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Abstract

The critical challenge of early smoke segmentation for001
bushfire detection is hindered by the inherent transparency,002
deformable shape, and small size of nascent smoke regions.003
To overcome this, we propose a novel generative data aug-004
mentation framework leveraging image outpainting to sim-005
ulate fixed-camera perspective transformations, effectively006
generating smaller smoke instances while preserving exist-007
ing segmentation labels. We employ a diffusion genera-008
tive model to outpaint smoke regions, enlarging real-world009
smoke images with synthetic domain-matched pixels. Ex-010
periments conducted on a state-of-the-art baseline demon-011
strate significant improvements, achieving a 3% increase in012
mean Intersection over Union (mIoU) for small smoke and013
a 0.9% overall mIoU boost. These results highlight the ef-014
ficacy of our generative data augmentation pipeline in mit-015
igating data scarcity, emphasising its potential for enhanc-016
ing early wildfire detection and enabling timely deployment017
of fire services.018

1. Introduction019

Bushfires are frequent and devastating natural disasters, re-020
sulting in significant loss of human life, wildlife, and en-021
vironmental damage. Camera-based bushfire detection pri-022
marily relies on identifying visible smoke. Early detection023
of smoke at the initial stages of ignition is crucial, as it facil-024
itates prompt responses by emergency services. Once a fire025
becomes established, particularly under conditions of high026
fire danger, extinguishing it becomes extremely challeng-027
ing or even impossible [17]. Therefore, accurately detect-028
ing small, early-stage smoke remains a critical challenge for029
effective bushfire mitigation.030

Early Smoke Segmentation (ESS) has recently become a031
prominent area of research in wildfire detection [14, 15].032
Detecting early-stage smoke is particularly challenging due033
to its relatively small size in bushfire scenarios, especially034
when monitoring imagery encompasses expansive land-035
scapes. Consequently, identifying smoke from newly ig-036
nited fires under these conditions becomes significantly037

more difficult. 038

Figure 1. Our GIMO pipeline obtains smaller smoke regions while
preserving segmentation masks by using a generative model to
outpaint a labelled smoke image.

Although deep learning methods [13, 15, 18, 19] have 039
shown substantial potential to improve detection perfor- 040
mance, available data sets often lack sufficient diversity 041
and do not adequately represent the nuances of this spe- 042
cific problem domain. Due to challenges in acquiring 043
large-scale in-the-wild images of bushfire smoke and the 044
labor-intensive nature of manually annotating segmentation 045
masks, existing datasets typically suffer from limited size, 046
insufficient domain-specific scenes, or both [13, 14]. 047

Given the difficulty in obtaining early-stage images with 048
small-size smoke, we investigate whether simulating such 049
conditions by positioning smoke farther away and increas- 050
ing the proportion of background in images could allevi- 051
ate the shortage of data for ESS. Outpainting [3, 5, 10] is a 052
task where a source image is extrapolated beyond its orig- 053
inal borders using synthetic, semantically-matching pixel 054
content. In this study, we leverage generative frameworks 055
[8, 9] to augment existing smoke datasets by manipulat- 056
ing original images and integrating new backgrounds, while 057
preserving the original segmentation annotations. We con- 058
duct experiments using the available labelled smoke seg- 059
mentation dataset, demonstrating significant improvements 060
in segmentation performance. 061

We detail our Generative Image Outpainting augmentation 062
framework with our main contributions as follows: 063

1. We propose a novel generative data augmentation frame- 064
work designed for simulating fixed-camera perspec- 065
tive transformation on regular smoke images to obtain 066
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smaller smoke regions.067
2. We design an augmentation pipeline that leverages an068

image-conditioned diffusion generative model to out-069
paint smoke regions while preserving and transforming070
the old segmentation labels.071

3. We test our dataset using a state-of-the-art baseline and072
show 3% improvement in mIoU for small smoke while073
posting a 0.9% boost in overall mIoU. We demonstrate,074
through these significant boost in performances, that the075
task of early smoke segmentation is severely impaired076
by insufficient training data and highlight the efficacy of077
generative data augmentation in data-scarce scenarios.078

