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Abstract

This paper introduces a novel prior assumption for TabPFN—a meta-learning
method designed to approximate Bayesian inference on synthetic datasets generated
from a predefined prior—aimed at better accommodating the unique zero-inflated
distributions characteristic of metagenomic data. We modify the model’s prior
assumptions without changing its architecture by generating synthetic training
data replicating the sparsity and variability inherent in these datasets. Preliminary
results from metagenomic classification tasks show significant improvements in
predictive performance, exceeding that of the original TabPFN and competing with
state-of-the-art methods. This work emphasizes the necessity of tailoring PFN
priors to align with the specific statistical properties of biomedical data, thereby
enhancing their effectiveness in precision medicine.

1 Introduction

Recent advancements in deep learning for tabular data have led to the development of highly effective
methods [1, 2, 3, 4, 5, 6], particularly those leveraging Prior-Data Fitted Networks (PFNs) [7]. PFNs
operate within the realm of meta-learning, aiming to create self-adaptive algorithms that dynamically
refine their learning bias based on accumulated meta-knowledge [8]. The goal is to generalize
across different datasets, enabling models trained on a set of datasets to perform well on unseen
datasets. Notably, the authors in [7] utilize PFNs to approximate Bayesian models for supervised
learning tasks. TabPFN [9] is a remarkable implementation of this approach, efficiently using a
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Transformer-based architecture to process tabular data. By adapting to a broad prior, TabPFN aims
to deliver strong out-of-the-box performance across various classification tasks without requiring
task-specific retraining.

This paper assesses PFNs in contexts that deviate from standard statistical assumptions, particularly in
metagenomics, where zero-inflated data is prevalent [10]. Metagenomic data derived from sequencing
genetic material in environmental or clinical samples often exhibit sparsity and a high proportion of
zero counts due to the low abundance or absence of specific microbial taxa. This sparsity leads to
statistical distributions that standard PFN training may inadequately capture. Indeed, zero-inflated
distributions present significant challenges for machine learning models not explicitly designed to
handle them. These models may misinterpret excess zeros as noise or outliers, resulting in biased
parameter estimates and sub-optimal predictive performance. While traditional approaches involve
specialized statistical models, such as zero-inflated Poisson or negative binomial distributions [11, 12,
13], integrating these considerations into deep learning frameworks remains an ongoing challenge.

To bridge this gap, we propose an adaptation of TabPFN that involves modifying its prior generation
procedure to explicitly account for the zero-inflated and compositional nature of metagenomic
data. Compositional data are complex to model as they indicate relative values, as in microbiome
data. When a species’ abundance increases, the other species’ abundance will decrease, affecting
the distribution of all features throughout the samples. By adjusting the synthetic data generation
process during the offline training phase, we can create training samples that reflect the true statistical
properties of the target datasets. This approach does not require changes to the underlying architecture
of TabPFN, preserving its efficiency and general applicability while enhancing its performance on
specialized tasks. Our contributions are two-fold:

• We propose modelling our metagenomics prior to using zero-inflated species abundance
distributions (SADs), which more accurately capture the sparsity and variability in microbial
presence and abundance typical of metagenomic datasets. For each sample, we assume that
each feature represents the relative abundance of a corresponding species. The probability
of species presence is modelled using a Bernoulli random variable with probability p.
Conditional on species presence, we model the abundance using a Log-normal or Log-
uniform distribution in this preliminary study.

• We conduct experiments to evaluate the performance of the proposed PFN-tailored models
on metagenomic classification datasets [14] and the OpenML-CC18 benchmark [15]. The
results suggest that our adapted PFN outperforms the original TabPFN in this specific context
and achieves results that are competitive with classical machine learning methods.

2 Zero-inflated Species Abundance Distributions Priors

We adopt the same theoretical setting as described in [7]. Let qθ be a parameterized model that accepts
a dataset D = {(xi, yi)}ni=1 and a query x as input, predicting a distribution over possible values
of y for the query x. Models like TabPFN are trained on dynamically generated synthetic datasets
to minimize the Prior-Data Negative Log-Likelihood. In our approach, we aim to ensure that the
features of the samples generated in the synthetic datasets follow a specific type of distribution. In this
preliminary work, we focus on modelling the features of our dataset while assigning corresponding
labels using a Bayesian Neural Network (BNN) [16], following the methodology outlined in [7, 9].

Specifically, the species abundance distribution (SAD) characterizes the distribution of abundances
of all species within an ecological community. The observation that most species are relatively
rare, with only a few being common, is often described as one of the few ecological laws [11].
Moreover, zero-inflated distributions have been proposed as appropriate models for describing the
spatial distribution of rare species due to their ability to account for excess absences in the data [12].
Specifically, a zero-inflated distribution can be viewed as a two-part model in which (1) the probability
of species presence and (2) the abundance, given presence, are modelled from the same data.

