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Abstract

This paper introduces a novel algorithm for two-player deterministic games with perfect
information, which we call PROBS (Predict Results of Beam Search). Unlike existing meth-
ods that predominantly rely on Monte Carlo Tree Search (MCTS) for decision processes,
our approach leverages a simpler beam search algorithm. We evaluate the performance
of our algorithm across a selection of board games, where it consistently demonstrates an
increased winning ratio against baseline opponents. A key result of this study is that the
PROBS algorithm operates effectively, even when the beam search depth is considerably
smaller than the average number of turns in the game.

1 Introduction

In the domain of artificial intelligence, two-player board games have historically served as pivotal ’toy prob-
lems’ for exploring and advancing search and planning algorithms within vast decision spaces. The outstand-
ing algorithm AlphaZero (Silver et al. (2016) Silver et al. (2017a) Silver et al. (2017b)) achieved superhuman
performance in the game of Go, chess, and other board games without the use of human expertise in these
games. In this work, we introduce a new approach to solving such games. The main idea is that the al-
gorithm iterates through possible moves using beam search, and then learns to predict the outcome of this
search. This concept gives rise to the name of the algorithm, PROBS - Predict Results of Beam Search.
This approach shows promising results — it demonstrates an increase in the winning percentage during the
training process and shows improvement with the use of greater computational power. Although this new
approach to solving board games does not improve upon state-of-the-art approaches, it demonstrates a new
working concept that may inspire researchers to develop new methods in other areas.

The foundation of the PROBS algorithm is the iterative training of two neural networks. The first network
is a value function, V (s), which predicts the expected utility from the current state. V (s) approximates the
optimal value function V ∗(s), which exists for all games of perfect information and determines the outcome
of the game under perfect play by all players.

The agent’s action selection is modeled by a second network, Q(s, a), which predicts the outcome of a beam
search in the game sub-tree from state s with move a. Conducting a full traversal of the entire game tree
from state s is unfeasible; therefore, the algorithm only iterates over a limited subtree and replaces the values
of the leaves of this tree with V (leaf_state).

These two neural networks are trained iteratively through a cycle of the following steps:

1. The agent plays games against itself using Q(s, a), selecting both optimal and suboptimal moves
with a certain probability to ensure exploration.

2. Using the games played, the agent trains the value function V (s), which predicts the expected utility
of being in state s with the policy derived from applying Q(s, a).

3. For each observed state from the same played games, a beam search (Lowerre (1976)) is initiated
to explore a subtree, utilizing a fixed version of Q(s, a) to prioritize the expansion of each state.
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When the search limit is reached, the value of the leaf states is replaced using V . The results of this
exploration are used to improve the function Q(s, a).

Each iteration guides the policy represented by Q(s, a) towards one where decisions are made by exploring
a small game sub-tree, and the leaves of this tree are replaced with V (s). Thus, Q(s, a) becomes a slightly
deeper estimation compared to the function V (s), and V (s) in turn becomes an estimate of this new version
of Q(s, a). In the subsequent iteration, Q(s, a) is trained on game sub-trees where the values of the leaves are
replaced with this more accurate version of V (s). As a result, in each iteration, Q(s, a) begins to incorporate
information about good moves deeper in the game sub-tree than the depth of the beam search.

The PROBS algorithm can be intuitively understood by comparing it to how chess players improve their
game. Initially, the functions Q(s, a) and V (s) are randomly initialized, so in the very first step of the first
iteration, the agent plays randomly. However, the first iteration of training V (s) can already begin to form
some understanding of the game — it might recognize that material advantage leads to victory, and that
checks and threats against strong pieces are also advantageous. Then, like chess players who "calculate the
best move in a position", the agent begins to ponder each of its moves. Similar to chess players, for each
position, the agent initiates a search for its possible best moves and those of the opponent. As a chess player
spends many hours contemplating their moves, they learn to improve the process of calculation itself —
focusing more on better moves and seeing benefits even before calculating all combinations.

2 Related Work

Outstanding success in board games was achieved by AlphaZero, which reached a superhuman level in
the game of Go. Similar to our work, AlphaZero iteratively optimizes both V (s) and Q(s, a); however,
the optimization of Q(s, a) is achieved through the use of a Monte Carlo Tree Search (MCTS) tree, the
outcomes of which are used as estimates of move probabilities. These probabilities serve as the target for
training Q(s, a). The more moves the agent evaluates while creating the MCTS tree, the more accurately
these probabilities are estimated. In contrast, the PROBS algorithm does not evaluate move probabilities
but rather assesses the outcomes of tree exploration. Consequently, in PROBS, there is no MCTS tree
but a simpler beam search mechanism is used instead. In this work, we demonstrate that even traversal
of an extremely small subtree allows each iteration to enhance the policy, showing that limited yet focused
exploration can effectively contribute to strategy refinement in deterministic games with perfect information.

