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ABSTRACT

We study the problem of contextual online bilateral trade. At each round, the
learner faces a seller-buyer pair and must propose a trade price without observ-
ing their private valuations for the item being sold. The goal of the learner is to
post prices to facilitate trades between the two parties. Before posting a price, the
learner observes a d-dimensional context vector that influences the agent’s val-
uations. Prior work in the contextual setting has focused on linear models. In
this we tackle a general nonparametric setting in which the buyer’s and seller’s
valuations behave according to arbitrary Lipschitz functions of the context. We
design an algorithm that leverages contextual information through a hierarchical
tree construction and guarantees regret Õ(T (d−1)/d). Remarkably, our algorithm
operates under two stringent features of the setting: (1) one-bit feedback, where
the learner only observes whether a trade occurred or not, and (2) strong budget
balance, where the learner cannot subsidize or profit from the market participants.
We further provide a matching lower bound in the full-feedback setting, demon-
strating the tightness of our regret bound.

1 INTRODUCTION

Bilateral trade is a fundamental economic model which describes the interaction between a seller
and a buyer, each with private valuations for a good, who seek to engage in trade with the goal of
maximizing their individual utilities (Vickrey, 1961; Myerson & Satterthwaite, 1983). This scenario
arises in many applications such as ridesharing platforms or energy and financial exchanges.

Recently, Cesa-Bianchi et al. (2024) introduced the online bilateral trade problem, in which at each
round t, a new seller and buyer arrive with private valuations st and bt, respectively. The valuation
of the seller st is the lowest price they are willing to sell the item. Analogously, the valuation of the
buyer, bt, is the highest price the buyer is willing to pay for the item. At each round t, the learner
must propose a price to both the buyer and the seller without observing their private valuations.
After posting price pt, a trade happens if st ≤ pt ≤ bt. The gain from trade at time t is

GFT(pt|st, bt) := I(st ≤ pt ≤ bt)(bt − st), (1)

and represents the total increase in social welfare generated by the trade. The goal of the learner is
to maximize the cumulative gain from trade over time, which is equivalent to minimizing the regret
with respect to the best policy in hindsight.

In many practical scenarios, the learner has access to side information at each round t about the
seller, buyer, or the item being traded. For instance, this is common in online marketplaces, where
items are highly differentiated and the learner can observe certain features of the item prior to setting
a price. Such contextual information can be leveraged to estimate the relevance of different features
based on historical data. Gaucher et al. (2025) introduced the feature-based online bilateral trade
problem, in which the learner observes a d-dimensional feature vector xt before posting a price at
round t. They study a linear model where private valuations are linear functions of the form x⊤

t θ for
some unknown parameter vector θ. In this work, we study whether it is possible to move beyond the
linear valuation model.

We provide a comprehensive characterization of the problem when valuations are arbitrary L-
Lipschitz functions of the context vectors. A key feature of our analysis is that it operates under
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the one-bit feedback model: at each round, the learner observes only the signal I(st ≤ pt ≤ bt),
indicating whether a trade occurred or not. This is the most information-constrained setting in online
bilateral trade, and existing contextual no-regret algorithms can handle this feedback model only by
relaxing the budget balance constraint (Gaucher et al., 2025).

1.1 TECHNICAL CHALLENGES AND TECHNIQUES

Compared to classic online learning problems, the bilateral-trade setting presents additional techni-
cal difficulties, making traditional approaches for non-parametric contextual online learning largely
inapplicable. The most notable is that the reward function, which is the gain from trade (Equa-
tion (1)), is non-continuous both as a function of p or as a function of the valuations s and b. The
second challenge, and possibly a more fundamental one, is the lack of observability of the reward we
are trying to maximize; indeed, valuations s and b remain hidden, whether the trade happens or not,
and so does the GFT. The only feedback received by the algorithm is the indicator of I(s ≤ p ≤ b),
which only signals whether the trade was accepted or not.

Although our problem has features that separate it from classic online learning, we do not need to
consider a generic Lipschitz loss function, and we will heavily exploit the structure of the reward
p 7→ GFT(p|s, b) and the Lipschitzness of the functions generating s, b from the contexts. The
specific shape of the GFT function (and the absence of noise) is what ultimately allows us break the
lower bound of Ω(T (d+2)/(d+3)) (from Lu et al., 2009; Slivkins, 2014, with p = 1) that we would
obtain if our reward function were a generic Lipschitz function (see Section 1.2 for more details).

Similar to the adaptive zooming technique employed by Slivkins (2014) or the chaining approach
of Cesa-Bianchi et al. (2017), we maintain a discretized representation of the context space, which
is geometrically refined in regions in which we observe a lot of contexts. Formally, we use a tree
with breaching factor 2d, in which each layer ℓ maintains an O(2−ℓ) discretization of the function
mapping contexts to optimal prices. Moreover, at level ℓ, we “mark” a node if we find a price that
was accepted when observing a context in the region described by that node. By Lipschitzness, we
know that there is a region of size O(L2−ℓ) that contains a price for all nodes of the sub-tree.

The main challenge then is to effectively utilize this information, as the discontinuity of the reward
functions prevents the use of standard techniques. The key trick here is to heavily rely on randomiza-
tion when posting prices. By playing uniformly at randomly on an ϵ discretization of the identified
set of good prices (that has length O(2−ℓ)) we have a probability of at least Ω(2ℓϵ) of winning any
trade with GFT at least ϵ, and thus we will waste only O(2−ℓ/ϵ) turns on expectation before finding
a price that is accepted, marking the node with that price and continuing to the children node. On
the other hand, losing all the trades with GFT smaller than ϵ only yields a regret of order O(ϵT ).
By tuning the parameter ϵ, and summing over all node of the tree this leads to an overall regret of
Õ(T (d−2)/d), which, although being sublinear, is suboptimal.

In order to obtain an optimal rate, the second trick is associated with reducing the regret suffered
when guessing the right price and exploits the geometric structure of the problem. Before starting to
guess a correct price in the associated interval, we perform a sort of “hide-and-seek game” against
the adversary generating the contexts. We probe iteratively two prices. If we win the trade, we
are happy since we have zero regret. Otherwise, if we miss a trade for both prices, by geometric
reasoning, we can limit the space in which the context can place the valuation, and we can show it
has to be very close (order of O(2−ℓ)) to the diagonal. This limits the possible GFT (and thus the
regret) by O(2−ℓ) in all subsequent nodes. This modifies the maximum regret experienced in the
guessing phase to be O(2−2ℓ/ϵ) at nodes at layer ℓ, and by appropriately tuning ϵ we can obtain an
optimal regret of O(T (d−1)/d).

Crucially, this algorithm relies on explicit knowledge of the Lipschitz constant L, which may be un-
known in a practical scenario. Building on the main structure of the vanilla algorithm, in Section 4,
we design an algorithm that works by testing geometrically increasing scales of the Lipschitz con-
stant L and only slightly worsens the guarantees, without requiring knowing the Lipschitz constant.

For the matching (up to logarithmic terms) lower bound of Ω(T (d−1)/d), we use a combination of
Yao’s weak minimax principle (Yao, 1977), which relates the performance of randomized algorithms
in the worst instance to the performance of deterministic algorithms against a distribution over in-
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stances, with a simple version of the McShane’s extension theorem (McShane, 1934) that shows the
existence of Lipschitz extensions on the continuum of Lipschitz functions on discrete sets.

