs
as our submission were chosen.

SparseRC: Learning Gene Regulatory Networks under Few-Root-Causes assumption (Misi-
akos et al., 2023a,b) The few-root-causes assumption suggests that the gene activation measure-
ments can be modeled as a linear system whose input is approximately sparse. The underlying
gene-gene interaction network is assumed to be a directed acyclic graph (DAG) and the data are
generated with a linear structural equation model (SEM) on the DAG.

Consider a DAG G = (V,E) with V = {1, 2, ..., d} with adjacency matrix A = (aij)i,j∈V
where aij denotes the weight of the edge from i to j. Then, we say the data X ∈ Rn×d follow a
linear SEM (Shimizu et al., 2006; Zheng et al., 2018) if they are generated via the equation

X = XA+N ⇔ X (I −A) = N , (3)

where N is (typically) assumed to be i.i.d. noise. Since Ad = 0 we have (I −A)−1 = I +A +
A2 + ...+A(d−1) = I +A, and Eq. (3) can be written equivalently as

X = N
(
I +A

)
. (4)

Intuitively, Eq. (4) indicates that the linear SEM can be viewed as a process that takes initial input
values N that we call root causes, which percolate through the DAG to produce the output X .
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This viewpoint provides the motivation to consider an alternative input of values C that carry actual
information. Adding noise NC on C and noise NX in the measurement of X we obtain the novel
formulation

X = (C +NC)
(
I +A

)
+NX . (5)

Further, we assume that only a few root causes trigger the output, i.e., that the input C + NC is
approximately sparse. Interestingly, this assumption can be viewed as a form of Fourier sparsity
Seifert et al. (2022a,b). This setting is identifiable Misiakos et al. (2023b) and the DAG can be
recovered by solving the following optimization problem:

min
A∈Rd×d

1

2n
∥X −XA∥1 s.t. h (A) = 0, (6)

where h(A) = 0 is the continuous acyclicity constraint pioneered by NOTEARS Zheng et al.
(2018).

To handle data with interventions included in the competition dataset, a masking matrix M ∈
Rn×d is used, which captures the intervention on gene i by removing the incoming edges to node
i. Thus, M consists of all ones, except in row i, which is set to zero. Since the positions of the
interventions in the dataset are known the final optimization problem becomes

min
A∈Rd×d

1

2n
∥X −XA⊙M∥1 s.t. h (A) = 0. (7)

This method is referred to as SparseRC. Its assumptions and the associated optimization (7) per-
form decently on the CausalBench challenge. This suggests that having a few root causes may be
biologically relevant, which invites further investigation.

Differences in Mean Expression (Kowiel et al., 2023) Another approach involved directly mea-
suring the strength of the causal relationship gi → gj for every gene pair (gi, gj), for which in-
terventions on gi were available. To achieve this, for a given gene gj , we separately calculated
its mean expression on the observational data P ∅(xgj ) and on the gi-perturbed interventional data

P σ(xgi )(xgj ). The absolute difference in means, |P ∅(xgj ) − P σ(xgi )(xgj )|, was used to measure
the strength of the relationship, and then to sort gene pairs. With such a ranked list of genes, we
selected the top-k pairs with the largest differences, where k is a user-defined parameter. We note
that for MeanDifference estimation, we did not employ any gene expression thresholds.

CATRAN: Causal Transformer (Bakulin, 2023) CATRAN is a method that uses a transformer-
like architecture to learn causal relations between genes. Its core idea is that the degree to which
one gene influences another can be represented as a similarity between their learnable vector embed-
dings. In contrast to the original DCDI approach, this method allows to avoid explicitly learning the
adjacency matrix of the gene-regulatory network, which is quadratic to the number of genes. This
significantly reduces the number of parameters in the neural network and regularizes its behavior.

