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Abstract

Composed Image Retrieval (CoIR) has recently gained popularity as a task that1

considers both text and image queries together, to search for relevant images in a2

database. Most CoIR approaches require manually annotated datasets, containing3

image-text-image triplets, where the text describes a modification from the query4

image to the target image. However, manual curation of CoIR triplets is expensive5

and prevents scalability. In this work, we instead propose a scalable automatic6

dataset creation methodology that generates triplets given video-caption pairs.7

To this end, we mine paired videos with a similar caption from a large database,8

and leverage a large language model to generate the corresponding modification9

text. We automatically construct our WebVid-CoVR dataset by applying this10

procedure to the large WebVid2M collection, resulting in 1.6M triplets. Moreover,11

we introduce a new benchmark for composed video retrieval (CoVR) and contribute12

a manually annotated evaluation set, along with baseline results. We further show13

that training a CoVR model on our dataset transfers well to CoIR, improving the14

state of the art in the zero-shot setup on both the CIRR and FashionIQ benchmarks.15

Our code, datasets, and models will be made publicly available.16

“with fireworks”“at night” “with people”“during show”

Figure 1: Task: Composed Video Retrieval (CoVR) seeks to retrieve videos from a database
by searching with both a query image and a query text. The text typically specifies the desired
modification to the query image. In this example, a traveller might wonder how the photographed
place looks like during a fountain show, by describing several modifications, such as “during show at
night, with people, with fireworks”.

1 Introduction17

Consider the scenario where a traveller takes a picture of a landmark or scenic spot and wants to18

discover videos that capture the essence of that location, by specifying certain conditions via text. For19

example, the query image in Figure 1 (of a fountain in Barcelona), along with the text “during show”20

should bring the video showcasing the fountain show. Further refining the text query such as “during21

show at night”, would allow the traveller to decide whether to wait for the show until the night time.22

In this work, our goal is composed video retrieval (CoVR), where the user performs such multi-modal23

search, by querying an image of a particular visual concept and a modification text, to find videos24

that exhibit the similar visual characteristics with the desired modification, in a dynamic context.25
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Figure 2: Method overview: We automatically mine similar caption pairs from a large video-caption
database from the Web, and use our modification text generation language model (MTG-LLM) to
describe the difference between the two captions. MTG-LLM is trained on a dataset of 715 triplet
text annotations [8]. The resulting triplet of two corresponding videos (query q and target video v)
and the modification text (t) is therefore obtained fully automatically, allowing a scalable CoVR
training data generation.

CoVR has many use cases, including but not limited to searching online videos for finding reviews of26

a specific product, how-to videos of a tool for specific usages, live events in specific locations, sports27

matches of specific players. Similar to composed image retrieval (CoIR), CoVR is also particularly28

useful when conveying a concept with a visual is easier and/or more accurate than only using words29

(e.g., unknown location/object, a specific camera view, a specific color).30

Given the increased momentum in vision and language research in the recent years [31, 45], CoIR has31

emerged as a new task [57], and since then witnessed improvements of both models and benchmarks32

[6, 7, 21, 28, 37, 58]. However, to the best of our knowledge, CoVR was not studied before. A key33

challenge in building CoVR models is the difficulty of gathering suitable training data of image-text-34

video triplets. We overcome this limitation by developing an automatic approach to generate triplets35

from existing video-caption collections. Specifically, we mine video pairs whose corresponding36

captions slightly differ in text space. We automatically describe this difference with a language model,37

which we train for a modification-text generation task. In particular, we use manually annotated38

triplets, each containing: (a) source caption, (b) target caption, (c) the modification text. We then39

finetune a large language model (LLM) [54] by inputting (a-b), and outputting (c). We assume the40

resulting modification to describe the difference between the corresponding videos, thus obtaining41

video-text-video triplets (see Figure 2 for an overview). When training our CoVR/CoIR models, we42

can select one or more frames from the videos, enabling multiple settings (i.e., retrieving images or43

videos).44

We apply our triplet generation approach to the WebVid2M dataset [4] which contains 2.5M Web-45

scraped video-caption pairs. This results in the WebVid-CoVR training dataset with 1.6M CoVR46

triplets. By virtue of its automatic generation procedure, WebVid-CoVR is inherently noisy. To47

efficiently train on such large-scale and noisy training data, we use a contrastive loss [55] and48

additionally sample hard negatives that have the same source caption but different target captions.49