1.2 FURTHER RELATED WORKS

Bilateral trade In the offline setting, Myerson & Satterthwaite (1983) demonstrated that no mech-
anism can simultaneously achieve full efficiency, incentive compatibility, individual rationality, and
budget balance in general. This impossibility result motivated a long line of research aimed at
designing mechanisms that achieve approximate efficiency in Bayesian settings (McAfee, 2008;
Blumrosen & Mizrahi, 2016; Brustle et al., 2017; Deng et al., 2022; Kang et al., 2022).

Online bilateral trade In the online setting, Cesa-Bianchi et al. (2024) study a setting where
buyer and seller valuations are i.i.d. from an unknown distribution, and the learner must enforce
strong budget balance (i.e., at each round they post the same price to both the seller and the buyer).
They provide no-regret algorithms for the full-feedback setting, and under partial feedback when the
valuations are drawn independently for the seller and the buyer, and the underlying distribution is
smooth. In the case in which valuations are generated by an adversary, Azar et al. (2022) provides an
algorithm achieving a tight sublinear 2-regret under weak budget balance (i.e., pt ≤ qt at each round
t). Moreover, Bernasconi et al. (2024) shows that sublinear regret is still achievable if the learner is
allowed to enforce global budget balance, meaning the constraint must hold over the entire horizon
rather than at each round (see also Chen et al. (2025); Lunghi et al. (2025)). The most closely related
work in online bilateral trade is by Gaucher et al. (2025), who consider a contextual variant of the
problem where valuations at time t take the form x⊤

t θ, possibly with additive noise. They propose
an algorithm achieving Õ(T 2/3) regret under two-bit feedback and strong budget balance, and show
that sublinear regret is also attainable under one-bit feedback if global budget balance is allowed.
This linear contextual valuation model builds on a substantial body of work in contextual pricing
with linear valuations (Kleinberg & Leighton, 2003; Amin et al., 2014; Cohen et al., 2020; Lobel
et al., 2018; Liu et al., 2021).

Other related models A related but structurally different model is that of online brokerage (Bolić
et al., 2024), which differs from standard bilateral trade in that traders may act as buyers or sell-
ers depending on market conditions, and their valuations are drawn i.i.d. from a shared unknown
distribution. Bachoc et al. (2024) consider a contextual brokerage model, in which valuations are
modeled as zero-mean perturbations of a market price that is linear in the agent’s feature vector.

Online nonparametric contextual online learning The study of online learning with nonpara-
metric contexts was initiated by Hazan & Megiddo (2007), in which they proved an upper bound
of Õ(T (d+1)/(d+2)) and context dimension d, while providing a Ω(T (d−1)/d) lower bound. The
gap was closed in Rakhlin & Sridharan (2015) for full information by providing an upper bound
of Õ(T (d−1)/d) and later refined in Cesa-Bianchi et al. (2017) by providing an explicit algorithm.
Both of these works also consider an arbitrary Lipschitz reward function. The model was extended
to arbitrary metric action spaces of dimension p in Lu et al. (2009) and Slivkins (2014), that show an
almost matching rate of Θ(T (d+p+1)/(d+p+2)). In economic settings, the problem of nonparametric
contextual information has been studied in Cesa-Bianchi et al. (2017), which examines second-price
auctions, and Chen & Gallego (2021); Tullii et al. (2024) for pricing.

2 PRELIMINARIES

At the beginning of each round t, the learner observes a public context xt ∈ [0, 1]d generated by
an oblivious adversary. At the same time, a new pair of buyer and seller arrives, characterized by
private valuations (bt, st) ∈ [0, 1]2. The valuations are generated from the context by two unknown
functions st = fs(xt) and bt = fb(xt). We assume, as it is standard in the nonparametric contextual
bandits literature (see, e.g., (Slivkins, 2014; Cesa-Bianchi et al., 2017)), that fs, fb : [0, 1]d → [0, 1]
are L-Lipschitz functions, i.e., |fs(x)− fs(x

′)| ≤ L∥x− x′∥∞ for all x, x′ ∈ [0, 1]d (and similarly
for fb). We denote the class of all L-Lipschitz functions as FL.
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Objective After observing the contextual information xt, the learning picks one price pt ∈ [0, 1],
and the trade is accepted if both the seller and the buyer accept it, i.e., st ≤ pt ≤ bt. When the
trade is accepted, it generates a social welfare of bt − st (that is, the increase in total happiness
between the two market participants); in particular, the gain from trade is defined as in Equation (1).
The objective is to minimize the regret, which given a sequence of contexts x = {x1, . . . , xT } ∈
([0, 1]d)T and two L-Lipschitz functions fs, fb, is defined as

RT (fs, fb,x) =

T∑
t=1

[fb(xt)− fs(xt)]
+ − E[GFT(pt|fs(xt), fb(xt))],

where the expectation is taken over the randomization of the algorithm. The regret of an algorithm
is then defined as RT = supfs,fb∈FL,x∈([0,1]d)T RT (fs, fb,x), which is the worst-case regret at-
tainable across all functions fs, fb ∈ FL and all context sequences x. Since we are interested in
regret guarantees that are asymptotic in T , we will work under the assumption that T ≫ 2d.

Feedback Our algorithm operates under partial feedback, specifically under one-bit feedback. In
this feedback model, the learner observes only a single bit of information indicating whether a trade
occurred, i.e., I(st ≤ pt ≤ bt). In contrast, the lower bound is established under full feedback, where
the learner observes the valuation pair (st, bt) after posting the price pt, irrespective of whether the
trade was executed. An intermediate setting is the two-bit feedback model, in which the learner
observes both I(st ≤ pt) and I(pt ≤ bt).

Notation We denote by Hd the d-dimensional Boolean hypercube {0, 1}d, and by 0d a d-
dimensional vector of zeros. We denote the projection of x ∈ Rn onto C ⊂ Rn as ΠC(x). Moreover,
for a ≤ b, let [a, b]ϵ denote the uniform grid over the interval [a, b] with step size ϵ, where any grid
point outside the interval [0, 1] is projected onto the nearest endpoint, i.e., capped to 0 if below 0 and
to 1 if above 1. Formally, [a, b]ϵ := Π[0,1] ({a, a+ ϵ, . . . , a+ kϵ, b}), where k = ⌊ b−a

ϵ ⌋.

3 REGRET GUARANTEES FOR KNOWN LIPSCHITZ CONSTANT

In this section, we present an algorithm that guarantees regret of order Õ(LT (d−1)/d) in the case in
which the Lipschitz parameter L is known. In Section 4 we extend this approach to include the case
in which L is not known.

3.1 HIERARCHICAL TREE STRUCTURE

We start by defining a hierarchical partitioning of the d-dimensional hypercube. We define a tree T
in which each node represents a specific subset of the hypercube. A node Nℓ,z in the tree is defined
by a level ℓ and a reference point z. The subset of the hypercube defined by a node Nℓ,z is

Area(Nℓ,z) := [z1, z1 + 2−ℓ]× . . .× [zd, zd + 2−ℓ].

The root of the tree corresponds to ℓ = 0 and the reference point z = 0d. Each node Nℓ,z has 2d

children Nℓ+1,zi , where zi = z + 2−(ℓ+1)hi and hi ranges over all 2d binary vectors. We denote by
C(ℓ, z) ⊂ [0, 1]d the set of all the reference points corresponding to the children of Nℓ,z . Moreover,
for any z′ ∈ C(ℓ, z), we use pred(ℓ + 1, z′) to denote the reference point of the parent node of
Nℓ+1,z′ (i.e., point z). Under this notation, the parent node of Nℓ,z is Nℓ−1,pred(ℓ,z).