In order to learn good gene embeddings, CATRAN implements a strategy commonly used for
pre-training transformers. Namely, reconstructing the perturbed data. In the case of CATRAN,
the perturbation consists of randomly shuffling 80% of the gene expression values in each training
batch. These expression values are then appended to the learnable embeddings of the corresponding
genes. Next, to retrieve the original data, these embeddings are iteratively updated by sharing the
information between genes: each embedding is replaced with a weighted sum of all others. The
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weights here are calculated as the sigmoid of the dot product between the original gene embeddings
and are identical between iterations. Finally, the expression values are regressed from the updated
gene embeddings and the reconstruction loss is calculated.

In addition to reconstruction loss, CATRAN calculates interventional loss which takes advan-
tage of the information on the type of perturbation in each cell. The idea behind it is that for each
link between a perturbed gene and other genes, we can estimate its importance by looking at how
essential the first gene is to predicting the expression of the second one. This is inspired by (Wu
et al., 2022). The premise is that if one gene is associated with another, then its expression should
help the model to make accurate predictions. And so the attention score for each link is estimated
using the following formula:

σ

(
Huber(non-interv-pred, non-interv-true)

Huber(interv-pred, interv-true))
− 1

)
. (8)

In the end the interventional loss is estimated using the Huber function (Huber, 1964) as the error
between attention scores and importance scores.

Other proposed methods The other submitted methods mainly looked into fine-tuning the DCDI
algorithm. Unfortunately, those attempts did not yield significant improvements, which confirms
that new algorithms need to be developed for this task and that the low-performance of existing
methods is not due to insufficient hyper-parameter search.

4. Results and analysis

We present here an empirical evaluation of the proposed methods using CausalBench and compare
them to some baselines, namely GRNBoost (Aibar et al., 2017), DCDI (Brouillard et al., 2020),
DCDFG (Lopez et al., 2022), Sortnregress (Reisach et al., 2021) and GIES (Hauser and Bühlmann,
2012). In fig. 1, we evaluate the scalability of those methods in terms of the number of samples
and the number of interventions. We note here that the evaluation metrics used for the competition
were tailored to encourage scaling in terms of the number of interventions. One of the surprising
findings of CausalBench (Chevalley et al., 2022) was that existing methods showed little or no
scaling in terms of interventions, which indicated that interventional methods do not fully leverage
the interventional data and that there is an untapped potential to harvest the information provided by
interventions. Additionally, in fig. 2, we evaluate the trade-off that those methods exhibit in terms
of biological and statistical evaluation. In the statistical evaluation, the mean Wasserstein distance
serves as the precision, and the false omission rate (FOR) as the recall. We lastly produce a final
ranking in table 2 and table 3 similarly to the one presented in Chevalley et al. (2022).

Proposed methods significantly improve utilization of the interventional data The submitted
methods show significant utilization of the interventional data as can be seen in fig. 1. The methods
Betterboost, Guanlab, MeanDifference, and SparseRC all exhibit an upward trending performance
as more interventional data is provided to those models. This indicates that they leverage the in-
terventional data, which is a major improvement compared to the previous state of the art, where
methods showed no benefit from the additional interventional data.

Proposed methods significantly improve the trade-off between mean Wasserstein and FOR
The proposed methods, especially Guanlab, MeanDifference and Betterboost, offer an advanta-
geous balance between mean Wasserstein and FOR compared to previously existing methods. We
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Figure 1: Performance comparison in terms of Mean Wasserstein Distance (unitless; y-axis) (top row) when
varying the fraction of the full dataset size available for inference (in %; x-axis), and (bottom row) when
varying the fraction of the full intervention set used (in %, x-axis). Markers indicate the values observed
when running the respective algorithms with each of three random seeds , and colored lines indicate the
median value observed across all tested random seeds for a method.

note that the precision-recall frontier, or performance trade-off, of these three methods, is closely
aligned, as can be observed in fig. 2 and when looking at the rankings in tables 2 and 3, where those
methods have similar mean positions. This parallel performance isn’t surprising given the models’
shared assumptions, indicating an improved balance in this precision-recall-like trade-off. Lastly,
we can note the comparatively higher performance of CATRAN in terms of the biological evalu-
ation, especially on K562. However, CATRAN shows little improvement in terms of intervention
scaling. We can thus hypothesize that the gene embeddings learned by CATRAN mainly encode the
co-expression of genes. Those links are not necessarily causal, but they nevertheless perform well
in terms of biological evaluations as co-expressed genes are often reflected in reference databases
(Gillis et al., 2014).