Formally, let X = (X(1), . . . , X(k)) be the random variable (r.v.) for which we have realization
x ∈ X ⊆ Rk. In our setting, we assume each one of the species X(j), j ∈ {1, . . . , k}, can be
described as the following mixture model

X(j) = ∆Z
(j)
2 + (1−∆(j))Z

(j)
1 (1)
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where ∆(j) ∼ Ber(p), Z(j)
1 ∼ P

Z
(j)
1

and Z
(j)
2 ∼ P

Z
(j)
2

. Specifically, we let P
Z

(j)
2
≡ δ{0} (i.e.,

Z
(j)
2 is almost surely zero) and we assume Z

(j)
1 discrete. Additionally, as we deal with abundance

data, we assume Pr[Z(j)
1 ≥ 0] = 1. Given a sample, we assume that each feature represents the

relative abundance of the corresponding species, and we model the probability of species presence
using a Bernoulli random variable with probability p. Since we are dealing with a zero-inflated
distribution, we set the probability p to be reasonably low. Several distributions, given presence, are
available to model abundances, such as the Log-normal, Negative Binomial, Poisson, and Log-series
distributions [11, 12]. In this preliminary version of our study, we use the most commonly applied
model for describing the SAD: the log-normal distribution [13]. Moreover, we will consider log-
uniform distribution as well. We address the compositionality of the data as described in Section 3.

3 Experimental setting and results

Datasets and data pre-processing. We evaluated the models using publicly curated metagenomic
datasets from ExperimentHub [14], which includes six cohorts with data at six taxonomic levels. We
focused on the species-level taxa (microbial species relative abundance) across five cohorts: Cirrhosis,
Inflammatory Bowel Disease, Obesity, and Type 2 Diabetes (Chinese patients - T2D, European
women - WT2D). We pre-processed the data as in [17] (see Table 2 and Appendix A.2).

Prior generation algorithm. In Algorithm 1 (see Appendix A.1), we show the prior feature gener-
ation procedure when considering zero-inflated uniform and zero-inflated log-normal distributions.
Given n samples and k features, the aim is to generate n samples whose features are sampled from
different priors. For each feature j, the algorithm samples two probabilities (p(j)Ber, p

(j)
Log) from different

Gaussian distributions, both truncated to the interval [0, 1]. The value p
(j)
Log is then used to construct

a Bernoulli random variable that determines whether a feature is sampled from a uniform or a
log-normal distribution (Algorithm 1, lines 3-5). In our experiments, if the uniform distribution is
chosen, its parameters a and b are set to 0 and 1, respectively. To derive the mean µ(j) and standard
deviation σ(j) for the log-normal distribution Log-Norm(µ(j), σ(j)), µ(j) is sampled from a normal
distribution. In contrast, the standard deviation is calculated by multiplying µ(j) with a value sampled
from a different normal distribution µ(j)′ and taking the absolute value (Algorithm 1, lines 9-12).
As a last step, for each sample i, zero-inflation is applied using the previously sampled p

(j)
Ber and

constructing a Bernoulli random variable to model feature presence. The resulting synthetic dataset
has dimensions (n, k). In our experiments, for the zero-inflated distributions, µpBer is set to 0.8 and
σpBer is fixed at 0.1. The parameters µpLog and σpLog for the log-normal distribution were set to 0.7
and 0.1, respectively. These empirical parameter values were derived based on a study on a separate
set of the ExperimentHub dataset, which was not involved in testing the model [14]. We follow the
same procedure as in [7, 9] for the BNN priors to generate the labels to associate with the synthetic
samples. For further details, we refer the reader to the mentioned papers.

PFN-tailored models investigated. We trained six different PFN models. The term LogN-U
refers to models trained on priors generated from Log-Normal and Log-Uniform distributions
without zero-inflation (i.e., p = 0 in Eq. (1)). Conversely, Z-LogN-U refers to models trained on
priors incorporating zero-inflation (i.e., p > 0 in Eq. (1)). To account for the compositionality of
metagenomic data, we applied sample-wise normalization in this preliminary study, indicated by
(⇒) in the results. Additionally, we considered feature-wise scaling (⇓) to maintain a consistent data
range at the model input, addressing the variability in feature ranges. The same training procedure
was used for all models, as detailed in Appendix A.3.

3.1 Discussion of the results

TabPFN and the PFN-tailored models on metagenomics data. We analyze the performance of
the original TabPFN model from [9] and our PFN-tailored models when applied to metagenomics data.
The original TabPFN model presents a similar behaviour overall datasets as the classical machine
learning techniques with better performance for the WT2D dataset, with an improvement of 8.2
percentage points in terms of accuracy and 16.8 in terms of AUROC (cf. Table 3).
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Table 1: We performed 10-fold cross-validation on datasets from ExperimentHub [14]. (⇒) denotes
the sample-wise normalization, (⇓) the feature-wise scaling.