We denote the set of reference points in nodes at level ℓ with Zℓ, which is defined recursively as
Z0 = 0d and Zℓ = ∪z∈Zℓ−1

C(ℓ, z). Clearly, Area(Nℓ,z) =
⋃

z′∈C(ℓ,z) Area(Nℓ+1,z′). Then,
each level ℓ of the tree induces a partition of the d-dimensional hypercube, since by construction,⋃

z∈Zℓ
Area(Nℓ,z) = [0, 1]d. We limit the height of the tree to H = ⌊log2d(T )⌋ = O(log(T )d−1).

3.2 ALGORITHM

The algorithm works as outlined in Algorithm 1. In particular, each node Nℓ,z of the tree may be
“marked with” a price pℓ,z ∈ [0, 1] (Line 12).
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Algorithm 1
Require: Horizon T , Lipschitzness L, context dimension d.

1: for t ∈ [T ] do
2: Observe context xt

3: Initialize ℓ← 0, z ← 0d

4: while pℓ,z ̸= ∅ and Nℓ,z not leaf do # Traverse tree until active or leaf node is reached
5: Find z′ such that xt ∈ Area(Nℓ+1,z′), where z′ ∈ C(ℓ, z)
6: ℓ← ℓ+ 1, z ← z′

7: if REDUCE(Nℓ,z) has not terminated then
8: Execute one iteration of the main loop of REDUCE(Nℓ,z)
9: else if GUESS(Nℓ,z) has not terminated then

10: Execute one iteration of the main loop of GUESS(Nℓ,z)
11: if GUESS(Nℓ,z) terminates returning price p then
12: Set node Nℓ,z as marked by setting pℓ,z ← p

13: else Play pℓ,z # If node is a marked leaf play corresponding price

Algorithm 2 REDUCE(Nℓ,z)

1: Set p̄← pℓ−1,pred(ℓ,z) (i.e., the price associated with the parent node) # Initialization
2: Set pL ← Π[0,1]

(
p̄− L2−(ℓ−1)

)
, pU ← Π[0,1]

(
p̄+ L2−(ℓ−1)

)
3: Initialize p← pL
4: repeat # Main Loop
5: Post price p and observe I(st ≤ p ≤ bt)
6: if I(st ≤ p ≤ bt) = 0 then
7: if p = pL then set p← pU ; else terminate p← ∅
8: until p = ∅

Definition 1. A node Nℓ,z is said to be marked if it has been assigned a marking price p such that,
for some context x ∈ Area(Nℓ,z), the trade is accepted at p, that is, I(fs(x) ≤ p ≤ fb(x)) = 1.

A node Nℓ,z can be marked only if every node along the path from the root to Nℓ,z has already been
marked. The set of marked nodes, therefore, forms a rooted subtree. The free (i.e., not marked)
leaves of this subtree are referred to as active nodes. Intuitively, when we reach an active node Nℓ,z ,
our goal is to find a price p that results in a successful trade, that is, one satisfying I(fs(xt) ≤ p ≤
fb(xt)). To this end, we leverage the information already encoded in the tree: every node Nℓ′,z′

along the path from the root to Nℓ,z is marked with a price pℓ′,z′ at which a trade occurred. These
previously observed prices allow us to restrict the interval of candidate prices for the new posting
and form a reasonable estimate for a price p that will be accepted by the valuations fs(xt), fb(xt).

Node-wise regret decomposition In the analysis of the algorithm, we decompose the total regret
into the contributions to the regret of each node. Let A ⊆ [T ] be a subset of rounds. Then, we define

R(A) :=
∑
t∈A

(
[fb(xt)− fs(xt)]

+ − GFTt(pt|fs(xt), fb(xt))
)
.

For any node Nℓ,z ∈ T , we define Tℓ,z ⊆ [T ] as the set of rounds in which the traversal of the
tree stops on Nℓ,z (i.e., the number of rounds in which Nℓ,z is the node selected at the end of
the loop of Line 4). Then, for any node Nℓ,z , we define the regret “accumulated on Nℓ,z” as the
regret accumulated in rounds Tℓ,z: Rℓ,z = E [R(Tℓ,z)]. Then, the overall regret can be rewritten by
separating contributions incurred at each level of the tree and at the nodes within that level:

RT =

H∑
ℓ=0

∑
z∈Zℓ

Rℓ,z. (2)

Any node of the tree that is never visited by Algorithm 1 has Tℓ,z = ∅ and thus does not contribute
to the overall regret.
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Algorithm 3 GUESS(Nℓ,z)

1: Let p̄ = pℓ−1,pred(ℓ,z) be the price associated to the parent node Nℓ−1,pred(ℓ,z) # Initialization
2: Set Pℓ,z = [p̄− L2−(ℓ−1), p̄+ L2−(ℓ−1)]ϵ with ϵ = LT−1/d

3: repeat # Main Loop
4: Post price p ∼ Unif(Pℓ,z) and observe I(st ≤ p ≤ bt)
5: until I(st ≤ p ≤ bt) = 1
6: Return p

For each observed context xt, we traverse the tree T by repeatedly selecting the child node whose
associated region contains xt, until reaching an active node or a leaf node (see Line 4 of Algo-
rithm 1). Then, the algorithm proceeds in one of two ways: (i) if the node is not marked, we invoke
one of the two routines REDUCE and GUESS described below (Lines 8 and 10); (ii) if the node is a
marked leaf, we post the price previously assigned to it (Line 13).

3.3 REDUCE ROUTINE

p

pL

pU

GFT = 6h

bu
ye

r

seller s

b

1

0 1

Figure 1: The figure shows the
space of valuations (the seller is
on the x-axis and the buyer on
the y-axis). The blue (resp., yel-
low) region denotes valuations for
which pL (resp., pU ) is rejected.
Lemma 1 states that if there are
valuations both in the yellow and
in the blue region, then there
cannot be valuations that satisfy
GFT ≥ 6h (i.e., they cannot be
above the dotted line), with h =
L2−ℓ. If we interpret the green
and red regions as the image of
Area(Nℓ,z) under (fs, fb), then
Lemma 1 forbids the red region,
but allows the green one.

Consider an active node Nℓ,z and its parent Nℓ−1,pred(ℓ,z), and
focus on the rounds t ∈ [T ] such that xt ∈ Area(Nℓ,z). When-
ever Algorithm 1 selects such node after the tree traversal, the
algorithm executes one iteration of the REDUCE routine on Nℓ,z

until its termination. The number of rounds in which Algo-
rithm 1 calls REDUCE(Nℓ,z) is denoted by T REDUCE

ℓ,z .

The REDUCE routine is described in Algorithm 2. Starting
from the price p̄ = pℓ−1,pred(ℓ,z) associated to the parent node
of Nℓ,z , the algorithm computes two prices centered around
p̄, each with distance L2−(ℓ−1). We denote such prices by
pL = Π[0,1](p̄ − L2−(ℓ−1)) and pU = Π[0,1](p̄ + L2−(ℓ−1)),
where the projection onto [0, 1] ensures that prices are well-
defined. Then, REDUCE repeatedly posts the price pL until a
trade is rejected (i.e., I(st ≤ pL ≤ bt) = 0). It then switches to
posting pU until that price is also rejected by one of the agents.
Once both rejections occur, the routine for node Nℓ,z termi-
nates. From that point on, whenever the traversal ends at Nℓ,z ,
Algorithm 1 invokes the GUESS subroutine (see Section 3.4).

