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Abstract
The generation of energetically optimal 3D molecular con-
formers is crucial in cheminformatics and drug discovery.
While deep generative models have been utilized for direct
generation in Euclidean space, this approach encounters chal-
lenges, including the complexity of navigating a vast search
space. Recent generative models that implement simplifica-
tions to circumvent these challenges have achieved state-of-
the-art results, but this simplified approach unavoidably cre-
ates a gap between the generated conformers and the ground-
truth conformational landscape. To bridge this gap, we in-
troduce DiSCO: Diffusion Schrödinger Bridge for Molec-
ular Conformer Optimization, a novel diffusion framework
that enables direct learning of nonlinear diffusion processes
in prior-constrained Euclidean space for the optimization of
3D molecular conformers. Through the incorporation of an
SE(3)-equivariant Schrödinger bridge, we establish the roto-
translational equivariance of the generated conformers. Our
framework is model-agnostic and offers an easily imple-
mentable solution for the post hoc optimization of conformers
produced by any generation method. Through comprehensive
evaluations and analyses, we establish the strengths of our
framework, substantiating the application of the Schrödinger
bridge for molecular conformer optimization. First, our ap-
proach consistently outperforms four baseline approaches,
producing conformers with higher diversity and improved
quality. Then, we show that the intermediate conformers gen-
erated during our diffusion process exhibit valid and chemi-
cally meaningful characteristics. We also demonstrate the ro-
bustness of our method when starting from conformers of di-
verse quality, including those unseen during training. Lastly,
we show that the precise generation of low-energy conform-
ers via our framework helps in enhancing the downstream
prediction of molecular properties. The code is available at
https://github.com/Danyeong-Lee/DiSCO.

Introduction
The three-dimensional structure of molecules is a key fac-
tor in determining their molecular properties. Therefore, it
is essential to accurately predict the energetically optimal
3D molecular conformations for a variety of applications,
from materials science to pharmaceutical design. The goal
of molecular conformer generation is to sample conform-
ers from each local minimum of the conformational energy
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landscape formulated as the Boltzmann distribution (Noé
et al. 2019). Traditional approaches based on molecular dy-
namics (MD) simulations (Pracht, Bohle, and Grimme 2020)
stand as the gold standard, yielding precise results by ex-
haustively exploring the conformational energy landscape.
However, the high level of accuracy they achieve comes
with substantial computational costs, rendering MD simula-
tions unsuitable for high-throughput applications (Hawkins
2017). In contrast, cheminformatics-based approximation
tools such as OMEGA (Hawkins et al. 2010) and ETKDG
(Riniker and Landrum 2015) offer more computational ef-
ficiency but often at the expense of accuracy. Additionally,
force field-based methods like MMFF (Halgren 1996), al-
though employed for efficient optimization of conformers,
still fall short in achieving the desired levels of accuracy
(Kanal, Keith, and Hutchison 2018). Recent studies have fo-
cused on developing a fast and accurate conformer genera-
tion approach that leverages the capabilities of data-driven
machine learning techniques.

Building on this framework, the evolution of deep gener-
ative models has made considerable progress in the field of
molecular conformation generation. Previous work (Mansi-
mov et al. 2019) attempted to generate molecular conform-
ers directly in Euclidean space. This direct approach, how-
ever, has encountered several challenges, including the ne-
cessity for SE(3)-equivariance and the complexity of navi-
gating an expansive search space, heightened by the high de-
gree of freedom inherent in the task. To bypass the need to
address SE(3)-equivariance, alternative approaches (Simm
and Hernández-Lobato 2020; Xu et al. 2021a; Shi et al.
2021; Luo et al. 2021; Ganea et al. 2021) have utilized in-
ternal molecular geometries such as interatomic distances
and torsion angles. However, the accumulation of prediction
errors during the reassembly of entire conformer remains
as a major drawback. Also, these approaches are suscepti-
ble to challenges such as modeling invalid distance matrices
(e.g., negative values) or violations of the triangle inequal-
ity. A subset of recent methodologies has effectively man-
aged SE(3)-equivariance without utilizing intermediate vari-
ables, through their specifically designed diffusion process
(Xu et al. 2022) or loss function (Zhu et al. 2022), leading
to improved performance. Yet, the challenge of searching a
vast Euclidean space due to the high degree of freedom re-
mains. To effectively narrow down the search space, Jing et
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Figure 1: The overview of DiSCO. DiSCO builds a diffusion Schrödinger bridge that aligns the approximate conformational
distribution of any existing method pϕ (viridis) to the ground-truth distribution p∗ (gray).

