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Abstract

Link Prediction is the task of predicting miss-
ing relations between knowledge graph entities
(KG). Recent work in link prediction mainly
attempted to adapt a model for increasing link
prediction accuracy by using more layers in
neural network architecture, which heavily rely
on computational resources and are not scal-
able on big KGs. This paper proposes a method
of refining knowledge graphs to perform link
prediction operations more accurately using rel-
atively fast translational models. Translational
link prediction models, such as TransE, TransH,
TransD, RotatE, and HAKE, have significantly
less complexity than deep learning approaches.
Our method uses the ontologies of knowledge
graphs to add information as auxiliary nodes
to the graph. Then, these auxiliary nodes are
connected to ordinary nodes of the KG that
contain auxiliary information in their hierarchy.
Our experiments show that our method can sig-
nificantly increase the performance of trans-
lational link prediction methods in Hit@10,
Mean Rank, Mean Reciprocal Rank.

1 Introduction

Knowledge graphs (KGs) represent a set of inter-
connected descriptions of entities, including ob-
jects, events, or concepts. These graphs are struc-
tures by which knowledge is captured in the form
of triplets. These triplets consist of three parts:
head, relation, and tail. The relation (edge) deter-
mines the type of relationship between head and
tail nodes. These graphs are becoming a popular
approach to displaying and modeling different in-
formation in the world.

Despite many efforts to build KGs, they are far
from completeness. The incompleteness of KGs
has motivated researchers to add information to the
graph to complete or update it. One of the devel-
oping fields in completing KGs is link prediction
(LP). LP tries to embed entities and relations in a
small continuous vector space to predict missing

links in KGs. In the last few years, deep learning
approaches have significantly outperformed other
methods in LP, but this accuracy came at the cost
of computational complexity and unscalability.

Translational LP models, such as TransE (Bor-
des et al., 2013), TransH (Wang et al., 2014),
TransD (Ji et al., 2015), RotatE (Sun et al., 2019),
and HAKE (Zhang et al., 2020), generally use a
straightforward function over head and relation vec-
tors to predict the tail based on distance (Rossi
et al., 2021) (Wang et al., 2021). The advantages
of translational methods over deep learning tech-
niques are that they are robust, and their score
function is considerably faster (Lv et al., 2018).
Therefore, in this work, we tried to improve these
translational methods.

Ontologies are concepts or properties to describe
an object '. Wordnet contains hierarchical ontol-
ogy only for its entities. Some work tried to use
ontology components of Wordnet to boost LP mod-
els. For example, GrCluster (Ranganathan et al.,
2020) treated ontology components as paths. It
defined path similarity over entities in Wordnet and
slightly improved LP accuracy. Nonetheless, Gr-
Cluster only improved WNNH and WN18, which
are not standard LP datasets (Dettmers et al., 2018).
Additionally, this work is limited to Wordnet.

Freebase (Bollacker et al., 2008) does not have
any hierarchical path for its entity. On the other
hand, its relations have a path hierarchy to explain
edges. SACN (Shang et al., 2019) exploited ad-
ditional information of FB15k-237 as auxiliary
nodes and created FB15k-237-Attr. Nevertheless,
it added numerous nodes to the KG, which makes
the method for creating FB15k-237-Attr unscalable
for more extensive graphs. Likewise, this method
can only be applied to Freebase.

Translational LP models, such as TransE, Ro-
tatE, or TransD, when trying to learn the relation
between Paris and France, neglect that Paris is a
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city and France is a country. We introduce ontol-
ogy components as auxiliary nodes. These aux-
iliary nodes are connected to related entities that
have these components in their hierarchy. For ex-
ample, we added an extra node “country” to KG
and connected it to all the countries in the KG. Our
contributions are as follows:

Firstly, we presented a method for refining KGs
that have ontology. Our approach adds auxiliary
nodes, which increases the accuracy of translational
link prediction with the same time and space com-
plexity of translational models. Secondly, we used
state-of-the-art translational models to evaluate our
method on two FB15k-237 and WN18RR. The re-
sults showed that accuracy in link prediction was
significantly increased on H@10, MRR, and MR.

2 Related Work

We divided related works into four categories.

First, translational models, such as TransE (Bor-
des et al., 2013), TransH (Wang et al., 2014),
TransD (Ji et al., 2015), HAKE (Zhang et al., 2020),
are distance-based algorithms that use a straight-
forward operation over head and relation (mainly
summation and/or a projection into a secondary
space) to measure the distance to the tail entity.
Some work has been introduced over these fast
translational models to improve their performance
by using hierarchical information. TKRL (Xie
et al., 2016) used components of hierarchical struc-
ture as a transition to transform KG nodes into
secondary space and then performed LP. GrCluster
(Ranganathan et al., 2020) used path similarity over
entities in Wordnet and slightly improved link pre-
diction accuracy. SACN (Shang et al., 2019) pro-
posed FB15k-237_Attr that has external resources
as triplets (new nodes and edges) to improve the
result.