5. Discussion and future work

Despite the significant improvement in performance displayed by the methods submitted to the
CausalBench challenge, we must underscore a few limitations, which signal the necessity for con-
tinued innovation and progress. One key takeaway from these methods lies in the strategic approach
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Figure 2: Performance comparison in terms of Precision (in %; y-axis) and Recall (in %; x-axis) in correctly
identifying edges substantiated by biological interaction databases (left panels); and our own statistical eval-
uation using interventional information in terms of Wasserstein distance and FOR (right panels). For each
method, we show the mean and standard deviation from three independent runs. Baseline methods are in
green, and the challenge methods are in pink.

Table 2: Complete ranking on the K562 cell line.

Model Rank Rank Mean Position Wasserstein FOR
Wasserstein FOR Distance

Guanlab (top 5k) 5 2 3.5 0.386 ± 0.000 0.138 ± 0.000
MeanDifference (top 5k) 4 3 3.5 0.442 ± 0.000 0.143 ± 0.013
Betterboost 3 4 3.5 0.447 ± 0.001 0.165 ± 0.001
MeanDifference (top 1k) 1 6 3.5 0.590 ± 0.000 0.170 ± 0.000
Guanlab (top 1k) 2 7 4.5 0.495 ± 0.000 0.170 ± 0.000
SparseRC 6 5 5.5 0.357 ± 0.004 0.165 ± 0.001
GRNBoost 13 1 7.0 0.133 ± 0.000 0.126 ± 0.000
Catran 7 10 8.5 0.228 ± 0.000 0.182 ± 0.000
DCDI-DSF 10 9 9.5 0.163 ± 0.003 0.181 ± 0.017
DCDI-G 8 11 9.5 0.183 ± 0.001 0.182 ± 0.021
DCDFG-MLP 12 8 10.0 0.143 ± 0.004 0.180 ± 0.000
Sortnregress 9 13 11.0 0.171 ± 0.000 0.184 ± 0.000
GIES 11 12 11.5 0.155 ± 0.004 0.183 ± 0.025

toward identifying potential downstream genes when interventional data is available for a given
gene. This involves a direct comparison of the distribution across control and perturbed settings, an
insight utilized in different ways by Guanlab, MeanDifference, and Betterboost. Unfortunately, this
approach limits their broader applicability, as these methods do not extrapolate well to interactions
lacking interventional data. Furthermore, these three methods assess relationships on a case-by-case
basis, failing to consider the entire graph, which raises the likelihood that many predicted relation-
ships are not direct but rather mediated causal effects. Thus, further developments are needed for
improved differentiation between direct and mediated causal effects. SparseRC stands out as the
only method anchored in the principles of causality which offers identifiability guarantees. Despite
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Table 3: Complete ranking on the RPE1 cell line.

Model Rank Rank Mean Position Wasserstein FOR
Wasserstein FOR Distance

Guanlab (top 5k) 5 1 3.0 0.350 ± 0.000 0.072 ± 0.000
MeanDifference (top 5k) 4 2 3.0 0.384 ± 0.000 0.078 ± 0.000
Guanlab (top 1k) 3 3 3.0 0.609 ± 0.000 0.108 ± 0.000
Betterboost 2 7 4.5 0.611 ± 0.002 0.115 ± 0.001
MeanDifference (top 1k) 1 8 4.5 0.712 ± 0.000 0.122 ± 0.000
SparseRC 6 5 5.5 0.318 ± 0.001 0.114 ± 0.000
Sortnregress 9 6 7.5 0.170 ± 0.000 0.114 ± 0.000
Catran 7 9 8.0 0.218 ± 0.000 0.126 ± 0.000
GRNBoost 13 4 8.5 0.110 ± 0.000 0.110 ± 0.000
DCDI-G 8 12 10.0 0.188 ± 0.005 0.135 ± 0.007
DCDI-DSF 10 11 10.5 0.166 ± 0.003 0.133 ± 0.007
DCDFG-MLP 12 10 11.0 0.132 ± 0.018 0.129 ± 0.009
GIES 11 13 12.0 0.143 ± 0.004 0 .140 ± 0.008

Table 4: Complete ranking on the K562 cell line with only 25% of interventional data.