al. (2022) proposed a potent approach that reduces the de-
gree of freedom by fixing the local structure predicted by
RDKit ETKDG (Riniker and Landrum 2015) and only ex-
plores the space of torsion angles for generation. Neverthe-
less, the assumption of their rigidity may result in oversim-
plified approximation of energy landscapes. As discussed,
each existing approach has its own limitation, resulting in an
unavoidable gap between the ground-truth and approximate
conformational energy landscapes they offer. Our approach
builds on the idea that the relaxation of local structures has
the potential to produce conformers with more favorable en-
ergy profiles.

In this work, we propose a novel diffusion framework
designed to refine the approximate conformational land-
scape inferred by existing methods, through direct modi-
fication on the 3D atomic coordinates of conformers. Our
framework, named DiSCO (Diffusion Schrödinger Bridge
for Molecular Conformer Optimization), builds a Euclidean
Schrödinger bridge that connects the approximate distribu-
tion of any existing method and the ground-truth conforma-
tional distribution. Our approach is inspired by the work of
Liu et al. (2023), which proposed a tractable Schrödinger
bridge for image-to-image translation tasks. Extending this
concept, we develop a conformer-to-conformer Schrödinger
bridge dedicated to refining molecular conformers. By con-
structing an SE(3)-equivariant Schrödinger bridge, DiSCO
ensures the roto-translational equivariance of the generated
conformers. Since DiSCO is designed to be model-agnostic,
it can be integrated as a post hoc refinement stage follow-
ing any conformer generation method. Its training leverages
independent and identically distributed (i.i.d.) samples that
originate from the ground-truth conformational energy land-

scape. Consequently, the refinement precedure of DiSCO
can be viewed as the energy optimization of conformers,
leading to a distribution that closely resembles the Boltz-
mann distribution and yields more energetically favorable
conformers. Starting with a pre-trained distribution from
an established method harnesses valuable prior information
about conformational structures, potentially leading to sig-
nificant reduction in search space.

Through extensive evaluations and analyses, we demon-
strate the strengths of our framework in optimizing the con-
formers generated by existing methods, providing a solid ra-
tionale for the utilization of the Schrödinger bridge in the
molecular conformer generation task. We provide a graphi-
cal overview of our framework in Fig. 1, and summarize our
contributions as follows:
• We introduce DiSCO, a novel framework that employs a

diffusion Schrödinger bridge to modify the Euclidean co-
ordinates of existing conformers, thus aligning their ap-
proximate distribution with the ground-truth energy land-
scape.

• Within DiSCO, an SE(3)-equivariant Schrödinger bridge
is designed to guarantee the roto-translational equivari-
ance in the generated conformers, a fundamental require-
ment for effective conformer generation.

• DiSCO consistently enhances both the diversity and
quality of the conformers generated by existing meth-
ods, achieving state-of-the-art benchmark performance
and improving molecular property predictions.

• DiSCO exhibits a range of advantageous characteristics
including resilience to shifts in quality, an interpretable
generative path, and relaxation of local structures, under-
scoring its broad practical applicability.
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Related Work
Molecular Conformer Generation
Computational prediction of low-energy 3D conformation
of molecules have been widely studied in both materials
science and structure-based drug discovery community. Re-
cently, there has been interest in developing deep learning-
based methods, especially generative approaches, for molec-
ular conformation prediction (Xu et al. 2023).