GrCluster could not improve the WN18RR, and
it is limited to KGs that have ontology for their
entities. SACN improved FB15k-237 by creat-
ing FB15k-237_Attr, but it added many nodes and
edges. Nonetheless, the SACN attribute creator
could not be applied to WN18RR. TransC (Lv et al.,
2018) brought similar entities closer in the embed-
ding space and improved LP in YAGO, but experi-
ment results show no improvements on Wordnet or
Freebase. Our work is similar to this category; It
is fast and uses translational models as a core. We
pushed the limitation of TransC to have a better LP
result on Freebase and Wordnet.

Second, mostly deep models adapt an architec-
ture and rarely use anthologies in their main model.
For example, ConvE (Dettmers et al., 2018) used
2D convolution, BERT-ResNet (Lovelace et al.,
2021) and KG-BERT (Yao et al., 2019) employed
BERT, SACN (Shang et al., 2019) utilized WGCN
in its architecture. These models are accurate but
computationally costly.

Thirdly, KG refinement is a sub-field of KG
enhancement. Refinement can be done by either
adding information to the graph or removing incor-
rect data (Paulheim, 2017). BioKG (Zhao et al.,
2020) worked on medical KGs and has tried to
provide a method for removing the inaccurate in-
formation in these graphs. In this work, like SACN,
we added auxiliary nodes to KGs. These nodes are
extracted from ontology hierarchy levels of nodes
and edges of KGs.

Lastly, some works introduced similarities over
entities or relations. For example, HRS (Zhang
et al., 2018) presented relation-cluster and sub-
relations in the scoring function of translational
models. It created sub-relations and relation-
clusters based on clustering results of TransE rela-
tions; however, it cannot utilize ontology nor im-
prove WN18RR results. For entity similarity, ETE
(Moon et al., 2017) considered that if two entities
are embedded closely in the embedding space, they
are similar and assigned classes to entities based
on closeness. Unlike ETE, our hypothesis is that if
two entities use the same relation type in the graph
or have common elements in their hierarchies, they
are related. We exploited these affiliations (share
hierarchical components) by connecting ordinary
nodes to their auxiliary nodes if a node has the aux-
iliary node in its ontology components.

The main distinctions between our work and re-
lated work are: First, our method works with any
KG with ontology, and it does not matter if it has
the hierarchical ontology for nodes or edges. Sec-
ond, it uses translational models; therefore, it has
high speed, and low memory is needed for the al-
gorithm.

3 KGRefiner

In this work, we propose a method that adds infor-
mation to KGs, which refines the KG and increases
LP accuracy. In FB15k-237, we do this refinement
by using relation hierarchies, and in WN18RR, we
use hierarchies of entities. We add repetitive com-
ponents of hierarchies to KGs as new (auxiliary)



Dataset | FB15k-237 | FB15k-237-Refined | WN18RR | WN18RR-Refined | FB15k-237-Attr
Entities 14541 14826 40943 41150 14744
Relations 237 239 11 12 484

Train Edges 272115 550998 86835 230135 350449

Val. Edges 17535 17535 3034 3034 17535

Test Edges 20466 20466 31134 31134 20466

Table 1: Statistics of the experimental datasets. The refined version represents that graph has some auxiliary nodes.
These auxiliary nodes are extracted from entities hierarchy in the original knowledge graph.

nodes. We introduce a few new relations to connect
these auxiliary nodes to other KG nodes.

Suppose E as the collection of all knowledge
graph entities and R set of all its relations. The (e,
r, €,) is called a triplet. The e; ~ E is the head,
and e, ~ E is the tail of a triplet. Finally, r ~ R
represents the relation between e, and e,,.
Translational link prediction methods such as
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), TransD (Ji et al., 2015), etc., create transi-
tion property in their embeddings. For example, in
TransE, embeddings are made as follow:

€s +T =~ €, (D)

This means the tail entity should be close to the
sum of head and relation in embedding space. For
example, let us consider these triplets:

Paris + capi{alof ~ France 2)
Tehran + capi{alof ~ Iran 3)

Translational link prediction models are not aware
that both tails entities are countries. If we add a new
node as “country” to the graph and connect it to all
graph’s countries with a new relation “RelatedTo”,
then these triplets are added to the KG:

France + RelatedTo ~ couﬁtry 4)
Iran + RelatedTo =~ couﬁtry 5)

Equations 4 and 5 have similar variables; there-
fore, the loss function brings the embeddings of
France and Iran closer, which are semantically sim-
ilar. This closeness causes the model to search first
between countries when it is asked what the capital
of France is in the evaluation Equation 2.

