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ABSTRACT

Extracting visual representations is a crucial challenge in the domain of compu-
tational histopathology. Considering the powerful strength of deep learning al-
gorithms and the dearth of annotated samples, self-supervised learning presents
itself as a compelling strategy to extract effective visual representations from un-
labeled histopathology images. Although some self-supervised learning methods
have been specifically proposed for histopathology image classification, most of
them have certain drawbacks that may affect the functionality or representation
capacity. In this work, we propose Masked Mamba, a novel self-supervised vi-
sual representation learning method tailored for histopathology images that can
adequately extract local-global features. The proposed method consists of two
stages: local perception positional encoding (LPPE) and directional Mamba vi-
sion backbone (DM). In addition, we use masked autoencoder (MAE) pretraining
to unleashing directional Mamba vision backbone’s potential. Masked Mamba
makes good use of domain-specific knowledge and requires no side information,
which means good rationality and versatility. Experimental results demonstrate
the effectiveness and robustness of masked Mamba on common histopathology
classification tasks. Furthermore, ablation studies prove that the local perception
positional encoding and directional Mamba vision backbone in masked Mamba
can complement and enhance each other.

1 INTRODUCTION

Histopathology plays an important role in clinical medicine. It can reveal the morphology of patho-
logical cells and tissues under a microscope and provide key information for disease diagnosis
Srinidhi et al. (2021). With the histopathological slides have been digitized as histopathologi-
cal images, computer-aided histopathological image analysis methods have been widely proposed
Mobadersany et al. (2018). In early researches of histopathological image classification, the features
of histopathology are manually designed and extracted via traditional feature extraction methods.
However, these handcrafted features are very subjective and less representation capacity Madabhushi
& Lee (2016). Recently, deep learning-based methods have shown strong representation capabilities
LeCun et al. (2015), but such methods rely on large amounts of labeled data to learn visual represen-
tations. Large-scale labeled datasets are expensive and time-consuming for histopathological image
data. Therefore, researchers utilize pre-trained deep models, e.g. ImageNet Deng et al. (2009)
pre-trained convolutional neural Network (CNN), to extract visual representations histopathological
images Senousy et al. (2021). However, this strategy ignores data distribution differences and task
biases, which will lead to inappropriate or suboptimal visual representations.

Therefore, self-supervised learning (SSL) Azizi et al. (2021) is one of the feasible solutions in
histopathological image classification. SSL can only use unlabeled data to adapt deep models. The
deep model can be easily trained to capture the features in a supervised learning manner. For natural
images, self-supervised learning methods based on contrastive learning (CL) Zhang et al. (2022b)
and masked image model (MIM) Chen et al. (2024) have achieved amazing results and shrunk
the performance gap with supervised methods on downstream tasks Jing & Tian (2020). How-
ever, there are three aspects that could be further enhanced. First, in the histopathological image
classification task, rotation and shift operations should not alter the final result of the model. In
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other words, we expect translation invariance Kayhan & Gemert (2020) in histopathological im-
age classification. However, the absolute position encoding, initially designed to leverage the order
of tokens, damages such invariance because it adds unique positional encoding to each patch Chu
et al.. Second, the cropped histopathological image patches are typically large enough to capture
both cell-level structures (e.g., cellular microenvironment) and tissue-level contexts (e.g., tumor
microenvironment). Thus, both local and global features are advantageous for histopathological
image analysis and should be extracted. Convolutional Neural Network (CNN) Lerousseau et al.
(2020) have a strong capacity for learning low-level texture content features (local features). But the
learning of global context features is often constrained by the receptive field of CNNs. Transformer-
based algorithms Stegmüller et al. (2023) can capture long-distance dependencies(global features)
through self-attention mechanisms. But high computational costs and reliance on large-scale data
limit their performance in histopathological image classification. In Mamba-based algorithms Gu &
Dao (2023), the State Space Model (SSM) Hamilton (1994) is used to effectively capture the local
and global features. But Mamba is suitable for tasks with long sequences and autoregressive fea-
tures Yu & Wang (2024). These advantages cannot be exploited in the histopathology classification
task Yue & Li (2024). Third, the task of histopathology classification focuses on transferability.
Compared with contrastive learning algorithms that rely too much on data comparison, the masked
image model can not only save computational cost, but also be applied to medical images without
data augmentation Qi et al. (2023); Zhou et al. (2023a).

