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Abstract

Fact verification is the task to verify a given
claim according to extracted evidence sen-
tences. Most existing works use whole ev-
idence sentences or break them into phrases
to perform evidence interaction, where evi-
dence is treated either too coarsely or over
fragmented. We also find that many models
suffer from exposure bias, which finally leads
to them only paying attention to the evidence
ranked higher by previous steps while failing
to recognize crucial pieces from all candidates.
In this paper, we propose an Evidence Decom-
position Graph Network (EDGN), which de-
composes each evidence sentence, especially
the complex ones, into several simple sen-
tences, highlighting the required key infor-
mation without losing sentence structure and
meaning. EDGN also absorbs a simple but ef-
fective evidence shuffling method to mitigate
exposure bias. Experiments on the FEVER
benchmark show our model can take all ev-
idence candidates into account, distill neces-
sary key information from complex evidence,
and outperform existing methods in the litera-
ture. We will release our code to the commu-
nity for further exploration.

1 Introduction

FEVER (Thorne et al., 2018) is a Fact Extraction
and Verification task, where a system is asked to
predict whether a given claim is supported, re-
futed, or can not be verified based on a Wikipedia
dump. Most existing works follow a three-step
pipeline (Thorne et al., 2018): (i) Retrieve rele-
vant pages from Wikipedia dump. (ii) Extract evi-
dence sentences from retrieved pages. (iii) Verify
the given claim based on the extracted evidence
candidates. Hanselowski et al. (2018) and Liu
et al. (2020) have contributed efficient and effec-
tive methods for the retrieval and extraction steps
respectively. Table 1 shows an example with ex-
tracted evidence candidates present in a descending

order according to their ranking scores by Liu et al.
(2020).

Many subsequent works simply use the evidence
candidates they provided and focus on the claim
verification step. They usually perform evidence in-
teraction at sentence or phrase level, which is either
too coarse or over-fragmented. The length of sen-
tences in Wikipedia varies a lot, so as the extracted
evidence sentences. If we represent these evidence
pieces with sentence vectors of a fixed size, some
key information in complex sentences may be lost
or overwhelmed. On the other hand, simply break-
ing evidence sentences into phrases and organiz-
ing as graphs may also introduce noise informa-
tion, which may even make them contradictory
to the original evidence. Previous work (Portelli
et al., 2020) finds that the key information in an
evidence sentence is generally in continuous spans,
indicating a coarse-grained decomposition method
could refine the evidence effectively. Therefore,
we propose to decompose and re-organize an orig-
inal evidence sentence into sub-evidence pieces,
namely, several simple sentences. As shown in Ta-
ble 1, the gold evidence sentence is decomposed
into two sub-evidence pieces, [Love the Way You
Lie] “Love the Way You Lie” is a song recorded by
the American rapper Eminem. and [Love the Way
You Lie] featuring the Barbadian singer Rihanna,
from Eminem’s seventh studio album Recovery (
2010 ). Compared to models operating at sentence-
level or phrase-level, our method can maintain a
relatively complete but focused meaning regarding
the original evidence sentence.

Meanwhile, previous works simply concatenate
the claim and extracted evidence pieces as the in-
put sequence fed to a classifier, while paying lit-
tle attention to the order of those evidence candi-
dates in the sequence. They often put sentences
with higher evidence extraction scores closer to the
given claim. Some works (Liu et al., 2020) even
purposely insert gold evidence sentences next to



Claim: Recovery features Rihanna on the track Love the
Way You Lie.

Label: SUPPORT

Evidence Candidates:

[Love the Way You Lie/0] “Love the Way You Lie” is a
song recorded by the American rapper Eminem, featuring
the Barbadian singer Rihanna, from Eminem’s seventh
studio album Recovery (2010).

[Recovery ( Eminem album )/0] It spawned four singles;
“Not Afraid ”, “Love the Way You Lie”, “No Love”, and
“Space Bound”, with the former two both reaching number
one on the Billboard Hot 100.

[Love the Way You Lie/1] Interscope Records released
the song in August 2010 as the second single from Recov-
ery .

