Towards Automated Patent Workflows:
AI-Orchestrated Multi-Agent Framework for
Intellectual Property Management and Analysis

Sakhinana Sagar Srinivas', Vijay Sri Vaikunth?, Venkataramana Runkana'
TCS Research?, IIT-Palakkad?
sagar.sakhinana@tcs.com, 112101060@smail.iitpkd.ac.in, venkat.runkana@tcs.com

Abstract

“Patents are the currency of innovation, and like any currency, they need to be
managed and protected” (Gavin Potenza). Patents, as legal documents that secure
intellectual property rights, play a critical role in technological innovation. The
growing complexity of patent documents and the surge in patent applications have
created a need for automated solutions in patent analysis. In this work, we present
PatExpert, an autonomous multi-agent conversational framework designed to
streamline and optimize patent-related tasks. The framework consists of a meta-
agent that coordinates task-specific expert agents for various patent-related tasks
and a critique agent for error handling and feedback provision. The meta-agent
orchestrates specialized expert agents, each fine-tuned for specific tasks such as
patent classification, acceptance, claim generation, abstractive summarization,
multi-patent analysis, and scientific hypothesis generation. For multi-patent analy-
sis, the framework incorporates advanced methods like Graph Retrieval-Augmented
Generation (GRAG) to enhance response accuracy and relevance by combining
semantic similarity with knowledge graphs. Error handling is managed by critique
agents (Gold-LLM-as-a-Judge and Reward-LLM-as-a-Judge), which evaluate out-
put responses for accuracy and provide iterative feedback. The framework also
prioritizes explainability, ensuring transparent justifications for decisions made
during patent analysis. Its comprehensive capabilities make it a valuable tool
for automating complex patent workflows, enhancing efficiency, accuracy, and
compliance in patent-related tasks. Empirical evidence demonstrates significant
improvements in patent processing tasks, concluding that the framework offers a
robust solution for automating and optimizing patent analysis.

1 Introduction

“An invention is something that was ‘impossible’ up to then; that’s why governments grant patents.”
(Robert A. Heinlein). A patent is a legal document that grants the inventor exclusive rights to
make, use, and sell their invention for a specified period in exchange for public disclosure of the
invention’s details. Patent documents are essential for securing intellectual property rights and
serve as a public record of technological innovation. While these documents may vary slightly by
jurisdiction (e.g., USPTO, JPO, EPO), they generally consist of several key sections that ensure
both legal protection and clear communication of the invention. A patent typically includes a title,
abstract, background, summary, detailed description, claims, and illustrations. The title highlights
the invention’s main innovation, while the abstract provides a brief overview of the invention,
focusing on its purpose, key features, and potential applications. The background section outlines
existing solutions and the technical challenges the invention addresses. The detailed description
provides in-depth technical specifications, including various embodiments (specific versions or
implementations of the invention), processes (methods or procedures involved in making or using the
invention), and use cases (practical applications or scenarios where the invention could be applied),

Workshop on Open-World Agents (OWA-2024) : Synergizing Reasoning and Decision-Making in Open-World
Environments (NeurIPS 2024), Vancouver.