CVGAE (Mansimov et al. 2019) utilized VAE to gener-
ate molecular conformers directly within Euclidean space.
Since then, subsequent efforts sought to utilize interme-
diate structures to ensure SE(3)-equivariance (Simm and
Hernández-Lobato 2020; Xu et al. 2021a,b; Ganea et al.
2021). ConfGF (Shi et al. 2021) and DGSM (Luo et al.
2021) diverge from these approaches by learning the gra-
dient of the log-density function pertaining to interatomic
distances. After an initial estimate of the gradient con-
cerning inter-atomic distances, they deduce the gradient re-
lated to atomic coordinates using the chain rule and em-
ploys Langevin dynamics to produce Euclidean conforma-
tions. GeoDiff (Xu et al. 2022) employs a Euclidean dif-
fusion model that constructs conformers along an SE(3)-
equivariant diffusion path. DMCG (Zhu et al. 2022), on
the other hand, persistently refines coordinates through tai-
lored graph neural networks and introduces a loss func-
tion invariant to both roto-translation of atomic coordinates
and permutation of symmetric atoms. Torsional Diffusion
(Jing et al. 2022) offers an alternative approach as a dif-
fusion model within torsion space, subsequently reducing
the degree of freedom. The model initially employs RDKit
ETKDG (Riniker and Landrum 2015) algorithm to produce
fixed local structures and then exclusively generates torsion
angles via diffusion process. A unique approach of RDKit
+ Clustering (Zhou et al. 2023) first performs diverse sam-
pling strategies, followed by K-means clustering to repre-
sent conformers using cluster centers. Notably, it achieves
high diversity comparable to deep learning techniques, with-
out the requirement for any learning procedure. Lastly, the
work by Guan et al. (2022) applies SE(3)-equivariant net-
works to comprehend the gradient fields of the implicit con-
formational energy landscape. This approach facilitates the
optimization of the conformer incrementally, employing the
predicted gradient fields to refine the structure systemati-
cally.

Diffusion Schrödinger Bridge
The Schrödinger bridge problem represents an entropy-
regularized optimal transport problem, aiming to identify
the optimal path connecting two arbitrary distributions
(Schrödinger 1932; Léonard 2014). Within this context, De
Bortoli et al. (2021) introduced diffusion-based techniques
to approximate the Iterative Proportional Fitting (IPF) pro-
cedure. This method exhibits potential in applications re-
lated to generative modeling and data interpolation, offering
insights into the solution of the Schrödinger bridge problem.

A recent development by Liu et al. (2023) unveiled a
tractable class of Schrödinger bridges, formulated as a con-
vex combination of degraded and clean images. Building on

this technique, the proposed Image-to-Image Schrödinger
Bridge (I2SB) was applied for solving multitude of image-
to-image translation tasks. Our research draws inspiration
from this particular study, expanding upon the concept to
construct conformer-to-conformer Schrödinger bridges.

Proposed Framework
Notations
In this paper, a 2D molecular graph is denoted by G =
(V , E), where V symbolizes a set of atoms and E symbol-
izes a set of bonds. Within this notation, each node vi ∈ V
encapsulates the attributes of the i-th atom, including char-
acteristics such as atom type and chirality, while each edge
eij conveys the type of bond between vi and vj (i.e., single,
double, triple, aromatic).

A 3D conformer C ∈ R|V |×3 is represented by a collec-
tion of each atom vi’s 3D coordinate ci ∈ R3. We denote a
stochastic process of conformers with Ct, which is indexed
by t ∈ [0, 1]. We use 0 = t0 < . . . < tn < . . . < tN = 1 to
denote discretized time steps, and Cn is a shorthand for Ctn .

Problem Definition
Molecular conformer generation can be represented as a
conditional generation task with the fundamental aim of pro-
ducing low-energy conformers given a molecular graph G.
Contemporary approaches approximate the ground truth en-
ergy landscape through their respective methods denoted by
ϕ, and sample low-energy conformers from the resulting dis-
tribution pϕ(C|G). In reality, however, perfect approximation
of the ground truth distribution remains challenging, causing
the apparent gap between the ground truth energy landscape
p∗(C|G) and the approximate energy landscape pϕ(C|G). We
consider the conformers generated by ϕ as latent variable
C1, and using this latent variable C1, we factorize the ground
truth p∗ as follows:

p∗(C|G) =
∫
C1

p(C|C1,G)pϕ(C1|G)dC1. (1)

Here, we want to find the conditional distribution p(C|C1,G)
that yields the ground truth distribution when marginal-
ized with C1 from existing methods ϕ. Within this con-
text, p(C|C1,G) can be interpreted as a refinement proce-
dure of C1 to the ground truth conformer. By achieving
a precise approximation of the p(C|C1,G), it is feasible
through marginalization to calibrate the learned distribution
pϕ to align more closely with p∗. Hence, our primary ob-
jective is to parameterize and train the conformer optimiza-
tion model pθ(C0|C1,G), which refines C1 into a more accu-
rate conformer, given the molecular graph G. The refinement
through parameterized model is articulated as:

pθ,ϕ(C0|G) =
∫
C1

pθ(C0|C1,G)pϕ(C1|G)dC1. (2)

According to Eq. 2, the optimization of conformers sam-
pled from pϕ with pθ is equivalent to the sampling from the
refined distribution pθ,ϕ. To enable this transformation, we
design our conformer optimization model pθ upon on the
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framework of diffusion Schrödinger bridge, which has been
utilized for the connection of two arbitrary distributions (De
Bortoli et al. 2021; Liu et al. 2023).