In addition to board game strategies, advancements in planning algorithms have been explored in the context
of puzzle games, such as demonstrated in "Beyond A*: Better Planning with Transformers via Search
Dynamics Bootstrapping" (Lehnert et al. (2024)). This study focuses on puzzles like Sokoban (Wikipedia
(2024d)), where the authors predict the entire path from the initial state to a goal state using A*. The
fundamental difference between board games and puzzle games lies in the nature of the objectives. In puzzle
games, the task is to solve the puzzle, and all paths that solve the puzzle are equally valid. However,
board games involve two players with opposing goals, making the objective to develop a policy that remains
unbeaten by any player. Any discovered path might be dominated by another, rendering the board game
scenario a moving target problem, where A* is not directly applicable.

The paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem" (Janner et al. (2021))
utilizes beam search to generate action sequences that maximize rewards, employing a transformer architec-
ture for this purpose. Similar to the findings in Lehnert et al. (2024), they also rely on a well-defined notion
of effectiveness for action sequences. They demonstrate that generalizing from beam search results can yield
effective strategies, if objectives are clear. In our study, we illustrate that generalization from beam search
can lead to iterative improvements in the strategies discovered and is not myopic.

3 The PROBS Algorithm

Our method uses two independent deep neural networks:
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• Vθ(s), parameterized by θ, takes the raw board position s as input and produces its value. The value
of a terminal state is 1, -1, or 0, reflecting a win, loss, or draw, respectively. The output of the value
model is a number between -1 and 1, representing the long-term expected reward from following a
policy derived from Qϕ(s, a).

• The network Qϕ(s, a), with parameters ϕ, takes the raw board position s as input and produces
a vector of q-values. By applying a softmax function to the predicted q-values, we derive action
probabilities, thereby enabling Qϕ to represent the policy of a trained agent. This vector of values
represents the outcome of a beam search used to select an appropriate action from the state s.

The training of these two networks follows an iterative process, starting with self-play using the Qϕ model.
This is followed by refining Vθ using the outcomes of the played games, and then enhancing Qϕ with beam
search. Every iteration in the process acts as an improvement operator for the policy encoded by Qϕ. The
following is a more detailed overview of each iteration:

• Execute a predefined number of self-play games, selecting moves based on the q-values derived
from Qϕ(s, a). Action probabilities are obtained by applying the softmax function to the vector
of q-values, followed by the selection of a random action using these probabilities. To increase
exploration, Dirichlet noise is added to the action probabilities, following the approach outlined in
Silver et al. (2017b), with parameters ε = 0.25 and α tailored to each game:

pa = eQϕ(s,a)∑
eQϕ(s,∗)

P (s, a) = (1− ε)pa + εηa

ηa ∼ Dir(α)

• Parameters θ of the value model Vθ(s) are optimized via gradient descent, with a loss function
that computes the mean-squared error between the predicted and actual terminal rewards at the
conclusion of each game episode, with each state s being drawn randomly from an experience replay.

• In each observed state s, we deploy a beam search to generate a limited sub-tree of the game, starting
from s. The breadth and depth of this sub-tree are important parameters of our model. The leaf
states of this sub-tree are either terminal states or the limits of tree expansion. Values for terminal
leaf states are provided by the emulator, typically set to 1, 0, or -1; values at the limits of the beam
search game sub-tree are estimated using Vθ(s). The value of any non-leaf state is the maximum of
the negative values of its child nodes.

• The parameters ϕ of the q-value model Qϕ(s, a) are optimized via gradient descent, with a loss
function that computes the mean-squared error between the predicted q-values for each valid action
a within a state, and the corresponding q-values obtained through beam search from state s upon
selecting action a.

• Clear the experience replay buffer.