Methods Cirrhosis1 (181×100) Cirrhosis2 (56×100) IBD (396×100)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 83.4 ± 8.6 93.1 ± 5.6 85.0 ± 17.4 93.3 ± 11.3 77.5 ± 7.1 87.2 ± 5.3

LogN-U 83.4 ± 10.6 91.8 ± 6.8 85.0 ± 20.3 92.2 ± 14.1 79.8 ± 7.1 86.3 ± 5.0
LogN-U (⇒) 84.5 ± 9.6 93.0 ± 5.5 83.0 ± 19.7 93.3 ± 10.2 77.3 ± 7.3 86.7 ± 6.5
LogN-U (⇓) 80.1 ± 10.6 91.0 ± 6.6 86.3 ± 16.4 94.4 ± 11.4 77.0 ± 6.2 86.1 ± 4.8
Z-LogN-U 82.3 ± 8.9 92.2 ± 6.1 86.7 ± 18.0 94.4 ± 11.4 80.3 ± 7.6 86.7 ± 5.2
Z-LogN-U (⇒) 82.9 ± 8.3 92.8 ± 5.7 84.7 ± 17.5 92.2 ± 12.2 80.3 ± 6.3 86.7 ± 6.3
Z-LogN-U (⇓) 83.9 ± 10.1 92.6 ± 6.9 85.0 ± 17.4 93.3 ± 11.3 78.5 ± 5.5 87.1 ± 4.8

Methods Obesity (263×100) T2D (344×100) WT2D (96×100)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 63.5 ± 4.7 60.0 ± 13.8 59.0 ± 4.0 61.6 ± 7.4 65.2 ± 16.6 69.6 ± 17.1

LogN-U 65.5 ± 7.9 61.9 ± 13.8 59.9 ± 7.4 63.3 ± 7.5 64.1 ± 19.8 74.4 ± 18.7
LogN-U (⇒) 62.4 ± 9.1 58.6 ± 13.6 56.7 ± 6.7 60.0 ± 8.1 63.3 ± 15.9 67.6 ± 19.3
LogN-U (⇓) 63.5 ± 6.9 60.1 ± 13.9 54.7 ± 6.4 59.6 ± 7.4 66.2 ± 13.4 73.7 ± 16.7
Z-LogN-U 63.1 ± 4.3 60.4 ± 13.9 57.0 ± 4.1 62.1 ± 8.9 65.1 ± 15.9 72.9 ± 16.9
Z-LogN-U (⇒) 65.0 ± 4.0 61.3 ± 15.0 51.5 ± 8.5 57.3 ± 11.3 63.4 ± 11.4 64.7 ± 18.1
Z-LogN-U (⇓) 65.1 ± 6.1 61.0 ± 15.0 56.1 ± 5.7 61.6 ± 8.9 71.4 ± 14.0 76.7 ± 17.4

In Table 1, we compare PFN-tailored and the original TabPFN models. Overall, the accuracy of
our models exceeds that of the original TabPFN across all datasets. Similarly, our models generally
achieve higher AUROC scores, except for the IBD and Cirrhosis1 datasets, with a difference of
only 0.1 percentage points. This indicates improved performance when handling metagenomic data.
Our analysis shows that using different priors enhances the model’s ability to learn the variable
behaviours characteristic of metagenomic data. Specifically, we find that introducing zero inflation in
the IBD datasets improves model performance in terms of accuracy. The most notable performance
gains compared to the original TabPFN occur on more challenging datasets. For example, with the
Z-LogN-U model, we observe improvements of 2 percentage points in accuracy and one percentage
point in AUROC on the Cirrhosis2 dataset, along with a 3-point accuracy increase for the IBD dataset,
highlighting the importance of zero-inflation in certain contexts. Conversely, scaling contributes
to a nearly 7-point increase in accuracy on the WT2D dataset. These results demonstrate that the
combination of zero-inflation and scaling/normalization markedly enhances TabPFN’s performance,
paving the way for further improvements. Moreover, as shown in Table 3, our PFN-tailored models
generalize better than classical machine learning models, outperforming RF, the best between the
baselines methods, of 14.4 percentage points in terms of accuracy and 23.9 in terms of AUROC.
Finally, we acknowledge the high standard deviation observed in the results, indicating potential
variability in model performance across different folds. However, we note that similar behaviour
is observed for the classical machine learning methods in Table 3, suggesting that small variations
in the training set could significantly impact the final performance of the models. In Table 5, we
provided the results by considering the Leave-One-Out Cross-Validation approach.

