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Abstract

The advancement of Large Language Mod-001
els (LLMs) benefit from fact-checking to miti-002
gate hallucination and parameter-efficient tech-003
niques such as Low-rank adaptations (LoRA) to004
overcome enormous computational overhead.005
While some studies have explored the paral-006
lel integration of multiple LoRAs, these ap-007
proaches need attention to the connections be-008
tween them. This paper investigates methods to009
establish connections among multiple LoRAs010
inspired by the information processing behav-011
ior of the human brain. We create three reason-012
ing datasets tailored to fact-checking and fine-013
tune individual LoRAs, allowing them to view014
and reason from diverse perspectives. Then, we015
explore strategies for allocating these reasoning016
LoRAs and introduce LoraMap, an approach017
to map connections between them. The results018
on the fact-checking task demonstrate the su-019
perior performance of LoraMap over LoraHub,020
an existing LoRA composition method. Lo-021
raMap also achieves higher performance with022
significantly fewer parameters than LoraCon-023
cat, which concatenates LoRAs and further fine-024
tunes them.025

1 Introduction026

With the rapid progress in research leveraging027

Large Language Models (LLMs) such as GPT-4028

(OpenAI, 2023), PaLM (Chowdhery et al., 2023),029

LLaMA (Touvron et al., 2023), and Flan-T5030

(Chung et al., 2022) in various natural language pro-031

cessing tasks, several challenges have also emerged.032

The model can pose a significant risk to reliability033

and trustworthiness due to the issue of generating034

false information, known as hallucination (Ji et al.,035

2023). One way to alleviate this problem is using036

fact-checking to verify LLM outputs or stand-alone037

claims (Gupta et al., 2022; Chamoun et al., 2023).038

As in Figure 1, a fact-checking process classi-039

fies a claim into true, false, or more sophisticated040

labels based on textual evidence such as Wikipedia041

passages, news articles, and other relevant docu- 042

ments (Thorne et al., 2018; Guo et al., 2022). In 043

biomedical and health domains, serious problems 044

can arise when people perceive false information as 045

truth, highlighting the importance of fact-checking. 046

Accordingly, many studies have been explored, re- 047

sulting in the development of datasets: SciFact 048

(Wadden et al., 2020), PubHealth (Kotonya and 049

Toni, 2020), COVID-Fact (Saakyan et al., 2021), 050

and HealthVer (Sarrouti et al., 2021). This paper 051

focuses on the COVID-Fact dataset, which covers 052

fact-checking related to the COVID-19 pandemic. 053

Another challenge is that fine-tuning LLMs 054

requires enormous computational resources and 055

memory. Parameter-efficient fine-tuning tech- 056

niques can address this issue, especially Low-rank 057

adaptations (LoRA) (Hu et al., 2021). Furthermore, 058

some studies have investigated the parallel inte- 059

gration of multiple LoRAs by learning weights 060

for each LoRA and computing the weighted sum 061

(Pfeiffer et al., 2021; Huang et al., 2023). The par- 062

allel linear sum of LoRAs may weaken the pivotal 063

LoRA and overlook the connections between the 064

knowledge embedded in each LoRA. 065

This paper investigates the methods of establish- 066

ing connections among LoRAs to exchange their 067

specialized insights as an alternative to parallel in- 068

tegration. Our main contributions are as follows: 069

• We create three reasoning datasets tailored to 070

fact-checking and fine-tune LoRA for each 071

dataset, allowing them to infer from different 072

perspectives. 073

• We investigate how to connect these reasoning 074

LoRAs and introduce LoraMap, which learns 075

to map their connections. 076

• The results on the COVID-Fact dataset demon- 077

strate that LoraMap exhibits superior perfor- 078

mance than LoraHub, and also slightly out- 079

performs LoraConcat even with significantly 080

fewer parameters. 081
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Fact Checking
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Claim 

Sars-cov-2 triggers inflammatory responses 

and cell death through caspase-8 activation

True (Supported)

False (Refuted)

Evidence

4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. …

Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell 

apoptosis and inflammatory cytokine processing in the lung epithelial cells.
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Figure 1: A fact-checking task classifies a claim as true or false based on the corresponding evidence.