To this end, we propose Masked Mamba, a novel hybrid self-supervised visual representation learn-
ing method tailored for H&E-stained histopathological images. Our Masked Mamba employs two
stages for histopathological image classification. One is the local perception positional encoding
(LPPE), and the other is the directional Mamba vision backbone (DM). And we use masked autoen-
coder (MAE) He et al. (2022) pretraining to unleashing our directional Mamba vision backbone’s
potential. The major contributions of our work are summarized as follows.

• We propose the LPPE can help capture both local and global structure information within
the features and promote the representation ability of the network.

• We construct a hybrid architecture (DM) for histopathological image classification. It re-
places the causal convolution of Mamba with depthwise separable convolution and standard
convolution, which enables more stable network training and also helps build a powerful
feature extractor with fine local structure and global context. Not only that, such a structure
is more suitable for MAE than the original Mamba Liu & Yi (2024).

• To the best of our knowledge, this is the first hubrid Mamba-based unsupervised feature
extractor carried out on the public histopathological image datasets. We use the MAE to
motivate the potential of our DM.

• The efficacy of Masked Mamba is empirically substantiated through rigorous testing on
four publicly available histopathological datasets. The empirical evidence showcases
the superior performance of our algorithm when juxtaposed with existing state-of-the-
art (SOTA) methodologies, thereby marking a significant leap forward in the domain of
histopathological image classification.

2 RELATED WORK

Mamba Vision. With the advent of the Mamba model in the natural language processing (NLP)
Gu & Dao (2023), some studies have used it for computer vision tasks. Specifically, Vision Mamba
(ViM) Zhu et al. (2024) proposed the use of a bidirectional SSM formulation, which sets tokens
in both forward and backward directions to obtain information. VMamba Liu et al. (2024) intro-
duced a Cross-Scan Module (CSM) that employs a four-way selective scanning method (i.e., from
upper-left to lower-right and vice versa), facilitating 1D selective scanning. EfficientVMamba Pei
et al. (2024) proposed an atrous selective scanning method combined with skip sampling, effectively
extracting global spatial dependencies. LocalMamba Huang et al. (2024) adopts an approach sim-
ilar to Swin Transformer Liu et al. (2021) to divide the image into different Windows, effectively
capturing local dependencies while maintaining a global perspective. Even though Mamba-based
model was recently introduced to address the quadratic complexity of the attention mechanism in
computer vision. But its the performance is often underwhelming when compared with the CNN-
based and Transformer-based models in histopathological image classification. The reason for this
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phenomenon is that Mamba-based model is ideally suited for tasks with long-sequence and autore-
gressive characteristics. However, the histopathology image classification task does not align with
either characteristic.

Self-supervised learning in Histopathological Image Classification. Recently, SSL, as an un-
supervised learning paradigm, has achieved extraordinary performance in the field of pathological
image analysis. These techniques can be broadly categorized into CL and MIM-based methods.
SSL is typically divided into two main categories: contrastive and generative. In the context of
medical imaging, current applications of CL include the following: Li et al. (2021a) propose the use
of self-supervised contrastive learning to extract robust representations for Multiple Instance Learn-
ing (MIL) Deng et al. (2024). Ciga et al. (2022) introduce a contrastive self-supervised learning
method applied to large-scale pathology datasets from multiple organs with varying types of stains
and resolutions. Huang et al. (2021) extract patch features from Whole Slide Images (WSIs) through
self-supervised learning and adaptively aggregate these features based on their spatial information
and inter-patch correlation using the Transformer architecture. Li et al. (2021b) emphasize that
patch-wise spatial proximity is a significant characteristic of WSIs. Abbet et al. (2020) propose a
self-supervised learning method that jointly learns a representation of tissue regions and a clustering
metric to uncover their underlying patterns. Vu et al. (2023) present a handcrafted framework based
on deep Convolutional Neural Networks (CNNs) for classifying different cancer subtypes. A typical
algorithm based on MIM is the MAE. For instance, Zhou et al. (2023b) investigate a MAE-based
self-pretraining paradigm for the classification of diseases in chest X-rays, multi-organ segmentation
in abdominal CT scans, and the segmentation of brain tumors in MRI. Zhang et al. (2022a) propose
a family of MAE for electrocardiographs, which includes three customized masking modes: the
masked time autoencoder, the masked lead autoencoder, and the masked lead and time autoencoder.
Chen et al. (2023) study the strategies of how masked image modeling can enhance performance
from the perspectives of 3D medical image segmentation. Dai et al. (2023) propose a MAE inte-
grated with the Swin Transformer and note its suitability for smaller medical datasets. Quan et al.
(2024) propose a global contrast-masked autoencoder capable of capturing both local and global
features of pathological images.