PFN-tailored models on OpenML-CC18. We analyzed the performance of our PFN-tailored
models on datasets that may not conform to the SAD distribution. Specifically, we examined datasets
from OpenML-CC18 [15], also evaluated in the original TabPFN paper [9]. Due to space constraints,
we have relegated the complete set of results to Appendix B.2. As expected, our PFN-tailored models
performed worse than the original TabPFN on datasets lacking relative abundance data. However, we
noted some exceptions, particularly with ID-37, the diabetes dataset, which has the highest number of
zero values among the datasets examined, with 7 out of 8 features with a maximum of 374 zero values
across 768 entries per feature. Notably, the Z-LogN-U model improved by 1.3 percentage points over
the original model. We observed a similar pattern in other datasets containing zero-valued features (cf.
ID-29, ID-1063, ID-1464, and ID-1510 in Table 4). In contrast, we highlight a significant decline in
performance for the retrained models on ID-54, ID-188, and ID-6332. The features in these datasets
are specific to their respective studies (e.g., measures related to cylinders), which contradicts the
typology of priors we considered during the meta-learning phase. Notably, in the case of ID-6332,
we observed a performance decline of up to 17.8 percentage points in accuracy and 21.1 in AUROC.
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The drop in the performance of PFN-tailored models on datasets outside our initial hypothesis is
expected, as we aim to create context-specific models rather than general-purpose models like the
original TabPFN. However, the models’ strong performance in cases of pronounced zero inflation
suggests they effectively capture the high prevalence of zeros in the feature distributions.

4 Conclusion

This paper explores microbial species’ relative abundance data and proposes PFN-like models as a
promising solution. By modifying the TabPFN [9, 7] model’s prior assumptions—without altering
its architecture—we generate synthetic training data that reflects the sparsity and variability typical
of these datasets. The implications of our findings extend beyond metagenomics, suggesting that
PFNs can be tailored for various specialized domains by properly adjusting their priors (as done, for
example, in [18]). This adaptability positions PFNs as powerful tools in fields where data exhibit
non-standard distributions, particularly where traditional deep learning models may struggle without
significant retraining or architectural changes.

The framework proposed should be expanded to explicitly address data compositionality, especially
relevant in metagenomics and other areas where features represent components of a whole. Identifying
suitable parameters for zero-inflated distributions could yield PFN-tailored models that consistently
outperform both the original TabPFN and classical methods across diverse metagenomic datasets.

This study serves as a preliminary comparison of our tailored PFNs against the original TabPFN
model. We also plan to provide a comprehensive benchmark of zero-inflated and compositional
datasets, enhancing the dataset suite used in the TabPFN family. This will validate the efficacy of
our adapted model and offer valuable resources for the research community to develop and test new
methods suited to complex data distributions.
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A Additional Material to Section 3

A.1 Prior generation algorithm

In Algorithm 1 we denote by n the number of samples to generate; by k the dimension of each sample
meaning the number of features; µpBer is set to 0.8 and σpBer is fixed at 0.1, to constrain the generation
process to create a high number of features with zero values. The parameters µpLog and σpLog for the
log-normal distribution were set to 0.7 and 0.1, respectively. These empirical parameter values were
derived based on a study on a separate set of the ExperimentHub dataset, which was not involved in
testing the model [14]. For the uniform distribution, we consider a = 0 and b = 1.

Algorithm 1: Zero-inflated SAD prior feature generation procedure
Input: k is the number of features in the synthetic dataset; n is the number of samples; µpBer and

σpBer are the parameters for sampling from the Gaussian distribution related to the
probability pBer; µpLog and σpLog are the parameters for sampling from the Gaussian
distribution related to the probability pLog; and a and b are the parameters for the uniform
distribution.

Output: A synthetic matrix of n samples and k features S = (xi)
n
i=1, with x ∈ Rk.

1 S ← zeros((n, k))
2 for j ← 1 to k do
3 Sample p

(j)
Ber ∼ N (µpBer , σpBer) truncated in [0, 1]

4 Sample pLog ∼ N (µpLog , σpLog) truncated in [0, 1]

5 Sample δ
(j)
Log ∼ Ber(p

(j)
Log)

6 if δ(j)Log == 0 then
7 P ← Uniform(a, b)

8 else
9 Sample µ(j) ∼ N (0, 1)

10 Sample µ(j)′ ∼ N (0, 1)

11 σ(j) ← |µ(j)′ · µ(j)|
12 P ← Log-norm(µ(j), σ(j))

13 for i← 1 to n do
14 Sample δ

(j)
Beri ∼ Ber(p

(j)
Ber)

15 if δ(j)Beri == 0 then
16 Sample x

(j)
i ∼ P

17 else
18 x

(j)
i ← 0

19 S[i, j]← x
(j)
i

20 return S

A.2 Features before and after filtering

The filtering process consisted of two steps: the first based on a presence/absence and abundance
filtering by class, and the second on the ANOVA F-statistic to select the first 100 most important
features. The whole preprocessing process was performed on the entire dataset, equally for all the
methods, before implementing k-fold CV. This choice has been made because of the nature of the
metagenomic datasets, for which the presence/absence of a feature could significantly affect the
model performances in a fold.