The following pages provide detailed descriptions of the beam search and the PROBS algorithm.
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Algorithm 1 Beam Search
Data:

Board state s
State value estimator function Vθ

Q-values estimator function Qϕ

Number of nodes to expand in game sub-tree E
Max depth of game sub-tree M

Returns: Q-values for every valid action in s0
1: function beamSearch(s, Vθ, Qϕ, E, M)
2: tree← empty list
3: beam← empty priority queue
4: tree.add({value = ∅, state = s, children = ∅})
5: beam.add({priority =∞, nodeIndex = 1, depth = 0})
6: for expand = 1, E do
7: if beam is empty then
8: end for
9: end if

10: priority, nodeIndex, depth← pop item with the highest priority from beam
11: value, state, children← tree[nodeIndex]
12: actionV alues← Qϕ(state)
13: for all action ∈ emulator.getValidActions(state) do
14: nextState, reward, done← emulator.step(state, action)
15: childIndex← length of tree + 1
16: children.add({action = action, child = childIndex})
17: if done then
18: tree.add({value = −reward, state = nextState, children = ∅})
19: else
20: tree.add({value = ∅, state = nextState, children = ∅})
21: if depth < M then
22: priority ← (∞ if depth = 0 else actionV alues[action])
23: beam.add({priority, childIndex, depth + 1})
24: end if
25: end if
26: end for
27: end for
28: for i in range from length of tree to 1 do
29: value, state, children← tree[nodeIndex]
30: if value = ∅ then
31: if children is empty then
32: tree[i].value← Vθ(state)
33: else
34: tree[i].value← max(−tree[child].value for child in children)
35: end if
36: end if
37: end for
38: QV alues← (action,−tree[child].value) for (action, child) in tree[1].children
39: return QV alues
40: end function
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Algorithm 2 PROBS - Predict Results of Beam Search
Data:

NIT ER - number of iterations
NEP ISODES - number of episodes to play in each iteration
NT URNS - number of maximum turns to play in each episode
C - capacity of the experience replay memory
E - number of expanded nodes in game sub-tree for each beam search
M - max depth of game sub-tree for each beam search
ε - exploration coefficient
α - Dirichlet noise parameter to boost exploration

Returns: Qϕ - q-values estimator function
1: function PROBS(E, M, C, NIT ER, NEP ISODES , NT URNS , ε, α)
2: Initialize experience replay memory DER to capacity C
3: Initialize value function Vθ with random weights θ
4: Initialize q-value function Qϕ with random weights ϕ
5: for iteration = 1, NIT ER do
6: for episode = 1, NEP ISODES do
7: Reset environment emulator and observe initial state s0
8: Store s0 in DER as a beginning of a new episode
9: for t = 1, NT URNS do

10: Compute action probabilities using:

pa = eQ(st,a)∑
a′ eQ(st,a′)

P (st, a) = (1− ε)pa + εηa

ηa ∼ Dir(α)

11: Draw a random valid action a, using probabilities pa

12: Execute action a in emulator and observe reward rt and state st+1
13: Store st+1 in DER

14: End loop if environment is terminated
15: end for
16: Associate final reward rT with all the states in the episode: (st, δtrT ), where δT = 1; δT −1 =
−1; δT −2 = 1; δT −3 = −1 and so on.

17: end for
18: Initialize dataset DV as empty and put all the observed pairs (st, δtrT ) into it
19: for all random minibatch in DV do
20: Perform a gradient step on (δtrT − V (st; θ))2 with respect to the network V parameters θ
21: end for
22: Initialize dataset DQ as empty
23: for all state st in DER do
24: QV alues← beamSearch(st, Vθ, Q, E, M)
25: Put (st, QV alues) into dataset DQ

26: end for
27: for all random minibatch in DQ do
28: Perform a gradient step on (QV alues[a]−Q(st, a; ϕ))2 with respect to the network Q param-

eters ϕ
29: end for
30: Clear experience replay DER

31: end for
32: return Qϕ

33: end function
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4 Empirical evaluation

We evaluate the PROBS algorithm on the game of Connect Four (Wikipedia (2024a)), a classic two-player
deterministic game with perfect information, featuring a board size of 6x7 and a maximum of 7 actions per
turn. The algorithm was compared against four distinct agents:

• Random agent, which performs any valid move at random.

• One-step lookahead agent, which analyzes all potential moves to either execute a winning move, if
available, avoid immediate losing moves, or otherwise select randomly from the remaining moves.

• Two-step lookahead agent that evaluates the game tree up to two moves ahead with similar decision
criteria.

• Three-step lookahead agent that extends this evaluation to three moves ahead, maintaining the same
strategic approach.

Figure 1: (left) Training the PROBS algorithm on the Connect Four board game using various model sizes.
(right) Training the PROBS algorithm with varying depth limits for beam search.

In our experiment, the average game lasted for 19 turns, which makes Three-step lookahead agent quite effec-
tive. To illustrate the learning progression of the PROBS algorithm, we evaluated each iteration checkpoint
against these four agents and reported its Elo rating (Elo (1966)). Before the experiment, we determined the
Elo ratings of these four agents, using the Wikipedia (2024b), to be 1000, 1183, 1501, and 1603, respectively.