This procedure may appear counterintuitive, as it intentionally
seeks rejections of some specific prices. However, the primary
objective of REDUCE is to control the regret that may accumu-
late once the routine concludes. Specifically, upon termination,
both prices pL and pU must have been rejected once. Then, due
to the Lipschitz continuity of the valuation functions, this re-
stricts the range of future contexts for which the node Nℓ,z can
be selected, effectively ensuring that fb(x)−fs(x) ≤ O(L2−ℓ)
for any context x in the region corresponding to Nℓ,z . Formally

Lemma 1. Consider a node Nℓ,z for which the REDUCE procedure terminated. Then, for any
x ∈ Area(Nℓ,z), it holds that fb(x)− fs(x) ≤ 6L2−ℓ.

Although simple, this result is rather surprising, as it reveals a fundamental property of the problem.
By viewing the context-generation process as adversarial, the previous result can be interpreted as
follows: if the adversary “hides” the valuations both when pL and pU are played, then the Lipschitz
constraint forces the adversary to place them close to the diagonal. In particular, the REDUCE
procedure may not end for some nodes (indeed, for most nodes it is not expected to do so). However,
we show that if the adversary forces termination at a specific node, then across all similar contexts
(i.e., nodes in the subtree rooted at that node) the adversary’s gain remains limited. This situation is
illustrated in Figure 1, which also serves as intuition about the proof.
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Now, we show that the regret incurred while running this routine is suitably upper-bounded. For-
mally, let RREDUCE

ℓ,z := E[R(T REDUCE
ℓ,z )] be the regret accumulated by the REDUCE routine executed

on node Nℓ,z . We can upper bound this term as follows.

Lemma 2 (Regret due to REDUCE). For any node Nℓ,z with ℓ ≥ 1 it holds RREDUCE
ℓ,z ≤ 24L2−ℓ.

3.4 GUESS ROUTINE

For an active node Nℓ,z , once the REDUCE procedure has terminated, the algorithm proceeds with
the GUESS routine (see Algorithm 3). In this phase, prices are drawn uniformly at random from the
set Pℓ,z = [p̄ − L2−(ℓ−1), p̄ + L2−(ℓ−1)]ϵ, where p̄ = pℓ−1,pred(ℓ,z) is the price used to mark the
parent node, and ϵ will be specified later. In the GUESS procedure, random prices are posted until a
trade at some price p is accepted, at which point Nℓ,z is marked with pℓ,z = p.

The set Pℓ,z is chosen so that, by the Lipschitz condition, it always contains a feasible price.
Specifically, for every x ∈ Area(Nℓ,z) with fb(x) ≥ fs(x), there exists a price in the interval
[p̄ − L2−(ℓ−1), p̄ + L2−(ℓ−1)]ϵ that will be accepted by the valuations fs(x) and fb(x). Moreover,
we observe that |Pϵ| = O(ϵ−1L2−ℓ). This allows us to bound the expected number of rounds
required to terminate the GUESS procedure, and to upper bound the regret incurred by executing it.

Formally, we denote by T GUESS
ℓ,z ⊆ [T ] the set of rounds in which Algorithm 1 executes

GUESS(Nℓ,z). Then, let RGUESS
ℓ,z := E

[
R(T GUESS

ℓ,z )
]

be the regret accumulated when GUESS is exe-
cuted for note Nℓ,z . We provide the following upper bound on this regret term.
Lemma 3 (Regret due to GUESS). Let x ∈ Area(Nℓ,z). For any ϵ > 0, consider posting prices
uniformly at random from Pℓ,z = [p̄ − L2−(ℓ−1), p̄ + L2−(ℓ−1)]ϵ, where p̄ = pℓ−1,pred(ℓ,z) is the
marking prices of the parent node. Then the regret incurred by the GUESS procedure is at most

RGUESS
z,ℓ ≤ ϵE[|Tℓ,z|] + 24

L22−2ℓ

ϵ
.

The intuition about this result is simple: if the trades have small (i.e., less than ϵ) GFT then the total
regret is at most ϵ per round. On the other hand, if the GFT is large (i.e., greater then ϵ) then an
ϵ-grid over the possible prices is enough to win a trade with probability Ω(ϵ2ℓ/L), which happens
on average after O(L2−ℓ/ϵ) turns. In each of these turns we are only loosing O(L2−ℓ) because they
take place after the REDUCE procedure of that node.

3.5 REGRET ANALYSIS

By using the results of the previous sections, and for an appropriate choice of ϵ, we can now upper
bound the overall regret incurred by the algorithm.
Theorem 1. For any T > 2d and any pair of L-Lipschitz valuation functions, Algorithm 1 with
ϵ = LT−1/d guarantees RT = O(L log2(T )T

(d−1)/d).

The proof, provided in the appendix, begins by partitioning the rounds [T ] across nodes according
to Equation (2). For each node, the rounds are then further subdivided based on the phase of the
algorithm. Intuitively, for each round, we look at the node “from which we post a price”. Then,
such rounds are partitioned based on whether the algorithm invoked REDUCE, GUESS, or if the
node is a marked leaf, as specified in Line 13 of Algorithm 1. Each resulting term can be suitably
upper-bounded by applying the previous lemmas.

4 UNKNOWN LIPSCHITZ CONSTANT: A MULTI-SCALE APPROACH

The algorithm presented in Section 3.2, heavily relies on the knowledge of the Lipschitz constant
L. The exact knowledge of this constant is crucial in proving the correctness of the algorithm.
More precisely, we exploited several Lipschitzness arguments to bound valuations. However, in
many real-world scenarios it may be unrealistic to assume that L is known. In this section, we
present an algorithm that extends the one introduced in Section 3.2, removing the need for a priori
knowledge of L. This comes at the cost of only a slight deterioration in guarantees, yielding a regret
of Õ(L2T (d−1)/d) instead of Õ(LT (d−1)/d).
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We rely on geometric (i.e., multi-scale) extensions of the REDUCE and GUESS subroutines, which
we call GEOMETRICREDUCE and GEOMETRICGUESS, respectively. In particular, for each node
Nℓ,z , we define a sequence of geometrically increasing Lipschitz constants L̃j

ℓ,z = O(2j). In GEO-
METRICREDUCE we simply perform the REDUCE routines for each scale j. Crucially, terminating
this procedure bounds the GFT in all subsequent nodes by O(L2−ℓ) (similarly to Lemma 1), but
without requiring the knowledge of L.

The construction of GEOMETRICREDUCE is more involved, and The reason is clear if we think
about the analysis of GUESS. The analysis relied on a simple fact: for all trades with GFT greater
than ϵ, we have a probability of at least Ω(ϵ2ℓ/L) of marking the node, and thus we expect to finish
in O(L2−ℓ/ϵ) rounds. However, it is also possible that the process never terminates, since there may
be many trades happening with GFT less than ϵ. Therefore, without knowledge of the constant L, the
algorithm may spend many rounds working at an excessively small scale, potentially leading to the
loss of trades with large GFT. Moreover, it becomes impossible to distinguish whether we are losing
these trades because they have small GFT, or simply because the chosen scale is too small for the
real Lipschitz constant. The solution is to carefully increase the scale of our Lipschitz constant (more
precisely, logarithmically), and to draw a price from the corresponding grid uniformly at random.
This process is guaranteed to finish in expectation after O(L2−ℓ/ϵ) rounds against valuations with
GFT at least ϵ, and does not require knowing L beforehand. The overall algorithm is detailed
in Section C and provides the following regret guarantees, which are only a O(log2(T )L) factor
greater than the guarantees of Theorem 1.
Theorem 2. Consider the non-parametric contextual bilateral trade problem, with one-bit feedback
and strong budget balance with L-Lipschitz valuation functions. Then there is an algorithm that,
without taking as input L, guarantees a regret of RT = O(log2(T )

2L2T (d−1)/d).

