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Abstract

Fact verification is the task to verify a given001
claim according to extracted evidence sen-002
tences. Most existing works use whole ev-003
idence sentences or break them into phrases004
to perform evidence interaction, where evi-005
dence is treated either too coarsely or over006
fragmented. We also find that many models007
suffer from exposure bias, which finally leads008
to them only paying attention to the evidence009
ranked higher by previous steps while failing010
to recognize crucial pieces from all candidates.011
In this paper, we propose an Evidence Decom-012
position Graph Network (EDGN), which de-013
composes each evidence sentence, especially014
the complex ones, into several simple sen-015
tences, highlighting the required key infor-016
mation without losing sentence structure and017
meaning. EDGN also absorbs a simple but ef-018
fective evidence shuffling method to mitigate019
exposure bias. Experiments on the FEVER020
benchmark show our model can take all ev-021
idence candidates into account, distill neces-022
sary key information from complex evidence,023
and outperform existing methods in the litera-024
ture. We will release our code to the commu-025
nity for further exploration.026

1 Introduction027

FEVER (Thorne et al., 2018) is a Fact Extraction028

and Verification task, where a system is asked to029

predict whether a given claim is supported, re-030

futed, or can not be verified based on a Wikipedia031

dump. Most existing works follow a three-step032

pipeline (Thorne et al., 2018): (i) Retrieve rele-033

vant pages from Wikipedia dump. (ii) Extract evi-034

dence sentences from retrieved pages. (iii) Verify035

the given claim based on the extracted evidence036

candidates. Hanselowski et al. (2018) and Liu037

et al. (2020) have contributed efficient and effec-038

tive methods for the retrieval and extraction steps039

respectively. Table 1 shows an example with ex-040

tracted evidence candidates present in a descending041

order according to their ranking scores by Liu et al. 042

(2020). 043

Many subsequent works simply use the evidence 044

candidates they provided and focus on the claim 045

verification step. They usually perform evidence in- 046

teraction at sentence or phrase level, which is either 047

too coarse or over-fragmented. The length of sen- 048

tences in Wikipedia varies a lot, so as the extracted 049

evidence sentences. If we represent these evidence 050

pieces with sentence vectors of a fixed size, some 051

key information in complex sentences may be lost 052

or overwhelmed. On the other hand, simply break- 053

ing evidence sentences into phrases and organiz- 054

ing as graphs may also introduce noise informa- 055

tion, which may even make them contradictory 056

to the original evidence. Previous work (Portelli 057

et al., 2020) finds that the key information in an 058

evidence sentence is generally in continuous spans, 059

indicating a coarse-grained decomposition method 060

could refine the evidence effectively. Therefore, 061

we propose to decompose and re-organize an orig- 062

inal evidence sentence into sub-evidence pieces, 063

namely, several simple sentences. As shown in Ta- 064

ble 1, the gold evidence sentence is decomposed 065

into two sub-evidence pieces, [Love the Way You 066

Lie] “Love the Way You Lie” is a song recorded by 067

the American rapper Eminem. and [Love the Way 068

You Lie] featuring the Barbadian singer Rihanna, 069

from Eminem’s seventh studio album Recovery ( 070

2010 ). Compared to models operating at sentence- 071

level or phrase-level, our method can maintain a 072

relatively complete but focused meaning regarding 073

the original evidence sentence. 074

Meanwhile, previous works simply concatenate 075

the claim and extracted evidence pieces as the in- 076

put sequence fed to a classifier, while paying lit- 077

tle attention to the order of those evidence candi- 078

dates in the sequence. They often put sentences 079

with higher evidence extraction scores closer to the 080

given claim. Some works (Liu et al., 2020) even 081

purposely insert gold evidence sentences next to 082
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Claim: Recovery features Rihanna on the track Love the
Way You Lie.

Label: SUPPORT

Evidence Candidates:
[Love the Way You Lie/0] “Love the Way You Lie” is a
song recorded by the American rapper Eminem, featuring
the Barbadian singer Rihanna, from Eminem’s seventh
studio album Recovery (2010).
[Recovery ( Eminem album )/0] It spawned four singles;
“Not Afraid ”, “Love the Way You Lie”, “No Love”, and
“Space Bound”, with the former two both reaching number
one on the Billboard Hot 100.
[Love the Way You Lie/1] Interscope Records released
the song in August 2010 as the second single from Recov-
ery .