In particular:

• Presence/absence filtering involved counting the non-zero occurrences (c) for each feature
and retaining those where c > total_samples · 0.2.
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• Abundance-based filtering retained features with a maximum relative abundance exceeding
a threshold of 0.01, set close to the detection limit.

Features that did not meet these criteria were removed. During prior fitting, if the synthetic input data
is normalized by sample or scaled by feature, we apply the same procedure when evaluating real data.
The table below shows the dimensions of the datasets before and after filtering.

Table 2: Summary of the dataset dimensions before and after filtering (samples × features)

Dataset Before Filtering After Filtering

Cirrhosis1 (Cir1) 181 × 1045 181 × 336
Cirrhosis2 (Cir2) 56 × 1045 56 × 291

Type 2 Diabetes (Chinese patients - T2D) 344 × 1045 344 × 288
Type 2 Diabetes (European women - WT2D) 96 × 1045 96 × 255

Inflammatory Bowel Disease (IBD) 396 × 1045 396 × 305
Obesity 263 × 1045 263 × 247

A.3 TabPFN [9] re-training procedure

We consider the same TabPFN architecture, built on a Transformer with an initial embedding layer
of size 512 and 12 encoder blocks, each containing four attention layers, residual connections, and
normalization layers. The architecture ends with a linear decoder layer. The attention module employs
a self-attention mask, allowing training examples to attend to themselves while enabling validation
examples to attend only to training examples. The number of input features is sampled from 0 to
100. Similarly, the number of output classes is randomly selected between 0 and a maximum during
training. The final model contains 25.82M parameters. The training consists of 200 epochs and 200
steps to align with the total number of synthetic datasets generated and used from the original paper
and uses an adaptive learning rate. Within each step, 128 datasets with a fixed size of 1024 samples
are generated, resulting in 128× 200 datasets per epoch (∼ 5 million datasets). We split each dataset
into training and validation sets randomly.

We conducted each experiment on a machine equipped with an Intel® Xeon® Gold 6226 CPU, a
clock frequency of 2.70 GHz, and a Tesla V100-SXM2-32GB GPU. The training lasted about 15
hours using 8 GPUs, with each epoch taking approximately 450 seconds.

Evaluation metrics. A 10-fold cross-validation (CV) was performed to evaluate the performance
of the models and ensure their generalizability. The metrics used for evaluation were the Accuracy
score and the Area Under the Receiver Operating Characteristic curve score (AUROC) [19]. Both
metrics are reported in the Table 3.

B Additional Results

B.1 Comparison with classical machine learning techniques

To gain insights into the inherent complexities of each dataset in the Experimental Hub [14], we
evaluated them using classical machine learning methods, including Random Forest (RF), Support
Vector Classifier (SVC), and LightGBM (lGBM). No hyperparameter tuning was performed for
baselines and the results are presented in Table 3. As expected, the datasets Cirrhosis1, Cirrhosis2,
and IBD were identified as the least complex, with RF achieving particularly high accuracy and
AUROC scores. In contrast, the datasets Obesity, T2D, and WT2D proved to be the most challenging,
as the baseline methods performed similarly to a random classifier. Notably, in these cases, our
context-specific TabPFN demonstrated the greatest improvements.

B.2 SAD priors over OpenML-CC18

In this setting, we restricted our analysis to datasets with fewer than 1000 samples and 100 features,
filtering out non-numerical data. The results are presented in Table 4. Each column indicates the
identity number of the corresponding dataset.
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Table 3: We performed 10-fold cross-validation on various datasets from ExperimentHub [14] and
pre-processed as in [17]. The indicated shape reflects the data after filtering. (⇒) denotes the
sample-wise normalization, (⇓) the feature-wise scaling. The overall best result is bold, while the
best among the PFN models is underlined.