Gold Evidence: [Love the Way You Lie/0]

Sub-evidence Pieces of the gold Evidence:

[Love the Way You Lie] “Love the Way You Lie” is a
song recorded by the American rapper Eminem .

[Love the Way You Lie] featuring the Barbadian singer
Rihanna , from Eminem ’s seventh studio album Recovery
(2010) .

Table 1: An instance with the decomposed gold evi-
dence of FEVER dataset.

the claim, in the hope of better training the verifica-
tion model. However, this may make the verifica-
tion model learn shortcuts, e.g., only concentrating
on evidence pieces close to the claim in the input
sequences, but probably failing to recognize the
gold evidence from imperfect evidence extractions.
This exposure bias will limit the model’s general-
ization ability at real-world scenarios, where the
positions of the gold evidence are relatively scat-
tered. We think that one way to prevent learning
such shortcuts may be to shuffle the candidates
during training, and push the model to learn to
recognize crucial evidence from tough cases, thus
improve its generalization ability.

In this paper, we propose an Evidence Decom-
position Graph Network (EDGN), a sub-sentence
level graph network with the evidence decompo-
sition and reordering mechanism. Specifically,
EDGN decomposes each evidence candidate into
several clause-level sub-evidence pieces, highlight-
ing key information in evidence candidates without
losing much syntactic and semantic information
in the original sentences. We also connect sub-
evidence pieces from the same evidence to form
an sub-evidence interaction graph. With a random
shuffle mechanism, we reorder the evidence can-
didates to help EDGN learn to recognize crucial
evidence. Then, we apply a multi-layer Graph At-
tention Network (GAT) to the sub-evidence interac-

tion graph, which accumulates context information
for each sub-evidence piece. With the claim and
all contextualized sub-evidence pieces, EGDN pre-
dicts the veracity label for the given claim.

Experiments on FEVER show that our EDGN
outperforms other published papers in both base
and large PLM settings. The evidence shuffling
method is also proved to be effective to cope with
the exposure bias and improve the robustness of the
fact verification model. Even equipped with a base
version pretrained language models, our EDGN
still achieves comparable results to recent works
that based on RoBERTa-large.

Our main contributions can be summarized as:
e we propose a novel evidence decomposition and
re-organization strategy, which can maintain a fo-
cused but complete meaning regarding original evi-
dence, benefiting fact verification performance on
FEVER benchmark.
e we propose a simple but effective evidence re-
ordering mechanism to avoid the exposure bias
introduced by the overfitting and gold evidence in-
sertion in the evidence extraction step of FEVER
pipeline, which many previous works suffer from.

2 Methodology

In this paper, we focus on the last step of FEVER
pipeline, namely claim verification as many recent
works do.

The first two steps obtain a set of evidence sen-
tences extracted from the Wikipedia dump. As
a result, for each instance of the claim verifica-
tion step, the input consists of a claim sentence
C and an evidence set £ = {(t;, ej)}g?:l, which
contains k evidence candidates {e;} with corre-
sponding Wikipedia titles {t;}.

2.1 Overview

Figure 1 shows an overview of our model. First,
each evidence sentence is split and re-organized
into a collection of sub-evidence (§ 2.2). In this
work, a sub-evidence piece is a simple sentence
that represents a specific perspective or an assertion
of the original evidence sentence. It is typically
more fine-grained than the original sentence.

We encode the sub-evidence via pre-trained lan-
guage models (§ 2.3). Then, we construct a sub-
evidence interaction graph to obtain the contextu-
alised representations of each sub-evidence (§ 2.4).
Finally, we predict the veracity label (§ 2.5) with an
auxiliary task of gold evidence prediction (§ 2.6).



Shuffled Evidence:

[Evi 1][Recovery ( Eminem
album )] Eminem also
collaborated with artists such as
Pink, Lil Wayne, Slaughterhouse
and Rihanna for the album .

[Evi O][Love the Way You Lie] "
Love the Way You Lie " is a song
recorded by the American
rapper Eminem , featuring the
Barbadian singer Rihanna , from
Eminem 's seventh studio album
Recovery (2010) .

Evidence Decomposition

[Claim] Recovery features Rihanna
on the track Love the Way You Lie.