Gold Evidence: [Love the Way You Lie/0]

Sub-evidence Pieces of the gold Evidence:
[Love the Way You Lie] “Love the Way You Lie” is a
song recorded by the American rapper Eminem .
[Love the Way You Lie] featuring the Barbadian singer
Rihanna , from Eminem ’s seventh studio album Recovery
( 2010 ) .

Table 1: An instance with the decomposed gold evi-
dence of FEVER dataset.

the claim, in the hope of better training the verifica-083

tion model. However, this may make the verifica-084

tion model learn shortcuts, e.g., only concentrating085

on evidence pieces close to the claim in the input086

sequences, but probably failing to recognize the087

gold evidence from imperfect evidence extractions.088

This exposure bias will limit the model’s general-089

ization ability at real-world scenarios, where the090

positions of the gold evidence are relatively scat-091

tered. We think that one way to prevent learning092

such shortcuts may be to shuffle the candidates093

during training, and push the model to learn to094

recognize crucial evidence from tough cases, thus095

improve its generalization ability.096

In this paper, we propose an Evidence Decom-097

position Graph Network (EDGN), a sub-sentence098

level graph network with the evidence decompo-099

sition and reordering mechanism. Specifically,100

EDGN decomposes each evidence candidate into101

several clause-level sub-evidence pieces, highlight-102

ing key information in evidence candidates without103

losing much syntactic and semantic information104

in the original sentences. We also connect sub-105

evidence pieces from the same evidence to form106

an sub-evidence interaction graph. With a random107

shuffle mechanism, we reorder the evidence can-108

didates to help EDGN learn to recognize crucial109

evidence. Then, we apply a multi-layer Graph At-110

tention Network (GAT) to the sub-evidence interac-111

tion graph, which accumulates context information 112

for each sub-evidence piece. With the claim and 113

all contextualized sub-evidence pieces, EGDN pre- 114

dicts the veracity label for the given claim. 115

Experiments on FEVER show that our EDGN 116

outperforms other published papers in both base 117

and large PLM settings. The evidence shuffling 118

method is also proved to be effective to cope with 119

the exposure bias and improve the robustness of the 120

fact verification model. Even equipped with a base 121

version pretrained language models, our EDGN 122

still achieves comparable results to recent works 123

that based on RoBERTa-large. 124

Our main contributions can be summarized as: 125

• we propose a novel evidence decomposition and 126

re-organization strategy, which can maintain a fo- 127

cused but complete meaning regarding original evi- 128

dence, benefiting fact verification performance on 129

FEVER benchmark. 130

• we propose a simple but effective evidence re- 131

ordering mechanism to avoid the exposure bias 132

introduced by the overfitting and gold evidence in- 133

sertion in the evidence extraction step of FEVER 134

pipeline, which many previous works suffer from. 135

2 Methodology 136

In this paper, we focus on the last step of FEVER 137

pipeline, namely claim verification as many recent 138

works do. 139

The first two steps obtain a set of evidence sen- 140

tences extracted from the Wikipedia dump. As 141

a result, for each instance of the claim verifica- 142

tion step, the input consists of a claim sentence 143

C and an evidence set E = {(tj , ej)}kj=1, which 144

contains k evidence candidates {ej} with corre- 145

sponding Wikipedia titles {tj}. 146

2.1 Overview 147

Figure 1 shows an overview of our model. First, 148

each evidence sentence is split and re-organized 149

into a collection of sub-evidence (§ 2.2). In this 150

work, a sub-evidence piece is a simple sentence 151

that represents a specific perspective or an assertion 152

of the original evidence sentence. It is typically 153

more fine-grained than the original sentence. 154

We encode the sub-evidence via pre-trained lan- 155

guage models (§ 2.3). Then, we construct a sub- 156

evidence interaction graph to obtain the contextu- 157

alised representations of each sub-evidence (§ 2.4). 158

Finally, we predict the veracity label (§ 2.5) with an 159

auxiliary task of gold evidence prediction (§ 2.6). 160
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[Evi 1][Recovery ( Eminem 
album )] Eminem also 
collaborated with artists such as 
Pink , Lil Wayne , Slaughterhouse 
and Rihanna for the album .

[Claim] Recovery features Rihanna 
on the track Love the Way You Lie.

[Evi 0][Love the Way You Lie] " 
Love the Way You Lie " is a song 
recorded by the American 
rapper Eminem , featuring the 
Barbadian singer Rihanna , from 
Eminem 's seventh studio album
Recovery ( 2010 ) .

… …

[Evi 1_0][Recovery ( Eminem 
album )] Eminem also 
collaborated with artists such as 
Pink , Lil Wayne , Slaughterhouse 
and Rihanna for the album .