Schrödinger Bridge for Molecular Conformer
Optimization
Our diffusion process is constructed upon the tractable class
of Schrödinger bridge, a concept brought forth by Liu et al.
(2023). First, given a conformer generation method ϕ, we
define a Schrödinger bridge connecting ground truth con-
former distribution p∗ with an approximate distribution pϕ
through a pair of stochastic differential equations (SDEs):

dCt = [ft + βt∇ logΨ(Ct, t)]dt+
√
βt dWt, (3a)

dCt = [ft − βt∇ log Ψ̂(Ct, t)]dt+
√
βt dW̄t, (3b)

where C∗
0 ∼ p∗ and C1 ∼ pϕ. The standard Brownian

motion and its reversed counterpart are denoted by Wt and
W̄t, respectively (Anderson 1982). Time-varying energy po-
tentials are given by the functions Ψ, Ψ̂ ∈ C2,1

(
Rd, [0, 1]

)
,

which are solutions to the coupled partial differential equa-
tions (PDEs) below:{

∂Ψ(C,t)
∂t = −∇Ψ⊤f − 1

2β∆Ψ
∂Ψ̂(C,t)

∂t = −∇ · (Ψ̂f) + 1
2β∆Ψ̂

s.t. Ψ(C, 0)Ψ̂(C, 0) = p∗(C),
Ψ(C, 1)Ψ̂(C, 1) = pϕ(C)

(4)

It is known that the paths of the SDEs (Eq. 3) are equiv-
alent. Our ultimate objective is to learn the path dictated by
the SDE (Eq. 3) and adopt it as an optimization model, facil-
itating its application to the conformers derived from pϕ. Re-
cently, the Schrödinger bridge problem has been approached
through iterative projection methods (Chen, Georgiou, and
Pavon 2021) to overcome the coupling constraints in Eq.
4. However, in our work, we leverage a recently proposed
tractable Schrödinger bridge (Liu et al. 2023) that bypasses
the need for any iterative fitting procedure.

Tractable Schrödinger Bridge According to the insights
provided by Liu et al. (2023), the specific diffusion process
shares the same marginal density with the SDEs in Eq. 3 can
be constructed without the need to directly solve the SDEs,
provided that the boundary pairs are accessible during train-
ing. This diffusion process is modeled as the convex com-
bination of the associated boundary pairs. A more extensive
explanation can be found in the Appendix.

In our case, the boundary pair is (C∗
0 , C1) where C∗

0 ∼
p∗(·|G) represents the ground truth conformer and C1 ∼
pϕ(·|G) is the conformer generated by the existing method.
Given this setting, the posterior of SDE (3) associated with
the boundary pair can be analytically derived as:
q(Ct|C∗

0 , C1) = N (Ct;µt (C∗
0 , C1) ,Σt),

µt =
σ̄2
t

σ̄2
t + σ2

t

C∗
0 +

σ2
t

σ̄2
t + σ2

t

C1, Σt =
σ2
t σ̄

2
t

σ̄2
t + σ2

t

· I,
(5)

where σ2
t :=

∫ t

0
βτdτ and σ̄2

t :=
∫ 1

t
βτdτ . Moreover,

above posterior marginalizes the recursive posterior sam-
pling in denoising diffusion probabilistic model (DDPM)

(Nichol and Dhariwal 2021) as follows:

q(Cn|C∗
0 , CN ) =

∫ N−1∏
k=n

p(Ck|C∗
0 , Ck+1)dCk+1. (6)

Interestingly, the analytic posterior of Schrödinger bridge
(Eq. 3) for the given boundary pair (C∗

0 , C1) is equiva-
lent to the marginal density induced by DDPM, assuming
CN ∼ pϕ. Consequently, if we can accurately predict C∗