3 METHOD

3.1 PRELIMINARIES

3.1.1 STATE SPACE MODELS

SSMs are a general family of sequence models used in deep learning, influenced by systems capa-
ble of continuously mapping one-dimensional sequences. These models transform input sequence
x(t) ∈ RL×D into output sequence y(t) ∈ RL×D by utilizing a learnable latent state h(t) ∈ RN×D

that is not directly observable. The mapping process could be denoted as:

h,(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

(1)

where A ∈ RN×N represents the state matrix, B ∈ RN×1 and C ∈ RN×1 denote the projection
parameters. The Eq. 1 is transformed into a discrete function to achieve more efficient computation.
Therefore, SSMs are discretized using the zero-order hold rule at a given sampling time scale ∆ ∈
RD as follows:

A = e∆A

B = (e∆A − I)A−1B
C = C
B ≈ (∆A)(∆A)−1AB = ∆B
h(t) = Ah(t− 1) + Bx(t)
y(t) = Ch(t)

(2)

where A ∈ RN×N , B ∈ RD×N and C ∈ RD×N .

3
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3.1.2 SELECTIVE STATE SPACE MODELS

Selective State Space Models (S6) enhance the information processing capabilities across sequences
by diffusing the discretization process through a selection mechanism in Mamba.

B = sB(x)
C = sC(x)
∆ = τA(Parameter + sA(x))

(3)

where sB(x) and sC(x) are linear functions that project input x into an N- dimensional space, sA(x)
is a function that adjusts selectively based on the input, which can be either linear or nonlinear. τA
is a scaling factor, Parameter represents the base parameters. On the basis of the above, VMamba
proposed the 2D Selective Scan (SS2D) for visual tasks, which maintains the integrity of 2D image
structures by scanning four directed feature sequences. Each sequence is processed independently
within an S6 block and then being combined to form a comprehensive 2D feature map.

3.1.3 MASKED IMAGE MODELING

MIM approaches are generally characterized by a two-pronged approach: pretraining and finetuning
for downstream tasks. The objective of the pretraining, often referred to as the surrogate task,
entails the obfuscation of a subset of image patches and the subsequent endeavor to regenerate these
masked patches from within the confines of the original image. This surrogate task within the MIM
framework can be shown as follows:

LMIM = fmask(x) → x̃ (4)

where x and x̃ denote the original and the regenerated images, respectively. The discrepancy be-
tween x and x̃ is typically quantified using the mean squared error (MSE) computed on a per-pixel
basis, serving as the pretraining loss function, which is articulated as:

LMSE =

√√√√ 1

N

N∑
i=1

(xi − x̃i)2 (5)

where N represents the total number of pixels. Upon the completion of the pretraining , the derived
feature representations are then transposable to a spectrum of supervised learning tasks in down-
stream applications.

3.2 MASKED MAMBA

3.2.1 PRETRAINING PIPELINE

The detailed procedure of our Masked Mamba pretraining is delineated in Figure 1. The imple-
mentation of the Masked Mamba pretraining is straightforward and can be abstractly represented by
Equ. 6:

Image → Masking → MaskedMambaEncoder → MaskedMambaDecoder

x ↔ xm ↔ H ↔ x̂
(6)

Specifically, given an original pathology image x, a masking operation Masking is applied to ran-
domly obscure a portion of the image blocks in the input image x at a predefined ratio, resulting in
a masked image xm. Subsequently, the masked image xm is utilized as the input for the encoder,
which generates multi-scale latent representations denoted by H . Finally, the decoder receives the
representation H and produces a reconstructed image x̂. During the pretraining phase, we employ
the pixel-wise MSE, as defined in Equ. 5, as the loss function. Unlike the MAE method, we design a
multi-scale encoder structure that can effectively capture both short-range and long-range informa-
tion. The decoder employs a simple Masked Mamba block to reconstruct the pixels of the original
image from the encoded visible patches and masked tokens.

