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Abstract
Achieving transferability of targeted attacks is
reputed to be remarkably difficult, and state-of-
the-art approaches are resource-intensive due to
training target-specific model(s) with additional
data. In our work, we find, however, that simple
transferable attacks which require neither addi-
tional data nor model training can achieve surpris-
ingly high targeted transferability. This insight
has been overlooked mainly due to the widespread
practice of unreasonably restricting attack opti-
mization to few iterations. In particular, we, for
the first time, identify the state-of-the-art perfor-
mance of a simple logit loss. Our investigation is
conducted in a wide range of transfer settings, es-
pecially including three new, realistic settings: en-
semble transfer with little model similarity, trans-
fer to low-ranked target classes, and transfer to
the real-world Google Cloud Vision API. Results
in these new settings demonstrate that the com-
monly adopted, easy settings cannot fully reveal
the actual properties of different attacks and may
cause misleading comparisons. Overall, the aim
of our analysis is to inspire a more meaningful
evaluation on targeted transferability.

1. Introduction
Current work has achieved great success on non-targeted
transferability (Dong et al., 2018; Zhou et al., 2018; Huang
et al., 2019; Dong et al., 2019; Xie et al., 2019; Wu et al.,
2020b; Li et al., 2020b; Lin et al., 2020; Gao et al., 2020),
while several initial attempts (Liu et al., 2017; Dong et al.,
2018; Inkawhich et al., 2019) on targeted transferability
have shown its extreme difficulty. Targeted transferability is
worth exploring since it can raise more practical concerns
by causing a specific, highly dangerous prediction. How-
ever, so far state-of-the-art results can only be achieved by

1Institute for Computing and Information Sciences, Radboud
University, The Netherlands. Correspondence to: Zhengyu Zhao
<z.zhao@cs.ru.nl>.

Accepted by the ICML 2021 workshop on A Blessing in Disguise:
The Prospects and Perils of Adversarial Machine Learning. Copy-
right 2021 by the author(s).

resource-intensive transferable attacks (Inkawhich et al.,
2020a;b; Naseer et al., 2021). Specifically, FDA (Inkawhich
et al., 2020a;b) is based on modeling layer-wise feature
distributions via class-specific auxiliary classifiers using
large-scale labeled data, and then optimizing adversarial
perturbations using these auxiliary classifiers from across
the deep feature space. TTP (Naseer et al., 2021) is based
on training target-specific Generative Adversarial Networks
(GANs) through global and local distribution matching, and
then use the trained generator to directly generate perturba-
tions on any given input image.

In this paper, we take a second, thorough look at current
research on targeted transferability. Our main contribution
is the finding that simple transferable attacks, which re-
quire neither additional data nor model training but only
using simple transfer techniques (MI (Dong et al., 2018),
TI (Dong et al., 2019), and DI (Xie et al., 2019)), can achieve
surprisingly high targeted transferability. We argue that this
insight has been overlooked mainly because current research
has unreasonably restricted attack optimization to a limited
number of iterations. Another key contribution of our work
is, for the first time, identifying the superiority of a simple
logit loss, which even achieves new state-of-the-art results.
A detailed review of related work on transferable targeted
attacks can be found in Appendix A.

We demonstrate the general effectiveness of simple transfer-
able attacks in a wide range of transfer settings, especially
including three new, realistic settings: ensemble transfer
with little model similarity, transfer to low-ranked target
classes, and transfer to the real-world Google Cloud Vision
API. These new settings can better reveal the actual proper-
ties of different attacks than the commonly adopted, easy
settings. Overall, this paper elucidates the weakness in com-
mon practice and the limitations of the commonly adopted
transfer settings. We hope our analysis will inspire a more
meaningful evaluation on targeted transferability.

2. New Insights into Simple Transferable
Attacks

In this section, we revisit simple transferable attacks in the
targeted scenario, and provide new insights into them.

Simple transferable attacks are surprisingly good when
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Figure 1. Transfer success rates of simple transferable attacks us-
ing CE or logit loss in the non-targeted and targeted scenarios.

given enough iterations to converge. As can be seen from
Figure 1, while using TI or MI makes little difference to the
original poor targeted transferability, somewhat surprisingly,
using DI actually yields substantial targeted transferability,
and integrating all three transfer techniques leads to the best
performance. This may be explained by the fact that DI
can yield more generalizable gradients by randomizing the
image augmentation parameters not only across the image
dimension but also across iterations. However, current work
has missed this point since most studies have been focused
on the MI technique (Liu et al., 2017; Dong et al., 2018;
Inkawhich et al., 2019; 2020a;b).