[Evi 1_O][Recovery ( Eminem
album )] Eminem also
collaborated with artists such as
Pink, Lil Wayne, Slaughterhouse
and Rihanna for the album .

[Evi O_O][Love the Way You Lie] "
Love the Way You Lie " is a song
recorded by the American rapper
Eminem.

[Evi O_1][Love the Way You Lie] It
features the Barbadian singer
Rihanna , from Eminem 's seventh
studio album Recovery (2010) .
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Figure 1: Architecture of our approach. Each yellow node represents a sub-evidence piece, and each orange node

an evidence sentence. The blue node is the claim.

2.2 Evidence Decomposition

We split and rephrase each evidence sentence e;
into several sub-evidence pieces to make the evi-
dence more concise while keeping the similar gran-
ularity to the claims. We use an off-the-shelf sen-
tence splitting and rephrasing tool called LaserTag-
ger(Malmi et al., 2019), which is trained on the
WikiSplit dataset(Botha et al., 2018). LaserTag-
ger treats the sentence split as a text editing task,
and uses a BERT encoder with an auto-regressive
sequence labeling decoder.

We find that LaserTagger is prone to splitting
out long entities, e.g., the NAACP Image Award for
Outstanding Supporting Actor will be treated as a
sub-sentence. However, in our circumstance, these
entities can not be proper sub-evidence since they
do not make clear assertions. Therefore, we iden-
tify entities longer than two words with Spacy', and
replace these entities with anonymous tokens, entx,
where x is the entity id. After evidence splitting,
these anonymous tokens are recovered.

2.3 Evidence Encoding

We further concatenate each sub-evidence sentence
with its Wikipedia title to build a topic background.
This also potentially resolves the co-reference is-
sues. The concatenated sequence are fed into a
pre-trained language model (PLM) to obtain the ev-
idence representations. The input of the PLM can
be formulated as: (s) claim (/s) (/s) sub_e; (/s)
(/s)sub_ey (/s)--- , where claim represents the
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tokens in the given claim, and sub_e; is the
concatenation of the title and content of the ),
sub-evidence. The representation of the i}, sub-
evidence is the average of the (/s)’s representa-
tions at the start and end of the sub-evidence. The
claim-aware evidence encoding results are formu-
lated as:

B ={e; R (D
, where an original evidence sentence e; is split
into m; sub-evidence fragments, h,, is the hidden
size of the PLM.

evidence shuffling Before each epoch starts, we
randomly shuffle the original evidence sentences’
order of all training and validation examples. By
doing so, we make the location distribution of gold
candidates in all set become more similar, which
will prevent exposure bias introduced by the evi-
dence extraction step and ensure the verification
model learn to considerate all evidence candidates
when making predictions.

2.4 Sub-evidence Interaction

We construct an undirected graph G to facilitate
interactions among sub-evidence pieces from the
same original evidence sentence. Each node in
G denotes a sub-evidence, and is initialized with
its encoding, €, € E from Eq. 1. There is an
edge between the node pair €;,,, and é;,,, only if
J1 = j2. We also add a self-loop edge for every
node in the graph.

Then a two-layer Graph Attention Network
(GAT) is applied to this graph to facilitate the
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sub-evidence nodes collecting context information
from the neighborhood. We follow (Velickovic
et al., 2018) and implement a two-layer GAT with
multi-head attention. The contextualized node rep-
resentations of the sub-evidences after GATs can
be formulated as:

(a8} = GAT({é1} .0) e REH (o)

, where (Jﬁ is the representation of the ry, sub-
evidence of the j;, evidence candidate.

2.5 Veracity Prediction

We also get the claim encoding from the PLM’s
outputs described in § 2.3. Specifically, note the
encoding output of PLM for a claim with length of
m¢ as {¢;}, € R™ M _the claim representation

q© satisfies:

af = softmax (FNN, (¢;))

mC

C § : c

q pr ai . ci
=1

FNN_, is a two-layer feedforward neural network.

The claim representation is then used to perform
a cross attention with sub-evidence representations
to obtain the refined evidence vector g%

o = softmax (FNNCe ([qc; qﬁ]))

k. my
a"=> > a4
j=1r=1
FNN¢. is a two-layer feedforward neural network,
and [z; y] means the concatenation of vectors x
and y.