3.2.2 MASKED MAMBA ENCODER

To capture both fine-grained and coarse-grained representations of pathological images, as illus-
trated in Figure 1 (a), we have designed a multi-scale architecture for a masked autoencoder. It
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Figure 1: The Masked Mamba’s framework. (a) The overall structure of Masked Mamba. (b) The
original Mamba. (c) Our MixedMamba Block (d) Our Patch Ghosting structure.

combines the advantages of convolution and Mamba, where each stage includes a convolution-based
patch merging and a hybrid Mamba block. By integrating these two operations at different scales,
the encoder captures local and global information, enhancing the overall representation learning pro-
cess. Specifically, let the input be denoted as X ∈ RH×W×C , where H and W represent the height
and width of the input image, respectively, and C represents the channel dimension. According to
the basic operations in MAE, the input is divided into patches of equal scale, then randomly masked,
and the unmasked patches are sequentially fed as input to the encoder. The output of the encoder
is a latent feature representation, which is passed to the decoder. During training, the entire image
is reconstructed by the decoder, and the loss corresponding to the masked patches is calculated us-
ing the MSE loss. Therefore, assuming the sequence length is T , the output at the nth layer of the
Masked Mamba can be computed as follows:

X̂n = MixedMamba Block(Norm(Xn−1)) +Xn−1

Xn = MLP(Norm(X̂n)) + X̂n
(7)

In the equation, Norm represents the layer normalization operation, and MixedMamba Block de-
notes the use of the mixer block. We will describe the details of each mixer in the following sections.

MixedMamba Block. As depicted in Figure 1 (c), we redesign the original Mamba (as shown in
Figure 1 (b)), tailoring it to be more suitable for visual tasks. Initially, we replaced the causal con-
volution (Cau-Conv1D) with a depthwise separable convolution (Sep-Conv1D). Given that samples
in pathology images (such as different types of cancer cells) may be visually highly similar, the
temporal constraints of causal convolutions are deemed unnecessary and restrictive. Furthermore, to
enrich the network’s feature representation, we add an additional branch consisting of a regular con-
volution (Reg-Conv1D) and activation layer. Subsequently, we concatenate the output of this branch
with the output of the SSM branch and project it through a final linear layer. This combination en-
sures that the final feature representation integrates sequential and spatial information. Therefore,
given an input Xin, the output Xout of the MixedMamba Block can be computed as follows:

X1 = SSM(σ(Sep-Conv1D(Linear(Xin))))
X2 = σ(Reg-Conv1D(Linear(Xin)))
Xout = Linear(Concat(X1, X2))

(8)

where Linear denotes a linear transformation layer, SSM refers to the selective scanning oper-
ation, σ represents the activation function, Sep-Conv1D is the depthwise separable convolution,
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Figure 2: Multi-scale patch merging strategy. (a) The patch merging of Swin Transformer. (b) Our
patch ghosting.

Reg-Conv1D signifies the 1-dimensional regular convolutional operation, and Concat indicates the
concatenation operation.

Patch Ghosting. Due to the staining and sectioning of pathological images, the consistency of the
images may be affected, and the highly similar cells make the classification task more difficult than
general classification tasks. Therefore, we have designed a novel patch merging strategy, called
Patch Ghosting, taking into account both computational cost and feature representation capability.
In contrast to the linear employed in traditional ViT-based models and the sliding window down-
sampling utilized in Swin Transformers, Patch Ghosting implements a methodology that is based on
a combination of convolutional operations, linear, and residual connections. As illustrated in Figure
2, we compared the Patch Merging in Swin Transformer with our Patch Ghosting. Patch Merg-
ing reduces the resolution of the feature map by merging adjacent patches through downsampling
techniques. However, the resolution in pathological images is often influenced by staining and sec-
tioning, which can limit their representation. Therefore, our Patch Ghosting generates feature maps
that encourage the model to capture diverse feature representations of similar cells. Additionally,
the use of residual connections accelerates model convergence.