We can also observe that the simple transferable attacks can
converge to much higher targeted transferability with more
iterations, in contrast to the fast success in the non-targeted
scenario. Current work has not realized this difference and
so naturally followed the research on non-targeted transfer-
ability to use few iterations (typically≤ 20) also for targeted
transferability. However, evaluation with few iterations is
definitely problematic. On the one hand, comparing differ-
ent optimization processes that have not converged is not
meaningful and may cause misleading results. This obser-
vation is consistent with Carlini et al. (2019), who pointed
out that restricting the number of iterations without verify-
ing the attack convergence is one of the common pitfalls in
evaluating adversarial robustness. Several recent defenses
have been defeated by simply using more iterations (Tramer
et al., 2020). On the other hand, considering the realistic
threat model, it is not meaningful to artificially restrict the
computational power of a practical attack (e.g., to fewer than
several thousand attack iterations) (Athalye et al., 2018).

A simple yet stronger logit attack. Existing simple trans-
ferable attacks are commonly built up on the cross-entropy
loss. However, as pointed out by Li et al. (2020a), the
cross-entropy loss may suffer from the vanishing gradient
problem. In our case with many iterations, this problem

becomes more serious since it will cause the attack to stop
improving at some point. To address this problem, we adopt
a straightforward idea by directly maximizing the target logit
for continuously pushing the image deep into the territory
of the target class. This simple logit loss can be expressed
as LLogit = −lt(x′), where lt(·) denotes the logit output
with respect to the target class. Although this logit loss is
very similar to the well-known C&W loss (Carlini & Wag-
ner, 2017), its superiority on targeted transferability has not
been recognized so far. We find that directly using the C&W
loss performs worse than this logit loss. For example, in
the single-model transfer setting with the ResNet50 as the
white-box source model, the C&W loss yields 20% worse
performance on average. It may be because the C&W loss
also involves suppressing other classes, which is not neces-
sary here but could trade off the high target logit. As can be
seen from Figure 1, this logit loss consistently yields better
performance than the commonly used cross-entropy loss,
and the performance gap becomes increasingly larger as the
number of iterations rises.

3. Experimental Evidence on Simple
Transferable Attacks

In this section, we provide experimental evidence to show
the effectiveness of simple transferable attacks. Firstly, we
evaluate them in a variety of transfer settings, including
single-model transfer, ensemble transfer (easy and challeng-
ing settings), a worse-case setting with low-ranked target
classes, and a real-world attack against the Google Cloud Vi-
sion API. Then, we compare them with two state-of-the-art
resource-intensive transferable attacks, TTP (Naseer et al.,
2021) and FDA (Inkawhich et al., 2020b).

We use the 1000 images from the development set of
ImageNet-Compatible Dataset (Kurakin et al., 2018), and
all these images are associated with 1000 ImageNet class
labels and cropped to 299×299 before use. We consider
four diverse classifier architectures: ResNet, DenseNet, VG-
GNet, and Inception. Our experiments are run on a single
NVIDIA Tesla P100 GPU with 12GB of memory.

We test three different attack losses: cross-entropy (CE),
Po+Trip and logit. For each image, we use the target la-
bel that was officially specified in the dataset. We use a
moderate step size of 2 for all attacks, and find that the
performance is not sensitive to step size (see evidence in
Appendix C). Following the common practice, the pertur-
bations are restricted by L∞ = 16/255. If not mentioned
specifically, 300 iterations are used for each attack. All at-
tacks use TI, MI, and DI together with their original optimal
hyperparameters. Specifically, ‖W ‖1 = 5 is used for ‘TI’
as suggested by (Gao et al., 2020). When being executed
with a batch size of 20, the optimization of each attack takes
about three second per image.
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Figure 2. Targeted success rates (%) for our realistic ensemble transfer with little model similarity.

Table 1. Targeted success rates (%) for single-model transfer.