2 Methods082

2.1 Reasoning Dataset Generation083

We hypothesize that identifying contrasting or com-084

mon factors between the claim sentence and its cor-085

responding evidence text can help the fact-checking086

model. Hence, we customize the three reasoning087

tasks for fact-checking: DifferenceCoT, EntityCoT,088

and CorrectClaim.089

DifferenceCoT is a task that generates a text that090

details the contextual differences between091

claim and evidence, such as relation, topic,092

and level of detail.093

EntityCoT is a task that extracts synonymous094

biomedical entities that appear simultaneously095

in the claim sentence and the evidence text.096

CorrectClaim is a task that revises a given claim097

sentence based on the evidence.098

Next, we construct datasets for these three tasks099

as follows. First, we extract 2,550 claim-evidence100

pairs from the COVID-Fact dataset and split them101

into 2,036 training instances, 258 development in-102

stances, and 256 test instances, as indicated in Ta-103

ble 1. The extraction process involves randomly104

selecting two of those claims, one true and the105

other false, for each piece of evidence. For Dif-106

ferenceCoT and EntityCoT, we employ Chain-of-107

Thought (CoT) prompting (Wei et al., 2022) with108

the GPT-4 API to generate output text. On the109

contrary, the CorrectClaim dataset is based on the110

COVID-Fact dataset consisting of evidence and111

its corresponding claims with a veracity label. To112

generate the dataset for CorrectClaim, we extract113

claim-evidence pairs as inputs and assign them to114

a true output claim. The truthfulness of the output115

is guaranteed as follows: if the input claim is true,116

the output is the same as the input, and if the input117

claim is false, the output is a true claim from the118

given evidence. Figure 2 shows an example of in-119

structions to a generative model, an input claim and120

evidence(context), and the generated output text.121

Split True False Total
Train 1,018 1,018 2,036
Dev 129 129 258
Test 128 128 256

Table 1: The statistics of the reasoning datasets Differ-
enceCoT, EntityCoT, and CorrectClaim.

2.2 Fine-tuning Reasoning LoRAs 122

The next step is to fine-tune LoRAs for each task. 123

We use Flan-T5-large1 as the base model and equip 124

the lightweight module LoRA into all transformer 125

attention layers. Specifically, as shown in Figure 2, 126

LoRA operates within the query and value parts of 127

the encoder self-attention, decoder self-attention, 128

and encoder-decoder attention layers. For each 129

task t ∈ {1, 2, 3}, LoRA consists of a weight ma- 130

trix At ∈ Rd×r for down-projection of features 131

to a smaller dimension r, and a weight matrix 132

Bt ∈ Rr×d for up-projection to the original dimen- 133

sion d. By freezing the weights of the base model 134

and training only the weights of LoRA, training re- 135

quires approximately 4M parameters out of 797M 136

parameters. 137

2.3 Connecting Reasoning LoRAs 138

The final step is to investigate methods for allocat- 139

ing and connecting the reasoning LoRAs, namely 140

LoraHub, LoraConcat, and LoraMap. Figure 3 141

illustrates the differences among the methods. 142

LoraHub computes the weighted sum to gener- 143

ate Ât ∈ Rd×r and B̂t ∈ Rr×d. This framework 144

freezes all A and B matrices and learns only the 145

coefficients for each LoRA using a gradient-free 146

approach. Our LoraHub follows the original Lo- 147

raHub setting2 and loads three reasoning LoRAs 148

along with the 20 LoRA modules used by LoraHub. 149

LoraConcat concatenates the matrices At and Bt 150

of the three reasoning LoRAs to produce Acat = 151⊕3
t=1At ∈ Rd×3r and Bcat =

⊕3
t=1Bt ∈ R3r×d, 152

1https://huggingface.co/google/Flan-T5-large
2https://github.com/sail-sg/lorahub

2
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Instructions:

Claim: Sars-cov-2 supress inflammatory responses and cell death through caspase-8 activation.

Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8 activation to mediate pro-IL-1β processing. 2 SARS-CoV-2 

infection induces caspase-8 activation Fig. SARS-CoV-2 infection induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to 

trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.

DifferenceCoT
The claim and the context both discuss the role of 

caspase-8 activation in SARS-CoV-2 infection, but 

they present different perspectives. … Therefore, 

while both the claim and context agree on the 

involvement of caspase-8 in SARS-CoV-2 infection, 

they differ on whether this leads to suppression or 

induction of cell death and inflammation.

Encoder Decoder
A

B

A

B

EntityCoT
The Claim and Context sentences both mention the 

biomedical entities "Sars-cov-2", "inflammatory 

responses", "cell death", and "caspase-8 activation". 