Finally, we obtain the predicted veracity proba-
bility distribution with FNN,,;, and a softmax layer
based on the concatenation of the claim embedding
g© and the refined evidence vector g%:

p (9|C, E) = softmax (FNNy, ([qc; qE]))

, where p (y|C, E) is the probability of the pre-
dicted label § given the claim C' and evidence can-
didates E.

We use maximum likelihood estimation to opti-
mize our veracity prediction model. The negative
log-likelihood loss L.y, satisfies:

N
1 .
Lyp = N § log (p (y = i|C, E))
i=1

1y; is the true label of the 4y, instance. N is the
number of instances for training.

2.6 Auxiliary Gold Evidence Prediction

We use gold evidence prediction as an auxiliary
task to guide the model to identify and focus on
more helpful evidence candidates. Specifically, we
apply an average pooling over the sub-evidence

representations {Qﬁ} (from Eq. 2) to obtain repre-
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sentations of k£ evidence sentences {tjj J=1-
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The evidence verification prediction is obtained
via a two-layer feed-forward neural network ac-
cording to the evidence sentence representation:

p (47'|C, E) = softmax (FNNgy (7))

The evidence verification is optimised by maxi-
mum likelihood estimation, the negative log likeli-
hood L., is:

N k
11 -
i=1 j=1

yg is the label of the j;;, evidence in the ¢4, train-
ing instance. Particularly, for those instances with
veracity labels SUPPORTS and REFUTES, we la-
bel the evidence in their annotated gold evidence
set as RELEVANT. The rest evidence candidates,
including all evidence of the instances with verac-
ity label of NOT ENOUGH INFO, are labeled as
IRRELEVANT.

Finally, the loss function is the combination of
the veracity prediction loss and the evidence ver-
ification loss: L = Ly, + A - Ley, where A is the
scaling weight, which is set to 0.5 in our model.

3 Implementation Details

For the first two steps of FEVER, we use the
method of Hanselowski et al. (2018) to retrieve
documents and the evidence extraction approach
proposed by Liu et al. (2020). Detailed statistics
of FEVER and the evidence extraction results are
shown in Appendix A. We keep the top 5 evidence
candidates as input to our model. These settings
are consistent with most existing work, ensuring a
fair comparison with the baseline.

We obtain 9 sub-evidence pieces from each in-
stance on average. Averagely, each sub-evidence
piece contains 16 words, which is much closer to
the number of words contained by a claim (8 words)
than that of the original evidence (28 words).



For the hyper-parameters, the batch size is set to
be 8, with a gradient accumulation step of 8. We
use Adam as our optimizer, and train the model for
3 epochs in total. A linear scheduler is applied and
the warm-up rate is 20%. The pre-trained language
model is initialized with RoBERTa-large. The peak
learning rate for parameters in ROBERTa is 2e-5,
and 2e-3 for other parameters introduced by our
model.

4 Experiments

We compare our model with the following com-
petitive works: (1) BERT Concat/Pair? are both
vanilla PLM models with the Bert-base checkpoint.
BERT Concat concatenates the claim and all ev-
idence as the input sequence, while Bert Pair’s
input is pairs of the claim and each evidence piece.
(2) GEAR (Zhou et al., 2019) constructs fully-
connected sentence-level graphs to perform evi-
dence interaction. (2) DOMLIN (Stammbach and
Neumann, 2019) adopts a two-staged sentence se-
lection strategy to enhance the evidence extraction
step and use Bert Concat for claim verification®.
(3) KGAT (Liu et al., 2020) introduces node ker-
nels and edge kernels to conduct fine-grained ev-
idence propagation on sentence-level graph. (4)
DREAM (Zhong et al., 2020) constructs phrase-
level graphs with an SRL parser for fine-grained in-
teractions. (5) TARSA (Si et al., 2021) proposes to
perform topic-aware evidence reasoning and stance-
aware evidence aggregation for fact verification.
(6) HESM (Subramanian and Lee, 2020) proposes
that the claim and evidence set should be encoded
and attended to at various levels of hierarchy. (7)
CorefRoberta/CorefBERT (Ye et al., 2020) add a
mention reference prediction task in pre-training to
enhance PLM’s ability to capture coreferential in-
formation. (8) MLA (Kruengkrai et al., 2021) com-
bines token-level and sentence-level self-attention
on the evidence candidates. We report its result
based-on the same evidence candidates as ours.