explaining how the invention addresses the identified challenges. The claims accurately determine
the scope of legal protection, outlining the legal boundaries of coverage. These claims can be
independent, broadly covering the core features, or dependent, refining the scope by specifying
particular embodiments. Other important sections include patent classification codes, citations to
prior art, and illustrations accompanied by detailed descriptions that visually depict key aspects of the
invention, aiding in the understanding of complex technical details. Collectively, these main sections
ensure that the patent document meets legal requirements, communicates the invention effectively,
and provides enforceable rights to the inventor. This emphasizes the necessity for precision and
clarity in patent drafting to ensure it withstands legal scrutiny and future challenges. In recent
times, Large Language Models (LLMs), such as OpenAl GPT-4[1] and Google Gemini[l1], have
excelled in natural language processing tasks due to their proficiency in pattern recognition, contextual
understanding, and generating coherent language based on learned data distributions. However, their
application to patent-related tasks remains underexplored. Patents, as complex legal documents that
protect intellectual property, combine technical information, requiring a deep understanding of the
subject matter and precise language to describe complex, domain-specific concepts. Additionally,
the rise in patent applications and the increasing difficulty of manual processing have created a
growing need for LLMs to automate patent-related workflows. LLMs can enhance patent analysis,
knowledge extraction, and document generation, transforming both the analysis and generation of
patent content. In patent analysis, LLMs excel at automating the categorization of patents into
relevant classes and subclasses based on their subject matter and technological field. For quality
assessment, LLMs can evaluate patent novelty by comparing new patents against prior art, estimate
the likelihood of approval based on historical data, and predict potential litigation by analyzing claim
strength and market relevance. In multilingual translation, they maintain precise technical meanings
across languages. In open-domain question answering (ODQA) tasks, LLMs using the Retrieval-
Augmented Generation (RAG, [6]]) approach, efficiently retrieve and synthesize technical details,
claims, and legal information from patents, producing more accurate and grounded responses. Their
advanced contextual understanding, combined with few-shot learning, enables them to adapt to new
patents and extract precise information for ODQA tasks. Additionally, fine-tuning on domain-specific
patents enhances their ability to recognize patterns unique to these tasks, resulting in the generation
of detailed, context-relevant answers. This capability extends to more specialized tasks, such as
extracting scientific hypotheses from patents, where LLMs support the identification of key scientific
concepts, implicit assumptions, and underlying principles of the patented technology. This helps
form testable hypotheses that may guide future research and innovation. For new patents, LLMs
support the drafting process by generating sections such as descriptions and claims, ensuring the
protection of a unique invention through adherence to strict legal requirements. These applications
enhance efficiency, democratize access to patent information, and accelerate innovation. However,
patent texts present unique challenges for general-purpose language models, such as specialized
terminology, long contexts, and the need to generate precise and accurate text, setting them apart
from conventional texts. Integrating LL.Ms into the patent process requires careful consideration of
legal, ethical, and quality assurance aspects to ensure the integrity and fairness of the patent workflow.
In this work, we present an autonomous multi-agent conversational framework (PatExpert) for
patent analysis, orchestrated by a meta-agent (top-level agent) that coordinates multiple expert agents
(sub-agents), offering a transformative solution for managing patent-related tasks with precision
and efficiency. The meta-agent interprets user input, decomposes the complex workflow of patent
processing into specialized sub-tasks, and delegates them to task-specific expert agents. Each expert
agent is fine-tuned to handle specific patent-related tasks, enhancing both accuracy and relevance.
Once an expert agent completes its assigned task, it routes the response back to the meta-agent, which
synthesizes the information and provides the final output. By orchestrating collaboration among
expert agents, the meta-agent integrates technical expertise with legal considerations, optimizing a
wide range of tasks, including patent acceptance prediction, classification, abstractive summarization,
claim generation, multi-patent analysis for ODQA tasks, and generating scientific hypotheses from
patents. The collaborative problem-solving between the meta-agent and expert agents enhances
the management of patent-related tasks, ensuring accuracy, efficiency, and compliance in handling
complex challenges. Scientific hypothesis generation from patents, supported by subject-action-
object (SAO) analysis, identifies implicit assumptions and core principles, enabling researchers to
extract testable ideas and enhance the analysis of patent novelty and technical capabilities. Multi-
patent analysis compares claims, technical details, and prior art across multiple patents to reveal
novel aspects and streamline patent processing for efficient comparison and question answering.
For question answering in multi-patent analysis, the expert agent uses Graph Retrieval-Augmented

Generation (GRAG) to improve information extraction by combining semantic similarity with
knowledge graphs, which helps in generating more accurate answers. Error handling is an integral
component of the framework, managed by a critique agent (Gold-LLM-as-a-Judge and Reward-LLM-
as-a-Judge). The critique agent evaluates outputs from the meta-agent using predefined metrics,
assessing accuracy and providing feedback for iterative refinement. This feedback loop ensures that
outputs are accurate, reducing the risk of inaccuracies. The multi-agent framework, equipped with
error-handling mechanisms, offers a comprehensive solution for automating and optimizing complex
patent analysis. The framework prioritizes explainability and transparency, with each expert agent
providing clear explanations and justifications for its predictions to ensure that the rationale behind
every decision is accessible and comprehensible. This approach enhances user trust and facilitates the
interpretation of complex patent-related task outputs, such as patent acceptance and claim generation.
For multi-patent analysis tasks, the framework is equipped with robust fact-checking and source
citation capabilities, ensuring that responses are accurate and supported by reliable evidence. Its
ability to effectively retrieve and organize information from structured graph databases allows it to
synthesize clear, well-substantiated answers. This makes the framework an invaluable tool for patent
analysis and decision-making, especially when handling queries that demand detailed, referenced
information. Figure/I]illustrates the proposed framework.