We design a CoVR model based on the cross-modal BLIP [31] and use query scoring [5] to exploit50

information from multiple video frames. Training this model on WebVid-CoVR transfers well to the51

CoIR task, in both zero-shot and finetuning settings, and achieves state-of-the-art results on the CIRR52

and FashionIQ benchmarks in the zero-shot setup. Finally, to foster research in CoVR, we repeat53

our generation procedure on a separate subset of the WebVid10M dataset [4] and manually select54

correctly generated samples to constitute WebVid-CoVRm, a test set of 2,435 CoVR triplets. We find55

that our model achieves promising results on WebVid-CoVRm compared to standard baselines.56

To summarize, our contributions are: (i) We propose a scalable approach to automatically generate57

composed visual retrieval training data. We apply this pipeline to the WebVid2M dataset and generate58

the WebVid-CoVR training dataset with 1.6M CoVR triplets. (ii) We show that training a CoVR59

model on WebVid-CoVR transfers well to the CoIR task, and achieves state-of-the-art results on the60

CIRR and FashionIQ benchmarks in the zero-shot setup. (iii) We evaluate our model on WebVid-61
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Table 1: Existing datasets: We compare our proposed WebVid-CoVR training dataset and its
manually annotated test set WebVid-CoVRm with existing composed visual retrieval datasets. �
denotes image, Å denotes video datasets. We contribute the largest training dataset for the natural
domain. Note that, while SynthTriplets18M is larger, the transfer performance to real images is
ineffective potentially due to a domain gap (see Table 3).

Dataset Type #Triplets #Visuals #Unique
words

Avg. text
length

Domain

CIRR [37] � 36,554 21,185 7,129 59.51 Natural
FashionIQ [58] � 30,132 7,988 4,425 27.13 Fashion
CIRCO [6] � 1,020 - - - Natural
LaSCo [28] � 389,305 121,479 13,488 30.70 Natural
SynthTriplets18M [21] � 18,000,000 - - - Synthetic
WebVid-CoVR Å 1,648,789 130,775 19,163 23.36 Natural
WebVid-CoVRm Å 2,435 2,435 1,764 22.03 Natural

CoVRm, a new CoVR benchmark that we manually annotate. Our code and dataset are provided in62

the Supplementary Material, and will be publicly released together with our models.63

2 Related Work64

Composed image retrieval (CoIR). CoIR [57] has been an active area of research in recent years [7,65

14, 25]. Most methods designed for this problem use manually annotated data for training. Some66

recent works, such as Pic2Word [47] and SEARLE [6], explore zero-shot CoIR setups where no67

manually annotated CoIR triplet is used. These approaches build on CLIP [45] and train directly on68

unlabeled image(-text) data. In contrast, we use unlabeled video-text pairs to automatically generate69

composed video retrieval (CoVR) triplets, train a CoVR model on the generated data, and study70

zero-shot and finetuning transfer of the resulting model on both CoIR and CoVR.71

Datasets for composed image retrieval. CIRR [37] and Fashion-IQ [58] are the two most widely72

used CoIR benchmarks. Both are manually annotated, hence small scale (about 30K triplets, see73

Table 1) due to the high cost implied in collecting CoIR triplets. To scale up, two concurrent works74

proposed larger, automatically generated CoIR datasets: LaSCo [28] and SynthTriplets18M [21].75

However, these two datasets are currently not publicly available. The LaSCo dataset [28] is generated76

using the visual question answering annotations and the pairing between images and counterfactual77

images in the VQAv2 dataset [3]. In detail, this dataset provides for each (image, question, answer)78

triplet a counterfactual triplet with the same question and different image and answer. In contrast, we79

do not rely on such expensive annotation schemes. SynthTriplets18M [21] uses the text-conditioned80

image editing framework InstructPix2Pix [8] to automatically generate CoIR data. Their edit text81

generation process is similar to ours, but our generation process differs in that we automatically82

mine similar videos from a dataset of unlabeled video-text pairs to construct CoVR triplets instead83

of generating visual data. In experiments, we show the superiority of our generation procedure as84

we achieve much higher CoIR results (e.g., 38% vs 19% zero-shot R@1 on CIRR while generating85

fewer data). Lastly, our WebVid-CoVR dataset is composed of videos, and not limited to still images.86