2. Method079

We detail the process of our proposed Generative IMage080
Outpainting (GIMO) data augmentation framework in Fig-081
ure 2. GIMO leverages an image-guided generative pro-082
cess to produce in-domain smoke images targeting small083
smoke. Let X ⊆ RH×W×C be the input image space and084
Y ⊆ RH×W×1 be the segmentation label space. Let the085
population of image-label pairs be denoted by Z = X×Y .086
Given a training set S ∈ Z with nS independent and identi-087
cally distributed (i.i.d) samples from Z, we use a trained dif-088
fusion generative model to augment image-label pairs from089
S and obtain an augmented set S̃. GIMO transforms a given090
input pair (x ∈ X, y ∈ Y ) through an out-painting process091
that preserves image dimensions GIMO : RH×W×C →092
RH×W×C . We use a conditional diffusion model G(.) to093
transform images from S and extract nG i.i.d samples to094
form a new augmented dataset S̃ where nG is a hyper-095
parameter that represents the number of new image-label096
pairs we wish to generate. To train smoke segmentation097
models, we combine the original along with our augmented098
dataset to obtain Scombined = S + S̃. More specifically,099
given an input smoke image x and label y, we obtain an100
outpainted image x̃ and ỹ using the following steps:101

Staged Canvas. We define a hyper-parameter λout dim102
that controls the dimensions of outpainted image with re-103
spect to the original. For simplicity, we apply λout dim104
equally to H and W . We then pad our source image105
x and its corresponding label y to the outpainted image106
size:107

Hout = H ∗ λout dim

Wout = W ∗ λout dim

(1)108

We create a white RGB image canvas x̃ ∈ RHout×Wout×C109
where we randomly position the source image x. Similarly,110
we create a label image canvas ỹ ∈ RHout×Wout×1 where111
we match the positioning to ensure that the smoke segmen-112
tation label in ỹ aligns with the smoke image region in x̃.113
With this step, our final segmentation label image is pre-114
pared and we have staged our RGB image canvas ready for115
generative outpainting.116

Obtain Scene Prompt. Along with our staged canvas im- 117
age, we acquire a text prompt to help guide the generator to 118
“fill in” missing pixels in our staged canvas x̃. Since text 119
prompts for diffusion models strongly affect the resulting 120
generation and are often highly engineered [11], in order 121
to obtain specific prompts suited for text-to-image diffusion 122
models, we use InternLM2 [1] which is a pre-trained open- 123
source Vision Large Language Model that outputs high- 124
quality prompts that describe the input image scene. 125

Synthetic Outpaint. Armed with our staged canvas image 126
and a text prompt that describes our desired image scene, 127
we pass these to ControlNet [22] to obtain an outpainted 128
image x̃. We find that the initial output x̃ contains some 129
artefacts particularly around the border of the source image 130
x. To refine the threshold between the original and synthetic 131
pixels as well as preserve the details of the source image, 132
we pass x̃ through the diffusion model again but with an 133
Image Prompt adapter [16], along with a mask overlaying 134
the position of the original image pixels, to provide more 135
context regarding the image scene. This helps focus the 136
model’s attention on the fine-grained features and textures 137
present in the source input image x. Finally, we resize the 138
outpainted image to the source image size H ×W . 139

Generate Augmented Dataset. The process above is re- 140
peated until we generate the desired nG number of out- 141
painted images for a new dataset S̃. 142

3. Experiments 143

3.1. GIMO implementation 144

We employ a pre-trained Stable Diffusion XL [7] with a 145
ControlNet arm [22] that is conditioned for outpainting. All 146
images in SmokeSeg are of dimensions 512× 512. We ob- 147
tain the desired out-painted image size using equation 1. We 148
experiment and show results for λout dim = 1.5, 2.0, 2.5. 149
For ControlNet, there are two main hyper-parameters that 150
we optimised empirically: conditioning scale and num- 151
ber of inference steps. The conditioning scale dictates the 152
strength of the model guidance conditioned on the input 153
image where a lower value enables greater freedom in re- 154
working the scene. As we want the diffusion model to be 155
strongly conditioned on the source input image, we set it to 156
its maximum value: 1.0. We show effects of various con- 157
ditional scale values in Figure 3. We found that 15 denois- 158
ing inference steps were ideal to achieve generated pixels 159
that matched the texture and semantics of the original while 160
keeping the inference time manageable. An NVIDIA RTX 161
3090 takes 9.96 seconds to outpaint one image. 162