5 LOWER BOUND

In this section, we proceed to prove a matching lower bound that proves the tightness of our algo-
rithm. In particular, we will prove the following theorem.
Theorem 3. Any randomized algorithm under strong-budget balance, d-dimensional context vec-
tors, and L-Lipschitz value functions, suffers a regret of Ω(LT

d−1
d ), provided that T > (4L)d. This

also holds under full feedback.

From a technical perspective, the proof of Theorem 3 relies on Yao’s weak minimax principle (Yao,
1977), which lower bounds the regret with the expected performance of a deterministic algorithm
against a distribution of instances. Formally:
Lemma 4 (Yao’s weak minimax principle). For any deterministic algorithm generating {pt}t∈[T ],

and any distribution D, we have that RT ≥ E(fs,fb)∼D

[∑
t∈[T ][fb(xt)− fs(xt)]

+ − GFTt(pt)
]
.

To construct a hard distribution over instances, and consequently over valuation functions fs and
fb, we start by considering all 2T possible assignments of a discrete set of T context vectors to two
disjoint valuations (i.e., such that no price results in both trades being accepted). We then extend
these discrete assignments to Lipschitz-continuous functions over the entire context space. The
distribution is then taken as the uniform one over all 2T possible valuation functions. In particular,
we build a distribution D over instances such that, for any deterministic algorithm, it holds

E(fs,fb)∼D

[∑
t∈[T ][fb(xt)− fs(xt)]

+ − GFTt(pt)
]
≥ Ω̃(LT

d−1
d ).

We define the standard δ-grid G on the [0, 1]d dimensional hypercube, i.e., G = [0, δ, . . . , 1]d.
The set G is the set of possible contexts and, by fixing δ = T−1/d, we have that |G| = T .
Fix any ordering of contexts x1, . . . , xT over G. We can define two valuations (s0, b0) =(
1
2 − γ, 1

2 − ϵ
)

and (s1, b1) =
(
1
2 + ϵ, 1

2 + γ
)
, where γ > ϵ > 0 are two parameters to be

specified later. Notice that there is no price p such that p wins both trades, in particular when the
valuations are (s0, b0) the only prices that get the trade accepted are in the set [ 12 − γ, 1

2 − ϵ], while
under valuations (s1, b1) prices that make the trade happen are in [ 12+ϵ, 1

2+γ]. For the same reason,
we know that we can focus on deterministic algorithms that post prices only within one of these two
intervals, since they yield GFT greater than that of any other price.
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Next, for any L > 0, we build a family of L-Lipschitz functions from [0, 1]d to {(s0, b0), (s1, b1)}.
In order to build our set of instances, consider a binary vector h ∈ HT of length T . Given a context
xi, the i-th bit of h determines the valuations for such a context. In particular, h selects (s0, b0) if
hi = 0, and (s1, b1) if hi = 1. For each of these binary vectors h ∈ HT , let fh = (fh

s , f
h
b ) : G →

R2 be the functions satisfying the corresponding assignment, i.e., fh
s (xi) = shi

and fh
b (xi) =

bhi
. Note that for all x ̸= x′ ∈ G and any h ∈ H, we have |fh

s (x)− fh
s (x

′)| ≤ γ − ϵ, and the same
holds for fh

b . By taking ϵ = γ
2 and γ = 2LT−1/d, and by noting that infx̸=x′,x∈G ∥x−x′∥∞ ≥ δ =

T−1/d we have that fh
s and fh

b are L-Lipschitz in G.1 Now, we need to extend the functions over
the entire context domain [0, 1]d, which can be done in a black box way by the McShane extension
theorem that we recall here
Theorem 4 (McShane’s extension (McShane, 1934)). Let X ⊂ Rd be a closed set, and f be a
R-valued, L-Lipschitz function on X . Then there exists an extension f̃ : Rd → R that agrees with
f on X and is L-Lipschitz on Rd.2

We apply this on each fh and take D as the uniform distribution over F = {f̃h}h∈HT . This dis-
tribution has the intuitive property that renders its history unhelpful in predicting future valuations.

Lemma 5. For any t ∈ [T ], the distribution of (st, bt) under D, conditioned on the filtration up to
time t− 1, is uniform over {(s0, b0), (s1, b1)}.

We start by observing that the GFT that can be extracted from both (s0, b0) and (s1, b1) is γ − ϵ =
γ/2 > 0. Therefore, the benchmark will gain E(fs,fb)∼D

[∑
t∈[T ][fb(x)− fs(x)]

+
]
= γ

2T . On the
other hand, by Lemma 5, for any t ∈ [T ] the best expected GFT achievable by any deterministic
algorithm is bounded from above by γ−ϵ

2 = γ
4 . Since we set γ = 2LT−1/d, we obtain that

RT ≥
T

2
(γ − ϵ) =

L

2
T

d−1
d ,

concluding the proof of Theorem 3.

Ramark This construction is reminiscent of that of Lu et al. (2009), who establish a rate of
Ω(T (d+1)/(d+2)) (instantiated, as an example, in the finite MAB setting), which is higher than both
our lower bound of Ω(T (d−1)/d) and our upper bound of Õ(T (d−1)/d), despite our setting appear-
ing more challenging. However, this is not unexpected, since the proof of Lu et al. (2009) leverages
a significantly sparser grid in the context space (O(T−1/(d+2)) instead of O(T−1/d)). They are
allowed to do this since in their setting contexts can be repeated without incurring zero regret, as
noise allows suboptimal actions to remain indistinguishable for longer. In contrast, in our setting,
the reward function is identical whenever the same context is observed.

6 CONCLUSIONS AND FUTURE WORK

There are many interesting possible direction for future works. Similar to Slivkins (2014) we could
consider general context set as obtain rates that depends on the packing/covering dimension of the
sets, or as in Kuzborskij & Cesa-Bianchi (2020); Cesa-Bianchi et al. (2017) to exploit the additional
structure of the functions class that maps contexts to valuations. From the perspective of bilateral
trade, many other notion of budget balance can be considered, such as weak and global budget
balance (Cesa-Bianchi et al., 2024; Bernasconi et al., 2024), in which we are allowed to post two
different prices to the buyer and to the seller, only subject to the condition that we do not subsidize
the market at each round and over all rounds, respectively. Moreover, our tight rates are attainable
in part because our model does not allow for noise, unlike some general nonparametric bandit mod-
els (Lu et al., 2009; Slivkins, 2014). The question of what rates can be achieved under the noisy
valuations remains open.

1Note that we need T > (4L)d for the valuations to be well defined (i.e., in [0, 1]2).
2In our proof we only care about the existence of such an extension, however, the proof of the theorem is

constructive and defines f̃ as f̃(x) = infx′∈X(f(x) +L∥x− x′∥∞), (Weaver, 1999, see e.g., Theorem 1.33).
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REPRODUCIBILITY STATEMENT

Full proofs are included in the Appendix, and assumptions are explicitly stated in the model.
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A OMITTED PROOFS FROM SECTION 3 (UPPER BOUND)

Lemma 1. Consider a node Nℓ,z for which the REDUCE procedure terminated. Then, for any
x ∈ Area(Nℓ,z), it holds that fb(x)− fs(x) ≤ 6L2−ℓ.