Vision-language pretraining. Many strong multi-modal models have been pretrained on large87

datasets of image-caption pairs [2, 13, 24, 27, 30, 32, 34, 38, 45, 48, 51, 67, 71] or video-caption88

pairs [1, 29, 33, 41, 42, 53, 59, 60, 68, 69, 70]. In contrast, we generate CoVR training data from89

video-caption pairs instead of directly training on them. Our data generation approach is also related90

to other generation approaches used for other tasks, e.g., action recognition [43], visual question91

answering [62, 63] and visual dialog [35]. However, unlike all these tasks, the CoVR task requires92

retrieving visual data.93

Video retrieval. Text-to-video retrieval has received great attention over the last few years [17, 18,94

19, 36, 39, 40, 46, 59, 61, 64, 65]. We also make use of multiple video frames with query scoring95

similar to [5]. However, different from these methods, we focus on composed video retrieval, where96

the query consists of both text and visual data.97

3



3 Automatic Triplet Generation and CoVR Training98

The goal of the composed video retrieval (CoVR) task is, given an input video or image q and a99

modification text t, to retrieve a modified video v in a large database of videos. We wish to avoid100

the manual annotation of (q, t, v) triplets for training. Hence we automatically generate such triplets101

from Web-scraped video-caption pairs, as explained in Section 3.1 and illustrated in Figure 2. The102

resulting WebVid-CoVR dataset, together with its manually curated evaluation set, is presented in103

Section 3.2. Finally, we present how we train a CoVR model using WebVid-CoVR in Section 3.3.104

3.1 Generating composed video retrieval triplets105

Given a large (Web-scraped) dataset of video-caption pairs (v, c), we wish to automatically generate106

video-text-video CoVR triplets (q, t, v) where the text t describes a modification to the visual query107

q. However, the dataset of video-caption pairs neither contains annotations of paired videos, nor108

modification text that describes their difference. Hence we propose a methodology to automatically109

mine paired videos and describe their difference, as described below. Note that for illustration, we110

take as an example the WebVid2M dataset [4] with 2.5M video-caption pairs, but this methodology111

could be applied to other large datasets of video-text (or image-text) pairs.112

Mining paired videos by pairing captions. In order to obtain paired videos, we leverage their113

captions. The core idea is that videos with similar captions are likely to have similar visual content.114

Specifically, we consider captions that differ by a single word, excluding punctuation marks. For115

instance, the caption "Young woman smiling" is paired with "Old woman smiling" and "Young couple116

smiling". In the 2M distinct captions from WebVid2M, this process allows us to identify a vast pool117

of 1.2M distinct caption pairs with 177K distinct captions, resulting in 3.1M paired videos.118

Filtering caption pairs. We wish to automatically generate the modification text between paired119

videos using their (paired) captions. However, caption pairs with the same meaning are likely to120

result in meaningless differences. On the contrary, caption pairs that differ too much are likely to121

result in large visual differences that cannot be easily described. To address these issues, we filter122

out caption pairs that are too similar and too dissimilar. Specifically, we exclude caption pairs with123

CLIP text embedding similarity ≥ 0.96 (e.g., "Fit and happy young couple playing in the park"124

and "Fit and happy young couple play in the park") and caption pairs with CLIP text embedding125

similarity ≤ 0.6 (e.g., "Zebra on a white background" and "Coins on a white background"). We also126

exclude pairs where the captions differ by a digit (which mostly consist of date in practice), or by an127

out-of-vocabulary word. Finally, we remove templated captions such as "abstract of", "concept of",128

and "flag of" which are over-represented.129

Generating a modification text from paired captions. In order to generate a modification text130

between paired videos, we apply a modification text generation large language model (MTG-LLM)131

to their corresponding paired captions. We describe the MTG-LLM inference process below and132

then explain its training details. The MTG-LLM takes as input two paired captions and generates133

a modification text that describes the difference between the two captions (see Fig. 2). In detail,134

the generation is auto-regressive, i.e., we recursively sample from the token likelihood distribution135

conditioned on the previously generated tokens until an end-of-sentence token is reached. To increase136

the diversity of the generated samples, we use top-k sampling instead of maximum-likelihood-based137

methods such as beam search and its variants [56]. Note that we only generate a single modification138

text per caption pair for computational efficiency, but the MTG-LLM could be used to generate139

multiple modification texts per caption pair which could serve as a data augmentation in future work.140