[Evi 0_0][Love the Way You Lie] " 
Love the Way You Lie " is a song 
recorded by the American rapper 
Eminem.

[Evi 0_1][Love the Way You Lie]  It 
features the Barbadian singer 
Rihanna , from Eminem 's seventh 
studio album Recovery ( 2010 ) .

… …
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Figure 1: Architecture of our approach. Each yellow node represents a sub-evidence piece, and each orange node
an evidence sentence. The blue node is the claim.

2.2 Evidence Decomposition161

We split and rephrase each evidence sentence ej162

into several sub-evidence pieces to make the evi-163

dence more concise while keeping the similar gran-164

ularity to the claims. We use an off-the-shelf sen-165

tence splitting and rephrasing tool called LaserTag-166

ger(Malmi et al., 2019), which is trained on the167

WikiSplit dataset(Botha et al., 2018). LaserTag-168

ger treats the sentence split as a text editing task,169

and uses a BERT encoder with an auto-regressive170

sequence labeling decoder.171

We find that LaserTagger is prone to splitting172

out long entities, e.g., the NAACP Image Award for173

Outstanding Supporting Actor will be treated as a174

sub-sentence. However, in our circumstance, these175

entities can not be proper sub-evidence since they176

do not make clear assertions. Therefore, we iden-177

tify entities longer than two words with Spacy1, and178

replace these entities with anonymous tokens, entx,179

where x is the entity id. After evidence splitting,180

these anonymous tokens are recovered.181

2.3 Evidence Encoding182

We further concatenate each sub-evidence sentence183

with its Wikipedia title to build a topic background.184

This also potentially resolves the co-reference is-185

sues. The concatenated sequence are fed into a186

pre-trained language model (PLM) to obtain the ev-187

idence representations. The input of the PLM can188

be formulated as: 〈s〉 claim 〈/s〉 〈/s〉 sub_e1 〈/s〉189

〈/s〉 sub_e2 〈/s〉 · · · , where claim represents the190

1https://spacy.io

tokens in the given claim, and sub_ei is the 191

concatenation of the title and content of the ith 192

sub-evidence. The representation of the ith sub- 193

evidence is the average of the 〈/s〉’s representa- 194

tions at the start and end of the sub-evidence. The 195

claim-aware evidence encoding results are formu- 196

lated as: 197

Ê = {êjr ∈ Rhp}k,mj

j=1,r=1 (1) 198

, where an original evidence sentence ej is split 199

into mj sub-evidence fragments, hp is the hidden 200

size of the PLM. 201

evidence shuffling Before each epoch starts, we 202

randomly shuffle the original evidence sentences’ 203

order of all training and validation examples. By 204

doing so, we make the location distribution of gold 205

candidates in all set become more similar, which 206

will prevent exposure bias introduced by the evi- 207

dence extraction step and ensure the verification 208

model learn to considerate all evidence candidates 209

when making predictions. 210

2.4 Sub-evidence Interaction 211

We construct an undirected graph G to facilitate 212

interactions among sub-evidence pieces from the 213

same original evidence sentence. Each node in 214

G denotes a sub-evidence, and is initialized with 215

its encoding, êjr ∈ Ê from Eq. 1. There is an 216

edge between the node pair êj1r1 and êj2r2 only if 217

j1 = j2. We also add a self-loop edge for every 218

node in the graph. 219

Then a two-layer Graph Attention Network 220

(GAT) is applied to this graph to facilitate the 221

3
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sub-evidence nodes collecting context information222

from the neighborhood. We follow (Velickovic223

et al., 2018) and implement a two-layer GAT with224

multi-head attention. The contextualized node rep-225

resentations of the sub-evidences after GATs can226

be formulated as:227 {
q̂Ejr

}
= GAT({êjr} , G) ∈ R(

∑
mj)×h (2)228

, where q̂Ejr is the representation of the rth sub-229

evidence of the jth evidence candidate.230

2.5 Veracity Prediction231

We also get the claim encoding from the PLM’s
outputs described in § 2.3. Specifically, note the
encoding output of PLM for a claim with length of
mc as {ci}m

c

i=1 ∈ Rmc×ht , the claim representation
qC satisfies:

αc
i = softmax (FNNc (ci))

qC =
mc∑
i=1

αc
i · ci

FNNc is a two-layer feedforward neural network.232

The claim representation is then used to perform
a cross attention with sub-evidence representations
to obtain the refined evidence vector qE :