Proof. Let pL = Π[0,1](p̄− L2−(ℓ−1)) and pU = Π[0,1](p̄+ L2−(ℓ−1)), where p̄ = pℓ−1,pred(ℓ,z) is
the price with which we marked the parent node.

If REDUCE terminated for node Nℓ,z , then Line 7 of Algorithm 2 has been executed exactly twice.
We denote by tL ∈ [T ] the first time in which Line 7 is executed (i.e., the round in which we observe
a trade rejected for pL), and analogously we denote by tU ∈ [T ] the second time in which Line 7
is executed (i.e., the round in which we observe a trade rejected at price pU ). Let xL = xtL and
xU = xtU .

At the end of REDUCE we have two pairs (pL, xL) and (pU , xU ) such that

fs(xL) > pL or fb(xL) < pL,

and
fs(xU ) > pU or fb(xU ) < pU .

Moreover, by the Lipschitz condition and the fact that the parent node Nℓ−1,pred(ℓ,z) is marked (see
Definition 1), it follows that for every x ∈ Area(Nℓ,z) ⊆ Area(Nℓ−1,pred(ℓ,z)) we have

fs(x) ≤ min{1, p̄+ L2−(ℓ−1)} = pU and fb(x) ≥ max{0, p̄− L2−(ℓ−1)}2 = pL.

Then, by rewriting the above for xU ∈ Area(Nℓ,z), we get that the buyer refused the trade at price
pU , since the seller would have accepted it. Hence, fb(xU ) < pU . Similarly, we know that it was
the seller who rejected the trade at xL, implying fs(xL) > pL. Now consider any x ∈ Area(Nℓ,z).
By Lipschitzness we have that

|fs(x)− fs(xL)| ≤ L2−ℓ and |fb(x)− fb(xU )| ≤ L2−ℓ,

from which we can conclude that

fb(x)− fs(x) ≤ fb(xU )− fs(xL) + 2L2−ℓ ≤ pU − pL + 2L2−ℓ = 6L2−ℓ.

This concludes the proof.

Lemma 2 (Regret due to REDUCE). For any node Nℓ,z with ℓ ≥ 1 it holds RREDUCE
ℓ,z ≤ 24L2−ℓ.

Proof. First, observe that in rounds belonging to T REDUCE
ℓ,z we accumulate regret only twice, once for

each rejection of prices pL and pU , since accepted prices yield zero regret. Moreover, by con-
struction we have that Nℓ,z is active, so we know that the parent node Nℓ−1,pred(ℓ,z) has been
marked and that REDUCE has been completed for Nℓ−1,pred(ℓ,z). For any x ∈ Area(Nℓ,z) ⊆
Area(Nℓ−1,pred(ℓ,z)) we can apply Lemma 1, and we get that fb(x) − fs(x) ≤ 6L2−(ℓ−1) =

12L2−ℓ. Therefore, we obtain RREDUCE
ℓ,z ≤ 24L2−ℓ, which concludes the proof.

Lemma 3 (Regret due to GUESS). Let x ∈ Area(Nℓ,z). For any ϵ > 0, consider posting prices
uniformly at random from Pℓ,z = [p̄ − L2−(ℓ−1), p̄ + L2−(ℓ−1)]ϵ, where p̄ = pℓ−1,pred(ℓ,z) is the
marking prices of the parent node. Then the regret incurred by the GUESS procedure is at most

RGUESS
z,ℓ ≤ ϵE[|Tℓ,z|] + 24

L22−2ℓ

ϵ
.

Proof. For each x ∈ Area(Nℓ,z) we have that

fs(x) ≤ fs(x̄) + L2−(ℓ−1) ≤ p̄+ L2−(ℓ−1),

where x̄ ∈ Area(Nℓ−1,pred(ℓ,z)) is the context in the parent node’s area under which p̄ was accepted.
Similarly, we have that

fb(x) ≥ fb(x̄)− L2−(ℓ−1) ≥ p̄− L2−(ℓ−1).
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Thus, if fb(x) ≥ fs(x) then the interval [fs(x), fb(x)] is contained in the interval [p̄−L2−(ℓ−1), p̄+
L2−(ℓ−1)].

For any t ∈ T GUESS
ℓ,z we are going to consider two cases: (i) fb(xt) − fs(xt) ≤ ϵ, and (ii) fb(xt) −

fs(xt) > ϵ. We let
T GUESS,1
ℓ,z :=

{
t ∈ T GUESS

ℓ,z : fb(xt)− fs(xt) ≤ ϵ
}
,

and T GUESS,2
ℓ,z := T GUESS

ℓ,z \ T GUESS,1
ℓ,z . Then, by linearity of expectation, the regret RGUESS

z,ℓ can be
decomposed as

RGUESS
z,ℓ = E

[
R

(
T GUESS,1
ℓ,z

)]
+ E

[
R

(
T GUESS,2
ℓ,z

)]
.

First, we observe that if t ∈ T GUESS,1
ℓ,z , then the first term in the decomposition can be bounded above

by ϵE[|Tℓ,z|]. Indeed, in this case we have [fb(xt) − fs(xt)]
+ ≤ ϵ, GFTt(· | fs(xt), fb(xt)) ≥ 0,

and moreover T GUESS,1
ℓ,z ⊆ Tℓ,z .

Similarly, the second term can be upper bounded by E[|T GUESS,2
ℓ,z |] · G, where G is the maximum

GFT attainable. Since the REDUCE procedure must have already terminated for Nℓ,z before GUESS

is executed, we can apply Lemma 1, which yields G ≤ 6L2−ℓ. Therefore,

RGUESS
z,ℓ ≤ ϵE[|Tℓ,z|] + 6L2−ℓ · E[|T GUESS,2

ℓ,z |].

In order to conclude the proof we have to upper bound E[|T GUESS,2
ℓ,z |]. Notice that for every t ∈

T GUESS,2
ℓ,z we have fb(xt)−fs(xt) > ϵ. Hence, there exists at least one price p in the discretized grid
Pℓ,z such that fs(xt) ≤ p ≤ fb(xt). This implies that the probability of terminating GUESS at each
round t ∈ T GUESS

ℓ,z is at least |Pℓ,z|−1, and therefore

E[|T GUESS,2
ℓ,z |] ≤ |Pℓ,z| ≤ 4L2−ℓ

ϵ .

This concludes the proof.

Theorem 1. For any T > 2d and any pair of L-Lipschitz valuation functions, Algorithm 1 with
ϵ = LT−1/d guarantees RT = O(L log2(T )T

(d−1)/d).

Proof. For a node Nℓ,z , let T LEAF
ℓ,z ⊆ [T ] be the set of rounds in which Line 13 of Algorithm 1 is

executed for that node (i.e., the number of times a leaf node is played after being marked). Moreover,
let

RLEAF
ℓ,z := E

[
R(T LEAF

ℓ,z )
]
.

First, following Equation (2), we decompose the overall regret into the contributions incurred at
each level and at the nodes within that level:

RT =

H∑
ℓ=0

∑
z∈Zℓ

Rℓ,z =

H∑
ℓ=0

∑
z∈Zℓ

(RREDUCE
ℓ,z +RGUESS

ℓ,z +RLEAF
ℓ,z )

where the second equality come from the fact that T REDUCE
ℓ,z , T GUESS

ℓ,z , T LEAF
ℓ,z form a partition of Tℓ,z

for each level ℓ ∈ {0, 1, . . . ,H} and node z ∈ Zℓ.