3.1 Refinement of FB15k-237

In FB15k-237, graph relations reflect infor-
mation about entities. For example, in (Paris,
national_capital, France), national_capital has
hierarchy of “entity — physical_entity — object —
location — region — area — center — seat —

capital — national_capital”. This hierarchy is a
relationship between countries and their capitals,
and nodes on one side of relationships (e.g. left
side of triplet) can be considered similar (e.g. they
are countries).

Moreover, higher hierarchy levels usually have
more abstract information about objects, but the
lower ones are more specific. Therefore, we
extracted the last three levels of hierarchies from
each relation in this KG to use hierarchy compo-
nents. Then, for each sub-relation (component),
we counted the number of their repetitions in the
KG training section triplets. Then, we removed
those components with less than 100 repetitions
to reduce the number of these components; the
number 100 is arbitrary. Finally, 285 sub-relations
remained, and we added them to the set of entities
in this KG (as auxiliary nodes). We defined two
new relations, “RelatedTo” and “HasAttribute™, to
connect these relation-nodes (auxiliary nodes) to
the KG entities. For each triplet, if the entity is the
triplet’s head, we link it to the auxiliary node by
“RelatedTo”, and if it is the tail of the triplet, we
use “HasAttribute” to establish these connections.
For example, to refine relation between Paris
and France, (Paris,

seat — capital — national_capital France), “capital”
has repetition over 100, so the following triplets
were added to the graph:

(France, HasAttribute, capital)
(Paris, RelatedT o, capital)

3.2 Refinement of WN18RR

To refine this graph, we use the hierarchy of enti-
ties. In Freebase, we used relationships, but rela-
tionships do not give us information about entities
in Wordnet. France, for example, has a hierarchy
of “existence — place — region — region —
administrative region — country”. This hierarchy
gives us good information about France. We ex-
tract the last three levels of entities. Among these



levels, we hold those with more than an arbitrary
number of 50 repetitions among entities to reduce
the number of auxiliary nodes. As a result, 207
levels remained. We add these levels as new nodes
to the KG training section and connect them to en-
tities that have these components in their hierarchy
with a new type of connection “HasAttribute”. For
example, France and Iran have a “country” in their
hierarchical structure. Then, the following triplets
were added to the training section of the graph:

(France, HasAttribute, country)
(Iran, HasAttribute, country)

4 Exprement

4.1 Datasets

We evaluated our work on popular benchmarks:
FB15k-237 and WN18RR. In addition, we built
two other datasets with KGRefiner: FB15k-237-
Refined and WN18RR-Refined from those datasets.
The details of the datasets are available in Table 1.

Baseline H@l0 MR MRR
TransE 45.6 347 29.4
TransE + Attribute 47.6 221 28.8
TransE + KGRefiner 47 203 29.1
HAKE 40.8 282 23.8

HAKE + Attribute 384 287 21.7
HAKE + KGRefiner 39.0 267 214
RotatE 474 185  29.7

RotatE + Attribute 43.8 218 27.3
RotatE + KGRefiner 439 226 27.9
TransH 36.6 311 21.1
TransH + Attribute 47.7 237 28.2
TransH + KGRefiner 48.9 221 30.2

Table 2: Link prediction results on FB15k-237 and its
refined version.

4.2 Baselines

To demonstrate the effectiveness of our models, we
compare results with the original translational mod-
els TransE (Bordes et al., 2013), TransH (Wang
et al., 2014), RotatE (Sun et al., 2019), and HAKE
(Zhang et al., 2020), with fair setting (see Ap-
pendix A). In addition, we used FB15k-237-Attr
(Shang et al., 2019) to compare our work with other
data augmentation methods as base models plus at-
tributes.

For WN18RR, GrCluster (Ranganathan et al.,
2020) tried to improve link prediction on Word-
net by using hierarchical data using path similarity.
Nevertheless, their report did not show improve-
ment in WN18RR.

4.3 Experimental Results

Table 2 and 3 compares the experimental results of
our KGRefiner plus translational models and with
previously published results. Results in bold font
are the best results in the group, and the underlined
results denote the best results in the column. KGRe-
finer with TransH obtains the highest H@ 10 and
MRR on FB15k-237, and also KGRefiner with Ro-
tatE reached the best MR and H@10 in WN18RR.

In tables, results of TransE is taken from
(Nguyen et al., 2018), TransH and TransD from
(Zhang et al., 2018). For other rows, we used
OpenKE (Han et al., 2018) and original HAKE
implementation to get the scores.