Attack Source Model: R50 Source Model: D121
→D121 →V16 →Inv3 →R50 →V16 →Inv3

CE 42.6 30.4 4.1 19.4 10.9 3.5
Po+Trip 54.7 34.4 5.9 14.7 7.7 2.7
Logit 72.5 62.7 9.4 43.7 38.7 7.6

Attack Source Model: V16 Source Model: Inv3
→R50 →D121 →Inv3 →R50 →D121 →V16

CE 0.6 0.1 0 2.4 2.9 2.0
Po+Trip 0.5 0.7 0.1 2.5 3.3 2.0
Logit 11.2 13.2 0.9 2.9 5.3 3.7

Single-model transfer. Table 1 reports the targeted trans-
ferability in cases with different classifiers. As can be seen,
the logit loss outperforms the other two by a large margin
in all cases. When comparing different model architectures,
we can find that the attacks generally achieved lower perfor-
mance when transferring from the VGGNet16 or Inception-
v3 than from ResNet50 or DenseNet121. This is consistent
with the observations in (Inkawhich et al., 2020a;b), and may
be explained by the fact that skip connections (in ResNet50
and DenseNet121) allow easier generation of highly trans-
ferable adversarial examples (Wu et al., 2020a). The very
low performance when transferring to Inception-v3 might
be explained by its notable difference with the other three
architectures, i.e., the Inception architecture is known to
be more conceptually complex (heavily engineered) with
multiple-size convolution and two auxiliary classifiers.

Ensemble transfer with little model similarity. A com-
mon approach to boosting transferability is to transfer from
an ensemble of multiple source models. Following the com-
mon practice, we simply assign equal weights to all the
source models. We found that the commonly adopted en-
semble settings (Dong et al., 2018; Tramèr et al., 2018; Dong
et al., 2019; Li et al., 2020a) that only involve similar model
architectures are so easy that all attacks can reach very high
targeted transferability (see evidence in Appendix B).

Therefore, in order to fully reveal the potential of different
attacks, we consider a more challenging transfer setting with
no architectural overlap between the source ensemble and
the target model. This setting is also more realistic since
in the real-world attack scenarios, there is almost unlikely
to be a local white-box source model that shares similar

Table 2. Targeted success rates (%) for transfer with varied targets.

Attack 2nd 10th 200th 500th 800th 1000th

CE 89.9 76.7 49.7 43.1 37.0 25.1
Po+Trip 82.6 77.6 58.4 53.6 49.1 38.2
Logit 83.8 81.3 75.0 71.0 65.1 52.8

architecture to the unknown target model. Figure 2 shows
that the logit attack largely outperforms the other two at-
tacks in this realistic ensemble setting. Po+Trip yields even
worse results than the CE loss maybe because its original
hyperparameters cannot ensure optimal effectiveness here.
Again, Inception-v3 is the most difficult model to attack.

A worse-case transfer setting with low-ranked target
classes. In conventional security studies, a comprehensive
evaluation of attacks commonly involves a range of settings
with varied difficulties. For adversarial attacks in the white-
box scenario, existing studies (Carlini & Wagner, 2017;
Kurakin et al., 2017; Tramèr et al., 2018; Rony et al., 2019)
have also looked at varied difficulties regarding the target
class. Specifically, in the best case, the targeted success
is basically equal to non-targeted success, i.e., an attack is
regarded to be successful as long as it can success on any
arbitrary target other than the original class. In the average
case, the target class is randomly specified agnostic to the
test image, while in the worst case, the target is specified as
the lowest-ranked (least-likely) class in the prediction list of
the original image.

However, to the best of our knowledge, current evaluation on
transferability has been limited to the best and average cases.
To address this limitation, we consider a worse-case transfer
setting by varying the target from the highest-ranked class
gradually to the lowest one. As can be seen from Table 2,
there exists non-negligible correlation between the ranking
position of the target class and the transferability. More
specifically, it becomes increasingly difficult as the target
moves down the prediction list. We can also observe that
only looking at the results with higher-ranked targets could
not reveal the actual properties of different attacks and may
lead to misleading conclusion.

Transfer-based attacks on Google Cloud Vision. Exist-
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Table 3. Success rates (%) for transfer to Google Cloud Vision. An
ensemble of all four diverse models is used as the source model.

CE Po+Trip Logit

Targeted 7 8 18
Non-targeted 51 44 51

Table 4. Targeted success rates of Simple vs. TTP. D121 or V16
is used as the target model, and R50 or an ensemble (-ens) of
R{18,50,101,152} is the source model.