… 

{'Claim': ['Sars-cov-2', 'inflammatory responses', 

'cell death', 'caspase-8 activation'],

'Context': ['SARS-CoV-2 infection', 'inflammatory 

cytokine processing', 'cell apoptosis', 'caspase-8 

activation']}

CorrectClaim
Sars-cov-2 triggers 

inflammatory responses 

and cell death through 

caspase-8 activation.

Pretrained 
Weights

𝑊 ∈ ℝ𝑑×𝑑
A ∈ ℝ𝑑×𝑟

B ∈ ℝ𝑟×𝑑

𝑟

𝑑

𝑥

ℎ = 𝑊𝑥 +
𝛼

𝑟
𝐵𝐴𝑥

(𝑊: query, value attention weight

𝑟 = 16, 𝛼 = 32)

DifferenceCoT

- Explain the difference between the Claim 

sentence and Context in one paragraph.

- Let’s think step by step.

EntityCoT

- Extract biomedical entities which are mentioned in both Claim and Context sentences and are synonymous.

- Output with the following format. {‘Claim’: [entity list], ‘Context’: [entity list]}

- Let’s think step by step and explain in one paragraph.

CorrectClaim

- Revise the Claim sentence 

by referring to the Context.

LoRA

Figure 2: The LoRA exists in the query and value parts of all transformer attention layers and consists of A and B
weight matrices. See Appendix B for the full generated output text.
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DifferenceCoT

𝐴1

𝐵1

EntityCoT

𝐴2

𝐵2

CorrectClaim

𝐴3

𝐵3

𝑩𝒄𝒂𝒕

𝑨𝒄𝒂𝒕

LoraConcat

෡𝑩

෡𝑨

LoraHub

𝑩𝒄𝒂𝒕

𝑨𝒄𝒂𝒕

LoraMap

𝑨𝒎𝒂𝒑

𝑩𝒎𝒂𝒑

3. Models

2) LoraConcat

3) LoraMap

෡𝑨 = 𝑤1𝐴1+𝑤2𝐴2+𝑤3𝐴3 ∈ ℝ𝑑×𝑟

෡𝑩 = 𝑤1𝐵1+𝑤2𝐵2+𝑤3𝐵3 ∈ ℝ𝑟×𝑑

𝑨𝒄𝒂𝒕 = [𝐴1; 𝐴2; 𝐴3] ∈ ℝ𝑑×3𝑟

𝑩𝒄𝒂𝒕 = [𝐵1; 𝐵2; 𝐵3] ∈ ℝ3𝑟×𝑑

𝑨𝒎𝒂𝒑 ∈ ℝ3𝑟×𝑟

𝑩𝒎𝒂𝒑 ∈ ℝ𝑟×3𝑟

Figure 3: The comparison of LoraHub, LoraConcat, and
LoraMap. Dark purple indicates trainable weights and
light purple represents fixed weights.