SmokeSeg [14] is real dataset geared for early smoke seg- 163
mentation. It has 3,355 small, 1442 medium and 547 large 164
smoke images for training. We experiment with different 165
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Figure 2. Illustration of our proposed GIMO pipeline. We obtain outpainted image after passing our staged canvas through a ControlNet
Diffusion model and then refining it with an IPAdapter. The output is then resized to input image size. The corresponding segmentation
label is obtained by zero-padding the original mask to outpainted size then resized to input image size.

Small Medium Large Total

Method F1 ↑ mIoU ↑ mMse ↓ F1 ↑ mIoU ↑ mMse ↓ F1 ↑ mIoU ↑ mMse ↓ F1 ↑ mIoU ↑ mMse ↓

FCN [6] 55.30 41.58 0.0013 70.72 57.31 0.0043 71.64 58.22 0.0233 65.41 51.89 0.0089
PSPNet [23] 55.27 42.01 0.0012 71.44 58.13 0.0042 72.15 58.54 0.0224 65.80 52.42 0.0086
EncNet [21] 58.09 44.86 0.0012 71.16 57.74 0.0042 71.54 57.96 0.0232 66.54 53.15 0.0088
DeepLabv3+ [2] 57.00 43.70 0.0013 73.34 59.80 0.0039 72.79 59.39 0.0219 67.26 53.85 0.0084
CCNet [4] 53.94 40.59 0.0015 69.79 56.26 0.0046 72.31 59.01 0.0231 64.45 51.42 0.0090
OCRNet [20] 53.60 41.04 0.0012 72.24 59.34 0.0039 72.25 59.16 0.0224 65.13 52.66 0.0085
SegFormer [12] 58.32 45.72 0.0017 74.34 61.37 0.0038 72.50 58.95 0.0235 67.99 54.98 0.0088
Trans-BVM [13] 60.64 47.01 0.0013 72.97 59.51 0.0040 71.77 58.79 0.0223 69.12 55.57 0.0085

FoSP [14] 72.74 59.46 0.0014 78.57 66.76 0.0043 82.29 71.26 0.0201 77.70 65.58 0.0073
FoSP + GIMO (Ours) 74.06 61.27 0.0010 79.25 67.46 0.0042 82.36 71.48 0.0195 78.17 66.16 0.0075

Table 1. Results showing the gain in performance using GIMO on our baseline FoSp compared against other methods. We show improve-
ments across the board for all smoke sizes, with the performance for small smoke showing substantial increase.

outpainting schedules to achieve our aim of improving per-166
formance for small smoke segmentation. When our staged167
canvas undergoes the out-painting and then the refinement168
network, there are minute changes to the scene structure169
and/or texture.170

We find that when outpainting then resizing images that al-171
ready contain small smoke, results can sometimes distort172
the smoke region or remove parts of it (see Figure 4). How-173
ever, this change in smoke shape is not reflected in its corre-174
sponding segmentation map. Hence, we only select medium175
and large images from the SmokeSeg for outpainting to176
ensure faithful scaling of smoke regions while preserving177
the boundary such that the corresponding segmentation still178
holds a valid annotation.179

By introducing randomness regarding where the original 180
image is placed on the staged canvas, and by virtue of the 181
randomness in scene generation of diffusion models, we 182
have the flexibility of reusing the same source image and 183
obtaining a unique outpainted image every time. This al- 184
lows us to scale our GIMO pipeline to obtain a dataset of 185
desired size. We generate 3,555 additional small smoke im- 186
ages and combine that with the original SmokeSeg training 187
set of 5,344 images to create our GIMO dataset. 188

3.2. Baselines and Evaluation Metrics. 189

We evaluate our GIMO on the test set of SmokeSeg [14] 190
by training a recent smoke segmentation model, FoSp [14]. 191
We download a local copy of its source code and train on 192
GIMO while matching its recorded training settings. We 193
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Figure 3. Figure showing effect of different conditioning scale for
ControlNet generation guidance. A higher value produces more
faithful out-painted image with the original smoke region intact.