αjr = softmax
(
FNNce

(
[qC ; q̂Ejr]

))
qE =

k∑
j=1

mj∑
r=1

αjr · q̂Ejr

FNNce is a two-layer feedforward neural network,233

and [x;y] means the concatenation of vectors x234

and y.235

Finally, we obtain the predicted veracity proba-
bility distribution with FNNvp and a softmax layer
based on the concatenation of the claim embedding
qC and the refined evidence vector qE :

p (ŷ|C,E) = softmax
(
FNNvp

(
[qC ; qE ]

))
, where p (ŷ|C,E) is the probability of the pre-236

dicted label ŷ given the claim C and evidence can-237

didates E.238

We use maximum likelihood estimation to opti-
mize our veracity prediction model. The negative
log-likelihood loss Lvp satisfies:

Lvp = − 1

N

N∑
i=1

log (p (ŷ = yi|C,E))

yi is the true label of the ith instance. N is the239

number of instances for training.240

2.6 Auxiliary Gold Evidence Prediction 241

We use gold evidence prediction as an auxiliary 242

task to guide the model to identify and focus on 243

more helpful evidence candidates. Specifically, we 244

apply an average pooling over the sub-evidence 245

representations {q̂Ejr} (from Eq. 2) to obtain repre- 246

sentations of k evidence sentences {q̃Ej }kj=1. 247

q̃Ej =
1

mj

mj∑
r=1

q̂Ejr

The evidence verification prediction is obtained
via a two-layer feed-forward neural network ac-
cording to the evidence sentence representation:

p
(
ŷEj |C,E

)
= softmax

(
FNNev

(
q̃Ej
))

The evidence verification is optimised by maxi-
mum likelihood estimation, the negative log likeli-
hood Lev is:

Lev = − 1

N

1

k

N∑
i=1

k∑
j=1

log
(
p
(
ŷEij = yEij |C,E

))
yEij is the label of the jth evidence in the ith train- 248

ing instance. Particularly, for those instances with 249

veracity labels SUPPORTS and REFUTES, we la- 250

bel the evidence in their annotated gold evidence 251

set as RELEVANT. The rest evidence candidates, 252

including all evidence of the instances with verac- 253

ity label of NOT ENOUGH INFO, are labeled as 254

IRRELEVANT. 255

Finally, the loss function is the combination of 256

the veracity prediction loss and the evidence ver- 257

ification loss: L = Lvp + λ · Lev, where λ is the 258

scaling weight, which is set to 0.5 in our model. 259

3 Implementation Details 260

For the first two steps of FEVER, we use the 261

method of Hanselowski et al. (2018) to retrieve 262

documents and the evidence extraction approach 263

proposed by Liu et al. (2020). Detailed statistics 264

of FEVER and the evidence extraction results are 265

shown in Appendix A. We keep the top 5 evidence 266

candidates as input to our model. These settings 267

are consistent with most existing work, ensuring a 268

fair comparison with the baseline. 269

We obtain 9 sub-evidence pieces from each in- 270

stance on average. Averagely, each sub-evidence 271

piece contains 16 words, which is much closer to 272

the number of words contained by a claim (8 words) 273

than that of the original evidence (28 words). 274
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For the hyper-parameters, the batch size is set to275