We now describe the training details of the MTG-LLM. We start from a LLM pretrained with a141

next token prediction objective on a Web-scale text dataset [54]. We then finetune this LLM for the142

MTG task on a manually annotated text dataset. In particular, we repurpose the editing dataset from143

InstructPix2Pix [8], which provides a modification text and a target caption for 700 input captions. We144

augment this dataset with 15 additional annotations that are useful in our use case. These examples145

involve transformations such as changing singular nouns to plural (tree to trees), as well as addressing146

specific edge cases. More details can be found in the Supplementary Material.147

Filtering video pairs. We wish to avoid some modification texts being over-represented in the dataset148

as it could harm training. Hence, if there are more than 10 video pairs associated with the same149

pair of captions (therefore leading to the same modification text), we only select 10 video pairs. As150

the CoVR task typically involves similar query-target video pairs, we choose pairs of videos with151
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Figure 3: Examples of generated CoVR triplets in WebVid-CoVR: The middle frame of each video
is shown with its corresponding caption, with the distinct word highlighted in bold. Additionally, the
generated modification text is displayed on top of each pair of videos.

the highest visual similarity, as measured by the CLIP visual embedding similarity computed at the152

middle frame of the videos.153

3.2 Analysis of WebVid-CoVR154

WebVid-CoVR: a large-scale CoVR training dataset. By applying the previously described155

pipeline to the WebVid2M dataset [4], we generate WebVid-CoVR, a dataset containing 1.6M CoVR156

triplets, which is significantly more than prior datasets (see Table 1). On average, a video lasts157

16.8 seconds, a modification text contains 4.8 words, and one target video is associated with 12.7158

triplets. WebVid-CoVR is highly diverse with 131K distinct videos and 467K distinct modification159

texts. Examples of CoVR triplets from the WebVid-CoVR dataset are illustrated in Figure 3. These160

examples show the diversity of the data in WebVid-CoVR, and its noise due to the automatic161

generation procedure. We provide further analysis of the WebVid-CoVR dataset in the supplementary162

material.163

WebVid-CoVRm: a new CoVR evaluation benchmark. Due to the noise in WebVid-CoVR, we164

manually annotate a small test set, dubbed WebVid-CoVRm, for evaluation. For this, we first repeat165

the data generation procedure described in Section 3.1, but on a different corpus of video-caption166

pairs. Specifically, we consider video-caption pairs from the WebVid10M corpus [4] that are not167

included in the WebVid2M dataset, resulting in a pool of 8 million video-caption pairs. This ensures168

that other models using WebVid2M for pretraining have not been exposed to any of the test examples.169

In the video pairs filtering stage, for each pair of captions, we here only keep one pair of videos (the170

one with the highest visual similarity). This results in 163K candidate triplets that could be used for171

testing purposes. We randomly sample 7K triplets that we use for validation and randomly sample172

3.1K other triplets that we manually annotate as described below.173

We augment the 3.1K triplets by generating two additional modification texts with the MTG-LLM.174

The annotator reads the three generated modification texts, looks at three frames from the query and175

target videos, and either keeps the best modification text if at least one is valid or discards the sample.176

Through this meticulous annotation process, we ensure that the test set comprises high-quality and177

meaningful CoVR triplets. This results in a test set of 2.4K triplets, i.e., about 23% of the examples178

are considered as noisy and are discarded.179

3.3 Training on WebVid-CoVR180

Here, we describe our CoVR model architecture and how we train it on our WebVid-CoVR dataset.181

CoVR-BLIP model architecture. Our model architecture builds upon a pretrained image-text model,182

BLIP [31]. The BLIP model is pretrained on a large dataset of image-caption pairs with three vision-183

language objectives: image-text contrastive learning, image-text matching, and image-conditioned184

language modeling. However, BLIP is not pretrained for composed visual retrieval with both visual185

and text inputs. Therefore we adapt BLIP to the CoIR/CoVR task as follows.186
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We use the BLIP image encoder to encode the image query. The resulting visual features and the187

modification text are then forwarded to the BLIP image-grounded text encoder together, which188

outputs a multi-modal embedding fi ∈ Rd where d is the embedding dimension. To retrieve a target189

video from a database of videos V , we compute embedding vectors for all possible videos as follows.190