Specifically, given the input Xi ∈ RHi×W i×Ci

, where Ci is the number of input channels, and
Hi and W i are the height and width of the input data, respectively. Then, intrinsic feature maps
with Ci

2 channel dimensions are generated through a primary convolution Xi
1 ∈ RHi×W i×Ci

2 . A
Depthwise Convolution (DWConv) operation is applied to each intrinsic feature in Xi

1 to generate
similar features with Ci

2 channel dimensions. Finally, the output with the same dimension as the
input is obtained through feature merging on the channel dimension. To enhance the entire encoder’s
ability to capture multi-scale features, we have added a convolutional layer to enhance discriminative
features and contribute to further performance improvements. Our Patch Ghosting can be formally
described as:

Xi
1 = ReLU(BN(Conv(Xi)))

Xi
2 = ReLU(BN(DWConv(Xi

1)))
XFinal = Conv(Concat(Xi

2, X
i
1))

(9)

where BN is the batch norm layer, Conv signifies the regular convolution, DWConv is the depthwise
convolution.

3.3 MASKED MAMBA TRANSFER

After Masked Mamba pretraining, the pre-trained Masked Mamba Encoder is transferred to down-
stream task to evaluate the effectiveness of our Masked Mamba approach. Therefore, the general
pipeline of our Masked Mamba transfer is:

x
Masked Mamba Encoder−−−−−−−−−−−−−→ H

Classification Head−−−−−−−−−−→ ŷ (10)

where the ŷ stands for the predicted target (image-wise labels for classification). Following He et al.
(2022), the classification task head consists of one linear layer appended to the Masked Mamba
Encoder, which receives the latent representations H and predicts classification labels. The binary
cross entropy (BCE) loss is used for classification:

LBCE = − 1

N

N∑
n=1

[ynlog(ŷn) + (1− yn)log(1− ŷn)] (11)

where yn and ŷn represents ground-truth and predicted label for the nth input image, respectively.
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Table 1: The 4 Pathology image dataset details.

Dataset Label Nums Image Pixel Image Nums Organ/Tissue Field
LaC Borkowski et al. (2019) 5 768× 768 25000 Colon and Rectum Histopathology
NCT Kather et al. (2019) 9 224× 224 100000 Colon and Rectum Histopathology
PBC Acevedo et al. (2020) 8 360× 363 17092 Blood Cytopathology
TCGA COAD Couture (2022) 2 224× 224 192312 Colon and Rectum Histopathology

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EXPERIMENTS IMPLEMENTATION

Our experiments contain 4 publicly available pathology image datasets, which include the Lung
and Colon Cancer (LaC) Borkowski et al. (2019), NCT-CRC-HE-100K (NCT) Kather et al. (2019),
Peripheral Blood Cell (PBC) Acevedo et al. (2020), and The Cancer Genome Atlas Colon Adeno-
carcinoma (TCGA COAD) Couture (2022). The 4 datasets are listed in detail in Table 1 and A.2.
We employ two commonly used metrics: accuracy(Acc) and F1-score(F1) to evaluate our proposed
framework quantitatively. In this work, we use graphic card NVIDIA RTX A5000 (24GB) for the
training and testing. The PyTorch version used for the implementation is 2.10.0, the Python version
is 3.11, and CUDA version is 12.1. The all datasets are randomly separated into training, validating,
and testing sets following a ratio of 7:1:2. We set batch size to 64 for all the training. Following
MAE, we use a mask ratio of 75% for the pretraining. The pretraining epoch is 100 for 4 pathology
image datasets. The implementation details are provided in A.1.

4.2 RESULTS AND DISCUSSION

We have carried out an extensive series of experiments, segmented into two principal components.
The initial phase entailed a comprehensive assessment of the classification efficacy of our Masked
Mamba model, juxtaposed against a selection of existing state-of-the-art (SOTA) models, across four
diverse general pathology datasets. Subsequently, the second phase delved into a detailed compara-
tive analysis, focusing on the distinct aspects of block structure and patch merging methodologies.