4.1 Metrics

There are two metrics to evaluate model perfor-
mance on the FEVER dataset, i.e., label accuracy
and FEVER score (Thorne et al., 2018). Label

The results of base version Bert Concat and Bert Pair are
directly taken from Zhou et al. (2019). The large version Bert
Pair’s results are taken from Soleimani et al. (2020).

3We do not compare with DOMLIN++ (Stammbach and
Ash, 2020), since it introduces external dataset MultiNLI
(Williams et al., 2018) and ensemble tricks.

Models Validation Test
ACC. E.S. ACC. E.S.
Base Size Settings
BERT Pair 73.30 68.90 69.75 65.18
BERT Concat 73.67 68.89 71.01 65.64
GEAR 74.84 70.69 71.60 67.10
DOMLIN 72.10 - 71.50 68.46
MLA 77.54 74.41 - -
KGAT 78.02 75.88 72.81 69.40
CorefBERT - - 72.88 69.82
HESM - - 73.18 70.07
MLA 77.54 74.41 - -
Our Model 80.71 80.51 75.17 71.45
Large Size Settings
BERT Pair 74.59 72.42 71.86 69.66
KGAT 78.29 76.11 74.07 70.38
DREAM 79.16 - 76.85 70.60
TARSA 81.24 77.96 73.97 70.70
HESM 75.77 73.44 74.64 71.48
CorefRoberta - - 75.96 72.30
MLA - - 76.30 72.83
Our Model 82.67 82.46 76.97 73.45

Table 2: Model performance on FEVER. ES. is
FEVER score.

accuracy only considers the accuracy of veracity
labels, while FEVER score involves the evaluation
of the extracted evidence.

4.2 Experimental Results

Table 2 shows that, on both base-size and large-size
PLM settings, our model outperforms all published
results on validation and test set at both metrics.
On base-size settings, EDGN outperforms the best
baseline model by 1.99% and 1.38% on accuracy
and FEVER scores, respectively. On large settings,
the improvements over the best baseline are 0.67%
and 0.62%. These results suggest the effective-
ness of our proposed evidence decomposition and
shuffling for the FEVER task.

Specifically, EDGN outperforms GEAR, KGAT,
and DREAM, which adopt interactions in sentence
or phrase level. This result demonstrates that sub-
evidence is a potentially more effective granular-
ity to process and aggregate information from evi-
dence. Processing in sub-evidence level, EDGN is
more efficient than MLA, which adopt token-level
interactions. Furthermore, our base-size model
even performs comparably with some recent large-
setting efforts, like HESM (Subramanian and Lee,
2020) and CorefRoberta (Ye et al., 2020). We think
the reason is our model makes the key informa-
tion in longer evidence sentences more prominent,
which allows light-weight models to obtain remark-



Validation

Models
ACC. F.S.
Our Model 82.67 82.46
w/ Dep-based Decomposition 82.39 82.18
w/o Evidence Decomposition 81.88 81.68
w/o Graph Interaction 81.86 81.65
w/o Auxiliary Task 81.98 81.77

Table 3: Results of Ablation study. w/o means with-
out a specified module. w/ means replace an original
module with a simpler module with the same function.

able performance.

4.3 Ablation Study

For ablation, we compare with the following model
variants to examine the effectiveness of each com-
ponent. (1) w/ Dep-based Decomposition. We use
simple rule-based evidence decomposition method
with the “conjunction” relationship in dependency
parsing instead of LaserTagger (elaborated in Ap-
pendix C). (2) w/o Evidence Decomposition. We
use the original retrieved evidence without splitting
them into sub-evidence pieces. (3) w/o Graph In-
teraction. We remove the graph interaction module,
and directly use the outcomes of PLM for veracity
prediction and gold evidence prediction. (4) w/o
Auxiliary Task. We remove the auxiliary task, gold
evidence prediction, and optimize the model solely
with the veracity prediction target.