be 8, with a gradient accumulation step of 8. We276

use Adam as our optimizer, and train the model for277

3 epochs in total. A linear scheduler is applied and278

the warm-up rate is 20%. The pre-trained language279

model is initialized with RoBERTa-large. The peak280

learning rate for parameters in RoBERTa is 2e-5,281

and 2e-3 for other parameters introduced by our282

model.283

4 Experiments284

We compare our model with the following com-285

petitive works: (1) BERT Concat/Pair2 are both286

vanilla PLM models with the Bert-base checkpoint.287

BERT Concat concatenates the claim and all ev-288

idence as the input sequence, while Bert Pair’s289

input is pairs of the claim and each evidence piece.290

(2) GEAR (Zhou et al., 2019) constructs fully-291

connected sentence-level graphs to perform evi-292

dence interaction. (2) DOMLIN (Stammbach and293

Neumann, 2019) adopts a two-staged sentence se-294

lection strategy to enhance the evidence extraction295

step and use Bert Concat for claim verification3.296

(3) KGAT (Liu et al., 2020) introduces node ker-297

nels and edge kernels to conduct fine-grained ev-298

idence propagation on sentence-level graph. (4)299

DREAM (Zhong et al., 2020) constructs phrase-300

level graphs with an SRL parser for fine-grained in-301

teractions. (5) TARSA (Si et al., 2021) proposes to302

perform topic-aware evidence reasoning and stance-303

aware evidence aggregation for fact verification.304

(6) HESM (Subramanian and Lee, 2020) proposes305

that the claim and evidence set should be encoded306

and attended to at various levels of hierarchy. (7)307

CorefRoberta/CorefBERT (Ye et al., 2020) add a308

mention reference prediction task in pre-training to309

enhance PLM’s ability to capture coreferential in-310

formation. (8) MLA (Kruengkrai et al., 2021) com-311

bines token-level and sentence-level self-attention312

on the evidence candidates. We report its result313

based-on the same evidence candidates as ours.314

4.1 Metrics315

There are two metrics to evaluate model perfor-316

mance on the FEVER dataset, i.e., label accuracy317

and FEVER score (Thorne et al., 2018). Label318

2The results of base version Bert Concat and Bert Pair are
directly taken from Zhou et al. (2019). The large version Bert
Pair’s results are taken from Soleimani et al. (2020).

3We do not compare with DOMLIN++ (Stammbach and
Ash, 2020), since it introduces external dataset MultiNLI
(Williams et al., 2018) and ensemble tricks.

Models Validation Test

ACC. F.S. ACC. F.S.

Base Size Settings

BERT Pair 73.30 68.90 69.75 65.18
BERT Concat 73.67 68.89 71.01 65.64
GEAR 74.84 70.69 71.60 67.10
DOMLIN 72.10 – 71.50 68.46
MLA 77.54 74.41 – –
KGAT 78.02 75.88 72.81 69.40
CorefBERT – – 72.88 69.82
HESM – – 73.18 70.07
MLA 77.54 74.41 – –
Our Model 80.71 80.51 75.17 71.45

Large Size Settings

BERT Pair 74.59 72.42 71.86 69.66
KGAT 78.29 76.11 74.07 70.38
DREAM 79.16 – 76.85 70.60
TARSA 81.24 77.96 73.97 70.70
HESM 75.77 73.44 74.64 71.48
CorefRoberta – – 75.96 72.30
MLA – – 76.30 72.83
Our Model 82.67 82.46 76.97 73.45

Table 2: Model performance on FEVER. F.S. is
FEVER score.

accuracy only considers the accuracy of veracity 319

labels, while FEVER score involves the evaluation 320

of the extracted evidence. 321

4.2 Experimental Results 322

Table 2 shows that, on both base-size and large-size 323

PLM settings, our model outperforms all published 324

results on validation and test set at both metrics. 325

On base-size settings, EDGN outperforms the best 326

baseline model by 1.99% and 1.38% on accuracy 327

and FEVER scores, respectively. On large settings, 328

the improvements over the best baseline are 0.67% 329

and 0.62%. These results suggest the effective- 330

ness of our proposed evidence decomposition and 331

shuffling for the FEVER task. 332

Specifically, EDGN outperforms GEAR, KGAT, 333

and DREAM, which adopt interactions in sentence 334

or phrase level. This result demonstrates that sub- 335

evidence is a potentially more effective granular- 336

ity to process and aggregate information from evi- 337

dence. Processing in sub-evidence level, EDGN is 338

more efficient than MLA, which adopt token-level 339

interactions. Furthermore, our base-size model 340

even performs comparably with some recent large- 341

setting efforts, like HESM (Subramanian and Lee, 342

2020) and CorefRoberta (Ye et al., 2020). We think 343

the reason is our model makes the key informa- 344

tion in longer evidence sentences more prominent, 345

which allows light-weight models to obtain remark- 346
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Models Validation

ACC. F.S.

Our Model 82.67 82.46
w/ Dep-based Decomposition 82.39 82.18
w/o Evidence Decomposition 81.88 81.68
w/o Graph Interaction 81.86 81.65
w/o Auxiliary Task 81.98 81.77

Table 3: Results of Ablation study. w/o means with-
out a specified module. w/ means replace an original
module with a simpler module with the same function.