REDUCE Now we are going to analyze the first term. By Lemma 2 we have that RREDUCE
ℓ,z ≤

24 · L2−ℓ. Moreover, we recall that H = ⌊log2d T ⌋ and |Zℓ| = 2dℓ. Thus
H∑
ℓ=0

∑
z∈Zℓ

RREDUCE
ℓ,z ≤ 24 · L

⌊log
2d

(T )⌋∑
ℓ=0

2dℓ−ℓ

≤ 24L log T

d
2dH · 2−H

≤ 48L log T

d
T 1− 1

d ,

where in the last inequality we used that that log2d(T ) =
1
d log(T ) and that ℓ 7→ 2dℓ−ℓ is monotone

so that
∑H

ℓ=0 2
dℓ−ℓ ≤ H2dH−H .
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GUESS Similarly, for the second term, we are going to proceed as follows:

H∑
ℓ=0

∑
z∈Zℓ

RGUESS
ℓ,z ≤

H∑
ℓ=0

∑
z∈Zℓ

(
ϵE[|Tℓ,z|] + 24

L22−2ℓ

ϵ

)
(Lemma 3)

= ϵT +
24L2

ϵ

H∑
ℓ=0

2dℓ−2ℓ (|Zℓ| = 2dℓ)

≤ ϵT +
24L2 log T

ϵd
2d log

2d
(T ) · 2−2 log

2d
(T )

≤ ϵT +
24L2 log T

ϵd
T 1− 2

d .

Finally, by choosing ϵ = LT− 1
d we obtain

H∑
ℓ=0

∑
z∈Zℓ

RGUESS
ℓ,z ≤ LT 1− 1

d +
24L

d
log(T )T 1− 1

d ≤ d+ 24

d
L log(T )T 1− 1

d .

LEAF To analyze the last term, we recall that T LEAF
ℓ,z is non-empty only if ℓ = H (i.e., it is a leaf

node) and the node was already marked. Thus we can use Lemma 1 which shows that

RLEAF
ℓ,z ≤ 6L2− log

2d
(T )E

[
T LEAF
ℓ,z

]
≤ 6LT−1/dE [Tℓ,z] .

Therefore, by restricting our attention to the H-th layer we get
H∑
ℓ=0

∑
z∈Zℓ

RLEAF
ℓ,z =

∑
z∈ZH

RLEAF
H,z

≤
∑
z∈ZH

6LT−1/dE [TH,z]

= 6LT
d−1
d .

Combining all parts Thus, the total regret can be bounded by

RT ≤
72 + 7d

d
LT 1− 1

d log(T ).

concluding the proof.

B OMITTED PROOFS FROM SECTION 5 (LOWER BOUND)

Lemma 5. For any t ∈ [T ], the distribution of (st, bt) under D, conditioned on the filtration up to
time t− 1, is uniform over {(s0, b0), (s1, b1)}.

Proof. Since we have full feedback, we know the sequence of valuations {(sτ , bτ )}τ∈[t−1]. The set
of functions f̃h that agree on these valuations for the sequence of observed contexts is 2t−1, we call
this set F̃t. Out of these functions, half will have ht = 0 and half will have ht = 1, and thus the
conditioned probability on (st, bt) is uniform over {(s0, b0), (s1, b1)}.

C DESCRIPTION OF THE ALGORITHM FROM SECTION 4 AND OMITTED
PROOFS

The algorithm’s main loop is as the vanilla one introduced in Section 3. In particular, we traverse
the tree until we reach an active node (Line 4 of Algorithm 4). Then we perform either the GEO-
METRICREDUCE of Algorithm 5 or GEOMETRICGUESS of Algorithm 6. In particular, for a specific
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Algorithm 4 Without knowing the Lipschitz costant
Require: Horizon T , context dimension d.

1: for t ∈ [T ] do
2: Observe context xt

3: Initialize ℓ← 0, z ← 0d

4: while pℓ,z ̸= ∅ and Nℓ,z not leaf do # Traverse tree until an active or leaf node is reached
5: Find z′ such that xt ∈ Area(Nℓ+1,z′), where z′ ∈ C(ℓ, z)
6: ℓ← ℓ+ 1, z ← z′

7: if GEOMETRICREDUCE(Nℓ,z) has not terminated then
8: Execute one iteration of the main loop of GEOMETRICREDUCE(Nℓ,z)
9: else if GEOMETRICGUESS(Nℓ,z) has not terminated then

10: Execute one iteration of the main loop of GEOMETRICGUESS(Nℓ,z)
11: if GEOMETRICGUESS(Nℓ,z) terminates returning price p then
12: Set node Nℓ,z as marked by setting pℓ,z ← p

13: else Play pℓ,z # If node is a marked leaf play corresponding price

Algorithm 5 GEOMETRICREDUCE(Nℓ,z)

1: Set p̄← pℓ−1,pred(ℓ,z) (i.e., the price associated to the parent node) # Initialization
2: Set L̃j = L02

j for j ∈ {0, . . . , j̄} with j̄ = ⌈ℓ+ log2(2L0)⌉ and L0 = 1/2
3: for j ∈ {0, . . . , j̄} do # Main Loop
4: Set pjL ← Π[0,1]

(
p̄− L̃j2−(ℓ−1)

)
, pjU ← Π[0,1]

(
p̄+ L̃j2−(ℓ−1)

)
5: Initialize p← pjL
6: repeat
7: Post price p and observe I(st ≤ p ≤ bt)
8: if I(st ≤ p ≤ bt) = 0 then
9: if p = pjL then set p← pjU ; else terminate p← ∅

10: until p = ∅

node, we continue to perform a step of the main loop of Algorithm 5 until it meets its termination
condition, or one step of Algorithm 6, until it terminates. Algorithm 5 simply tries sequentially all
scales of L̃j as in the plain version. Algorithm 6, on the other hand, at iteration τ , uses the same
largest scale permissible at that iteration Line 6 of Algorithm 6, and then draws uniform prices from
the associated grid (Line 7).
Lemma 6. For every ϵ > 0 and for every node Nℓ,z , there exists an algorithm that does not require
knowledge of L such that

Rℓ,z = O

(
ℓL2−ℓ + ϵE[Tℓ,z] +

L22−2ℓ

ϵ

)
.

Proof. Define j̄ = ⌈ℓ + log2(2L0)⌉, and for each j ∈ {0, . . . , j̄} define L̃j = L02
j . Note that

2−(ℓ−1)L̃j̄ > 1. For each j we now start GEOMETRICREDUCE on prices pjL = p̄− 2−(ℓ−1)L̃j and
pjU = p̄+ 2−(ℓ−1)L̃j , when we get a rejection both for pjL and pjU we increase j.

Claim 1. Once the GEOMETRICREDUCE procedure is concluded, then we know that for all x ∈
Area(Nℓ,z) we have fb(x)− fs(x) ≤ 10L2−ℓ.

Proof of Claim 1. If the GEOMETRICREDUCE has concluded we know that we collected tuples
(xj

L, p
j
L)j=0,...,j̄ and (xj

U , p
j
U )j=0,...,j̄ that were refused.

