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Abstract

The critical challenge of early smoke segmentation for
bushfire detection is hindered by the inherent transparency,
deformable shape, and small size of nascent smoke regions.
To overcome this, we propose a novel generative data aug-
mentation framework leveraging image outpainting to sim-
ulate fixed-camera perspective transformations, effectively
generating smaller smoke instances while preserving exist-
ing segmentation labels. We employ a diffusion genera-
tive model to outpaint smoke regions, enlarging real-world
smoke images with synthetic domain-matched pixels. Ex-
periments conducted on a state-of-the-art baseline demon-
strate significant improvements, achieving a 3% increase
in mean Intersection over Union (mIoU) for small smoke
and a 0.9% overall mIoU boost. These results highlight
the efficacy of our generative data augmentation pipeline in
mitigating data scarcity, emphasising its potential for en-
hancing early wildfire detection which enables timely de-
ployment of fire services. Project page: github.com/sahir-
shr/GIMO

1. Introduction
Bushfires are frequent and devastating natural disasters, re-
sulting in significant loss of human life, wildlife, and envi-
ronmental damage. Camera-based bushfire detection pri-
marily relies on identifying visible smoke. Detection of
smoke at the initial stages of ignition is crucial, as it facil-
itates prompt response by emergency services. Once a fire
becomes established, particularly under conditions of high
fire danger, extinguishing it becomes extremely challeng-
ing or even impossible [19]. Therefore, accurately detect-
ing small, early-stage smoke remains a critical challenge for
effective bushfire mitigation.

Early Smoke Segmentation (ESS) has recently become a
prominent area of research in wildfire detection [16, 17].
Detecting early-stage smoke is particularly challenging due
to its relatively small size in bushfire scenarios, especially
when monitoring imagery encompasses expansive land-
scapes. Consequently, identifying smoke from newly ig-

Figure 1. Our GIMO pipeline obtains smaller smoke regions while
preserving segmentation masks by using a generative model to
outpaint a labelled smoke image.

nited fires under these conditions becomes significantly
more difficult.

Although deep learning methods [5, 6, 15, 17, 20, 21, 26]
have shown substantial potential to improve object detec-
tion performance, available data sets often lack sufficient
diversity and do not adequately represent the nuances of
this specific problem domain. Due to challenges in acquir-
ing large-scale in-the-wild images of bushfire smoke and the
labor-intensive nature of manually annotating segmentation
masks, existing datasets typically suffer from limited size,
insufficient domain-specific scenes, or both [15, 16].

Given the difficulty in obtaining early-stage images with
small-sized smoke, we investigate whether simulating such
conditions by positioning smoke farther away and increas-
ing the proportion of background in images could allevi-
ate the shortage of data for ESS. Outpainting [3, 7, 12] is a
task where a source image is extrapolated beyond its orig-
inal borders using synthetic, semantically-matching pixel
content. In this study, we leverage generative frameworks
[10, 11] to augment existing smoke datasets by manipulat-
ing original images and integrating new backgrounds, while
preserving the original segmentation annotations. We con-
duct experiments using the available labelled smoke seg-
mentation dataset, demonstrating significant improvements
in segmentation performance.

We detail our Generative Image Outpainting augmentation
framework with our main contributions as follows:

1. We propose a novel generative data augmentation
framework designed to simulate fixed-camera perspec-
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tive transformation on regular smoke images to obtain
smaller smoke regions.

2. We design an augmentation pipeline that leverages an
image-conditioned diffusion generative model to out-
paint smoke regions while preserving and transforming
the existing segmentation labels.

3. We test our dataset using a state-of-the-art baseline and
show 3% improvement in mIoU for small smoke while
posting a 0.9% boost in overall mIoU. We demonstrate,
through this significant boost in performance, that early
smoke segmentation is severely impaired by insufficient
training data and highlight the efficacy of generative data
augmentation in data-scarce scenarios.

2. Method
We detail our proposed Generative IMage Outpainting
(GIMO) data augmentation framework in Figure 2. GIMO
leverages an image-guided generative process to produce
in-domain smoke images targeting small smoke. Let X ⊆
RH×W×C be the input image space and Y ⊆ RH×W×1 be
the segmentation label space. Let the population of image-
label pairs be denoted by Z = X × Y . Given a training
set S ∈ Z with nS independent and identically distributed
(i.i.d) samples from Z, we use a trained diffusion generative
model to augment image-label pairs from S and obtain an
augmented set S̃. GIMO transforms a given input pair (x ∈
X, y ∈ Y ) through an out-painting process that preserves
image dimensions GIMO : RH×W×C → RH×W×C . We
use a conditional diffusion model G(.) to transform images
from S and extract nG i.i.d samples to form a new aug-
mented dataset S̃ where nG is a hyper-parameter that rep-
resents the number of new image-label pairs we wish to
generate. To train smoke segmentation models, we com-
bine the original along with our augmented dataset to ob-
tain Scombined = S + S̃. More specifically, given an input
smoke image x and label y, we obtain an outpainted image
x̃ and ỹ using the following steps:

Staged Canvas. We define a hyper-parameter λout dim

that controls the dimensions of outpainted image with re-
spect to the original. For simplicity, we apply λout dim

equally to H and W . We then pad our source image x and
corresponding label y to the outpainted image size:

Hout = H ∗ λout dim

Wout = W ∗ λout dim

(1)

We create a white RGB image canvas x̃ ∈ RHout×Wout×C

where we randomly position the source image x. Similarly,
we create a label image canvas ỹ ∈ RHout×Wout×1 where
we match the positioning to ensure that the smoke segmen-
tation label in ỹ aligns with the smoke image region in x̃.
With this step, our final segmentation label image is pre-

pared and we have staged our RGB image canvas ready for
generative outpainting.