able performance.347

4.3 Ablation Study348

For ablation, we compare with the following model349

variants to examine the effectiveness of each com-350

ponent. (1) w/ Dep-based Decomposition. We use351

simple rule-based evidence decomposition method352

with the “conjunction” relationship in dependency353

parsing instead of LaserTagger (elaborated in Ap-354

pendix C). (2) w/o Evidence Decomposition. We355

use the original retrieved evidence without splitting356

them into sub-evidence pieces. (3) w/o Graph In-357

teraction. We remove the graph interaction module,358

and directly use the outcomes of PLM for veracity359

prediction and gold evidence prediction. (4) w/o360

Auxiliary Task. We remove the auxiliary task, gold361

evidence prediction, and optimize the model solely362

with the veracity prediction target.363

In Table 3, without each component, the per-364

formance on the validation set drops consistently,365

demonstrating the effectiveness of our proposed366

modules. Particularly, without evidence decompo-367

sition, our model performs worse on the validation368

set by 0.79% and 0.78% in accuracy and FEVER369

score. Organizing the evidence with similar granu-370

larity with the given claim, our model could capture371

the relation between evidence and the claim more372

precisely. With a rule-based evidence splitter, the373

performances slightly drop, but are still better than374

the setting without evidence decomposition. Even375

rule-based evidence decomposition works for our376

proposed method, and more sophisticated evidence377

splitter brings further improvements. Without the378

auxiliary gold evidence prediction task, both the379

label accuracy and FEVER score drop by 0.69%.380

This demonstrates the auxiliary task indeed push381

the model to learn focusing on crucial evidence,382

which is beneficial to veracity prediction.383

Train Valid Validation

Shuffle Shuffle Accuracy FEVER score

" % 82.63 82.42
" " 82.67 82.46
" Rev. 82.38 82.17

% % 83.28 83.07
% " 76.28 76.07
% Rev. 72.56 72.35

Table 4: The accuracy of FEVER score of the valida-
tion set with different evidence shuffling settings. Rev.
means reverse the order of evidence candidates.

5 Analysis 384

On both training and validation set, experiments 385

show an original evidence sentence is split into 1.8 386

sub-evidence pieces on average, which means this 387

evidence decomposition clarifies the vital informa- 388

tion without overly splitting the original sentence. 389

AS the decomposition results are still at sentence 390

level, the idea of evidence decomposition can be 391

simply extended to other models. 392

5.1 Evidence Shuffling 393

In this section, we further explore the impact of 394

the evidence shuffling method, and the results are 395

shown in Table 4. When training with shuffled 396

evidence, regardless of whether we use evidence 397

shuffling in the validation stage, the results are sta- 398

ble. However, if we keep the evidence order in the 399

training step but shuffle evidence in the validation 400

set, all metrics drop significantly, with a decrease of 401

7% on both accuracy and FEVER score. When we 402

further reverse the order of the evidence candidates, 403

the gap expands to 10.73%. 404

After examining the evidence candidates, we 405

discovered that gold evidence in the training set 406

consistently receiving extreme high scores and oth- 407

ers are very low. Because the gold evidence in the 408

training set have been used as the ground truth in 409

the second step of FEVER, the evidence extraction 410

model is overfitting to them. The evidence extrac- 411

tion model gives all of the gold evidence pieces a 412

score of over 0.999, while others are always below 413

0.5. In the training phase, if a claim needs s evi- 414

dence to be verified, these s sentences are ranked 415

the top-s according to the ranking scores provided 416

by the evidence extraction model. Without shuffle, 417

the verification model learns to only concentrate on 418

the evidence close to the given claim, which will 419

be harmful to the model’s generalization ability. 420
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People are inserting gold evidence to the ex-421

tracted evidence collection and giving them the422

highest ranking score, making things even worse.423

The validation set contains the same position bias424

as in the training set. That is why we get higher425

accuracy and FEVER score on the validation set426

when the training and validation set are both un-427

shuffled. Models have no chance to learn in hard428

mode and the validation set fails to be a reasonable429

selection criterion.430

Therefore, evidence shuffling changes the loca-431

tion distribution of gold evidence in the evidence432

candidates, guiding the verification model to con-433

sider all evidence candidates. It also makes the434

validation set a more reasonable criterion to select435

the final model. Meanwhile, it allows the evidence436

extraction model to insert the gold evidence pieces437

to the evidence candidates, which alleviates the438

mismatch between the extracted evidence set and439

the veracity label.440

5.2 Influence of Gold Evidence Lengths441

Figure 2: Model performance with respect to different
lengths of gold evidence on the validation set. Blue bar
is our full model, while red bar is our model without
evidence decomposition.