4.2.1 MASKED MAMBA EVALUATION

We employed four publicly accessible datasets of pathological imagery to substantiate the effi-
cacy of Masked Visual Meta-learning (ViM) through a comparative analysis against nine con-
temporary state-of-the-art (SOTA) algorithms as enumerated in the comparative Table 2. Initially,
within the framework of supervised classification paradigms, we designated ResNet50, ResNet101,
EfficientNet-b5, MobileNet, ViT-B, Swin-Transformer-S, VMamba-B, and ViM-B as the bench-
marks. To uphold equitable conditions, our experimental protocols incorporated pre-training and
fine-tuning stages, with rigorous adherence to dataset uniformity. The empirical findings revealed
that, within the purview of the LaC, PBC, and TCGA COAD datasets, the supervised classification
schema Swin Transformer manifested the most better classification accuracy. Conversely, within
the NCT dataset, the preeminent supervised classifier was identified as ResNet101. Masked Mamba
demonstrated superior classification outcomes in comparison to the aforementioned supervised clas-
sifiers across all four pathological imagery datasets. Subsequently, Masked Mamba realized a
marked enhancement in accuracy over the unsupervised MAE algorithm on the LaC, NCT, PBC,
and TCGA COAD datasets by increments of 1.24%, 0.47%, 1.12%, and 2.28% respectively. The
F1 scores correspondingly eclipsed those of MAE by margins of 2.16%, 0.67%, 0.71%, and 2.72%
respectively.

MAE employs a high percentage of masks (typically 75%), which means that the model needs to
learn from less visible information and predict a large amount of missing information. It can be
seen from the data in the table that the classification results in LaC are better than other data sets.
This suggests that this strategy can be more effective in learning the global and local features of
high-resolution pathology images.

7
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Table 2: Performance of our Masked Mamba trained with 4 Pathology image datasets.

Classification network LaC NCT PBC TCGA COAD
Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

ResNet50 89.81 87.54 97.99 97.63 95.92 95.56 66.71 61.93
ResNet101 90.18 89.05 98.92 98.65 96.14 95.07 67.64 69.73
EfficientNet-b5 90.00 88.63 98.89 98.55 96.77 95.73 67.88 67.04
MobileNet 89.77 87.49 98.87 97.77 95.00 93.95 60.44 57.80
ViT-B 92.11 89.92 97.63 96.39 96.84 95.14 73.18 73.91
Swin-Transformer-S 93.40 91.96 97.20 97.00 96.88 97.13 77.83 76.00
Swin-Transformer-B 93.61 92.03 97.57 97.33 96.93 97.59 77.97 76.31
VMamba-B 92.13 90.40 91.57 90.80 85.33 87.19 73.08 77.17
ViM-B 90.57 89.35 90.00 90.07 83.73 86.55 71.90 76.00
MAE 98.60 96.31 98.99 98.71 98.05 98.83 87.90 89.17
Masked Mamba 99.84 98.47 99.46 99.38 99.17 99.54 90.18 91.89

Table 3: Performance of our MixedMamba Block trained with 4 Pathology image datasets.

Method Encoder LaC NCT PBC TCGA COAD
Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

MAE ViT-B 98.60 96.31 98.99 98.71 98.05 98.83 87.90 89.17
Mamba 98.55 96.25 98.87 98.47 97.76 97.47 87.04 88.16

Masked Mamba (Linear) MixedMamba 99.15 97.16 98.98 98.86 98.22 98.17 87.16 88.55

4.2.2 THE EFFECT OF MIXEDMAMBA BLOCK

In order to substantiate the efficacy of the MixedMamba Block, a series of comparative experi-
ments were devised, specifically targeting the encoder’s blocks. As delineated in Table 3, our novel
MixedMamba integrated with a masking strategy was juxtaposed against the ViT-B and Mamba-B
on four publicly accessible pathology datasets. The empirical data presented within the table demon-
strate that the MixedMamba block possesses a definitive superiority across the LaC, NCT, and PBC
datasets. Compared with traditional MAE, the accuracy of MixedMamba in LaC,NCT and PBC
datasets is 0.69%, 0.48% and 0.95% higher, respectively. The sole instance where MixedMamba
underperformed relative to ViT-B was on the TCGA COAD dataset, with a marginal decrease in ac-
curacy of 0.74%. Consequently, aiming to augment the performance of our algorithm, we introduce
a multi-scale patch merging strategy.