We uniformly sample N frames from the video and compute a weighted mean of the BLIP image191

embeddings to obtain the video embedding vector v̂ ∈ Rd. The weights are obtained by computing192

the image-caption similarity for every video frame with BLIP image and text encoder, respectively,193

similar to [4] in the context of text-to-video retrieval. Finally, given a multi-modal embedding fi, the194

retrieved video is the one that maximizes the embedding similarity, i.e., arg maxv∈V (v̂.f
T
i ).195

Training. In order to train on WebVid-CoVR, we use a contrastive learning approach [44, 55], as it196

has been shown to be effective to learn strong multi-modal representations from large-scale noisy197

data [41, 45]. We make several design choices to maximize its efficiency. First, we create a training198

batch by sampling distinct target videos and for each target video, we randomly sample an associated199

query image and modification text. This ensures that the same target video appears only once in a200

batch and maximizes the number of different target videos that can be used as negatives in contrastive201

learning.202

Second, following HN-NCE [44], we use as negatives all target videos vj∈B in the batch B and203

additionally increase the weight of most similar samples. In addition, we mine hard negative samples204

that we select based on the captions associated with the videos in WebVid2M. Specifically, for a205

given (qi, ti, vi) triplet, we consider as hard negatives all instances in the batch (qj , tj , vj) ∈ HN(i)206

where qi and qj have the same caption but vi and vj have different captions. In addition, to reduce207

the number of noisy negatives with the same semantic content as a given sample i, we exclude from208

the computation of the loss samples (qj , tj , vj) ∈ P (i) for which vi and vj have the same caption.209

Formally, given a training batch B of triplets (qi, ti, vi), we minimize the following loss:210

L(B) =
∑
i∈B

{ −log(
eSi,i/τ∑

j∈B\P (i) e
Si,j/τwi,j + α

∑
j∈HN(i) e

Si,j/τ
)

−log(
eSi,i/τ∑

j∈B\P (i) e
Sj,i/τwj,i + α

∑
j∈HN(i) e

Sj,i/τ
)}

where α and τ are learnable parameters, Si,j is the cosine similarity between the multi-modal211

embedding fi and the target video embedding v̂i, HN(i) is the set of hard negatives, P (i) is the set212

of noisy negatives and wi,j is set as in [44].213

4 Experiments214

In this Section, we first describe the experimental protocol including the datasets, evaluation met-215

rics, and implementation details (Section 4.1). We then present the results of CoVR on our new216

video benchmark (Section 4.2), as well as transfer results of CoIR on standard image benchmarks217

(Section 4.3). Finally, we provide ablations on our key components (Section 4.4).218

4.1 Experimental setup219

Datasets. WebVid-CoVR is our proposed training CoVR dataset presented in Section 3.2, and220

WebVid-CoVRm is our new CoVR benchmark presented in Section 3.2.221

CIRR [37] is a manually annotated CoIR dataset that contains open-domain natural images from222

NLVR2 [52]. It contains 36.5K queries annotated on 19K different images. CIRR includes two223

benchmarks: a standard one with the target search space as the entire validation corpus, and a224

fine-grained subset, where the search space is a subgroup of six images similar to the query image225

(based on pretrained ResNet15 feature distance). The dataset is divided into training, validation, and226

testing splits with 28,225/16,742, 4,181/2,265 and 4,148/2,178 queries/images, respectively.227

FashionIQ [58] is a CoIR dataset that contains images of fashion products, divided into three228

categories of Shirts, Dresses, and Tops/Tees. The query and target images were automatically229

paired based on title similarities (crawled from the web), and modification texts were then manually230

annotated. This dataset consists of 30K queries annotated on 40.5K different images. It is divided231

into training and validation splits with 18,000/45,429 and 6,016/15,415 queries/images, respectively.232
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Table 2: Benchmarking on the WebVid-CoVRm test set: We find that training on WebVid-CoVR,
using both the visual and text input modalities, and using multiple frames to model the target video
are all important factors of CoVR performance.

Train on WebVid-CoVR Method Input modalities #frames R@1 R@5 R@10 R@50

No

Random - - 0.08 0.21 0.49 2.34
CoVR-BLIP Text - 19.88 37.66 45.91 66.08
CoVR-BLIP Visual 15 37.04 61.36 69.94 87.23
CoVR-BLIP Visual+Text 15 15.98 33.22 41.36 59.18

Yes

CoVR-BLIP Text - 20.78 41.68 51.29 71.05
CoVR-BLIP Visual 15 37.04 61.36 69.94 87.23
CoVR-BLIP Visual+Text 1 53.43 80.00 87.27 97.66
CoVR-BLIP Visual+Text 15 54.87 80.99 88.30 98.11

Table 3: State-of-the-art comparison on the CIRR test set: Our model benefits from training on
WebVid-CoVR in the zero-shot setting, and in the finetuning setting where it performs competitively.
† denotes results reported by [37].