We compare the performance of our model with442

and without evidence decomposition on instances443

with gold evidence of different lengths. The re-444

sults are shown in Figure 2. As there is no gold445

evidence set for instances labeled NOT ENOUGH446

INFO, we only care about instances that can be447

verified, namely the SUPPORTS and REFUTES in-448

stances. Our model achieves higher results on all449

gold evidence lengths. When longer evidence is re-450

quired, the accuracy improvement is more obvious,451

with an increase of 1.1% on instances required 60452

to 80 words and 1.0% on instances required more453

than 80 words to verify respectively. Although in 454

these cases, the total text length a model should con- 455

centrate on is very long, informative spans in each 456

evidence piece are shorter (Portelli et al., 2020). 457

The evidence decomposition mechanism allows 458

models to ignore these sub-evidence pieces with- 459

out key information. For claims that only need 460

one or two evidence pieces to be verified, evidence 461

decomposition can also highlight the key informa- 462

tion, reaching an average of 0.77% improvement 463

on instances with fewer than 60 evidence words 464

needed. The evidence decomposition mechanism 465

shows more advantages when the gold sentence is 466

longer or more complex. 467

5.3 Impact of Evidence Decomposition 468

Quality 469

We use Lasertagger (Malmi et al., 2019) to de- 470

compose evidence candidates without further fine- 471

tuning on the FEVER dataset. The Exact Score and 472

SARI on the WikiSplit dataset (Botha et al., 2018) 473

is 14.42% and 61.11% respectively. Exact Score 474

is the percentage of exactly correctly predicted fu- 475

sions, and SARI (Xu et al., 2016) computes the 476

average F1 scores of the added, kept and deleted n- 477

grams. Detailed results of the decomposition model 478

are shown in Table 8 in the Appendix B. The qual- 479

ity of evidence decomposition has a great impact 480

on the performance of our verification model. 481

For the example as shown in Table 5, evidence 482

decomposition highlights the key information in 483

long sentences without much loss of sentence mean- 484

ing. However, LaserTagger does not replace pro- 485

nouns with the exact name of the subject. As shown 486

in the second sub-evidence, the pronoun "they" are 487

referred to without specification. In most cases, it 488

is reasonable to assume that free pronouns referred 489

to the title of the Wikipedia page. However, models 490

will easily make mistakes when it is not the case. 491

When we replace the claim with “Wildfang pre- 492

viously worked at Nike”, the model still predicts 493

SUPPORT. 494

Meanwhile, as shown in Table 8 of Appendix B, 495

the overall metrics of the decomposition results 496

have a lot of room for improvement. For example, 497

the best sub-evidence pieces of the gold evidence in 498

Table 1 should be “Love the Way You Lie” is a song 499

recorded by the American rapper Eminem., “Love 500

the Way You Lie” features the Barbadian singer 501

Rihanna. and “Love the Way You Lie” is from 502

Eminem’s seventh studio album Recovery (2010). If 503
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a better sentence splitting method and appropriate504

fine-tuning methods are introduced, EDGN has an505

essential of getting more improvement.506

Claim: Wildfang was founded in 2010.

Label: SUPPORT

Gold Evidence:
[Wildfang] The company was founded in 2010 by Emma
Mcilroy and Julia Parsley , who previously worked at Nike ,
Inc. in Portland , Oregon.

Decomposed Gold Evidence:
[Wildfang] The company was founded in 2010 by Emma
Mcilroy and Julia Parsley .
[Wildfang] they previously worked at Nike , Inc. in Portland
, Oregon.

Table 5: An example with decomposed gold evidence.