Critique-Agent

0\ Meta

Meta-Agent

Sub-Agents

| 1 PatExpert

Output

e
4L

o
o

Patent Classification

Frozen
g

ine-Tuning

| ©
< . GPT-40 mini
% Claim Generation Multi-Patent Analysis %O
A
Conversational I i Knowledge
Database Abstractive Summarization Hypothesis Extraction Graph

Figure 1: The figure shows the architecture of the multi-agent conversational framework, PatExpert.
The meta-agent oversees various sub-agents, each responsible for specialized tasks such as patent clas-
sification, acceptance prediction, claim generation, abstractive summarization, hypothesis generation,
and multi-patent analysis. User input flows through the meta-agent (which utilizes Meta-Llama-
3.1-405B to interpret user queries), delegating tasks to the relevant sub-agents (using fine-tuned
GPT-40 mini) to provide accurate responses. Critique agents, including the Reward-LLM-as-a-Judge
(Nvidia Nemotron-4-340B-Reward) and LLM-as-a-Judge (OpenAl GPT-40), evaluate the outputs for
accuracy. These agents provide critical feedback to refine responses, ensuring that the framework
adheres to high standards of precision, compliance, and quality in patent-related tasks. The knowledge
graph stores structured information extracted from patents, while the conversational database holds
historical interactions, helping the framework maintain context and continuity in multi-turn queries.
The knowledge graph enables efficient semantic retrieval across multiple patents for ODQA tasks,
improving response accuracy. In summary, PatExpert handles complex patent-related tasks and
generates accurate, coherent responses through its structured, multi-agent framework.

2 Proposed Method

The PatExpert framework utilizes tool learning, where a meta-agent interacts with sub-agents (tools
or expert models), each specializing in a specific patent-related task. This enhances the framework’s
ability to efficiently solve complex patent tasks by leveraging specialized models. In this paper,
"tools" and "expert models" are used interchangeably to refer to the sub-agents that the meta-agent
interacts with to perform specific patent-related tasks. Powered by computational engines like Meta-
Llama-3.1-405B, the meta-agent serves as the central orchestrator, managing expert models (e.g.,
utilizing GPT-40-mini) with precision. It autonomously addresses patent-related tasks by interpreting
complex queries, reasoning, and planning—i.e., determining the step-by-step (multistep) approach
and expert models required to solve the task—and utilizing expert models to generate accurate,
coherent responses. By learning to select and apply the appropriate expert models, the meta-agent

can perform tasks beyond its pre-trained knowledge. This approach improves response accuracy
and relevance, making the framework more adaptable to real-world applications. Each expert model
specializes in unique tasks such as patent acceptance prediction, automated subject classification
(IPC/CPC code prediction), abstractive summarization, patent claim generation, scientific hypothesis
generation, and multi-patent analysis for ODQA tasks. Each expert model is fine-tuned for optimal
performance in its specific task, allowing the meta-agent to dynamically select and invoke the most
suitable expert model for each sub-task in the overall patent evaluation and processing workflow.
The framework transforms the meta-agent into a multi-tool user capable of managing complex
patent-related tasks by autonomously planning and executing sequences of expert model invocations
with appropriate arguments to solve a natural language task (). The meta-agent is equipped with
a set of expert models 7" = {t1,t2,...,tp} and documented protocols D = {di,ds,...,dp|},
which provide meta-information about expert model usage, argument requirements, and input/output
schemas. Tool learning for patent-related tasks involves four key stages: task planning, tool selection,
tool invocation, and response generation. Task planning decomposes user queries into manageable

sub-tasks @ = {q1, g, - . ., ¢n }- Expert model selection involves identifying appropriate models to

solve sub-tasks using retriever-based methods based on similarity measures like cosine similarity

sim(g;,d;) = Wﬁ“, where - denotes the dot product and || - || denotes the norm. This is formulated
Q3 J

as SelectModel(q;) = argmax;er sim(q;,d;), where g; is the sub-task query, ¢; is the expert
model, and d; is the metadata (or document protocol) describing the expert model ¢;. The function
selects the model ¢; whose metadata d; has the highest similarity score with ¢;. LLM-based
methods for expert model selection involve leveraging meta-agent-utilized language models (LMs) to
identify the most relevant expert models for the sub-tasks. Few-shot learning also helps the model
generalize from limited examples, effectively adapting to new queries for expert model selection with
minimal labeled data as demonstrations. Expert model invocation extracts the necessary parameters
P ={p1,pa,...,px} from the prompt, which includes instructions, retrieved context, and the query.
For example, p; might represent an instruction, context (such as patent claims or abstracts), or the
query itself. These parameters are used to invoke the expert models in the format ¢;(p1, p2, - . . , D).
For instance, a patent acceptance prediction model might use the patent abstract and claims as context
to predict acceptance, while an IPC/CPC code prediction model might use the full patent text as
context to assign codes based on the query. Response generation synthesizes the expert model
outputs R = {ry,ra, ..., m }, where each r; represents the result from an individual expert model,
combined with the meta-agent LLM’s pre-trained knowledge 6, to produce a comprehensive answer
A = Meta-Agent; \,(Q, R, 0). This structured approach enables the meta-agent to handle complex
patent-related tasks effectively by integrating the expertise of various expert models and dynamically
adapting to specific requirements. This process can be formulated as a probabilistic optimization
problem aimed at maximizing the conditional probability of generating the correct answer A given
the query @), expert models 7', protocols D, and the meta-agent LLM’s pre-trained knowledge 6, as

described below:
S* = arngaXP(A | Q,T,D,0).