Recall@K Rsubset@K
Mode Method Pretraining Data K=1 K=5 K=10 K=50 K=1 K=2 K=3

Train
(CIRR)

TIRG [57]† - 14.61 48.37 64.08 90.03 22.67 44.97 65.14
TIRG+LastConv [57]† - 11.04 35.68 51.27 83.29 23.82 45.65 64.55
MAAF [15]† - 10.31 33.03 48.30 80.06 21.05 41.81 61.60
MAAF-BERT [15]† - 10.12 33.10 48.01 80.57 22.04 42.41 62.14
MAAF-IT [15]† - 9.90 32.86 48.83 80.27 21.17 42.04 60.91
MAAF-RP [15]† - 10.22 33.32 48.68 81.84 21.41 42.17 61.60
ARTEMIS [14] - 16.96 46.10 61.31 87.73 39.99 62.20 75.67
CIRPLANT [37] - 19.55 52.55 68.39 92.38 39.20 63.03 79.49
LF-BLIP [7, 28] - 20.89 48.07 61.16 83.71 50.22 73.16 86.82
CompoDiff [21] SynthTriplets18M [21] 22.35 54.36 73.41 91.77 35.84 56.11 76.60
Combiner [7] - 33.59 65.35 77.35 95.21 62.39 81.81 92.02
CASE [28] - 48.00 79.11 87.25 97.57 75.88 90.58 96.00
CASE [28] LaSCo [28] 48.68 79.98 88.51 97.49 76.39 90.12 95.86
CASE [28] LaSCo [28]+COCO [10] 49.35 80.02 88.75 97.47 76.48 90.37 95.71

CoVR-BLIP - 49.33 78.51 86.53 94.53 75.81 88.29 92.99
CoVR-BLIP WebVid-CoVR 50.55 79.23 87.30 94.70 75.69 88.58 93.33

Zero
Shot

Random† - 0.04 0.22 0.44 2.18 16.67 33.33 50.00
CompoDiff [21] SynthTriplets18M [21] 19.37 53.81 72.02 90.85 28.96 49.21 67.03
Pic2Word [47] Conceptual Captions [49] 23.90 51.70 65.30 87.80 - - -
CASE [28] LaSCo [28] 30.89 60.75 73.88 92.84 60.17 80.17 90.41
CASE [28] LaSCo [28]+COCO [10] 35.40 65.78 78.53 94.63 64.29 82.66 91.61
CoVR-BLIP - 19.76 41.23 50.89 71.64 63.04 81.01 89.37
CoVR-BLIP WebVid-CoVR 38.55 66.80 77.25 91.61 69.42 84.22 91.16

Evaluation metrics. Following standard evaluation protocols [37], we report the video retrieval233

recall at rank 1, 5, 10, and 50. Recall at rank k (R@k) quantifies the number of times the correct234

video is among the top k results. MeanR denotes the average of R@1, R@5, R@10, and R@50.235

Higher recall means better performance.236

Implementation details. For our MTG-LLM, we use LLaMA 7B model [54] that we finetune for237

one epoch with an initial learning rate of 3e−5 for MTG. For our CoVR model, we use the BLIP238

with ViT-L [16] at 384 pixels finetuned for text-image retrieval on COCO and freeze the ViT for239

computational efficiency. We train our CoVR model on WebVid-CoVR for 3 epochs with a batch size240

of 2048 and an initial learning rate of 1e−5. To finetune on CIRR/FashionIQ, we train for 6/3 epochs241

with a batch size of 2048/1024 and an initial learning rate of 5e−5/1e−4. Experiments are conducted242

on 4 NVIDIA A100-SXM4-80GB GPUs. More details are included in the Supplementary Material.243

4.2 Composed video retrieval results244

We report CoVR results on our WebVid-CoVRm test set in Table 2. For models trained on WebVid-245

CoVR, we find that using both modalities is crucial for performance, as the model with visual and246

text inputs outperforms both the text-only and the visual-only models. Furthermore, using multiple247

target video frames is beneficial, as the model with 15 frames improves over the model with 1 frame.248
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Table 4: State-of-the-art comparison on the FashionIQ validation set: Our model benefits from
training on WebVid-CoVR in the zero-shot setting, and in the finetuning setting. CC3M is Conceptual
Captions 3M [9].