In Table 3, without each component, the per-
formance on the validation set drops consistently,
demonstrating the effectiveness of our proposed
modules. Particularly, without evidence decompo-
sition, our model performs worse on the validation
set by 0.79% and 0.78% in accuracy and FEVER
score. Organizing the evidence with similar granu-
larity with the given claim, our model could capture
the relation between evidence and the claim more
precisely. With a rule-based evidence splitter, the
performances slightly drop, but are still better than
the setting without evidence decomposition. Even
rule-based evidence decomposition works for our
proposed method, and more sophisticated evidence
splitter brings further improvements. Without the
auxiliary gold evidence prediction task, both the
label accuracy and FEVER score drop by 0.69%.
This demonstrates the auxiliary task indeed push
the model to learn focusing on crucial evidence,
which is beneficial to veracity prediction.

Train Valid Validation
Shuffle Shuffle  Accuracy = FEVER score
v X 82.63 82.42
v v 82.67 82.46
v Rev. 82.38 82.17
X X 83.28 83.07
X v 76.28 76.07
X Rev. 72.56 72.35

Table 4: The accuracy of FEVER score of the valida-
tion set with different evidence shuffling settings. Rev.
means reverse the order of evidence candidates.

S Analysis

On both training and validation set, experiments
show an original evidence sentence is split into 1.8
sub-evidence pieces on average, which means this
evidence decomposition clarifies the vital informa-
tion without overly splitting the original sentence.
AS the decomposition results are still at sentence
level, the idea of evidence decomposition can be
simply extended to other models.

5.1 Evidence Shuffling

In this section, we further explore the impact of
the evidence shuffling method, and the results are
shown in Table 4. When training with shuffled
evidence, regardless of whether we use evidence
shuffling in the validation stage, the results are sta-
ble. However, if we keep the evidence order in the
training step but shuffle evidence in the validation
set, all metrics drop significantly, with a decrease of
7% on both accuracy and FEVER score. When we
further reverse the order of the evidence candidates,
the gap expands to 10.73%.

After examining the evidence candidates, we
discovered that gold evidence in the training set
consistently receiving extreme high scores and oth-
ers are very low. Because the gold evidence in the
training set have been used as the ground truth in
the second step of FEVER, the evidence extraction
model is overfitting to them. The evidence extrac-
tion model gives all of the gold evidence pieces a
score of over 0.999, while others are always below
0.5. In the training phase, if a claim needs s evi-
dence to be verified, these s sentences are ranked
the top-s according to the ranking scores provided
by the evidence extraction model. Without shuffle,
the verification model learns to only concentrate on
the evidence close to the given claim, which will
be harmful to the model’s generalization ability.



People are inserting gold evidence to the ex-
tracted evidence collection and giving them the
highest ranking score, making things even worse.
The validation set contains the same position bias
as in the training set. That is why we get higher
accuracy and FEVER score on the validation set
when the training and validation set are both un-
shuffled. Models have no chance to learn in hard
mode and the validation set fails to be a reasonable
selection criterion.

Therefore, evidence shuffling changes the loca-
tion distribution of gold evidence in the evidence
candidates, guiding the verification model to con-
sider all evidence candidates. It also makes the
validation set a more reasonable criterion to select
the final model. Meanwhile, it allows the evidence
extraction model to insert the gold evidence pieces
to the evidence candidates, which alleviates the
mismatch between the extracted evidence set and
the veracity label.

5.2 Influence of Gold Evidence Lengths

EDGN
w/o Decomposition
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92 A

90 1
89.4

Accuracy

88.0
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87.2

87.0 86.9
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Total #words in Gold Evidence

Figure 2: Model performance with respect to different
lengths of gold evidence on the validation set. Blue bar
is our full model, while red bar is our model without
evidence decomposition.