0
from Cn at test time, the standard posterior sampling of
DDPM can be applied to traverse the path induced by Eq.
3, starting from CN ∼ pϕ. To this end, we utilize a neural
network ϵθ(Ct,G, t), parameterized with SE(3)-equivariant
neural networks, and our training objective becomes:

∥ϵθ(Ct,G, t)−
Ct − C∗

0

σt
∥ (7)

where Ct is drawn from Eq. 5. This parameterization is
similar to that of standard DDPM (Nichol and Dhariwal
2021), where a neural network is trained to predict the noise
added to clean samples, rather than predicting clean sam-
ples directly. Practically, we stochastically optimize Eq. 7,
randomly selecting C∗

0 and C1 from pre-computed sets of
ground-truth and generated conformers for a molecule G.

Once a well-trained ϵθ is obtained, we simulate the gen-
erative path of the Schrödinger bridge (Eq. 3) by recursively
sampling Cn−1 ∼ p(Cn−1|Cϵ

0, Cn) from n = N to 1, given
Cϵ
0 = Cn − σn·ϵθ(Cn,G, n). Please refer to Alg. 1 and Alg.

2 for detailed training and generation procedures.
In summary, we present a direct approach to learning the

diffusion processes that share marginal densities with (Eq. 3)
as a convex combination of conformers from boundary dis-
tributions p∗ and pϕ. Intuitively, the forward diffusion path
is a convex combination between the paired data (C∗

0 , C1),
such that the intermediate conformers Ct constantly degrade
from C∗

0 to C1. On the other hand, the reverse diffusion path
is a convex combination of predicted Cϵ

0 and Ct.
Notably, within the stochastic differential equation (SDE)

(Eq. 3) and the analytic posterior (Eq. 5), the molecular
graph G is not explicitly considered. Nevertheless, during
training, we sample boundary pairs from distributions condi-
tioned on a specific molecule G and train the neural network
ϵθ to take into account the molecular graph G. Consequently,
our diffusion path is learned to form a direct connection be-
tween conformers pertaining to the same molecule G.

SE(3)-Equivariance In order to maintain the roto-
translational equivariance of our diffusion process, we fol-
low the approach proposed by Xu et al. (2022), involving the
alignment and zero center of mass (CoM). During training,
we first translate both the ground truth conformer C∗

0 and
the starting conformer C1 to zero CoM. We then align C∗

0
to C1 employing the Kabsch alignment algorithm (Kabsch
1976). Subsequent to calculating Ct using Eq. 5, C∗

0 is once
more aligned to Ct. This ensures that the training label Ct−C∗

0

σt

remains equivariant to the roto-translation of Ct. Training
SE(3)-equivariant networks with equivariant labels enables
the equivariant prediction of Cϵ

0. Through this process, our
diffusion paths, originating from any given C1, learn to ar-
rive at the aligned ground-truth conformer C∗

0 . It is pertinent
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Algorithm 1: Training
Input: a set of training molecules G, ground truth p∗ and
existing conformer generation model pϕ
Output: trained ϵθ

1: repeat
2: t ∼ U([0, 1]), C∗

0 ∼ p∗(C0|G), C1 ∼ pϕ(C1|G)
3: Translate C∗

0 and C1 to zero CoM
4: Align C∗

0 to C1 using Kabsch algorithm
5: Ct ∼ q(Ct|C∗

0 , C1) using Eq. 5
6: Take gradient descent step on ϵθ(Ct,G, t) using Eq. 7
7: until converges

Algorithm 2: Generation
Input: molecular graph G, trained ϵθ, a predicted conformer
C1 ∼ pϕ(C1|G)
Output: an optimized conformer C0 ∼ pθ,ϕ(C0|C1,G)

1: Translate C1 to zero CoM
2: for n = N to 1 do
3: Predict Cϵ

0 using ϵθ
4: Cn−1 ∼ p(Cn−1|Cϵ

0, Cn) according to DDPM
5: end for
6: return C0

to note that during the test, the only manipulation required
for C1 is the translation to zero CoM, which is a trivial com-
putation.