Model Rank Rank Mean Position Wasserstein FOR
Wasserstein FOR Distance

MeanDifference (top 1k) 1 3 2.0 0.401 ± 0.032 0.177 ± 0.011
SparseRC 4 1 2.5 0.291 ± 0.008 0.164 ± 0.006
MeanDifference (top 5k) 5 2 3.5 0.253 ± 0.020 0.175 ± 0.005
Guanlab (top 1k) 2 7 4.5 0.354 ± 0.036 0.179 ± 0.023
DCDI-G 7 4 5.5 0.175 ± 0.002 0.177 ± 0.005
Betterboost 3 10 6.5 0.345 ± 0.035 0.183 ± 0.022
DCDI-DSF 9 5 7.0 0.155 ± 0.002 0.178 ± 0.004
Guanlab (top 5k) 6 9 7.5 0.233 ± 0.018 0.181 ± 0.016
GIES 10 6 8.0 0.153 ± 0.004 0.179 ± 0.001
DCDFG-MLP 11 8 9.5 0.152 ± 0.004 0.181 ± 0.025
Catran 8 11 9.5 0.165 ± 0.099 0.184 ± 0.019

trailing slightly behind the top-performing methods, SparseRC outperformed other causal baselines
considerably. This indicates that theory-grounded causal methods still hold substantial promise.
Notably, such methods may be quite valuable in the case where perturbations are not available for
all genes (see tables 4 and 5 where SparseRC performs much better comparatively). Furthermore,
the inherent assumption of SparseRC, namely the few-root-causes assumption, may have biologi-
cal relevance worthy of further investigation. However, the method’s efficiency is hindered by the
presumption of linearity in interactions and the equal weighting assigned to all samples, regardless
of their observational or interventional nature. The novel approach adopted by CATRAN, aimed at
learning gene embeddings, provides another exciting avenue for exploration. The method’s effec-
tiveness could potentially be boosted by better leveraging the available interventional data.

These observations underscore the rich and expansive scope for future research in this domain.
With continued innovation and refinement, there is immense potential to unlock further advance-
ments in the field of gene interaction network inference, thereby accelerating our understanding of
complex biological systems.
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Table 5: Complete ranking on the RPE1 cell line with only 25% of interventional data.

Model Rank Rank Mean Position Wasserstein FOR
Wasserstein FOR Distance

MeanDifference (top 1k) 1 1 1.0 0.351 ± 0.060 0.106 ± 0.016
SparseRC 4 2 3.0 0.241 ± 0.015 0.109 ± 0.011
Guanlab (top 1k) 2 4 3.0 0.335 ± 0.043 0.131 ± 0.005
Betterboost 3 7 5.0 0.314 ± 0.057 0.134 ± 0.013
MeanDifference (top 5k) 8 3 5.5 0.175 ± 0.017 0.113 ± 0.016
Guanlab (top 5k) 6 5 5.5 0.203 ± 0.018 0.132 ± 0.007
Catran 5 6 5.5 0.213 ± 0.008 0.133 ± 0.001
DCDI-G 7 9 8.0 0.178 ± 0.005 0.141 ± 0.003
DCDFG-MLP 11 8 9.5 0.127 ± 0.003 0.134 ± 0.002
DCDI-DSF 9 10 9.5 0.159 ± 0.004 0.142 ± 0.005
GIES 10 11 10.5 0.150 ± 0.012 0.148 ± 0.002