Pretraining Shirt Dress Toptee Average
Mode Method Data R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Train
(FashionIQ)

JVSM [11] - 12.0 27.1 10.7 25.9 13.0 26.9 11.9 26.6
CIRPLANT [37] - 17.53 38.81 17.45 40.41 61.64 45.38 18.87 41.53
TRACE w/BER [23] - 20.80 40.80 22.70 44.91 24.22 49.80 22.57 46.19
VAL w/GloVe [12] - 22.38 44.15 22.53 44.00 27.53 51.68 24.15 46.61
MAAF [15] - 21.3 44.2 23.8 48.6 27.9 53.6 24.3 48.8
CurlingNet [66] - 21.45 44.56 26.15 53.24 30.12 55.23 25.90 51.01
RTIC-GCN [50] - 23.79 47.25 29.15 54.04 31.61 57.98 28.18 53.09
CoSMo[26] - 24.90 49.18 25.64 50.30 29.21 57.46 26.58 52.31
ARTEMIS[14] - 21.78 43.64 27.16 52.40 29.20 53.83 26.05 50.29
DCNet[25] - 23.95 47.30 28.95 56.07 30.44 58.29 27.78 53.89
SAC w/BERT[22] - 28.02 51.86 26.52 51.01 32.70 61.23 29.08 54.70
FashionVLP[20] - 31.89 58.44 32.42 60.29 38.51 68.79 34.27 62.51
LF-CLIP (Combiner) [7] - 36.36 58.00 31.63 56.67 38.19 62.42 35.39 59.03
LF-BLIP [7, 28] - 25.39 43.57 25.31 44.05 26.54 44.48 25.75 43.98
CASE [28] LaSCo [28] 48.48 70.23 47.44 69.36 50.18 72.24 48.79 70.68
CoVR-BLIP - 48.04 68.20 44.92 68.91 52.47 74.71 48.48 70.61
CoVR-BLIP WebVid-CoVR 48.48 67.86 45.31 68.37 53.14 73.94 48.98 70.06

Zero
Shot

Random - 00.16 00.79 00.26 1.31 00.19 00.95 00.06 00.32
Pic2Word [47] CC3M [9] 26.2 43.6 20.0 40.2 27.9 47.4 24.7 43.7

CoVR-BLIP - 16.68 30.67 13.44 31.93 17.85 35.70 15.99 32.77
CoVR-BLIP WebVid-CoVR 30.37 46.27 21.81 39.02 30.85 49.06 27.68 44.78

Table 5: Data size: We experimentally validate the importance of the number of videos used for data
generation and of filtering the generated data, evaluated by downstream performance on WebVid-
CoVRm (test), CIRR (test), and FashionIQ (val). All models are trained for the same number of
iterations on the generated data. Training batches are made up with distinct target videos.

Initial Generated WebVid-CoVRm CIRR FashionIQ
#videos #target videos #triplets Filtering R@1 MeanR R@1 MeanR R@10 MeanR

0 - - - 15.98 37.44 19.76 45.88 15.99 24.38

200k 10k 4k ✓ 25.13 51.22 33.90 63.32 26.22 35.83
500k 14k 66k ✓ 46.04 74.24 38.31 67.80 28.76 37.78

1M 38k 269k ✓ 48.46 76.47 38.51 67.95 28.41 37.38
2.5M 130k 1.6M ✓ 54.87 80.57 38.55 68.55 27.68 36.23

2.5M 212k 3.6M ✗ 49.86 76.12 34.10 64.77 25.81 34.16

We also evaluate baselines that are not trained on WebVid-CoVR and that directly apply the pretrained249