Attack D121 V16 D121-ens V16-ens Average

TTP 79.6 78.6 92.9 89.6 85.2
Logit 75.9 72.5 99.4 97.7 86.4

ing work that has studied transfer-based attacks against
real-world systems were only explored in the non-targeted
scenario, and limited to face recognition (Shan et al., 2020;
Cherepanova et al., 2021; Rajabi et al., 2021). In contrast,
we consider a more generally-used image recognition sys-
tem, the Google Cloud Vision API, in a more challenging,
targeted scenario. For targeted transferability, we evaluate
whether or not the target object class appears among the re-
turned (top 10) predictions. We also report the non-targeted
results to give extra insight by evaluating whether or not
the correct object class appears among the returned predic-
tions. Since the Google Cloud Vision predictions do not
explicitly correspond to the 1000 ImageNet classes, we treat
semantically similar classes as the same class.

Table 3 reports the results averaged over 100 images that
originally yield correct predictions. As expected, targeted
transfer is strictly more difficult than the non-targeted trans-
fer. The logit attack achieved the best results, especially in
the targeted scenario. Figure 4 in Appendix D visualizes
some adversarial images, which are shown to have quasi-
imperceptible perturbations. In general, our results reveal
the potential vulnerability of Google Cloud Vision against
simple attacks that need no query interaction.

Compared with resource-intensive transferable attacks.
We firstly compare the best performed simple attack, the
logit attack, with the state-of-the-art TTP, following its orig-
inal “10-Targets (all-source)” setting (Naseer et al., 2021).
As shown in Table 4, the logit attack achieved high targeted
transferability comparable to TTP in both transfer settings,
with slightly better performance on average.

We next compare all three simple transferable attacks with
FDA (Inkawhich et al., 2020b). We chose only the setting
with “distal transfer” examples since the authors have not
(yet) released their source code. Specifically, the adversarial
examples are generated by starting from random Gaussian
noise and optimizing without any perturbation bounds to
unleash the full potential of the attacks. The results are

Table 5. Targeted success rates of Simple vs. FDA for unbounded
transfer. All attacks use 200 iterations.

FDA CE Po+Trip Logit

R50→D121 65.8 69.3 88.1 84.1
R50→V16 48.1 54.1 67.8 74.2

Average 57.0 61.7 78.0 79.2

averaged over 4000 examples, each of which is optimized
towards a random target class. As suggested by (Inkawhich
et al., 2020b), the MI technique is removed since it empiri-
cally harms the performance in this unbounded case. Table 5
shows that all three simple transferable attacks achieved
higher targeted transferability than FDA, with the logit loss
achieving the best overall performance. As can be seen from
Figure 5 in Appendix E, the “distal transfer” examples can
somehow reflect the target semantics. This suggests an in-
teresting perspective that targeted transferability is achieved
by attacking the robust features because these features are
naturally shared by different models (and also humans).
This finding is different from previous perspective on non-
targeted transferability, for which attacking the non-robust
features is sufficient (Ilyas et al., 2019).

4. Conclusion and Outlook
In this paper, we have found that simple transferable attacks
can achieve surprisingly high transferability as long as they
are not unreasonably restricted to few iterations. We have
validated the effectiveness of simple transferable attacks
in a wide range of transfer settings, including three newly-
introduced realistic settings that better revealed the actual
properties of different attacks. In particular, we identify
that a very simple logit attack can consistently yield the
highest targeted transferability, being even competitive with
the state-of-the-art resource-intensive approaches. Overall,
we hope our findings on weakness in common practice and
the limitations of the commonly adopted transfer settings
will inspire future research to conduct a more meaningful
evaluation on targeted transferability.

We hope our analysis can motivate the community to de-
sign stronger defenses against transferable attacks, and on
the other hand, promote the applications that directly use
adversarial examples for social good, such as protecting
privacy (Oh et al., 2017; Larson et al., 2018; Liu et al., 2019;
Cherepanova et al., 2021; Rajabi et al., 2021). For future
work, it is worth a deeper understanding of why different
model architectures yield different transferability.
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A. Related Work on Transferable Attacks
In this section, we review simple transferable attacks and
recently-proposed resource-intensive transferable attacks.