We compare the performance of our model with
and without evidence decomposition on instances
with gold evidence of different lengths. The re-
sults are shown in Figure 2. As there is no gold
evidence set for instances labeled NOT ENOUGH
INFO, we only care about instances that can be
verified, namely the SUPPORTS and REFUTES in-
stances. Our model achieves higher results on all
gold evidence lengths. When longer evidence is re-
quired, the accuracy improvement is more obvious,
with an increase of 1.1% on instances required 60
to 80 words and 1.0% on instances required more

than 80 words to verify respectively. Although in
these cases, the total text length a model should con-
centrate on is very long, informative spans in each
evidence piece are shorter (Portelli et al., 2020).
The evidence decomposition mechanism allows
models to ignore these sub-evidence pieces with-
out key information. For claims that only need
one or two evidence pieces to be verified, evidence
decomposition can also highlight the key informa-
tion, reaching an average of 0.77% improvement
on instances with fewer than 60 evidence words
needed. The evidence decomposition mechanism
shows more advantages when the gold sentence is
longer or more complex.

5.3 Impact of Evidence Decomposition
Quality

We use Lasertagger (Malmi et al., 2019) to de-
compose evidence candidates without further fine-
tuning on the FEVER dataset. The Exact Score and
SARI on the WikiSplit dataset (Botha et al., 2018)
is 14.42% and 61.11% respectively. Exact Score
is the percentage of exactly correctly predicted fu-
sions, and SARI (Xu et al., 2016) computes the
average F1 scores of the added, kept and deleted n-
grams. Detailed results of the decomposition model
are shown in Table 8 in the Appendix B. The qual-
ity of evidence decomposition has a great impact
on the performance of our verification model.

For the example as shown in Table 5, evidence
decomposition highlights the key information in
long sentences without much loss of sentence mean-
ing. However, LaserTagger does not replace pro-
nouns with the exact name of the subject. As shown
in the second sub-evidence, the pronoun "they" are
referred to without specification. In most cases, it
is reasonable to assume that free pronouns referred
to the title of the Wikipedia page. However, models
will easily make mistakes when it is not the case.
When we replace the claim with “Wildfang pre-
viously worked at Nike”, the model still predicts
SUPPORT.

Meanwhile, as shown in Table 8 of Appendix B,
the overall metrics of the decomposition results
have a lot of room for improvement. For example,
the best sub-evidence pieces of the gold evidence in
Table 1 should be “Love the Way You Lie” is a song
recorded by the American rapper Eminem., “Love
the Way You Lie” features the Barbadian singer
Rihanna. and “Love the Way You Lie” is from
Eminem’s seventh studio album Recovery (2010). If



a better sentence splitting method and appropriate
fine-tuning methods are introduced, EDGN has an
essential of getting more improvement.

Claim: Wildfang was founded in 2010.
Label: SUPPORT

Gold Evidence:

[Wildfang] The company was founded in 2010 by Emma
Mcilroy and Julia Parsley , who previously worked at Nike ,
Inc. in Portland , Oregon.

Decomposed Gold Evidence:

[Wildfang] The company was founded in 2010 by Emma
Mcilroy and Julia Parsley .

[Wildfang] they previously worked at Nike , Inc. in Portland
, Oregon.

Table 5: An example with decomposed gold evidence.

6 Related Works

Many earlier attempts in FEVER view the task
as an extension of the natural language inference
(NLI) task. Previous works solves it following the
NLI pattern (Hanselowski et al., 2018; Nie et al.,
2019; Soleimani et al., 2020). The given claim is
analogied to the premise, and a piece of evidence
the hypothesis. They predict a label for each claim
and evidence pair and synthesis them using rule-
based or NN-based methods to get the final pre-
diction. However, methods at this pattern disallow
evidence-evidence interaction.

Zhou et al. (2019) introduce graphs to this task.
They denote each evidence sentence with one node
and construct a fully-connected graph with these
nodes. Liu et al. (2020) try a mixture of token-level
and sentence-level kernel graph attention to allow
fine-grained interaction. They consider all evidence
candidates at once, but graphs at the sentence level
are too coarse-grained for the long extracted ev-
idence sentences. Fine-grained, namely an SRL-
based phrase-level graph construction method is
presented by Zhong et al. (2020). However, it is
over-fragmented and leaves some semantic and syn-
tactical information in the original evidence sen-
tence, especially with the fully-connected edges
within each verb and all its arguments.