BLIP model [31] to the CoVR task. These baselines outperform the random baseline but underperform250

compared to models trained on WebVid-CoVR, showing the benefit of our automatically generated251

training dataset. Note that BLIP [31] is pretrained for image-text retrieval but not for image-text-252

image retrieval, hence the drop in performance when applied directly to CoVR with both input253

modalities compared to only using visual information.254

4.3 Transfer learning to composed image retrieval255

While our focus is video retrieval, we also experiment with transferring our CoVR models to image256

retrieval tasks on standard CoIR benchmarks. We define zero-shot CoIR as not using any manually257

annotated CoIR triplet for training. We perform zero-shot CoIR by directly applying our model trained258

on our automatically generated WebVid-CoVR dataset to CoIR tasks and also explore finetuning our259

model on the training set of the downstream benchmark.260

Tables 3 and 4 report results on CIRR and Fashion-IQ datasets, respectively. These results show that261

our model highly benefits from training on WebVid-CoVR, especially in the zero-shot setting, on262

both datasets. In addition, our model achieves state-of-the-art zero-shot performance on both CIRR263

and FashionIQ, and performs competitively in the finetuning setting on both benchmarks.264

8



Table 6: Modification text generation: We compare our MTG-LLM to a rule-based MTG baseline
and observe important gains in the downstream performance of the model trained on the generated
data. All models are trained for the same number of iterations on the generated data.

WebVid-CoVR CIRR
Model R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50

Rule-based 43.00 70.10 79.38 94.58 15.90 39.06 52.36 79.22
MTG-LLM 54.87 80.99 88.30 98.11 38.55 66.80 77.25 91.61

Table 7: Ablations on training strategies: Constructing batches of distinct target videos (and not
CoVR triplets) and our hard negative mining both benefit the downstream CoVR/CoIR performance.

WebVid-CoVRm CIRR
Iteration Hard negatives R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50

Triplets ✓ 47.68 76.14 85.46 97.25 38.53 65.66 76.22 90.34
Videos ✗ 54.00 80.53 88.01 98.03 38.34 66.75 77.21 91.42
Videos ✓ 54.87 80.99 88.30 98.11 38.55 66.80 77.25 91.61

4.4 Ablation studies265

In this Section, we ablate the importance of several key aspects of our method by evaluating the266

downstream performance of the model trained only on WebVid-CoVR.267

Importance of data scale. In Table 5, we evaluate the importance of the scale of the dataset of268

video-captions used in our generation pipeline. We construct subsets of videos such that larger ones269

include smaller ones, and only keep triplets that contain the sampled videos for training. We find that270

results steadily increase when using more videos, demonstrating that our method largely benefits from271

scaling the size of the seed dataset of video-captions. We also observe the importance of the filtering272

techniques described in Section 3.1, as the model trained on unfiltered generated data underperforms.273

Modification text generation. We use a large language model finetuned for modification text274

generation as explained in Section 3.1. We here compare this solution to a rule-based baseline that275

uses several templates to generate the modification text given the two captions that differ by one word.276

Specifically, the modification text is based on the two different words from the captions. We generate277

templates that use these words and chose one at random during training. These templates include278

variations such as "Remove txt_diff1" and "Change txt_diff1 for txt_diff2". A full list of all279

the templates can be seen in the Supplementary Material. In Table 6, we show that our large language280

model generates better modification texts than the rule-based baseline, by evaluating the results of281

the model trained on the generated data. Qualitative examples comparing the two approaches are282

provided in the Supplementary Material.283

Training strategies. In Table 7, we first show the benefit on WebVid-CoVR of training by iterating284

on target videos instead of CoVR triplets. This is to avoid having the same target video appearing285

multiple times in a training batch, hence increasing the number of correct negatives that are used in286

the contrastive loss. Furthermore, sampling hard negatives, as described in Section 3.3, also slightly287

benefits the downstream performance.288

5 Conclusions, Limitations, and Societal Impacts289

In this work, we studied the new task of CoVR by proposing a simple yet effective methodology to290

create automatic training data. Our results on several benchmarks (including our manually curated291

video benchmark, as well as existing image benchmarks) suggest that, while noisy, such an automated292

and scalable approach can provide effective CoVR model training. One potential limitation of our293

method is that our dataset may not depict some visible changes due to the way we generate triplets.294

Moroever, our modification text generation model is suboptimal due to only inputting text (i.e.,295

without looking at images). Future work can incorporate visually grounded modification generation.296

Societal impact. Our model constitutes a generic multi-modal search tool, but is not intended for297

a specific application. While there are helpful use cases such as online shopping, traveling, and298

personal development (i.e., how-to), there may be potential privacy risks associated to surveillance299

applications, searching for a specific person in videos.300
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