Figure 1 (left) illustrates the outcome of the training process for two different models. It shows two lines,
each representing the mean Elo rating for every iteration, aggregated over multiple parallel training runs
initiated from scratch under different parameter settings. Specifically, each training run encompassed 100
iterations, involving 1,000 games per iteration. The training runs varied in terms of node expansions (10,
30, or 100) and the maximum depth allowed for beam search (2, 3, or 100).

Figure 1 (right) demonstrates that the PROBS algorithm performs effectively with various depth limit
values for beam search. Notably, even with beam search constrained to a maximum depth of 2, the PROBS
algorithm can be trained to win significantly against a "three-step lookahead" agent (Elo rating 1603), which
performs a full scan of all actions for the game sub-tree at depth 3. It is generally improbable for a player
trained only up to a depth of 2 to defeat a player who performs optimally with a depth of 3 search, unless
it can leverage information beyond this 3-step lookahead. This suggests that during its iterative training
process, the PROBS agent learns to utilize information exceeding its beam search constraints.

We also trained the PROBS algorithm on computationally more challenging games, as shown in 2. Toguz-
Kumalak (Wikipedia (2024e)), a two player game, has its board state encoded in two pairs of tensors: an
18x84 tensor for the board and a 2x9 tensor for the kazna, totaling 1530 inputs. The player can choose from
9 actions at each turn. We employed a beam search strategy with a maximum of 50 node expansions and a
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Figure 2: Training PROBS algorithm on Toguz-Kumalak and Reversi (Othello)

depth limit of five. Each iteration had 200 games. On average, training sessions for Toguz Kumalak lasted
for 92 steps, with a maximum turn cap of 100.

Another game tested was Reversi (Wikipedia (2024c)), using the Othello variation, where the board is
encoded with a 4x8x8 tensor and the player has 65 actions to choose from at each turn. Here, we used a
beam search with a maximum of 500 node expansions and a depth limit of 5. Each iteration had 200 games.
During training, Reversi games averaged 61 turns, under the same maximum turn cap of 100.

5 Conclusion, limitations and future work

In this work, we introduce a novel algorithm, PROBS, which leverages a combination of deep neural networks
and beam search, consistently demonstrating an increased winning ratio against baseline opponents. We
had shown that the PROBS algorithm, when applied with a limited beam search, progressively improves
throughout self-play iterations and consistently winning against a model which performs a full scan of actions
in a deeper sub-tree.

Due to computational constraints, we were unable to directly compare the PROBS algorithm with its main
competitor, Alpha-Zero. Since implementations of Alpha-Zero are highly optimized and trained on large
clusters, a direct comparison with our novel algorithm would not be fair. The goal of this paper is to
introduce PROBS and showcase its potential.

Future work should also consider applying the core ideas of the algorithm to broader problems such as im-
perfect information games, continuous action spaces, and non-deterministic games. We strongly believe that
integrating deep neural network capabilities with classic graph search algorithms holds significant potential.

6 Configuration

We used framework OpenSpiel (Lanctot et al. (2019)) for environment emulators. We used the following
settings for each game:

• NIT ER - number of iterations

• NEP ISODES - number of episodes to play in each iteration

• NT URNS - number of maximum turns to play in each episode

• E - number of expanded nodes in game sub-tree for each beam search

• M - max depth of game sub-tree for each beam search
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• C - capacity of the experience replay memory

• ε - exploration coefficient

• α - Dirichlet noise parameter to boost exploration

Connect Four: NITER = 100, NEPISODES = 1000, NTURNS = 100, E values (10, 30, 100), M values (2, 3,
99), C = 1e5, ε = 0.25, α = 0.5, learning rate 0.003 for both models, batch size 128. Networks V and Q
consist of convolutions and dense layers, with leaky relu (0.01) for activation. We experimented with two
model sizes: smaller networks of 4 layers (10K parameters) and larger networks of 5 layers (100K parameters).

Toguz-Kumalak: NITER = 326, NEPISODES = 200, NTURNS = 100, E = 50, M = 5, C = 1e5, ε = 0.25, α =
0.2, learning rate 0.0003 for both models, batch size 128. Networks V and Q of the same structure, 7 layers,
420K parameters.

Reversi: NITER = 200, NEPISODES = 200, NTURNS = 100, E = 500, M = 5, C = 1e5, ε = 0.25, α = 0.2,
learning rate 0.001 for both models, batch size 128. Networks V and Q of the same structure, 5 layers, 230K
parameters.
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