Contrasting our approach to I2SB We note a key dif-
ference between our approach and that of Liu et al. (2023).
In the latter’s case, the boundary pairs are the clean images
X0 ∼ pA(X0) and corresponding degraded images mod-
eled by pB(X1|X0). Therefore, Schrödinger bridges were
constructed to connect individual clean images X0 to the
associated degraded distributions pB(X1|X0). In contrast,
our scenario presents a more complex challenge, as acquir-
ing the conditional distribution p(C1|C∗

0 ,G) is not straight-
forward. Hence, we assume that C∗

0 and C1 are indepen-
dent. This allows C1 to be simply sampled from pϕ(C1|G),
enabling us to construct Schrödinger bridges that connect
the entire distribution of ground truth conformers to the dis-
tribution of starting conformers. This simplification is real-
ized by assuming independence, a choice that may appear
to limit the overall model. However, it provides a founda-
tion that can be further developed. In future research, this
model could be enhanced by taking into consideration the
distance on the conformational energy landscape, allowing
for a more nuanced understanding of the relationships be-
tween different conformers and improving the fidelity of the
bridges constructed.

Neural Network Architecture
In our approach, the neural network ϵθ is parameterized us-
ing SE(3)-equivariant networks. This architecture consists
of an embedding layer, atomic convolution layers, and fully-
connected layers. The initial layers generate atom-specific
embeddings, followed by atomic convolution layers that
capture spatial relationships and symmetries. The final fully-

connected layers convert processed embeddings into 3D co-
ordinate vectors, ensuring direct correspondence to geomet-
ric structures. Our network implementation utilizes the e3nn
library (Geiger and Smidt 2022) for SE(3)-equivariant op-
erations. Comprehensive details about the specific configu-
rations, hyperparameters, and design choices of our neural
network architecture can be found in the Appendix.

Experiments
Dataset
We used GEOM-QM9 and GEOM-Drugs, widely used
benchmark datasets in molecular conformer generation. The
GEOM-QM9 dataset consists of molecules with nine or
fewer atoms, while GEOM-Drugs includes larger drug-like
molecules. We follow the same dataset split as Xu et al.
(2021) and Shi et al. (2021). Each dataset is made up of
40,000 molecules for training, 5,000 molecules for valida-
tion, and 200 molecules for testing. Each molecule has a
set of ground-truth conformers, referred to as reference con-
formers, which have been calculated using CREST (Pracht,
Bohle, and Grimme 2020).

Baselines
We selected the following four baseline methods:

• RDKit ETKDG: A rapid and efficient algorithm com-
monly used as the default in RDKit.

• Torsional Diffusion: A diffusion model operating in
torsion space. We retrained Torsional Diffusion on our
dataset split, as it was originally trained on a different
split.

• DMCG: A graph neural network approach that predicts
3D coordinates directly, thus bypassing the need for in-
ternal representations of molecular geometry. We utilized
pre-trained checkpoint provided in its official code repos-
itory.

• RDKit + Clustering: An approach that involves cluster-
ing of conformers generated through RDKit.

Experimental Setup
For each molecule in the training and validation dataset,
10K conformers are generated by the baseline method,
where K represents the number of conformers associated
with each molecule. This provides a substantial sample
space for model training. After the training of DiSCO, the
effectiveness of optimization is assessed using two critical
aspects: the ensemble root mean square deviation (RMSD)
and the ensemble property.

Ensemble RMSD The ensemble RMSD is a widely rec-
ognized metric in molecular conformer generation tasks,
providing insights into both the diversity and quality of the
generated conformer set relative to a reference set.

For the evaluation of ensemble RMSD, 2K conformers
are generated by the baseline method and subsequently op-
timized by DiSCO. Diversity is measured using recall-based
metrics (COV-R and MAT-R), whereas quality is assessed
through precision-based metrics (COV-P and MAT-P). A

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13369



comprehensive discussion of these RMSD metrics is avail-
able in the Appendix.

Ensemble Property Prediction We also evaluate the en-
semble property prediction by contrasting the predicted
property values of the reference conformer set against those
of the generated set. A subset of 30 molecules from GEOM-
QM9 is used, and 50 conformers are generated for each. The
xTB package (Bannwarth, Ehlert, and Grimme 2019) is em-
ployed to compute properties such as energy and HOMO-
LUMO gap, following the evaluation pipeline from Jing et
al. (2022).

Hyperparameter Selection The selection of DiSCO’s hy-
perparameters is guided by the harmonic mean of the ensem-
ble RMSD metrics on the validation set. The search space
includes the number of diffusion steps (options: 5, 7, 10, or
15), noise scheduling (quadratic or sigmoid) and the num-
ber of training epochs (100 or 250). A complete descrip-
tion of the hyperparameter settings and the specifics of noise
scheduling can be found in the Appendix.