Now take any x ∈ Area(Nℓ,z), since price (x̄, p̄) was accepted at Nℓ−1,pred(ℓ,z) we have that

fs(x) ≤ fs(x̄) + L2−(ℓ−1) ≤ p̄+ L2−(ℓ−1) = p̄+ 2L2−ℓ,

and
fb(x) ≥ fb(x̄)− L2−(ℓ−1) ≥ p̄− L2−(ℓ−1) = p̄− 2L2−ℓ.
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Algorithm 6 GEOMETRICGUESS(Nℓ,z)

1: Let p̄ = pℓ−1,pred(ℓ,z) be the price associated to the parent node Nℓ−1,pred(ℓ,z) # Initialization
2: Set L̃j = L02

j for j ∈ {0, . . . , j̄} with j̄ = ⌈ℓ+ log2(2L0)⌉ and L0 = 1/2

3: Set Pj
ℓ,z = [p̄− L̃j2−(ℓ−1), p̄+ L̃j2−(ℓ−1)]ϵ with ϵ = T−1/d

4: Set τ = 0
5: repeat # Main Loop
6: j(τ) := argmax

{
j ∈ {0, . . . , j̄} : |Pj

ℓ,z| ≤ τ
}

7: Post price p ∼ Unif(Pj(τ)

ℓ,z ) and observe I(st ≤ p ≤ bt)
8: τ ← τ + 1
9: until I(st ≤ p ≤ bt) = 1

10: Return p

We take j′ such that L̃j′

ℓ−1,z ≥ L. Then, by plugging in the above xj′

L and xj′

U , similarly to the proof
of Lemma 1, we know that

fb(x)− fs(x) ≤ fb(x
j′

U )− fs(x
j′

L ) + 2L2−ℓ ≤ pj
′

U − pj
′

L + 2L2−ℓ ≤ 4L̃ℓ−1,z2
−ℓ + 2L2−ℓ,

where the first inequality is by Lipschitzness of fs, fb. Moreover, note that 2L ≥ L̃j′ and thus
fb(x)− fs(x) ≤ 10L2−ℓ for all z ∈ Area(Nℓ,z). This concludes the proof of Claim 1.

By performing GEOMETRICREDUCE at node Nℓ,z , we only suffer a regret of at most 2j̄ ≤ 2(ℓ +
log2(2L0) + 1) ≤ 4ℓ if ℓ ≥ 1 and L0 = 1/2 (the number of rejected trades), which multiplies the
maximum regret suffered, which by Claim 1, is at most 20L2−ℓ, and thus a total regret of 80ℓL2−ℓ.

After this phase, we start using GEOMETRICGUESS in the following multi-scale fashion. Let τ be
the “internal time” of the routine. At each execution τ of GEOMETRICGUESS, we consider the
largest integer j(τ) so that |Pj(τ)

ℓ,z | ≤ τ , where we defined Pj
ℓ,z = [p̄− L̃j2−(ℓ−1), p̄+ L̃j2−(ℓ−1)]ϵ

and thus |Pj
ℓ,z| = 4L02

j2−ℓ/ϵ. Now, at each τ we draw uniformly at random a price from the

corresponding uniform grid Pj(τ)

ℓ,z . Define τ⋆ as the smallest integer so that L02
j(τ) ≥ L, and note

that τ⋆ ≤ 8L2−ℓ

ϵ .

After τ⋆ turns of GEOMETRICGUESS, we will have that, for all valuations with GFT at least ϵ,
there is at least one price in Pj(τ)

ℓ,z that wins it. We then consider blocks Bi defined as the intervals
Bi = [2iτ⋆, 2i+1τ⋆). The probability of winning a trade with GFT larger than ϵ for τ ∈ Bi is

(2iτ)−1, since for τ ∈ Bi the size of Pj(τ)

ℓ,z remains unchanged for all τ ∈ Bi and smaller than 2iτ⋆.
We can define an appropriate Markov chain to compute the expected number of times until we stop.

Claim 2. Consider a Markov chain with states {0}∪{N,N +1, . . .} and with transition probabili-
ties ps = P(s+1|s) = 1/(2kN) and P(0|s) = 1−pi for all k ∈ N and s ∈ [2kN, . . . , 2k+1N −1].
Moreover, let P(0|0) = 1. Then, the expected hitting time of the state 0 starting from state N is at
most 4N .

Proof of Claim 2. The probability of reaching s = 2k+1N from s = 2k is (1−1/(2iN))2
iN ≤ e−1

and the probability of reaching s = 2kN from s = N is thus at most e−k. The expected number of
transitions before hitting 0 is the sum of the expected number of transitions in block Bi, conditioned
on reaching 2iN . We call Xi the number of transitions inside of block i and T the hitting time of
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s = 0. Thus:

E[T ] =
∞∑
i=0

E[Xi] =

∞∑
i=0

E[Xi|reach 2iN ]P(reach 2iN) (E
[
Xi

∣∣∣reach 2iN
]
= 0)

≤
∞∑
i=0

2iNe−i (P(reach 2iN) ≤ e−i and Xi ≤ 2iN )

= N

∞∑
i=0

(
2

e

)i

which is equal to N e
e−2 ≤ 4N concluding the proof of Claim 2.

We can then use Claim 2 to conclude that the expected number of turns of GEOMETRICGUESS
before observing a success is at most 4τ⋆, and each turn we experience a regret of only 20L2−ℓ

thanks to Claim 1.

Thus, for each τ ≤ τ⋆ we only have a regret of 10L2−ℓ per turn, and after (for τ ≥ τ⋆), we have a
regret of at most

ϵE[Tℓ,z] + 80τ⋆L2−ℓ ≤ ϵE[Tℓ,z] +
640L22−2ℓ

ϵ
,

as in the proof of Lemma 3.

The total regret for marking a node is

Rℓ,z ≤ 80ℓL2−ℓ︸ ︷︷ ︸
GEOMETRICREDUCE

+10L2−ℓ︸ ︷︷ ︸
τ≤τ⋆

+ ϵE[Tℓ,z] +
640L22−2ℓ

ϵ︸ ︷︷ ︸
τ>τ⋆

(3)

= O

(
ℓL2−ℓ + ϵE[Tℓ,z] +

L22−2ℓ

ϵ

)
. (4)

Lemma 7. For every marked leaf node Nℓ,z the regret Rℓ,z is at most O(L2−ℓE[Tℓ,z]).

Proof. Since we reached a leaf node, we must have concluded GEOMETRICREDUCE in the parent
node and thus RLEAF

ℓ,z ≤ 20L2−ℓE[Tℓ,z] by Claim 1.

Theorem 2. Consider the non-parametric contextual bilateral trade problem, with one-bit feedback
and strong budget balance with L-Lipschitz valuation functions. Then there is an algorithm that,
without taking as input L, guarantees a regret of RT = O(log2(T )

2L2T (d−1)/d).

Proof. The regret of every non-marked node is upper bounded by Lemma 6, while the leaves once
marked have a regret upper bounded by Lemma 7. Thus

RT ≤
H∑
ℓ=0

∑
z∈Zℓ

O

(
ℓL2−ℓ + ϵE[Tℓ,z] +

L22−2ℓ

ϵ

)
+

∑
z∈ZH

O
(
L2−HE[Tz,H ]

)
≤ L

H∑
ℓ=0

O(ℓ2−ℓ2dℓ) +O(ϵT ) +
L2

ϵ

H∑
ℓ=0

O(2dℓ2−2ℓ) +O(LT2−H)

≤ O(LH2T (d−1)/d) +O(ϵT ) +O

(
L2

ϵ
HT (d−2)/d

)
+O(LT (d−1)/d).

then, by choosing ϵ = T−1/d, and noting that H ≤ log2(T )/d we obtain that

RT ≤ O(log2(T )
2L2T (d−1)/d),

concluding the proof.
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