4.2.3 THE EFFECT OF PATCH GHOSTING

To ascertain the efficacy of Patch Ghosting, a series of comparative experiments were executed,
integrating a variety of patch merging strategies with our MixedMamba block. These included
the linear projection mechanisms present within ViT models, the sliding window downsampling
technique from Swin Transformers, and our innovative Patch Ghosting approach. The empirical
findings, as illustrated in Table 4, evidence the exceptional performance of Patch Ghosting on four
publicly accessible pathology image datasets. Specifically, within the LaC dataset, Patch Ghosting
realized a classification accuracy that surpassed the linear operations and window downsampling
methods by 0.69% and 0.16%, respectively. For the NCT dataset, the respective improvements
over linear operations and window downsampling were 0.48% and 0.15%. In the PBC dataset, the
classification accuracy enhancements were noted to be 0.95% and 0.19%, respectively. Furthermore,
within the TCGA COAD dataset, the Patch Ghosting strategy accomplished an accuracy of 90.18%.

Table 4: Performance of Patch Ghosting trained with 4 Pathology image datasets.

Patch Merging LaC NCT PBC TCGA COAD
Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

Linear 99.15 97.16 98.98 98.86 98.22 98.17 87.16 88.55
Patch Merging 99.68 98.02 99.31 99.02 98.98 99.11 87.25 89.93
Patch Ghosting 99.84 98.47 99.46 99.38 99.17 99.54 90.18 91.89
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(a) NCT dataset 

(b) LaC dataset 

(c) PBC dataset 

(d) TCGA COAD dataset 

Figure 3: Uncurated random samples on publicly accessible pathology validation images. For each
triplet, we show the masked image (left), our Masked Mamba reconstruction (middle), and the
ground-truth (right). The images in rows 1 and 2 are from the NCT dataset, rows 3 and 4 are from
the LaC dataset, rows 5 and 6 are from the PBC dataset, and rows 7 and 8 are from the TCGA COAD
dataset. The masking ratio is 75%.

5 CONCLUSION

In this work, we introduced an innovative unsupervised classification algorithm tailored for the
unique challenges of pathological image analysis. Central to this algorithm is the mitigation of
dependency on extensively annotated datasets, which are often scarce and labor-intensive to produce.

Pathological image classification is inherently complex due to the intricate visual similarities that
can exist across various cell types and tissues. This complexity is compounded by the necessity
to focus on specific local features, such as the intricacies of cell nuclei morphology or the cyto-
plasm’s distribution. To address these issues, we developed an advanced Patch Ghosting module for
the encoding process, specifically designed to enhance feature extraction from critical local areas.
Complementing this, we incorporated the MixedMamba module within the encoder to augment the
classifier’s capacity for assimilating global contextual information and mastering long-range spa-
tial dependencies. This dual-module approach effectively reduces the over-reliance on particular
pathological regions and accommodates the inherent variability in staining processes.

The robustness of our algorithm was rigorously evaluated through classification experiments on
four diverse pathological datasets. The results were clear: our algorithm not only holds its own
but outperforms current state-of-the-art methods, demonstrating its potential as a tool for advancing
pathological analysis. Looking ahead, the versatility of our proposed algorithm opens up promis-
ing avenues for application in clinical tasks, where it has the potential to facilitate more accurate
diagnostics and contribute to the broader field of medical image analysis. This research marks an
important step forward in the quest for more effective and efficient pathological image classification,
and we are optimistic about its future applications and continued development.
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Carré, Théo Estienne, Théophraste Henry, Eric Deutsch, and Nikos Paragios. Weakly supervised
multiple instance learning histopathological tumor segmentation. In Medical Image Computing
and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru,
October 4–8, 2020, Proceedings, Part V 23, pp. 470–479. Springer, 2020.

Bin Li, Yin Li, and Kevin W Eliceiri. Dual-stream multiple instance learning network for whole slide
image classification with self-supervised contrastive learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14318–14328, 2021a.

Jiajun Li, Tiancheng Lin, and Yi Xu. Sslp: Spatial guided self-supervised learning on pathological
images. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th
International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part
II 24, pp. 3–12. Springer, 2021b.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024.

