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Abstract

The advancement of Large Language Mod-
els (LLMs) benefit from fact-checking to miti-
gate hallucination and parameter-efficient tech-
niques such as Low-rank adaptations (LoRA) to
overcome enormous computational overhead.
While some studies have explored the paral-
lel integration of multiple LoRAs, these ap-
proaches need attention to the connections be-
tween them. This paper investigates methods to
establish connections among multiple LoRAs
inspired by the information processing behav-
ior of the human brain. We create three reason-
ing datasets tailored to fact-checking and fine-
tune individual LoRAs, allowing them to view
and reason from diverse perspectives. Then, we
explore strategies for allocating these reasoning
LoRAs and introduce LoraMap, an approach
to map connections between them. The results
on the fact-checking task demonstrate the su-
perior performance of LoraMap over LoraHub,
an existing LoRA composition method. Lo-
raMap also achieves higher performance with
significantly fewer parameters than LoraCon-
cat, which concatenates LoRAs and further fine-
tunes them.

1 Introduction

With the rapid progress in research leveraging
Large Language Models (LLMs) such as GPT-4
(OpenAl, 2023), PaLLM (Chowdhery et al., 2023),
LLaMA (Touvron et al., 2023), and Flan-T5
(Chung et al., 2022) in various natural language pro-
cessing tasks, several challenges have also emerged.
The model can pose a significant risk to reliability
and trustworthiness due to the issue of generating
false information, known as hallucination (Ji et al.,
2023). One way to alleviate this problem is using
fact-checking to verify LLM outputs or stand-alone
claims (Gupta et al., 2022; Chamoun et al., 2023).

As in Figure 1, a fact-checking process classi-
fies a claim into true, false, or more sophisticated
labels based on textual evidence such as Wikipedia

passages, news articles, and other relevant docu-
ments (Thorne et al., 2018; Guo et al., 2022). In
biomedical and health domains, serious problems
can arise when people perceive false information as
truth, highlighting the importance of fact-checking.
Accordingly, many studies have been explored, re-
sulting in the development of datasets: SciFact
(Wadden et al., 2020), PubHealth (Kotonya and
Toni, 2020), COVID-Fact (Saakyan et al., 2021),
and HealthVer (Sarrouti et al., 2021). This paper
focuses on the COVID-Fact dataset, which covers
fact-checking related to the COVID-19 pandemic.

Another challenge is that fine-tuning LLMs
requires enormous computational resources and
memory. Parameter-efficient fine-tuning tech-
niques can address this issue, especially Low-rank
adaptations (LoRA) (Hu et al., 2021). Furthermore,
some studies have investigated the parallel inte-
gration of multiple LoRAs by learning weights
for each LoRA and computing the weighted sum
(Pfeiffer et al., 2021; Huang et al., 2023). The par-
allel linear sum of LoRAs may weaken the pivotal
LoRA and overlook the connections between the
knowledge embedded in each LoRA.

This paper investigates the methods of establish-
ing connections among LoRAs to exchange their
specialized insights as an alternative to parallel in-
tegration. Our main contributions are as follows:

* We create three reasoning datasets tailored to
fact-checking and fine-tune LoRA for each
dataset, allowing them to infer from different
perspectives.

* We investigate how to connect these reasoning
LoRAs and introduce LoraMap, which learns
to map their connections.

* The results on the COVID-Fact dataset demon-
strate that LoraMap exhibits superior perfor-
mance than LoraHub, and also slightly out-
performs LoraConcat even with significantly
fewer parameters.
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4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. ...
Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell
apoptosis and inflammatory cytokine processing in the lung epithelial cells.

Figure 1: A fact-checking task classifies a claim as true or false based on the corresponding evidence.
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2 Methods

2.1 Reasoning Dataset Generation

We hypothesize that identifying contrasting or com-
mon factors between the claim sentence and its cor-
responding evidence text can help the fact-checking
model. Hence, we customize the three reasoning
tasks for fact-checking: DifferenceCoT, EntityCoT,
and CorrectClaim.

DifferenceCoT is a task that generates a text that
details the contextual differences between
claim and evidence, such as relation, topic,
and level of detail.

EntityCoT is a task that extracts synonymous
biomedical entities that appear simultaneously
in the claim sentence and the evidence text.

CorrectClaim is a task that revises a given claim
sentence based on the evidence.