Baseline H@10 MR MRR
TransE 50.1 3384 22.6
TransE + KGRefiner 53.7 1125 22.2
TransH 42.4 5875 18.6
TransH + KGRefiner 51.4 1534 20.8
HAKE 52.2 4433 40.0
HAKE + KGRefiner 53.8 2125  25.0
RotatE 54.7 4274 473
RotatE + KGRefiner 57.0 683 44.8

Table 3: Link prediction results on WN18RR and its
refined version.

5 Conclusion and Future work

In this paper, we propose KGRefiner, a KG re-
finement method that alleviates the limitations of
translational models by capturing additional infor-
mation in knowledge graph hierarchies. We used
hierarchy components as auxiliary nodes. Refined
KG comes by connecting these auxiliary nodes to
proper entities. Our experimental results show that
our KGRefiner outperforms other state-of-the-art
translational models and other data augmentation
methods on two benchmark datasets, WN18RR
and FB15k-237. Furthermore, it is the first aug-
mentation method that works with both Wordnet
and Freebase, while old methods only perform only
on one dataset.

In future works, we will expand our work on
datasets that can be formulated on the triplet struc-
ture. For example, recommender system datasets
can be formed on graph schema, and KGRefiner
can be applied. Additionally, KGRefiner cannot
improve the accuracy of deep learning methods;
therefore, another study is needed to enhance deep
models by using ontological information.
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A Hyperparameter Settings

We employed the implementation of baselines by
OpenKE (Han et al., 2018), and HAKE (Zhang
et al., 2020) to produce the result.

To have a fair comparison between translational
models, we used an embedding dimension of 200
for all models (to produce the same result as in their
paper, some models need more than 1000 dimen-
sions for entity embedding). Also, we removed
self adversarial negative sampling from TransE,
RotatE, and HAKE and replaced it with typical
negative sampling. Moreover, we tried {200, 500,
1000, 2000} epochs, and we picked the best one
according to MRR on the validation set for final
comparison. Other hyperparameters of the models
are those mentioned in OpenKE and HAKE. Hyper-
parameters for FB15k-237 and FB15k-237-Refined
and also WN18RR and WN18RR-Refined are the
same. Interestingly, HAKE heavily relied on 1000
embedding dimensions to reproduce the result on
its paper.

B Speed of Models

The training time of translational models is much
less than deep learning approaches such as ConvE,
SACN, ConvKB, etc. The complexity of scoring
function and neural network layers in their architec-
ture reduces training speed in deep learning meth-
ods. Table 4 compares the time that each model
needs to be trained for one epoch on FB15k-237.
We ran models on Nvidia K80. For fair comparison
embedding dimension for all models is 200. It can
be observed that the runtime difference between
HAKE and ConvKB for a small dataset FB15k-237
is around 2.5 x 10%s.

Apart from that, according to table 1, KGRefiner
adds triplets to the training section of these KGs.
Therefore, it only increases the training time of
WNI18RR and FB15k-237 by a factor of 2.65 and
2.02, respectively. It does not increase other mea-
surements’ complexity because it adds few nodes
to the KGs. Consequently, the training cost of the
translational models with KGRefiner is still much
cheaper than deep learning techniques.

C Limitations

KGRefiner needs a KG that has ontology for either
its nodes or edges. Therefore, in other developing
KGs, KGRefiner cannot be applied. In addition,

Model Time to train
TransE (Bordes et al., 2013) [®] | 2.8 x 10% s
TransH (Wang et al., 2014) [®)] 5.2 x 10%s
TransD (Ji et al., 2015) [D)] 5.2 x 10%s
RotatE (Sun et al., 2019) [@] 5 x 10%s
HAKE (Zhang et al., 2020) [®] 1.5 x 10%s
ConvE

(Dettmers et al., 2018) [O] 2.7 x 10%s
ConvKB

(Nguyen et al., 2018) [©)] 4 x 10%s
BERT-ResNet

(Lovelace et al., 2021) [©] 9.7 x 10%*s

Table 4: Comparison between translational technique
and deep learning methods in training time. []: These
models are implemented by OpenKE (Han et al., 2018)
and [©] are produced by their original implementations.

since it brings similar entities closer, this can only
improve distance-based models (translational).

D Scailability

Regarding the scalability of KGRefiner, it should
be said that for some settings limitation is the num-
ber of nodes because their embeddings that have
to be stored in memory. Since KGRefiner adds a
few numbers of auxiliary nodes and one or two
relations, this can easily be applied to other KGs.
However, SACN adds many nodes and relation
types. So unlike KGRefiner, the SACN method is
not practical for larger KGs.