respectively. We then fine-tune the Acat and Bcat153

matrices targeting the COVID-Fact dataset. Lo-154

raMap not only concatenates the three reasoning155

LoRAs into Acat and Bcat but also insert the train-156

able matrices Amap ∈ R3r×r and Bmap ∈ Rr×3r157

between them. LoraMap freezes LoRAs that main-158

tain specialized reasoning capabilities and learns159

the connection maps between them by fine-tuning160

only Amap and Bmap. We intend to establish con-161

nections between multiple LoRAs directly by Lo-162

raConcat and indirectly by LoraMap.163

3 Experimental Results164

3.1 Reasoning LoRAs165

We independently finetune DifferenceCoT LoRA,166

EntityCoT LoRA, and CorrectClaim LoRA in-167

serted in the Flan-T5-large model. Table 2 shows168

the results of three reasoning LoRAs using BLEU169

(Papineni et al., 2002), ROUGE (Lin, 2004; Lin 170

and Och, 2004), and METEOR (Banerjee and 171

Lavie, 2005) scores as lexical overlap-based met- 172

rics, and BERTscore (Zhang et al., 2019) with the 173

Longformer-base model (Beltagy et al., 2020) as 174

semantic embedding-based metrics. In the zero- 175

shot setting, the base model performs reasoning 176

tasks without fine-tuning, resulting in poor scores. 177

Fine-tuning LoRA on each reasoning dataset sig- 178

nificantly increases the scores of all metrics. Re- 179

vising a claim is easier than capturing differences 180

or identifying synonymous entities, so the Correct- 181

Claim scores are considerably higher than other 182

tasks. When fine-tuning the three reasoning Lo- 183

RAs, the experimental settings are identical, with 184

a fixed seed 42 to ensure reproducibility. See Ap- 185

pendix A for details. 186

3.2 Connecting LoRAs for Fact-checking 187

We conduct experiments integrating multiple rea- 188

soning LoRAs on the COVID-Fact dataset. Given 189

the prompt “What is the class of the Claim by re- 190

ferring to the Context? Choose only from TRUE or 191

FALSE.” with claim and context, the output should 192

be “The claim is TRUE/FALSE”. 193

Table 3 presents the performance on the COVID- 194

Fact test dataset, including macro-precision, macro- 195

recall, and macro-f1 scores. In the zero-shot set- 196

ting, using the GPT-4 API with Chain-of-Thought 197

prompting yields an f1 score of 0.6959, indicating 198

modest performance, and Flan-T5-large predomi- 199

nantly predicted TRUE with an f1 score of 0.5453. 200
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Base
model

Reasoning
LoRA Setting BLEU ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum METEOR BERTscore

Flan-T5-
large

DifferenceCoT
Zero-shot 0.0023 0.2173 0.1326 0.1815 0.2011 0.1047 0.8563

LoRA finetuning 0.3588 0.6676 0.4206 0.5045 0.6310 0.5255 0.9275

EntityCoT
Zero-shot 0 0.0539 0.0201 0.0533 0.0526 0.0289 0.7997

LoRA finetuning 0.3885 0.6755 0.4533 0.5548 0.6397 0.5969 0.9240

CorrectClaim
Zero-shot 0.3636 0.6839 0.5714 0.6618 0.6636 0.6591 0.9349

LoRA finetuning 0.9257 0.9722 0.9437 0.9721 0.9721 0.9682 0.9944

Table 2: The evaluation results on three reasoning test datasets. The bold text represents the best result.

Model Reasoning LoRA Fact-checking setting # Training instances Macro-precision Macro-recall Macro-f1
GPT-4 — — 0 0.7426 0.7070 0.6959

Flan-T5-large

— — 0 0.7819 0.6133 0.5453

base20 + DifferenceCoT +
EntityCoT + ClaimCorrection

LoraHub
50 0.6833 0.6797 0.6781
200 0.6833 0.6797 0.6781

2,036* 0.6667 0.6562 0.6508
DifferenceCoT +

EntityCoT +
ClaimCorrection

LoraConcat (14M)
100 0.7970 0.7930 0.7923

1,000 0.8362 0.8125 0.8091
2,036* 0.8417 0.8203 0.8175

DifferenceCoT +
EntityCoT +

ClaimCorrection
LoraMap (0.22M)

100 0.7179 0.6328 0.5931
1,000 0.8347 0.8281 0.8273
2,036* 0.8347 0.8281 0.8273

Table 3: The evaluation results on the COVID-Fact test dataset. In the fact-checking settings, the value in parenthesis
indicates the number of trainable parameters. The bold text represents the best result.
* is the size of all the training data.