Next, we construct datasets for these three tasks
as follows. First, we extract 2,550 claim-evidence
pairs from the COVID-Fact dataset and split them
into 2,036 training instances, 258 development in-
stances, and 256 test instances, as indicated in Ta-
ble 1. The extraction process involves randomly
selecting two of those claims, one true and the
other false, for each piece of evidence. For Dif-
ferenceCoT and EntityCoT, we employ Chain-of-
Thought (CoT) prompting (Wei et al., 2022) with
the GPT-4 API to generate output text. On the
contrary, the CorrectClaim dataset is based on the
COVID-Fact dataset consisting of evidence and
its corresponding claims with a veracity label. To
generate the dataset for CorrectClaim, we extract
claim-evidence pairs as inputs and assign them to
a true output claim. The truthfulness of the output
is guaranteed as follows: if the input claim is true,
the output is the same as the input, and if the input
claim is false, the output is a true claim from the
given evidence. Figure 2 shows an example of in-
structions to a generative model, an input claim and
evidence(context), and the generated output text.

Split

Train 1,018 1,018 2,036
Dev 129 129 258
Test 128 128 256

Table 1: The statistics of the reasoning datasets Differ-
enceCoT, EntityCoT, and CorrectClaim.

2.2 Fine-tuning Reasoning LoRAs

The next step is to fine-tune LoRAs for each task.
We use Flan-T5-large! as the base model and equip
the lightweight module LoRA into all transformer
attention layers. Specifically, as shown in Figure 2,
LoRA operates within the query and value parts of
the encoder self-attention, decoder self-attention,
and encoder-decoder attention layers. For each
task t € {1,2,3}, LoRA consists of a weight ma-
trix A; € R for down-projection of features
to a smaller dimension r, and a weight matrix
B; € R4 for up-projection to the original dimen-
sion d. By freezing the weights of the base model
and training only the weights of LoRA, training re-
quires approximately 4M parameters out of 797M
parameters.

2.3 Connecting Reasoning LoRAs

The final step is to investigate methods for allocat-
ing and connecting the reasoning LoRAs, namely
LoraHub, LoraConcat, and LoraMap. Figure 3
illustrates the differences among the methods.
LoraHub computes the weighted sum to gener-
ate A, € R¥" and B, € R"™*4, This framework
freezes all A and B matrices and learns only the
coefficients for each LoRA using a gradient-free
approach. Our LoraHub follows the original Lo-
raHub setting? and loads three reasoning LoRAs
along with the 20 LoRA modules used by LoraHub.
LoraConcat concatenates the matrices A; and B;
of the three reasoning LoRAs to produce A, =
@> | A € R and By = @), By € R¥*4,

1https: //huggingface.co/google/Flan-T5-1arge
2https://github.com/sail-sg/lorahub
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Instructions:

DifferenceCoT

- Explain the difference between the Claim
sentence and Context in one paragraph.

- Let’s think step by step.

EntityCoT

- Extract biomedical entities which are mentioned in both Claim and Context sentences and are synonymous.
- Output with the following format. {‘Claim’: [entity list], ‘Context’: [entity list]}
- Let’s think step by step and explain in one paragraph.

CorrectClaim
- Revise the Claim sentence
by referring to the Context.

Claim: Sars-cov-2 supress inflammatory responses and cell death through caspase-8 activation.

trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.

Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8 activation to mediate pro-1L-1f processing. 2 SARS-CoV-2
infection induces caspase-8 activation Fig. SARS-CoV-2 infection induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to

Figure 2: The LoRA exists in the query and value parts of all transformer attention layers and consists of A and B
weight matrices. See Appendix B for the full generated output text.
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Figure 3: The comparison of LoraHub, LoraConcat, and
LoraMap. Dark purple indicates trainable weights and
light purple represents fixed weights.

= Wy B +w, B, +w;3B; € R"™*¢ B4 = [By; By; B3] € R3¢

respectively. We then fine-tune the A, and By
matrices targeting the COVID-Fact dataset. Lo-
raMap not only concatenates the three reasoning
LoRAs into A, and B,,; but also insert the train-
able matrices Aqp € R3™" and Binap € R7*3r
between them. LoraMap freezes LoRAs that main-
tain specialized reasoning capabilities and learns
the connection maps between them by fine-tuning
only Ayqp and By,qp. We intend to establish con-
nections between multiple LoRAs directly by Lo-
raConcat and indirectly by LoraMap.