Researchers also try to manipulate the claim and
evidence more skillfully. Chen et al. (2020) no-
tice that there are many aspects in a claim which
could be verified respectively. They perform task
type transformation and transform the task into a
pipeline of Question Generation, Question-Answer,
and other tasks. Portelli et al. (2020) find some

spans in evidence are crucial for claim verifica-
tion. They identify these spans and concatenate
them to the original evidence sentence for empha-
sis. Kruengkrai et al. (2021) advance multi-level
self-attention within evidence pieces perform well.
However, no previous works attempt to decompose
the evidence candidate into multiple relatively com-
plete parts explicitly.

From another perspective, after Zhou et al.
(2019) transform fact verification from a synthesis
of NLI results, there are two main ways to form
the input sequence, from which we can get the ev-
idence embedding vectors. One way is to form a
set of claim-evidence piece pair (Nie et al., 2019;
Zhou et al., 2019; Liu et al., 2020), and another is to
concatenate the claim and all evidence candidates
(Zhong et al., 2020; Kruengkrai et al., 2021). Ex-
periments show models with the later input method
get better results for it allows early interaction be-
tween the claim and evidence pieces. However,
previous researchers pay no attention to the evi-
dence order and only arrange them according to the
ranking score provided by the evidence extraction
model.

Contributing to the development of PLMs, larger
and stronger PLM is introduced to this task. T5
Listwise (Jiang et al., 2021) propose to apply TS to
the concatenated sequence of the given claim and
the candidates in all three steps of FEVER. Because
its evidence candidates set is totally different from
ours and the TS5 is a stronger PLM, it is unfair to
compare the results directly.

7 Conclusion

In this paper, we propose EDGN, an evidence de-
composition graph network for fact verification. It
decomposes evidence candidates into sub-evidence
pieces and re-organizes them in a graph to encour-
age their further interactions. The evidence de-
composition method highlights the key informa-
tion in longer evidence sentences without much ex-
pense of the original sentence structure and mean-
ing. Meanwhile, we find the exposure bias issues
introduced by the evidence extraction step in the
FEVER pipeline and propose evidence shuffling, a
simple but effective approach to help our EDGN
learn to recognize crucial pieces from the evidence
candidates. Experiments show that our method can
make better and full use of evidence candidates,
especially those longer or more complex ones, thus
achieving state-of-the-art performance.
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A FEVER Statistics

The numbers of instances in the training, validation
and test set of each class are shown in Table 6.

SUPPORTED REFUTED NEI
Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 6: Statistics of FEVER dataset.

The Evidence extraction results from Liu et al.
(2020) of each set are shown in Table 7.

Top-5 Precision  Top-5 Recall Top-5 F1
Train 32.14 99.59 48.59
Dev 27.29 94.37 42.34
Dev* 30.58 99.66 46.82
Test 25.21 87.47 39.14

Table 7: Evidence extraction results of Liu et al. (2020).
Dev* is that after gold evidence insertion.

B Detailed Results of the Decomposition
Model

The detailed results of LaserTagger, our sentence
decomposition model, on the WikiSplit dataset are
shown in Table 8. Since no checkpoint is provided
by its author, we re-train the model with their code
and dataset. The Exact score and SARI score are
less than 1% lower compared to results reported in
their paper.

Exact score 14.420
SARI score 61.112
KEEP score 93.033
ADDITION score  31.218
DELETION score  59.086

Table 8: Sentence splitting and rephrasing results on
WikiSplit dataset.

C Rule-based Decomposition Method

We get the dependency structure of each evidence
sentence with Spacy. Then we find several con-
junction sets in the dependency structure. Each
conjunction set contains several words connected
with the “conj” edge. As we want to decompose
the evidence sentence at clause level, we keep the
conjunction set with the max distance of words in
it. When we get a sub-evidence piece, we keep one
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word and remove others in the selected conjunc-
tion set. For words not in the conjunction set, we
remove a word if it depends on a removed word
and the relationship is not “conj”, recursively, and
keeps other words. Therefore, if there are n words
in the kept conjunction set, the original evidence
sentence is decomposed to n sub-evidence pieces.