Methods Cirrhosis1 (181×100) Cirrhosis2 (56×100) IBD (396×100)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

RF 86.2 ± 7.5 94.1 ± 5.3 89.7 ± 11.3 97.8 ± 4.4 77.7 ± 8.0 88.0 ± 5.4
SVC 78.9 ± 8.6 86.4 ± 8.7 79.7 ± 22.1 86.7 ± 19.1 73.0 ± 6.2 81.1 ± 7.0
lGBM 86.2 ± 8.7 93.6 ± 5.0 90.0 ± 11.1 92.2 ± 10.0 78.0 ± 7.0 87.1 ± 5.4

TabPFN [9] 83.4 ± 8.6 93.1 ± 5.6 85.0 ± 17.4 93.3 ± 11.3 77.5 ± 7.1 87.2 ± 5.3

LogN-U 83.4 ± 10.6 91.8 ± 6.8 85.0 ± 20.3 92.2 ± 14.1 79.8 ± 7.1 86.3 ± 5.0
LogN-U(⇒) 84.5 ± 9.6 93.0 ± 5.5 83.0 ± 19.7 93.3 ± 10.2 77.3 ± 7.3 86.7 ± 6.5
LogN-U(⇓) 80.1 ± 10.6 91.0 ± 6.6 86.3 ± 16.4 94.4 ± 11.4 77.0 ± 6.2 86.1 ± 4.8
Z-LogN-U 82.3 ± 8.9 92.2 ± 6.1 86.7 ± 18.0 94.4 ± 11.4 80.3 ± 7.6 86.7 ± 5.2
Z-LogN-U (⇒) 82.9 ± 8.3 92.8 ± 5.7 84.7 ± 17.5 92.2 ± 12.2 80.3 ± 6.3 86.7 ± 6.3
Z-LogN-U (⇓) 83.9 ± 10.1 92.6 ± 6.9 85.0 ± 17.4 93.3 ± 11.3 78.5 ± 5.5 87.1 ± 4.8

Methods Obesity (263×100) T2D (344×100) WT2D (96×100)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

RF 61.3 ± 4.0 57.1 ± 13.0 57.9 ± 6.2 61.1 ± 8.9 57.0 ± 12.8 52.8 ± 18.8
SVC 62.4 ± 2.2 54.4 ± 11.9 51.8 ± 6.1 40.3 ± 5.5 52.9 ± 9.4 43.3 ± 17.4
lGBM 58.2 ± 6.6 55.4 ± 8.3 56.2 ± 8.5 60.1 ± 11.2 47.8 ± 13.1 47.2 ± 16.7

TabPFN [9] 63.5 ± 4.7 60.0 ± 13.8 59.0 ± 4.0 61.6 ± 7.4 65.2 ± 16.6 69.6 ± 17.1

LogN-U 65.5 ± 7.9 61.9 ± 13.8 59.9 ± 7.4 63.3 ± 7.5 64.1 ± 19.8 74.4 ± 18.7
LogN-U(⇒) 62.4 ± 9.1 58.6 ± 13.6 56.7 ± 6.7 60.0 ± 8.1 63.3 ± 15.9 67.6 ± 19.3
LogN-U(⇓) 63.5 ± 6.9 60.1 ± 13.9 54.7 ± 6.4 59.6 ± 7.4 66.2 ± 13.4 73.7 ± 16.7
Z-LogN-U 63.1 ± 4.3 60.4 ± 13.9 57.0 ± 4.1 62.1 ± 8.9 65.1 ± 15.9 72.9 ± 16.9
Z-LogN-U (⇒) 65.0 ± 4.0 61.3 ± 15.0 51.5 ± 8.5 57.3 ± 11.3 63.4 ± 11.4 64.7 ± 18.1
Z-LogN-U (⇓) 65.1 ± 6.1 61.0 ± 15.0 56.1 ± 5.7 61.6 ± 8.9 71.4 ± 14.0 76.7 ± 17.4

Below is a brief description of the datasets2.

ID (11): balance-scale dataset. This dataset models psychological experiments. Each example
is classified as the balance scale tipping to the right, left, or staying balanced. (No features
with zero values).

ID (15): breast-w dataset. Features are computed from digitized images of fine needle aspirates
(FNA) of breast masses, describing cell nuclei characteristics. The target feature indicates
whether the prognosis is malignant or benign. (No features with zero values).

ID (29): credit-approval dataset. This dataset comprises credit card applications, with all
attribute names and values anonymized. It includes a mix of continuous and nominal
features with varying numbers of values. (Feature ‘A3‘ contains 19 zeros, ‘A8‘ has 70, ‘A11‘
has 395, ‘A14‘ has 132, and ‘A15‘ has 295 zeros, out of 690 entries per feature).

ID (37): diabetes dataset. The diagnostic variable is binary, indicating if a patient has diabetes
based on WHO criteria (plasma glucose level ≥ 200 mg/dl). Features include patient data
like age, body mass index, and number of pregnancies. (Feature ‘preg‘ has 111 zeros, ‘plas‘
has 5, ‘pres‘ has 35, ‘skin‘ has 227, ‘insu‘ has 374, and ‘mass‘ has 11 zeros, out of 768
entries per feature).

ID (54): vehicle dataset. This dataset classifies silhouettes of four vehicle types using features
extracted by the HIPS system. Features include scale-independent measures like variance,
skewness, kurtosis, hollows, circularity, rectangularity, and compactness. (No features with
zero values).