3 Experimental Results

3.1 Reasoning LoRAs

We independently finetune DifferenceCoT LoRA,
EntityCoT LoRA, and CorrectClaim LoRA in-
serted in the Flan-T5-large model. Table 2 shows
the results of three reasoning LoRAs using BLEU

(Papineni et al., 2002), ROUGE (Lin, 2004; Lin
and Och, 2004), and METEOR (Banerjee and
Lavie, 2005) scores as lexical overlap-based met-
rics, and BERTscore (Zhang et al., 2019) with the
Longformer-base model (Beltagy et al., 2020) as
semantic embedding-based metrics. In the zero-
shot setting, the base model performs reasoning
tasks without fine-tuning, resulting in poor scores.
Fine-tuning LoRA on each reasoning dataset sig-
nificantly increases the scores of all metrics. Re-
vising a claim is easier than capturing differences
or identifying synonymous entities, so the Correct-
Claim scores are considerably higher than other
tasks. When fine-tuning the three reasoning Lo-
RAs, the experimental settings are identical, with
a fixed seed 42 to ensure reproducibility. See Ap-
pendix A for details.

3.2 Connecting LoRAs for Fact-checking

We conduct experiments integrating multiple rea-
soning LoRAs on the COVID-Fact dataset. Given
the prompt “What is the class of the Claim by re-
ferring to the Context? Choose only from TRUE or
FALSE.” with claim and context, the output should
be “The claim is TRUE/FALSE”.

Table 3 presents the performance on the COVID-
Fact test dataset, including macro-precision, macro-
recall, and macro-f1 scores. In the zero-shot set-
ting, using the GPT-4 API with Chain-of-Thought
prompting yields an f1 score of 0.6959, indicating
modest performance, and Flan-T5-large predomi-
nantly predicted TRUE with an f1 score of 0.5453.



Base Reasoning Setting BLEU ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum METEOR BERTscore
model LoRA

DifferenceCaT ___Zeroshot 00023 02173 0.1326 0.1815 0.2011 0.1047 0.8563
LoRA finetuning_ 0.3588 __ 0.6676 0.4206 0.5045 0.6310 0.5255 0.9275
Flan-Ts- — Zero-shot 0 0.0539 0.0201 0.0533 0.0526 0.0289 0.7997
large Y LoRA finetuning  0.3885 __ 0.6755 0.4533 0.5548 0.6397 0.5969 0.9240
. Zeroshot  0.3636  0.6839 05714 0.6618 0.6636 0.6591 0.9349

CorrectClaim -
LoRA finetuning  0.9257 _ 0.9722 0.9437 0.9721 0.9721 0.9682 0.9944

Table 2: The evaluation results on three reasoning test datasets. The bold text represents the best result.

Model Reasoning LoRA Fact-checking setting # Training instances Macro-precision Macro-recall Macro-fl
GPT-4 — — 0 0.7426 0.7070 0.6959
— — 0 0.7819 0.6133 0.5453
. 50 0.6833 0.6797 0.6781
E:z:‘;éoo; DifferenceCot + LoraHub 200 0.6833 0.6797  0.6781
2,036* 0.6667 0.6562 0.6508
Flan-T5-large Diﬁ‘er.enceCoT + 100 0.7970 0.7930 0.7923
EntityCoT + LoraConcat (14M) 1,000 0.8362 0.8125 0.8091
ClaimCorrection 2,036* 0.8417 0.8203 0.8175
DifferenceCoT + 100 0.7179 0.6328 0.5931
EntityCoT + LoraMap (0.22M) 1,000 0.8347 0.8281 0.8273
ClaimCorrection 2,036* 0.8347 0.8281 0.8273

Table 3: The evaluation results on the COVID-Fact test dataset. In the fact-checking settings, the value in parenthesis
indicates the number of trainable parameters. The bold text represents the best result.

* is the size of all the training data.

The key result is a comparison of multiple Lo-
RAs connecting methods: LoraHub, LoraConcat,
and LoraMap. We experiment with various train-
ing instances, and Table 3 presents the best result
among 10-shot, 20-shot, 50-shot, and 100-shot, the
best result among 200-shot, 500-shot, and 1000-
shot, and the result when using the entire dataset.
LoraHub achieves the highest f1-score of 0.6781 at
50-shot and 200-shot, and its performance does
not increase as the number of training data in-
creases. Although training LoraHub with less than
100 examples is feasible, performance is poor in
these settings. In contrast, LoraConcat and Lo-
raMap generally demonstrate improved f1-scores
as training instances increase. Notably, LoraCon-
cat yields the best f1-score of 0.8175 when using
all instances, and LoraMap achieves the highest
fl-score of 0.8273 when using 1000-shot and all
examples. Comparing LoraConcat and LoraMap,
the scores are very similar, but LoraMap exhibits
marginally superior performance with significantly
fewer parameters (0.22M) than LoraConcat (14M).