In summary, the CausalBench Challenge (CBC) was designed and implemented with the inten-
tion of bridging the domain gap observed in interventional causal discovery methods on synthetic
data and real-world data. Our goals centered on inspiring and engaging the broader machine learning
community to make advancements in gene interaction network inference based on single-cell pertur-
bation data. We achieved this through the establishment of clear goals, well-planned logistics, suit-
able metrics, and fair ranking procedures. A computational platform was also set up to ensure robust
evaluation of the submitted methods. As a result of our efforts, the challenge garnered numerous
insightful submissions that pushed the boundaries of our understanding and application of causal in-
ference methods. By sharing some of the most innovative and effective approaches in this report, we
hope to inspire continued research and development in this critical area of causality and bioinformat-
ics. Most importantly, the analysis of the submissions’ performance helped establish a new state of
the art for gene network inference from perturbational single-cell data. The performance displayed
by the winning methods at CBC2023 surpassed the previous state of the art methods, indicating that
the machine learning community is making strides toward better leveraging interventional data for
inferring gene interaction networks. This represents a significant milestone in our collective journey
to better understand gene interactions and potentially develop new genetically-informed drugs.

Furthermore, we strongly believe that the insights from this challenge do not only apply to the
gene network domain, but also hold important lessons for causal inference at large. We envision
that the proposed methods will inspire the causality community to develop new causal discovery
methods that have higher chances to translate to real-world impact. The progress achieved thus
far serves as a testament to the potential of the field and should serve as motivation to continue
pushing the boundaries of what we can achieve with modern causal machine learning methods in
genomics. Moving forward, we hope that the CausalBench Challenge and the results it has yielded
will continue to inspire research in this area, with the ultimate aim of accelerating the discovery and
development of much-needed medicines.
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Krüger, Berend Snel, and Peer Bork. String 7—recent developments in the integration and pre-
diction of protein interactions. Nucleic acids research, 35(suppl 1):D358–D362, 2007.

Alexander P Wu, Thomas Markovich, Bonnie Berger, Nils Hammerla, and Rohit Singh.
Causally-guided regularization of graph attention improves generalizability. arXiv preprint
arXiv:2210.10946, 2022.

Karren Yang, Abigail Katcoff, and Caroline Uhler. Characterizing and learning equivalence classes
of causal dags under interventions. In International Conference on Machine Learning, pages
5541–5550. PMLR, 2018.

Jing Yu, V Anne Smith, Paul P Wang, Alexander J Hartemink, and Erich D Jarvis. Advances to
bayesian network inference for generating causal networks from observational biological data.
Bioinformatics, 20(18):3594–3603, 2004.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. DAGs with NO TEARS: Con-
tinuous Optimization for Structure Learning. In Advances in Neural Information Processing
Systems, 2018.

Appendix A. Challenge design

The primary task of this challenge revolved around the optimization of models and algorithms for in-
terventional data, specifically in the context of gene-gene interactions. The emergence of advanced,
high-throughput techniques to measure genetic perturbation responses at the single-cell level has
offered a powerful way to generate evidence for causal gene-gene interactions at scale. Directed
graphs, inferred through causal graph methods, can help depict these interactions in a cell-specific
manner. They make use of the interventional aspect of perturbed single-cell data, shedding light on
disease-relevant molecular targets.

The challenge thus invited the machine-learning community to devise innovative methods for
graph inference. The primary goal was to optimize the usage of interventional data. This chal-
lenge is driven by the startling observation in the CausalBench benchmark (Chevalley et al., 2022)
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that existing methods do not significantly benefit from larger pools of interventional data. In fact,
interventional methods do not outperform observational as well as non-causal methods.

The challenge was based on the benchmark framework of CausalBench (Chevalley et al., 2022),
which is a comprehensive benchmark suite for evaluating network inference methods on single-cell
perturbation gene expression data.

To evaluate network inference methods, Chevalley et al. (2022) proposes to compute the empir-
ical Wasserstein distance as a measure of distributional change under the effect of the intervention
on the parent node of each predicted edge in the output graph, then taking the mean over the scores
of all edges. For each edge, gi → gj , let P σ(xgi )(xgj ) be the distribution of the values of node gj
when node gi is perturbed and P ∅(xgj ) be the distribution under no intervention (observational dis-
tribution). The score of this edge is computed as the empirical estimate of the Wasserstein distance
between these distributions using hold-out samples.