Experimental Results
DiSCO successfully optimizes the conformers generated
by four baseline methods We have thoroughly examined
the performance of DiSCO in conformer optimization us-
ing two datasets, GEOM-QM9 and GEOM-Drugs. Initially,
we trained DiSCO with conformers generated from each of
the four baseline methods, respectively, and measured the
ensemble RMSD metrics for each set of conformers before
and after DiSCO optimization. The results for the GEOM-
Drugs dataset (Table 1) show the improvement in most met-
rics after optimization with DiSCO. Notably, both precision
and recall (measuring quality and diversity, respectively) in-
creased for all baseline methods, demonstrating DiSCO’s
capability to enhance the diversity and quality of the gener-
ated conformers. This robust optimization capability is ap-
plicable to conformers from any existing method, resulting
in state-of-the-art performance across most metrics except
for the mean COV-R. Similar results on the GEOM-QM9
dataset support our findings, with detailed comparisons pro-
vided in the Appendix.

DiSCO demonstrates robustness to changes in C1 qual-
ity We conducted experiments to assess the impact of ini-
tial conformer quality on the DiSCO’s performance and its
behavior in handling unexpected quality shifts during test
time. To study this aspect, we designed three distinct qual-
ity alteration strategies following conformer generation by
Torsional Diffusion:

1. Adding Gaussian noise with varying scales to input con-
formers’ coordinates,

2. Modulating the number of diffusion steps in Torsional
Diffusion before passing the resulting conformers to
DiSCO,

3. Employing MMFF (Merck Molecular Force Field, Hal-
gren., 1996) with varying iteration counts. Greater
MMFF iterations enhance conformational stability
through force field-based computations.
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Figure 2: Mean coverage for recall (left) and precision
(right) with the addition of varying levels (in standard devia-
tion) of Gaussian noise to the output of Torsional Diffusion.

These alterations were exclusively introduced during the test
phase, allowing us to simulate scenarios where unexpected
quality shifts might arise in practical usage. We note that
model training utilized standard-quality conformers gener-
ated by Torsional Diffusion.

Fig. 2 illustrates DiSCO’s optimization performance on
conformers perturbed with different levels of Gaussian
noise, consistently enhancing both the diversity and qual-
ity across all noise levels. This improvement becomes more
pronounced with increasing noise, showcasing the robust-
ness of our approach. These outcomes indicate that our opti-
mization model, denote as pθ, possesses the ability to off-
set errors in the baseline model pϕ, even under practical
conditions. It can adapt and improve despite unexpected al-
terations in conformer quality. Further details on the other
two strategies (diffusion step modulation and MMFF itera-
tions) are available in the Appendix. Together, these results
reinforce that DiSCO is not only robust to variations in in-
put quality but can also adapt to unanticipated challenges in
the quality of conformers, making it a resilient and practical
framework for real-world applications.

Intermediate conformers within our diffusion path are
also valid We conducted an in-depth analysis to ascer-
tain the effectiveness of the Schrödinger bridge within
our DiSCO framework, particularly focusing on the qual-
ity of intermediate conformers produced along the gener-
ative path. The assessment was initiated by evaluating the
conformers generated during the progressive timesteps of
DiSCO, commencing with Torsional Diffusion. A set of rel-
evant metrics, including ensemble RMSD and others, was
utilized to characterize these intermediate conformers.