Simple transferable attacks that require neither additional
data nor model training have been extensively studied in
the non-targeted scenario (Dong et al., 2018; Zhou et al.,
2018; Dong et al., 2019; Huang et al., 2019; Xie et al., 2019;
Lin et al., 2020; Li et al., 2020b; Wu et al., 2020b; Gao
et al., 2020), and also explored in the targeted scenario (Liu
et al., 2017; Dong et al., 2018; Li et al., 2020a). These
attacks are commonly built up on the well-known Iterative-
Fast Gradient Sign Method (I-FGSM) (Kurakin et al., 2017;
Madry et al., 2018). In the targeted scenario, I-FGSM can
be formulated as:

x′
0 = x, x′

i+1 = x′
i − α · sign(∇xJ(x

′
i, yt)), (1)

where x′
i denotes the intermediate modified image in the i-

th iteration, and yt is the target class label. In order to ensure
the imperceptibility of the modifications, in each iteration,
the perturbations are clipped into some pre-defined Lp norm
ball, i.e., satisfying ‖x′ − x‖p ≤ ε. Current research on
transferable attacks has commonly adopted the L∞ norm.
For the loss function J(·, ·), most simple transferable attacks
have adopted the plain cross-entropy (CE) loss.

However, this commonly used CE loss has been recently
pointed out to be not effective in the targeted scenario be-
cause it suffers from the vanishing gradient problem (Li
et al., 2020a). Therefore, the authors in (Li et al., 2020a)
have proposed a so-called Po+Trip loss to address the prob-
lem. Specifically, the Poincaré distance was used to adapt
the magnitude of the gradients, which can be formulated as:

LPo = d(u,v) = arccosh(1 + δ(u,v)),

δ(u,v) =
2 · ‖u− v‖22

(1− ‖u‖22)(1− ‖v‖22)
,

(2)

where u is the normalized logit vector and v is the one-hot
vector with respect to the target class. In order to further
boost the performance, an additional triplet loss was inte-

grated to also push the image away from the original class:

LTrip = [D(l(x′), yt)−D(l(x′), yo) + γ]+,

D(l(x′), y) = 1− ‖l(x
′) · y‖1

‖l(x′)‖2‖y‖2
.

(3)

The overall loss function can be formulated as LPo+Trip =
LPo+λLTrip. However, in the original work, Po+Trip was
evaluated only in an ensemble transfer setting.

Instead of improving the loss function, there are also transfer
techniques (Dong et al., 2018; 2019; Xie et al., 2019; Lin
et al., 2020) that aim at preventing the attack optimization
from overfitting to the specific source model. The advantage
of such techniques is that they can be generally applied to
any loss functions. In this paper, we study three (Dong et al.,
2018; 2019; Xie et al., 2019) of such transfer techniques
that have been widely used in the literature:

Momentum Iterative-FGSM (MI-FGSM) (Dong et al., 2018)
integrates a momentum term, which accumulates previous
gradients in order to make more accurate updating. It can
be expressed as:

gi+1 = µ · gi +
∇xJ(x

′
i, yt)

‖∇xJ(x′
i, yt)‖1

,

x′
i+1 = x′

i − α · sign(gi),

(4)

where gi is the accumulated gradients at the i-th iteration,
and µ is the decay factor. Another similar technique that
is based on the Nesterov accelerated gradient was also ex-
plored (Lin et al., 2020).

Translation Invariant-FGSM (TI-FGSM) (Dong et al., 2019)
randomly translates the input image during optimization for
preventing the attack from overfitting to the specific white-
box source model. This approach is inspired by the common
data augmentation techniques used for preventing overfitting
in model training. Instead of calculating gradients for mul-
tiple translated images separately, the authors proposed an
approximate solution to accelerate the implementation. It is
achieved by directly computing locally smoothed gradients
on the original image via convolution with a kernel:

x′
i+1 = x′

i − α · sign(W ∗ ∇xJ(x
′
i, yt)), (5)

where W is the convolution kernel used for smooth-
ing. TI-FGSM was originally designed for transferring to
adversarially-trained models. It has been recently pointed
out that using relatively small kernel size leads to the op-
timal transferability when transferring to normally trained
models (Gao et al., 2020).

Diverse Input-FGSM (DI-FGSM) (Xie et al., 2019) is con-
ceptually similar to TI-FGSM, but applies random resizing
and padding for the image augmentation. More importantly,
instead of fixing the augmentation parameters all the time
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Table 6. Targeted success rates (%) in the commonly adopted, easy ensemble transfer setting, where the hold-out target model (denoted by
‘-’) and the ensemble models share similar architectures. Results with 20/100 iterations are reported.