As a facilitating starter, the participants were given two possible routes, using distinct baseline
implementations:

• Enhancing GRNBoost (Aibar et al., 2017) to extend its utilization of interventional data.

• Refining the DCDI (Brouillard et al., 2020) method, acknowledged as the most effective
interventional method, to improve its performance.

That said, the submitted methods were not restricted to be derived from the above two baselines,
and participants showed great interest in developing new and innovative methods. We standardized
the data, designed the metrics, and developed the baseline code, enabling participants to concentrate
on the most intriguing aspect of the challenge which was modeling and algorithmic innovation.
Stater code and instructions were provided in the challenge Github repository https://github.
com/causalbench/causalbench-starter.

Submissions were evaluated across different ratios of interventional data (25%, 50%, 75%, and
100%). A model’s final score was calculated as the area under the curve of the mean Wasserstein
distance against the ratio of interventional data. The better the performance in terms of using in-
terventional data, the higher the score. To also test that the methods demonstrated an improvement
in performance given more interventional data, we computed the difference in mean Wasserstein
distance between the 25% and 100% ratios of interventional data. This evaluation was conducted
on the two datasets included in CausalBench, which correspond to two different biological contexts
(cell lines RPE-1 and K562). This thus resulted in four rankings, one per metric per dataset. The
final comprehensive ranking consisted of the average rank across the four rankings for each method.

Appendix B. Challenge tasks and timeline

The challenge took place concurrently with the Machine Learning for Drug Discovery (MLDD)
workshop at ICLR 2023. The winners were announced on the workshop day, providing them an
opportunity to present their solutions.

The challenge was announced on March 1, 2023, and it consisted of two tasks. In the first phase,
participants were given the task of designing and implementing their solutions, with a submission
deadline of mid-April. This gave them roughly a month and a half to develop their solutions. The
second task involved writing a brief report in the format of an extended abstract to elucidate their
solution.
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Participants were required to submit a three-page report, supplemented by up to 10 pages of
references and additional material. This report had to detail their approach thoroughly and it was
to be submitted on the challenge’s OpenReview page at https://openreview.net/group?
id=GSK.ai/2023/CBC.

Each report was reviewed to make sure it is aligned with the guidelines of the challenge before
making them public. The current comprehensive report of the challenge together with the uploaded
detailed report on each submitted method is hoped to support the reproducibility of the results which
we believe is crucial for pushing the boundaries of the current state of the art in graph inference for
gene interaction networks.

Appendix C. Challenge submission system and platform

The challenge submission system front-end was provided by EvalAI, an open-source machine learn-
ing platform built and maintained by CloudCV. For the users, EvalAI provided a user-friendly
overview of the challenge and a place to check the status of their submissions. EvalAI also offered
a useful Python tool that could be used for submitting container images containing entrant code
directly from the command line. CBC specifically leveraged EvalAI’s remote evaluation pipeline,
using EvalAI as the front end but performing the actual analysis on a back-end controlled by orga-
nizers. All submissions were submitted as Docker images directly to EvalAI, which maintained a
repository of container images and a message queue of active submissions throughout the compe-
tition. After a submission passed through EvalAI’s front end, it was then pulled into the specific
CausalBench pipeline that archived and ran the submitted code.

The CBC submission backend was built using Google Cloud Platform services and Slurm, a
traditional high-performance computing orchestrator. After pulling a submission container image
from the EvalAI registry, entrant code was extracted from the submission image, archived in Cloud
Storage, installed into a fresh Python virtual environment, and then run using the scheduler. Upon
completion, the results were collated for analysis and also archived. While initially, the plan was
to run submissions inside containers running on Google Kubernetes Engine (GKE), the large and
sometimes inconsistent memory requirements of some entrant code made a more traditional HPC
environment more suitable for this purpose. This process also preempted the emergence of minor
problems that had been seen in the past, most notably the accidental submission of ARM processor-
based container images rather than more typical x86-based containers. It also allowed for both
reproducibility and easy intervention by the organizers if a particular submission suffered notable
errors.
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