The evolution of the average COV-R and COV-P is illus-
trated in Fig. 3a and b, respectively. A consistent trend of
improvement across all metrics (trends of other metrics are
provided in the Appendix) was evident throughout the dif-
fusion process. This pattern signifies that DiSCO’s interme-
diate conformers consistently outperformed the initial con-
formers in terms of RMSD. Moreover, the mean absolute
error of energy in comparison to the reference conformer
set (calculated by xTB) exhibited a continual decline (Fig.
3c). This evidence further underlines that the intermediate
conformers are not only numerically accurate but also pos-
sess chemical significance. From a broader perspective, the
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COV-R (%) ↑ MAT-R (Å) ↓ COV-P (%) ↑ MAT-P (Å) ↓
Models Mean Median Mean Median Mean Median Mean Median
CONFVAE 55.20 59.43 1.2380 1.1417 22.96 14.05 1.8287 1.8159
CONFGF 62.15 70.93 1.1629 1.1596 23.42 15.52 1.7219 1.6863
GEODIFF 89.13 97.88 0.8629 0.8529 61.47 64.55 1.1712 1.1232
RDKit ETKDG 59.45 60.88 1.2242 1.1653 72.06 89.94 1.0966 0.9528
(w/ DiSCO) 77.22 86.73 0.9638 0.9100 77.17 94.32 1.0046 0.9045
Torsional Diffusion 93.71 100.00 0.7008 0.6667 80.00 90.98 0.9221 0.8746
(w/ DiSCO) 95.31 100.00 0.6496 0.6163 82.73 93.33 0.8688 0.8097
DMCG 96.76 100.00 0.7183 0.7169 79.37 85.13 0.9422 0.9027
(w/ DiSCO) 96.10 100.00 0.7119 0.7123 83.31 91.13 0.8853 0.8346
RDKit + Clustering 88.13 100.00 0.8082 0.7813 69.46 77.08 1.0764 0.9881
(w/ DiSCO) 94.89 100.00 0.7135 0.6905 76.56 84.44 0.9722 0.9118

Table 1: Results on the GEOM-Drugs dataset.

a b c

Figure 3: Mean coverage for recall (a), precision (b), and mean energy gap (c) of intermediate conformers in DiSCO. t denotes
the timesteps in diffusion path. Shades denote the standard errors.

Method E Emin ∆ϵ ∆ϵmin

RDKit ETKDG 1.27 0.85 1.37 2.62
(w/ DiSCO) 0.79 0.34 1.38 2.39
Torsional Diffusion 1.09 1.40 1.34 4.07
(w/ DiSCO) 0.85 0.33 1.32 3.70

Table 2: MAE of predicted ensemble properties with xTB.

generative path followed by DiSCO can be seen as a sys-
tematic and guided exploration for energetically favorable
conformers. This exploration, while maintaining proximity
to the initial conformers on the conformational energy land-
scape, ensures that the solutions are both chemically mean-
ingful and accurate. The transparent and interpretable opti-
mization path offered by DiSCO holds the potential to yield
significant advantages when extended to other contexts, such
as the modeling of molecular docking.

DiSCO improves ensemble property prediction perfor-
mances We embarked on an ensemble property prediction
task to investigate the ability of DiSCO to identify low-
energy conformers and improve the prediction of specific
molecular properties. We assessed five key molecular prop-
erties, quantifying the mean absolute error before and after
DiSCO optimization (Table 2). We could only employ two
baselines that are capable of generating hydrogen atom coor-

dinates, which is a requirement for exact property computa-
tion using xTB. Our findings illustrate a noticeable improve-
ment with DiSCO, particularly in the context of energy pre-
dictions. These findings emphasize DiSCO’s capability to
identify low-energy conformers, which enhances the accu-
racy of molecular property prediction, and which reinforces
its value in tasks demanding precise conformational details
and energy estimation.

Conclusion

Through DiSCO, we effectively bridge the gap between
generated conformers and the ground-truth conformational
landscape. Throughout comprehensive experiments, DiSCO
has consistently produced diverse and high-quality conform-
ers across various datasets and baseline methods. Its ability
to handle conformers of different qualities and its resilience
to unexpected quality shifts further demonstrate its practi-
cality. Additionally, the chemically meaningful intermediate
conformers and the improved prediction of molecular prop-
erties underscore its value in cheminformatics and drug dis-
covery. The accomplishment of DiSCO unveils new possi-
bilities of diffusion bridges for future endeavors seeking to
achieve more precise, interpretable, and effective molecular
conformer optimization.
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Noé, F.; Olsson, S.; Köhler, J.; and Wu, H. 2019. Boltzmann
generators: Sampling equilibrium states of many-body sys-
tems with deep learning. Science, 365(6457): eaaw1147.
Pracht, P.; Bohle, F.; and Grimme, S. 2020. Automated ex-
ploration of the low-energy chemical space with fast quan-
tum chemical methods. Phys. Chem. Chem. Phys., 22:
7169–7192.
Riniker, S.; and Landrum, G. A. 2015. Better Informed Dis-
tance Geometry: Using What We Know To Improve Confor-
mation Generation. Journal of Chemical Information and
Modeling, 55(12): 2562–2574.
Schrödinger, E. 1932. Sur la théorie relativiste de l’électron
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