Yunze Liu and Li Yi. Map: Unleashing hybrid mamba-transformer vision backbone’s potential with
masked autoregressive pretraining. arXiv preprint arXiv:2410.00871, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Anant Madabhushi and George Lee. Image analysis and machine learning in digital pathology:
Challenges and opportunities. Medical image analysis, 33:170–175, 2016.

Pooya Mobadersany, Safoora Yousefi, Mohamed Amgad, David A Gutman, Jill S Barnholtz-Sloan,
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The comprehensive experimental settings for the pre-training and downstream tasks are provided in
Table 5a and Table 5b, respectively.
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Table 5: Parameter setting

Config Value
Optimizer AdamW Loshchilov & Hutter (2017)
Base learning rate 5e-5
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.95
Batch size 64
Learning rate schedule cosine decay Loshchilov & Hutter (2016)
Warmup epochs Goyal et al. (2017) 10
Augmentation RandomResizedCrop

(a) Pretraining setting.

Config Value
Optimizer AdamW
Base learning rate 1e-3
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise lr decay 0.75
Batch size 64
Learning rate schedule cosine decay
Warmup epochs 5
Augmentation RandAug (9, 0.5) Cubuk et al. (2020)
Label smoothing 0.1
Drop path 0.1

(b) Classification test transfer setting.

A.2 MORE VISUALIZATION RESULTS ON PATHOLOGY IMAGES

The NCT dataset consists of 9 distinct classes, which are as follows: Adipose (ADI), Background
(BACK), Debris (DEB), Lymphocytes (LYM), Mucus (MUC), Smooth Muscle (MUS), Normal
Colon Mucosa (NORM), Cancer-Associated Stroma (STR), Colorectal Adenocarcinoma Epithe-
lium (TUM). This dataset is a collection of 100,000 non-overlapping image patches from hema-
toxylin and eosin stained histological images of human colorectal cancer (CRC) and normal tissue.
The visualization for the above 9 classes is shown in Figure 4.

The LaC dataset contains 25,000 athological images with 5 classes, which are as follows: lung tissue
(LN), lung adenocarcinomas (LACA), lung squamous cell carcinomas (LSCC), colon tissue (CN),
colon adenocarcinomas (CACA). All images are 768× 768 pixels in size and are in jpeg file format.
There are 5 classes in the dataset, each with 5,000 images. The visualization for the above 5 classes
is shown in Figure 5.

The PBC dataset consists of 17,092 images. These images are further organized into the following
8 groups: neutrophils (NE), eosinophils (EO), basophils (BA), lymphocytes (LY), monocytes (MO),
immature granulocytes (IG), erythroblasts (ERB), and platelets (PL). Each image is 360×363 pixels
in size and is in JPG format, annotated by expert clinical pathologists. The visualization for the
above 8 classes is shown in Figure 6.

The TCGA COAD dataset contains 192312 unique image patches derived from histological images
of colorectal cancer and gastric cancer patients in the TCGA cohort. The dataset encompasses two
categories: ”MSS” (microsatellite stable) and ”MSI” (microsatellite unstable or highly mutated). It
has been utilized for the automatic detection of tumors. The pixel dimensions of the images within
this dataset are 224× 224 pixels. The visualization for the above 2 classes is shown in Figure 7.
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ADI
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TUM

Figure 4: Uncurated random samples on NCT. For each triplet, we show the masked image (left), our
Masked Mamba reconstruction (middle), and the ground-truth (right). The masking ratio is 75%.

LN

LSCC

LACA

CN

CACA

Figure 5: Uncurated random samples on LaC. For each triplet, we show the masked image (left), our
Masked Mamba reconstruction (middle), and the ground-truth (right). The masking ratio is 75%.
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Figure 6: Uncurated random samples on PBC. For each triplet, we show the masked image (left), our
Masked Mamba reconstruction (middle), and the ground-truth (right). The masking ratio is 75%.
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MSIMUT

MSS

Figure 7: Uncurated random samples on TCGA COAD. For each triplet, we show the masked image
(left), our Masked Mamba reconstruction (middle), and the ground-truth (right). The masking ratio
is 75%.
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