Attack -Inc-v3 -Inc-v4 -IncRes-v2 -Res50 -Res101 -Res152 Average

CE 48.8/85.3 47.2/83.3 47.5/83.9 50.9/89.8 58.5/93.2 56.7/90.7 51.6/87.7
Po+Trip 59.3/84.4 55.0/82.4 51.4/80.8 56.9/85.0 60.5/87.9 57.6/85.7 56.8/84.4
Logit 56.4/85.5 52.9/85.8 54.4/85.1 57.5/90.0 64.4/91.4 61.3/90.8 57.8/88.1

as in TI-FGSM, DI-FGSM adds more randomness across
iterations. The attack optimization can be formulated as:

x′
i+1 = x′

i − α · sign(∇xJ(T (x
′
i, p), yt)), (6)

where the stochastic transformation T (x′
i, p) is imple-

mented with probability p at each iteration.

Resource-intensive transferable attacks that require train-
ing target-specific models on large-scale additional data
have been recently explored and shown to substantially im-
prove targeted transferability. Specifically, Feature Distri-
bution Attack (FDA) (Inkawhich et al., 2020a) has sub-
stantially improved targeted transferability on ImageNet by
training auxiliary models with additional labeled data. Each
auxiliary model is a small, binary, one-versus-all classifier
trained for a specific target class at a specific layer. That
is to say, the number of auxiliary models is the number of
layers probed multiplied by the number of target classes that
are required to model (Inkawhich et al., 2020a).

The attack loss function can be formulated as:

LFDA = J(Fl(x
′), yt)− η

‖Fl(x
′)−Fl(x)‖2
‖Fl(x)‖2

, (7)

where each auxiliary models Fl(·) can model the probability
that a feature map at layer l is from a specific target class
yt. FDA(N)+xent (Inkawhich et al., 2020b) extends FDA by
aggregating features from N layers and also incorporating
the cross-entropy loss H(·, ·) of the original network F(·).
The extended loss function can be expressed as:

LFDA(N)+xent =
∑
l∈L

λl(LFDA + γH(F(x′), yt)),

where
∑
l∈L

λl = 1.
(8)

Very recently, TTP (Naseer et al., 2021) has achieved state-
of-the-art targeted transferability by directly generating per-
turbations using target class-specific GANs that have been
trained with global and local distribution matching. Specifi-
cally, the global distribution matching is achieved by mini-
mizing the Kullback Leibler (KL) divergence, while the lo-
cal distribution matching is by enforcing the neighbourhood
similarity. In order to further boost the performance, im-
age augmentation techniques, such as rotation, crop resize,
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Figure 3. Targeted success rates with varied step sizes, S.

horizontal flip, color jittering and gray scale transformation,
have been applied during training. We refer the readers to
the original work for more technical details of TTP.

B. Results in the Easy Ensemble Setting
Here we look at the commonly adopted ensemble transfer
setting (Dong et al., 2018; 2019; Li et al., 2020a; Tramèr
et al., 2018) in which each hold-out target model shares
similar architecture with some of the white-box ensemble
models. As can be seen from Table 6, all the three attacks
reached equally high targeted transferability when given
enough iterations to converge. This indicates that this set-
ting with high model similarity could not fully reveal the
actual properties of different attacks. We can also observe
that Po+Trip performs better than the CE loss only at 20
iterations, but becomes worse when they are given enough
iterations to converge. This finding suggests that evaluat-
ing different attacks under only few iterations may cause
misleading comparing results.

C. Results with Varied Step Sizes
Recent work has shown that enlarging the step size can
improve non-targeted transferability since it can help attack
optimization escape from poor local optima (Gao et al.,
2020). Here we also explore the impact of step size setting
on targeted transferability. As can be seen from Figure 3,
in general, all attacks are not sensitive to the change of
step size, with only a slight improvement when using a
larger step size. We can also observe that the logit attack
consistently outperforms the other two in all cases.
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D. Adversarial Images on Attacking Google Cloud Vision

Figure 4. Adversarial images on attacking Google Cloud Vision.
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E. “Distal Transfer” Examples with Unbounded Perturbations
1: "goldfish" 9: "ostrich" 37: "box turtle" 52: "thunder snake"

100: "black swan" 107: "jellyfish" 121: "king crab" 150: "sea lion"

200: "Tibetan terrier" 281: "tabby" 288: "leopard" 310: "ant"

319: "dragonfly" 335: "fox squirrel" 340: "zebra" 353: "gazelle"

385: "Indian elephant" 404: "airliner" 417: "balloon" 440: "beer bottle"

515: "cowboy hat" 574: "golf ball" 587: "hammer" 600: "hook"

843: "swing" 890: "volleyball" 937: "broccoli" 963: "pizza"

Figure 5. “Distal transfer” examples with unbounded perturbations.