4 Discussion

The experimental findings highlight the signifi-
cance of the connection and allocation strategies
of multiple reasoning LoRAs. After learning with
the COVID-Fact dataset, LoraHub shows coeffi-
cients, which is the impact of each LoRA module.
The coefficients for the three reasoning LoRAs are

all close to 0.5, four out of the 20 base modules
also exhibiting 0.5, mostly trained for question-
answering tasks, and the remaining 16 show values
close to zero or negative. The coefficients confirm
that our reasoning LoRAs play an important role
in fact-checking.

LoraConcat may lose reasoning capability as the
concatenated LoRA matrices undergo further fine-
tuning. To address this, we design LoraMap, which
preserves these matrices in their original states and
learns only the connection mappings among Lo-
RAs to facilitate decision-making from diverse rea-
soning perspectives. This approach is inspired by
the way the human brain processes information. As
each brain region possesses different knowledge
and functionalities, establishing interconnections
among them would be important.

5 Conclusion

This paper investigates methods to establish con-
nections among multiple reasoning LoRAs. We
generate three reasoning datasets and fine-tune in-
dividual LoRAs to enable inference from different
perspectives. Subsequently, we introduce LoraMap,
an approach to learning the connection map be-
tween them. Our LoraMap outperforms LoraHub
and LoraConcat, even with significantly fewer pa-
rameters. We anticipate that this paper will pave
the way for novel approaches in mapping and de-
signing connections among LoRAs.



6 Limitations

For each piece of evidence, there are true and false
claims in the COVID-Fact dataset, so we automati-
cally generate the CorrectClaim dataset. However,
to apply this to other fact-checking datasets, re-
searchers should consider the CoT prompting with
GPT-4, similar to DifferenceCoT and EntityCoT.
Additionally, it is essential to establish a method
for assessing the quality of GPT-4 reasoning. Our
model is not suitable for cases where only claims
are present without evidence. In this case, appro-
priate evidence should be searched and provided.
Making integrated judgments regarding multiple
pieces of evidence is also impossible. Finally, ex-
amining LoraConcat and LoraMap on various open-
source LLMs and other fact-checking datasets in
the biomedical and health domains is necessary.
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A Experimental Details

A.1 Details of Fine-tuning Reasoning LoRAs

When fine-tuning the three reasoning LoRAs, the
experimental settings are identical, with a fixed
seed 42 to ensure reproducibility. The maximum
source length of the base model is set to 1200, and
the maximum target length is constrained to 512.
The LoRA rank parameter is configured to 16, with
a set to 32. Throughout the 20 epochs of train-
ing, we employ early stopping with the patience of
3, selecting the epoch yielding the best ROUGE-
Lsum score on the development set. The learning
rate is le — 3, and we utilize the adafactor opti-
mizer coupled with a cosine scheduler. Our setup
involves two RTX 3090 GPUs, with a batch size
per device of 1 and a gradient accumulation step
of 8. Training takes 6 hours and 50 minutes for
DifferenceCoT, 8 hours and 8 minutes for Entity-
CoT, and 3 hours and 46 minutes for CorrectClaim.
Inferencing on the test dataset requires 28 minutes
for DifferenceCoT, 29 minutes for EntityCoT and
4 minutes for CorrectClaim. CorrectClaim has a
shorter output than other tasks, taking less time.

A.2 Details of Fine-tuning for Fact-checking

The experimental settings of fine-tuning LoraCon-
cat and LoraMap on COVID-Fact are identical to
that of fine-tuning the reasoning LoRAs, except
that the gradient accumulation step is set to 4. Lo-
raHub demonstrates faster training times, about 2
minutes for 50-shot and 1 hour and 44 minutes
for using all the training dataset. However, its per-
formance needs to catch up to that of LoraCon-
cat, which requires 5 hours and 7 minutes, and
LoraMap, which takes 4 hours and 14 minutes. In-
ferencing on the COVID-Fact test dataset takes less
than 1 minute for LoraHub and less than 2 minutes
for LoraConcat and LoraMap.

B Examples of datasets

Figure 4, 5, and 6 show an example of Differ-
enceCoT, EntityCoT, and CorrectClaim, respec-
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DifferenceCoT
Instructions:
- Explain the difference between the Claim sentence and Context in one paragraph.
- Let’s think step by step.
Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.
Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8
activation to mediate pro-IL-1p processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection
induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to
trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.
Explanation:

l generate reasoning dataset using GPT-4

The claim and the context both discuss the role of caspase-8 activation in SARS-CoV-2 infection, but they present different
perspectives. The claim suggests that SARS-CoV-2 suppresses inflammatory responses and cell death through caspase-8
activation. This implies that the virus uses caspase-8 activation as a mechanism to inhibit the body's immune response and prevent
cell death, potentially aiding its survival and propagation. On the other hand, the context provides information that SARS-CoV-2
infection triggers apoptosis (cell death) and inflammatory cytokine processing through caspase-8 activation. This suggests that the
virus's interaction with caspase-8 leads to cell death and inflammation, which are typical responses of the body's immune system
to infection. Therefore, while both the claim and context agree on the involvement of caspase-8 in SARS-CoV-2 infection, they
differ on whether this leads to suppression or induction of cell death and inflammation.