Figure 4. Figure showing outpainting result on original small
smoke image. The outpainted smoke ground-truth (right image)
fails to properly preserve the original small smoke regions (left
image).

examine the efficacy of our dataset on FoSP using their pub-194
lished results on SmokeSeg [14]. We adhere to the evalu-195
ation metrics used in the original papers of our baseline.196
We report results using mean mean squared error (mMse),197
mean Intersection over Union (mIoU ), F-measure (F1) for198
FoSp.199

3.3. Main Results200

In table 1, GIMO exhibits consistently significant improve-201
ments on our baseline FoSp. Training on GIMO allows202
FoSp to acheive a strong 3% improvement on mIoU for203
small smoke images. Moreover, there are notable improve-204
ments for medium (+ 1.05%) and large (+0.3%) smoke cat-205
egories as well despite SmokeSeg containing mostly small206
smoke images and GIMO focusing solely on small smoke.207
Overall, GIMO enables an mIoU improvement of 0.9% av-208
eraged over the entire SmokeSeg dataset.209

These results demonstrate the effectiveness of GIMO in im-210
proving performance for small smoke images. Furthermore,211
GIMO as a data augmentation pipeline has the flexibility212
that allows it to specifically target smoke images of a spe-213
cific size in a truly scalable manner. The learned distribu-214
tion of our out-painting and refining generative models that215
are used to fill in pixels within our canvas means that each216
out-painted image contains unique scene content.217

3.4. Ablation Study 218

Figure 5. Figure showing our generative GIMO image compared
with our two naive baselines: GIMO-naive (which simply pads
the borders) and GIMO-mirror (which mirrors the pixels across
the borders).

Naive Baselines. To demonstrate the importance of incor- 219
porating generated synthetic pixels onto our staged canvas, 220
we prepare naive versions of GIMO pipeline. As the sim- 221
plest case, we use the staged canvas, as is, with zero pixel 222
values across the padded pixel region. We refer to this ver- 223
sion as GIMO-naive. Additionally, we prepare a version of 224
GIMO where the source image pixels are mirrored across 225
the borders and refer to this as GIMO-mirror (See figure 226
5 for illustration). We maintain dataset size across all ver- 227
sions. We train FoSp on all versions of our baseline datasets 228
and show results in Table 2. We expect the best perfor- 229
mance when the input image data is consistent with real 230
world scenes. Hence our naive baselines perform worse 231
than our generative out-painted dataset as zero-padding or 232
pixel-mirroring represent real world smoke images. 233

Dataset F1 mIoU mMse
GIMO-naive 70.01 57.67 0.0011
GIMO-mirror 70.03 58.67 0.0011

GIMO 74.06 61.27 0.0010

Table 2. Results comparing naive baselines with our generative
GIMO dataset on small test set of Smoke-Seg. All models are
trained on FoSp for equal number of epochs.

4. Conclusion 234

We present a scalable generative data augmentation pipeline 235
that strongly improves performance by over 3% for segmen- 236
tation of small smoke images corroborating our hypothe- 237
sis that there is a tangible lack of sufficient training data 238
in this domain. By leveraging pre-trained generative diffu- 239
sion models to enlarge existing image scenes, we are able 240
to efficiently generate unique smoke images while preserv- 241
ing the original segmentation labels. Our outpainting ap- 242
proach, while effective in enlarging scenes and targeting 243
various smoke region sizes, inherently preserves the origi- 244
nal smoke shape and consistency thereby limiting the diver- 245
sity of generated smoke instances. This limitation motivates 246
the exploration of a more powerful approach in the future: 247
the creation of entirely synthetic smoke images using gen- 248
erative diffusion models. 249
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