Obtain Scene Prompt. Along with our staged canvas im-
age, we acquire a text prompt to help guide the generator to
“fill in” missing pixels in our staged canvas x̃. Since text
prompts for diffusion models strongly affect the resulting
generation and are often highly engineered [13], in order
to obtain specific prompts suited for text-to-image diffusion
models, we use InternLM2 [1] which is a pre-trained open-
source Vision Large Language Model that outputs high-
quality prompts that describe the input image scene.

Synthetic Outpaint. Armed with our staged canvas image
and a text prompt that describes our desired image scene,
we pass these to ControlNet [24] to obtain an outpainted
image x̃. We find that the initial output x̃ contains some
artefacts particularly around the border of the source image
x. To refine the threshold between the original and synthetic
pixels as well as preserve the details of the source image,
we pass x̃ through the diffusion model again but with an
Image Prompt adapter [18], along with a mask overlaying
the position of the original image pixels, to provide more
context regarding the image scene. This helps focus the
model’s attention on the fine-grained features and textures
present in the source input image x. Finally, we resize the
outpainted image to the source image size H ×W .

Generate Augmented Dataset. We repeat the above to
generate the new dataset S̃ of nG outpainted images.

3. Experiments
3.1. GIMO implementation
We employ a pre-trained Stable Diffusion XL [9] with a
ControlNet [24] that is conditioned for outpainting. All im-
ages in SmokeSeg are of dimensions 512× 512. We obtain
the desired out-painted image size using equation 1. We
experiment and show results for λout dim = 1.5, 2.0, 2.5.
For ControlNet, there are two main hyper-parameters that
we optimised empirically: conditioning scale and num-
ber of inference steps. The conditioning scale dictates the
strength of the model guidance conditioned on the input
image where a lower value enables greater freedom in re-
working the scene. As we want the diffusion model to be
strongly conditioned on the source input image, we set it to
its maximum value: 1.0. We show effects of various con-
ditional scale values in Figure 3. We found that 15 denois-
ing inference steps were ideal to achieve generated pixels
that matched the texture and semantics of the original while
keeping the inference time manageable. An NVIDIA RTX
3090 takes 9.96 seconds to outpaint one image.

SmokeSeg [16] is real dataset geared for early smoke seg-
mentation. It has 3,355 small, 1442 medium and 547 large
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Figure 2. Illustration of our proposed GIMO pipeline. We obtain outpainted image after passing our staged canvas through a ControlNet
Diffusion model and then refining it with an IPAdapter. The output is then resized to input image size. The corresponding segmentation
label is obtained by zero-padding the original mask to outpainted size then resized to input image size.

Small Medium Large Total

Method F1 ↑ mIoU ↑ mMse ↓ F1 ↑ mIoU ↑ mMse ↓ F1 ↑ mIoU ↑ mMse ↓ F1 ↑ mIoU ↑ mMse ↓

FCN [8] 55.30 41.58 0.0013 70.72 57.31 0.0043 71.64 58.22 0.0233 65.41 51.89 0.0089
PSPNet [25] 55.27 42.01 0.0012 71.44 58.13 0.0042 72.15 58.54 0.0224 65.80 52.42 0.0086
EncNet [23] 58.09 44.86 0.0012 71.16 57.74 0.0042 71.54 57.96 0.0232 66.54 53.15 0.0088
DeepLabv3+ [2] 57.00 43.70 0.0013 73.34 59.80 0.0039 72.79 59.39 0.0219 67.26 53.85 0.0084
CCNet [4] 53.94 40.59 0.0015 69.79 56.26 0.0046 72.31 59.01 0.0231 64.45 51.42 0.0090
OCRNet [22] 53.60 41.04 0.0012 72.24 59.34 0.0039 72.25 59.16 0.0224 65.13 52.66 0.0085
SegFormer [14] 58.32 45.72 0.0017 74.34 61.37 0.0038 72.50 58.95 0.0235 67.99 54.98 0.0088
Trans-BVM [15] 60.64 47.01 0.0013 72.97 59.51 0.0040 71.77 58.79 0.0223 69.12 55.57 0.0085

FoSP [16] 72.74 59.46 0.0014 78.57 66.76 0.0043 82.29 71.26 0.0201 77.70 65.58 0.0073
FoSP + GIMO (Ours) 74.06 61.27 0.0010 79.25 67.46 0.0042 82.36 71.48 0.0195 78.17 66.16 0.0075

Table 1. Results showing the gain in performance using GIMO on our baseline FoSp compared against other methods. We show improve-
ments across the board for all smoke sizes, with the performance for small smoke showing substantial increase.

smoke images for training. We experiment with different
outpainting schedules to achieve our aim of improving per-
formance for small smoke segmentation. When our staged
canvas undergoes the out-painting and then the refinement
network, there are minute changes to the scene structure
and/or texture.