ID (188): eucalyptus dataset. The objective is to determine the best seed lots for soil conser-
vation in dry hill countries by measuring height, diameter, survival, and other factors. (No
features with zero values).

2From https://openml.org/.
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ID (1063): kc2 dataset. A NASA defect dataset from science software data processing. Features
are derived from McCabe and Halstead extractors, which characterize software code quality.
(Feature ‘v‘ has 16 zeros, ‘l‘, ‘d‘, ‘i‘, and ‘e‘ each have 23 zeros, out of 522 entries per
feature).

ID (1464): blood-transfusion-service-center dataset. This classification dataset contains data
from a blood transfusion centre in Taiwan. Features include months since the last donation,
total donations, and total blood donated. (Feature ‘V1‘ has five zeros out of 748 entries per
feature).

ID (1480): ilpd dataset. This dataset contains records of liver patients and non-liver patients
from Andhra Pradesh, India. The class label divides patients into liver and non-liver groups.
Features include patient information like age and gender. (No features with zero values).

ID (1510): wdbc dataset. Description as in breast-w dataset. (Features ‘V7‘ and ‘V8‘ each have
13 zeros out of 569 entries per feature).

ID (6332): cylinder-bands dataset. This dataset addresses process delays in rotogravure printing
caused by cylinder banding. Features include measures related to cylinders. (Feature
‘varnish_pct‘ has 213 zeros, ‘press_speed‘ has 1 zero, out of 540 entries per feature).

ID (40994): climate-model-simulation-crashes dataset. This dataset records simulation crashes
during climate model uncertainty quantification (UQ) ensembles. The goal is to predict sim-
ulation outcomes (success or failure) and analyze the causes of crashes using classification
and feature selection. (No features with zero values).
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Table 4: We performed 10-fold cross-validation on various datasets from OpenML-CC18 [15]. We
considered datasets with fewer than 1000 samples, 100 features, and 10 classes. Columns containing
non-numerical data were filtered out for datasets marked with a ⋆. The indicated shape reflects the
data after filtering. (⇒) denotes the sample-wise normalization, (⇓) the feature-wise scaling.

Methods ID-11 (625×4) ID-15 (699×9) ID-29⋆ (690×6)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 99.2 ± 1.1 100.0 ± 0.1 97.1 ± 0.9 99.5 ± 0.3 77.1 ± 5.8 84.3 ± 5.7

LogN-U 91.5 ± 1.4 96.6 ± 1.8 95.7 ± 1.7 98.8 ± 0.9 77.4 ± 5.5 84.1 ± 5.9
LogN-U(⇒) 93.3 ± 2.3 97.7 ± 1.5 89.6 ± 2.5 96.1 ± 2.4 75.9 ± 4.6 82.1 ± 5.8
LogN-U(⇓) 90.9 ± 1.9 97.1 ± 1.3 95.7 ± 3.1 98.8 ± 0.9 77.7 ± 4.9 83.4 ± 6.7
Z-LogN-U 90.9 ± 1.2 97.1 ± 1.1 97.3 ± 1.4 98.9 ± 0.9 77.5 ± 6.0 84.2 ± 5.5
Z-LogN-U (⇒) 92.2 ± 1.8 98.9 ± 0.9 91.0 ± 3.1 96.1 ± 2.6 75.4 ± 5.6 81.7 ± 5.8
Z-LogN-U (⇓) 91.2 ± 1.8 97.4 ± 1.0 96.4 ± 2.3 98.7 ± 0.8 77.1 ± 4.9 83.3 ± 6.6

Methods ID-37 (768×8) ID-54 (846×18) ID-188⋆ (736×14)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 76.2 ± 3.1 83.8 ± 4.5 84.5 ± 3.8 96.9 ± 1.0 69.7 ± 4.7 92.7 ± 1.3

LogN-U 77.0 ± 2.5 83.4 ± 3.5 73.3 ± 4.2 93.0 ± 1.1 63.6 ± 4.6 89.2 ± 2.3
LogN-U(⇒) 66.4 ± 1.9 72.0 ± 4.7 71.4 ± 5.4 92.5 ± 1.1 56.1 ± 4.0 84.5 ± 2.2
LogN-U(⇓) 76.2 ± 2.5 83.2 ± 3.9 74.7 ± 3.3 93.0 ± 1.2 41.0 ± 6.7 68.0 ± 4.7
Z-LogN-U 77.5 ± 2.9 83.5 ± 3.6 72.7 ± 3.2 92.3 ± 1.0 62.5 ± 4.4 88.7 ± 2.5
Z-LogN-U (⇒) 70.4 ± 3.4 73.0 ± 4.9 70.9 ± 4.7 91.9 ± 1.1 57.1 ± 4.5 84.4 ± 2.5
Z-LogN-U (⇓) 76.4 ± 2.8 83.1 ± 3.7 74.1 ± 4.6 92.6 ± 1.2 40.5 ± 5.6 67.7 ± 5.2