The key result is a comparison of multiple Lo-201

RAs connecting methods: LoraHub, LoraConcat,202

and LoraMap. We experiment with various train-203

ing instances, and Table 3 presents the best result204

among 10-shot, 20-shot, 50-shot, and 100-shot, the205

best result among 200-shot, 500-shot, and 1000-206

shot, and the result when using the entire dataset.207

LoraHub achieves the highest f1-score of 0.6781 at208

50-shot and 200-shot, and its performance does209

not increase as the number of training data in-210

creases. Although training LoraHub with less than211

100 examples is feasible, performance is poor in212

these settings. In contrast, LoraConcat and Lo-213

raMap generally demonstrate improved f1-scores214

as training instances increase. Notably, LoraCon-215

cat yields the best f1-score of 0.8175 when using216

all instances, and LoraMap achieves the highest217

f1-score of 0.8273 when using 1000-shot and all218

examples. Comparing LoraConcat and LoraMap,219

the scores are very similar, but LoraMap exhibits220

marginally superior performance with significantly221

fewer parameters (0.22M) than LoraConcat (14M).222

4 Discussion223

The experimental findings highlight the signifi-224

cance of the connection and allocation strategies225

of multiple reasoning LoRAs. After learning with226

the COVID-Fact dataset, LoraHub shows coeffi-227

cients, which is the impact of each LoRA module.228

The coefficients for the three reasoning LoRAs are229

all close to 0.5, four out of the 20 base modules 230

also exhibiting 0.5, mostly trained for question- 231

answering tasks, and the remaining 16 show values 232

close to zero or negative. The coefficients confirm 233

that our reasoning LoRAs play an important role 234

in fact-checking. 235

LoraConcat may lose reasoning capability as the 236

concatenated LoRA matrices undergo further fine- 237

tuning. To address this, we design LoraMap, which 238

preserves these matrices in their original states and 239

learns only the connection mappings among Lo- 240

RAs to facilitate decision-making from diverse rea- 241

soning perspectives. This approach is inspired by 242

the way the human brain processes information. As 243

each brain region possesses different knowledge 244

and functionalities, establishing interconnections 245

among them would be important. 246

5 Conclusion 247

This paper investigates methods to establish con- 248

nections among multiple reasoning LoRAs. We 249

generate three reasoning datasets and fine-tune in- 250

dividual LoRAs to enable inference from different 251

perspectives. Subsequently, we introduce LoraMap, 252

an approach to learning the connection map be- 253

tween them. Our LoraMap outperforms LoraHub 254

and LoraConcat, even with significantly fewer pa- 255

rameters. We anticipate that this paper will pave 256

the way for novel approaches in mapping and de- 257

signing connections among LoRAs. 258
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6 Limitations259

For each piece of evidence, there are true and false260

claims in the COVID-Fact dataset, so we automati-261

cally generate the CorrectClaim dataset. However,262

to apply this to other fact-checking datasets, re-263

searchers should consider the CoT prompting with264

GPT-4, similar to DifferenceCoT and EntityCoT.265

Additionally, it is essential to establish a method266

for assessing the quality of GPT-4 reasoning. Our267

model is not suitable for cases where only claims268

are present without evidence. In this case, appro-269

priate evidence should be searched and provided.270

Making integrated judgments regarding multiple271

pieces of evidence is also impossible. Finally, ex-272

amining LoraConcat and LoraMap on various open-273

source LLMs and other fact-checking datasets in274

the biomedical and health domains is necessary.275
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A Experimental Details 437

A.1 Details of Fine-tuning Reasoning LoRAs 438

When fine-tuning the three reasoning LoRAs, the 439

experimental settings are identical, with a fixed 440

seed 42 to ensure reproducibility. The maximum 441

source length of the base model is set to 1200, and 442

the maximum target length is constrained to 512. 443

The LoRA rank parameter is configured to 16, with 444

α set to 32. Throughout the 20 epochs of train- 445

ing, we employ early stopping with the patience of 446

3, selecting the epoch yielding the best ROUGE- 447

Lsum score on the development set. The learning 448

rate is 1e − 3, and we utilize the adafactor opti- 449

mizer coupled with a cosine scheduler. Our setup 450

involves two RTX 3090 GPUs, with a batch size 451

per device of 1 and a gradient accumulation step 452

of 8. Training takes 6 hours and 50 minutes for 453

DifferenceCoT, 8 hours and 8 minutes for Entity- 454

CoT, and 3 hours and 46 minutes for CorrectClaim. 455

Inferencing on the test dataset requires 28 minutes 456

for DifferenceCoT, 29 minutes for EntityCoT and 457

4 minutes for CorrectClaim. CorrectClaim has a 458

shorter output than other tasks, taking less time. 459

A.2 Details of Fine-tuning for Fact-checking 460

The experimental settings of fine-tuning LoraCon- 461

cat and LoraMap on COVID-Fact are identical to 462

that of fine-tuning the reasoning LoRAs, except 463

that the gradient accumulation step is set to 4. Lo- 464

raHub demonstrates faster training times, about 2 465

minutes for 50-shot and 1 hour and 44 minutes 466

for using all the training dataset. However, its per- 467

formance needs to catch up to that of LoraCon- 468

cat, which requires 5 hours and 7 minutes, and 469

LoraMap, which takes 4 hours and 14 minutes. In- 470

ferencing on the COVID-Fact test dataset takes less 471

than 1 minute for LoraHub and less than 2 minutes 472

for LoraConcat and LoraMap. 473

B Examples of datasets 474

Figure 4, 5, and 6 show an example of Differ- 475

enceCoT, EntityCoT, and CorrectClaim, respec- 476
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Fact Checking 4

DifferenceCoT

Instructions:

- Explain the difference between the Claim sentence and Context in one paragraph.

- Let’s think step by step.

Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.

Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8 

activation to mediate pro-IL-1β processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection 

induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to 

trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.