6 Related Works507

Many earlier attempts in FEVER view the task508

as an extension of the natural language inference509

(NLI) task. Previous works solves it following the510

NLI pattern (Hanselowski et al., 2018; Nie et al.,511

2019; Soleimani et al., 2020). The given claim is512

analogied to the premise, and a piece of evidence513

the hypothesis. They predict a label for each claim514

and evidence pair and synthesis them using rule-515

based or NN-based methods to get the final pre-516

diction. However, methods at this pattern disallow517

evidence-evidence interaction.518

Zhou et al. (2019) introduce graphs to this task.519

They denote each evidence sentence with one node520

and construct a fully-connected graph with these521

nodes. Liu et al. (2020) try a mixture of token-level522

and sentence-level kernel graph attention to allow523

fine-grained interaction. They consider all evidence524

candidates at once, but graphs at the sentence level525

are too coarse-grained for the long extracted ev-526

idence sentences. Fine-grained, namely an SRL-527

based phrase-level graph construction method is528

presented by Zhong et al. (2020). However, it is529

over-fragmented and leaves some semantic and syn-530

tactical information in the original evidence sen-531

tence, especially with the fully-connected edges532

within each verb and all its arguments.533

Researchers also try to manipulate the claim and534

evidence more skillfully. Chen et al. (2020) no-535

tice that there are many aspects in a claim which536

could be verified respectively. They perform task537

type transformation and transform the task into a538

pipeline of Question Generation, Question-Answer,539

and other tasks. Portelli et al. (2020) find some540

spans in evidence are crucial for claim verifica- 541

tion. They identify these spans and concatenate 542

them to the original evidence sentence for empha- 543

sis. Kruengkrai et al. (2021) advance multi-level 544

self-attention within evidence pieces perform well. 545

However, no previous works attempt to decompose 546

the evidence candidate into multiple relatively com- 547

plete parts explicitly. 548

From another perspective, after Zhou et al. 549

(2019) transform fact verification from a synthesis 550

of NLI results, there are two main ways to form 551

the input sequence, from which we can get the ev- 552

idence embedding vectors. One way is to form a 553

set of claim-evidence piece pair (Nie et al., 2019; 554

Zhou et al., 2019; Liu et al., 2020), and another is to 555

concatenate the claim and all evidence candidates 556

(Zhong et al., 2020; Kruengkrai et al., 2021). Ex- 557

periments show models with the later input method 558

get better results for it allows early interaction be- 559

tween the claim and evidence pieces. However, 560

previous researchers pay no attention to the evi- 561

dence order and only arrange them according to the 562

ranking score provided by the evidence extraction 563

model. 564

Contributing to the development of PLMs, larger 565

and stronger PLM is introduced to this task. T5 566

Listwise (Jiang et al., 2021) propose to apply T5 to 567

the concatenated sequence of the given claim and 568

the candidates in all three steps of FEVER. Because 569

its evidence candidates set is totally different from 570

ours and the T5 is a stronger PLM, it is unfair to 571

compare the results directly. 572

7 Conclusion 573

In this paper, we propose EDGN, an evidence de- 574

composition graph network for fact verification. It 575

decomposes evidence candidates into sub-evidence 576

pieces and re-organizes them in a graph to encour- 577

age their further interactions. The evidence de- 578

composition method highlights the key informa- 579

tion in longer evidence sentences without much ex- 580

pense of the original sentence structure and mean- 581

ing. Meanwhile, we find the exposure bias issues 582

introduced by the evidence extraction step in the 583

FEVER pipeline and propose evidence shuffling, a 584

simple but effective approach to help our EDGN 585

learn to recognize crucial pieces from the evidence 586

candidates. Experiments show that our method can 587

make better and full use of evidence candidates, 588

especially those longer or more complex ones, thus 589

achieving state-of-the-art performance. 590
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A FEVER Statistics727

The numbers of instances in the training, validation728

and test set of each class are shown in Table 6.

SUPPORTED REFUTED NEI

Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 6: Statistics of FEVER dataset.

729

The Evidence extraction results from Liu et al.730

(2020) of each set are shown in Table 7.

Top-5 Precision Top-5 Recall Top-5 F1

Train 32.14 99.59 48.59
Dev 27.29 94.37 42.34
Dev* 30.58 99.66 46.82
Test 25.21 87.47 39.14

Table 7: Evidence extraction results of Liu et al. (2020).
Dev* is that after gold evidence insertion.

731

B Detailed Results of the Decomposition732

Model733

The detailed results of LaserTagger, our sentence734

decomposition model, on the WikiSplit dataset are735

shown in Table 8. Since no checkpoint is provided736

by its author, we re-train the model with their code737

and dataset. The Exact score and SARI score are738

less than 1% lower compared to results reported in739

their paper.740

Exact score 14.420
SARI score 61.112
KEEP score 93.033
ADDITION score 31.218
DELETION score 59.086

Table 8: Sentence splitting and rephrasing results on
WikiSplit dataset.

C Rule-based Decomposition Method741

We get the dependency structure of each evidence742

sentence with Spacy. Then we find several con-743

junction sets in the dependency structure. Each744

conjunction set contains several words connected745

with the “conj” edge. As we want to decompose746

the evidence sentence at clause level, we keep the747

conjunction set with the max distance of words in748

it. When we get a sub-evidence piece, we keep one749

word and remove others in the selected conjunc- 750

tion set. For words not in the conjunction set, we 751

remove a word if it depends on a removed word 752

and the relationship is not “conj”, recursively, and 753

keeps other words. Therefore, if there are n words 754

in the kept conjunction set, the original evidence 755

sentence is decomposed to n sub-evidence pieces. 756
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