Methods ID-1063 (522×21) ID-1464 (748×4) ID-1480⋆ (583×9)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 85.1 ± 3.7 84.3 ± 9.6 79.8 ± 2.6 76.2 ± 5.2 72.5 ± 4.5 75.4 ± 7.1

LogN-U 83.9 ± 4.7 83.2 ± 9.5 80.1 ± 3.8 76.2 ± 6.2 71.7 ± 2.6 75.3 ± 6.6
LogN-U(⇒) 82.2 ± 3.4 82.3 ± 8.4 75.9 ± 1.1 74.1 ± 6.1 71.4 ± 0.7 72.4 ± 6.8
LogN-U(⇓) 82.6 ± 4.1 82.2 ± 9.1 79.8 ± 3.7 75.6 ± 6.0 71.4 ± 1.9 74.6 ± 7.1
Z-LogN-U 79.3 ± 1.1 84.2 ± 9.4 77.1 ± 2.5 75.6 ± 5.1 71.2 ± 1.3 74.0 ± 4.9
Z-LogN-U (⇒) 79.5 ± 0.8 81.9 ± 8.3 76.2 ± 0.4 74.3 ± 7.2 70.3 ± 3.3 73.6 ± 6.3
Z-LogN-U (⇓) 80.5 ± 1.9 84.9 ± 7.9 76.2 ± 0.4 75.0 ± 5.7 71.4 ± 0.7 74.1 ± 6.1

Methods ID-1510 (569×30) ID-6332⋆ (540×18) ID-40994 (540×18)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 98.1 ± 1.7 99.6 ± 0.6 74.8 ± 4.3 80.6 ± 2.0 96.3 ± 2.2 95.5 ± 4.9

LogN-U 96.5 ± 1.9 99.4 ± 0.6 67.8 ± 3.5 73.5 ± 4.1 93.1 ± 1.7 94.7 ± 5.9
LogN-U(⇒) 96.3 ± 3.1 99.4 ± 0.9 62.2 ± 6.2 68.2 ± 6.3 93.3 ± 1.9 94.6 ± 4.4
LogN-U(⇓) 96.3 ± 3.1 99.5 ± 0.6 58.9 ± 6.6 59.2 ± 10.6 94.8 ± 2.5 94.3 ± 6.1
Z-LogN-U 97.5 ± 2.0 99.6 ± 0.7 68.5 ± 4.3 75.2 ± 2.5 94.3 ± 1.5 95.1 ± 6.0
Z-LogN-U (⇒) 95.6 ± 3.3 99.4 ± 0.8 60.4 ± 3.3 69.8 ± 7.8 92.4 ± 1.5 94.0 ± 4.8
Z-LogN-U (⇓) 97.5 ± 2.5 99.6 ± 0.7 57.0 ± 2.0 53.5 ± 10.2 95.0 ± 1.9 95.0 ± 6.0
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Table 5: We performed leave-one-out on datasets from ExperimentHub [14]. (⇒) denotes the
sample-wise normalization, (⇓) the feature-wise scaling.

Methods Cirrhosis1 (181×100) Cirrhosis2 (56×100) IBD (396×100)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 82.3 92.7 80.4 94.8 78.3 87.4
LogN-U 82.3 91.1 85.7 94.5 79.2 86.4
LogN-U (⇒) 83.4 92.6 83.9 94.1 76.0 86.7
LogN-U (⇓) 81.8 90.9 82.1 94.2 76.8 85.9
Z-LogN-U 82.9 91.3 85.7 94.3 80.1 86.8
Z-LogN-U (⇒) 84.5 92.5 83.9 94.1 80.6 86.8
Z-LogN-U (⇓) 83.4 91.9 85.7 94.5 78.8 86.6

Methods Obesity (263×100) T2D (344×100) WT2D (96×100)

Accuracy AUROC Accuracy AUROC Accuracy AUROC

TabPFN [9] 63.5 56.6 57.6 60.1 68.8 68.3

LogN-U 66.2 60.9 58.4 61.6 67.7 74.7
LogN-U (⇒) 64.3 56.2 56.1 59.0 63.5 66.7
LogN-U (⇓) 66.9 60.7 54.7 61.6 65.6 72.8
Z-LogN-U 63.5 59.1 55.5 60.7 67.7 74.6
Z-LogN-U (⇒) 63.5 58.9 51.5 56.8 64.6 66.1
Z-LogN-U (⇓) 63.9 58.8 56.4 59.6 74 75.3
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