Explanation: 

generate reasoning dataset using GPT-4

The claim and the context both discuss the role of caspase-8 activation in SARS-CoV-2 infection, but they present different 

perspectives. The claim suggests that SARS-CoV-2 suppresses inflammatory responses and cell death through caspase-8 

activation. This implies that the virus uses caspase-8 activation as a mechanism to inhibit the body's immune response and prevent 

cell death, potentially aiding its survival and propagation. On the other hand, the context provides information that SARS-CoV-2

infection triggers apoptosis (cell death) and inflammatory cytokine processing through caspase-8 activation. This suggests that the 

virus's interaction with caspase-8 leads to cell death and inflammation, which are typical responses of the body's immune system

to infection. Therefore, while both the claim and context agree on the involvement of caspase-8 in SARS-CoV-2 infection, they 

differ on whether this leads to suppression or induction of cell death and inflammation.

Figure 4: An example of DifferenceCoT dataset.

tively. Figure 7 shows an example of fact-checking477

prompt when using zero-shot CoT with GPT-4478

API. Figure 8 shows an example of fact-checking479

dataset for fine-tuning Flan-T5 model.480
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Fact Checking 5

EntityCoT

Instructions:

- Extract biomedical entities which are mentioned in both Claim and Context sentences and are synonymous.

- Output with the following format.

{‘Claim’: [entity list], ‘Context’: [entity list]}

- Let’s think step by step and explain in one paragraph.

Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.

Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8 

activation to mediate pro-IL-1β processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection 

induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to 

trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.

Explanation: 

The Claim and Context sentences both mention the biomedical entities "Sars-cov-2", "inflammatory responses", "cell death", and 

"caspase-8 activation". In the context, "SARS-CoV-2 infection" is synonymous with "Sars-cov-2" from the claim. Similarly, "cell 

apoptosis" and "cell death" are synonymous terms. "Inflammatory cytokine processing" and "inflammatory responses" are also 

synonymous. Lastly, "caspase-8 activation" is mentioned in both sentences with the same meaning. Therefore, the extracted 

entities are "Sars-cov-2", "inflammatory responses", "cell death", and "caspase-8 activation".

The output in json format would be:

{

'Claim': ['Sars-cov-2', 'inflammatory responses', 'cell death', 'caspase-8 activation'],

'Context': ['SARS-CoV-2 infection', 'inflammatory cytokine processing', 'cell apoptosis', 'caspase-8 activation']

}

generate reasoning dataset using GPT-4

Figure 5: An example of EntityCoT dataset.

Fact Checking 7

CorrectClaim

Instructions:

- Revise the Claim sentence by referring to the Context. 

Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.

Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8 

activation to mediate pro-IL-1β processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection 

induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to 

trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.

Revised Claim: 

Sars-cov-2 triggers inflammatory responses and cell death through caspase-8 activation.

generate reasoning dataset using GPT-4

Figure 6: An example of CorrectClaim dataset.

Fact Checking 7

Fact-checking using GPT-4 (zero-shot CoT)

Instructions:

You are a helpful assistant with biomedical expertise. 

Instructions: 

- Classify the Claim sentence only as 'TRUE' or 'FALSE' by referring to the Context. \

- Let's think step by step to explain why in one paragraph.

Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.

Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8 

activation to mediate pro-IL-1β processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection 

induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to 

trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.

Explanation: 

The claim that Sars-cov-2 triggers inflammatory responses and cell death through caspase-8 activation is TRUE. The context 

provided clearly states that SARS-CoV-2 infection activates caspase-8, which in turn triggers cell apoptosis (cell death) and 

inflammatory cytokine processing in lung epithelial cells. The context also mentions that SARS-CoV-2 infection induces pro-IL-

1β processing, which is a part of the inflammatory response. Therefore, the claim is consistent with the information provided in

the context.

Figure 7: An example of fact-checking prompt when using zero-shot CoT with GPT-4.
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Fact Checking 8

Fact-checking using Flan-T5

What is the class of the Claim by referring to the Context? Choose only 

from 'TRUE' or 'FALSE'.

Claim: Sars-cov-2 suppress inflammatory responses and cell death 

through caspase-8 activation.

Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 

activation. 2 SARS-CoV-2 infection induces caspase-8 activation to 

mediate pro-IL-1β processing. 2 SARS-CoV-2 infection induces caspase-

8 activation Fig. SARS-CoV-2 infection induces the cell death through 

the activation of caspase-8. Here we report that SARS-CoV-2 infection 

activates caspase-8 to trigger cell apoptosis and inflammatory cytokine 

processing in the lung epithelial cells.

The claim is TRUE.

Figure 8: An example of fact-checking dataset for fine-tuning Flan-T5 model.
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