We find that when outpainting then resizing images that al-
ready contain small smoke, results can sometimes distort
the smoke region or remove parts of it (see Figure 4). How-
ever, this change in smoke shape is not reflected in its corre-
sponding segmentation map. Hence, we only select medium
and large images from the SmokeSeg for outpainting to
ensure faithful scaling of smoke regions while preserving
the boundary such that the corresponding segmentation still

holds a valid annotation.

By introducing randomness regarding where the original
image is placed on the staged canvas, and by virtue of the
randomness in scene generation of diffusion models, we
have the flexibility to reuse the same source image and ob-
tain a unique outpainted image multiple times. This allows
us to scale our GIMO pipeline to obtain a dataset of de-
sired size. We generate 3,555 additional small smoke im-
ages and combine that with the original SmokeSeg training
set of 5,344 images to create our GIMO dataset.

3.2. Baselines and Evaluation Metrics.
We evaluate GIMO on the SmokeSeg [16] test set by train-
ing a recent smoke segmentation model, FoSp [16]. We
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Figure 3. Visualising the effect of different conditioning scale for
ControlNet generation guidance. A higher value produces more
faithful out-painted image with the original smoke region intact.

Figure 4. Outpainting result on original small smoke image. The
outpainted smoke ground-truth (right image) fails to properly pre-
serve the original small smoke regions (left image).

download a local copy and train on GIMO while matching
its recorded training settings. We examine the efficacy of
our dataset on FoSP using their published results on Smoke-
Seg [16]. We adhere to the evaluation metrics used in the
original papers of our baseline. We report results using
mean mean squared error (mMse), mean Intersection over
Union (mIoU ), F-measure (F1) for FoSp.

3.3. Main Results
In table 1, GIMO exhibits consistently significant improve-
ments on our baseline FoSp. Training on GIMO allows
FoSp to acheive a strong 3% improvement on mIoU for
small smoke images. Moreover, there are notable improve-
ments for medium (+ 1.05%) and large (+0.3%) smoke cat-
egories as well despite SmokeSeg containing mostly small
smoke images and GIMO focusing solely on small smoke.
Overall, GIMO enables an mIoU improvement of 0.9% av-
eraged over the entire SmokeSeg dataset.

These results demonstrate the effectiveness of GIMO in im-
proving performance for small smoke images. Furthermore,
GIMO as a data augmentation pipeline has the flexibility
that allows it to specifically target smoke images of a spe-
cific size in a truly scalable manner. The learned distribu-
tion of our out-painting and refining generative models that
are used to fill in pixels within our canvas means that each
out-painted image contains unique scene content.

3.4. Ablation Study

Figure 5. Our GIMO generated image compared with our two
naive baselines: GIMO-naive (pad the borders) and GIMO-mirror
(mirror pixels across the borders).

Naive Baselines. To demonstrate the importance of incor-
porating generated synthetic pixels onto our staged canvas,
we prepare naive versions of the GIMO pipeline. As the
simplest case, we use the staged canvas, as is, with zero
pixel values across the padded pixel region. We refer to this
version as GIMO-naive. Additionally, we prepare a ver-
sion of GIMO where the source image pixels are mirrored
across the borders and refer to this as GIMO-mirror (See
Figure 5 for illustration). We maintain dataset size across
all versions. We train FoSp on all versions of our baseline
datasets and show results in Table 2. We expect the best
performance when the input image data is consistent with
real world scenes. Hence our naive baselines perform worse
than our generative out-painted dataset as zero-padding or
pixel-mirroring represent real world smoke images.

Dataset F1 mIoU mMse
GIMO-naive 70.01 57.67 0.0011
GIMO-mirror 70.03 58.67 0.0011

GIMO 74.06 61.27 0.0010

Table 2. Results comparing naive baselines with our generative
GIMO dataset on small test set of Smoke-Seg. All models are
trained on FoSp for equal number of epochs.

4. Conclusion
We present a scalable generative data augmentation pipeline
that strongly improves performance by over 3% for segmen-
tation of small smoke images corroborating our hypothe-
sis that there is a tangible lack of sufficient training data
in this domain. By leveraging pre-trained generative diffu-
sion models to enlarge existing image scenes, we are able
to efficiently generate unique smoke images while preserv-
ing the original segmentation labels. Our outpainting ap-
proach, while effective in enlarging scenes and targeting
various smoke region sizes, inherently preserves the origi-
nal smoke shape and consistency thereby limiting the diver-
sity of generated smoke instances. This limitation motivates
the exploration of a more powerful approach in the future:
the creation of entirely synthetic smoke images using gen-
erative diffusion models.
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