Figure 4: An example of DifferenceCoT dataset.

tively. Figure 7 shows an example of fact-checking
prompt when using zero-shot CoT with GPT-4
API. Figure 8 shows an example of fact-checking
dataset for fine-tuning Flan-T5 model.



EntityCoT
Instructions:
- Extract biomedical entities which are mentioned in both Claim and Context sentences and are synonymous.
- Output with the following format.
{‘Claim’: [entity list], ‘Context’: [entity list]}
- Let’s think step by step and explain in one paragraph.
Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.
Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8
activation to mediate pro-1L-1B processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection
induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to
trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.
Explanation:

l generate reasoning dataset using GPT-4

The Claim and Context sentences both mention the biomedical entities "Sars-cov-2", "inflammatory responses”, "cell death", and
""caspase-8 activation". In the context, "SARS-CoV-2 infection" is synonymous with "Sars-cov-2" from the claim. Similarly, "cell
apoptosis™ and "cell death™ are synonymous terms. "Inflammatory cytokine processing™ and "inflammatory responses" are also
synonymous. Lastly, “caspase-8 activation" is mentioned in both sentences with the same meaning. Therefore, the extracted
entities are "Sars-cov-2", "inflammatory responses", "cell death", and "caspase-8 activation".

The output in json format would be:

{

'Claim"; ['Sars-cov-2', 'inflammatory responses’, ‘cell death', ‘caspase-8 activation],

'Context": ['SARS-CoV-2 infection’, 'inflammatory cytokine processing', ‘cell apoptosis', 'caspase-8 activation']

}

Figure 5: An example of EntityCoT dataset.

CorrectClaim
Instructions:
- Revise the Claim sentence by referring to the Context.
Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.
Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8
activation to mediate pro-IL-1p processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection
induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to
trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.
Revised Claim:

l generate reasoning dataset using GPT-4

Sars-cov-2 triggers inflammatory responses and cell death through caspase-8 activation.

Figure 6: An example of CorrectClaim dataset.

Fact-checking using GPT-4 (zero-shot CoT)
Instructions:
You are a helpful assistant with biomedical expertise.
Instructions:
- Classify the Claim sentence only as "TRUE' or 'FALSE' by referring to the Context. \
- Let's think step by step to explain why in one paragraph.
Claim: Sars-cov-2 suppress inflammatory responses and cell death through caspase-8 activation.
Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8 activation. 2 SARS-CoV-2 infection induces caspase-8
activation to mediate pro-1L-1p processing. 2 SARS-CoV-2 infection induces caspase-8 activation Fig. SARS-CoV-2 infection
induces the cell death through the activation of caspase-8. Here we report that SARS-CoV-2 infection activates caspase-8 to
trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells.

Explanation:

The claim that Sars-cov-2 triggers inflammatory responses and cell death through caspase-8 activation is TRUE. The context
provided clearly states that SARS-CoV-2 infection activates caspase-8, which in turn triggers cell apoptosis (cell death) and
inflammatory cytokine processing in lung epithelial cells. The context also mentions that SARS-CoV-2 infection induces pro-IL-
1B processing, which is a part of the inflammatory response. Therefore, the claim is consistent with the information provided in
the context.

Figure 7: An example of fact-checking prompt when using zero-shot CoT with GPT-4.




Fact-checking using Flan-T5
What is the class of the Claim by referring to the Context? Choose only
from 'TRUE' or 'FALSE'.
Claim: Sars-cov-2 suppress inflammatory responses and cell death
through caspase-8 activation.
Context: 4 SARS-CoV-2 infection triggers apoptosis through caspase-8
activation. 2 SARS-CoV-2 infection induces caspase-8 activation to
mediate pro-IL-1p processing. 2 SARS-CoV-2 infection induces caspase-
8 activation Fig. SARS-CoV-2 infection induces the cell death through
the activation of caspase-8. Here we report that SARS-CoV-2 infection
activates caspase-8 to trigger cell apoptosis and inflammatory cytokine
processing in the lung epithelial cells.

4

Figure 8: An example of fact-checking dataset for fine-tuning Flan-T5 model.

The claim is TRUE.
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