Here, S represents a sequence of expert model invocations, and S* is the optimal sequence. Depen-
dencies between sub-tasks are managed by a Directed Acyclic Graph (DAG) G = (V,), where
nodes V represent sub-tasks ¢;, and edges £ represent dependencies e;; between sub-tasks ¢; and g;,
ensuring the correct execution order. Each sub-task ¢; is mapped to a corresponding tool or model ¢;,
which is invoked to process the sub-task. The acyclic nature of the DAG ensures that all dependencies
are respected, allowing sub-tasks to be executed in the proper sequence. If there is a dependency e;;,
sub-task g; must be completed before ¢; can begin. Independent sub-tasks can be processed in parallel,
improving efficiency and reducing the time required to solve complex tasks. The DAG structure
prevents looping back to previous sub-tasks, avoiding infinite recursion and enabling the parallel
processing of independent tasks. The critique agent comprises both the ‘Reward-LLM-as-a-Judge*
and the ‘Gold-LLM-as-a-Judge’. The ‘Gold-LLM-as-a-Judge’ utilizes a benchmark model, such as
GPT-4o, to evaluate the response A; accuracy, relevance, and completeness, where i represents the
iteration count. The ‘Reward-LLM-as-a-Judge’, such as the Nvidia Nemotron-4 340B-reward model,
evaluates the response A; based on key attributes including helpfulness, correctness, coherence,
complexity, and verbosity. Based on this combined evaluation, the agent determines whether the
response is acceptable (Correct) or requires revision (Incorrect). A Correct token confirms
the validity of the response, while an Incorrect token triggers the revision process. Additionally,
the critique agent provides actionable feedback Fj;, identifying errors and suggesting corrections

supported by evidence. During the correction phase, the framework revises the response A; based on
the feedback F;, producing an improved response A;1, as follows:

A;11 = Meta-Agent; ; (Q, Ai, F;)

This iterative cycle continues until the critique agent determines that the response is acceptable
(Correct) or the maximum number of iterations N, is reached, described as follows:

A Meta-Agent; | \(Q, A;, F;), if “Incorrect” and i < Ny,
B if “Correct" or i > Nyax.

This iterative process ensures that the response is refined to meet the required criteria before being
finalized. In summary, the meta-agent efficiently solves complex patent-related tasks by invoking
appropriate expert models, managing task dependencies, and synthesizing outputs into a coherent
response. This approach ensures dynamic handling of intricate patent queries. The meta-agent also
incorporates an error-handling mechanism to enhance performance in patent-related tasks. After
generating responses, it delegates the output to an external critique agent, which reviews and evaluates
the quality of the responses, providing feedback and revisions as needed to ensure that the final
answers are accurate, relevant, and aligned with the query requirements. The proposed approach
utilizes synthetic datasets for Retrieval-Augmented Fine-Tuning (RAFT) to enhance the performance
of a related sub-agent in ODQA tasks for multi-patent analysis. During inference, Knowledge
graphs support accurate, knowledge-grounded responses during multi-patent analysis. See technical
appendix for details.

3 Experiments

3.1 Datasets & Experimental Settings

We utilized the Harvard USPTO Patent Dataset (HUPD [13]), a large-scale, well-structured, and
multi-purpose corpus of english-language patent applications filed with the USPTO between 2004
and 2018. With over 4.5 million patent documents, HUPD is significantly larger than comparable
datasets (BIGPATENT [12], CLEF-IP [9], USPTO-2M [3]]). Unlike other datasets that focus solely
on granted patents, HUPD includes both accepted and rejected filings, providing opportunities to
study the decision-making process for patent acceptance. In summary, the HUPD dataset serves as
a versatile resource for advancing research in patent analysis and NLP, with applications such as
patent acceptance prediction, classification, abstractive summarization, claim generation, multi-patent
analysis, and scientific hypothesis generation. For our experiments, we utilized patent data from only
two years (2015-2017) (https://huggingface.co/datasets/HUPD/hupd), which was split in
an 80-10-10 ratio for training, validation, and testing. We report the framework’s performance on the
unseen test set.

3.2 Experimental Settings

In this work, chaining experiments for patent-related tasks involves a sequential process where
specific sections of patent documents feed into each task, creating a streamlined workflow that
enhances efficiency and accuracy. For patent summarization utilizes the title, abstract, background,
and description to generate concise overviews, highlighting key technical details. For claim genera-
tion, the framework uses the title, abstract, background, summary, and description to automatically
generate precise legal claims that reflect the patent’s technical contributions. For patent classification
and acceptance prediction, sections such as the title, abstract, background, summary, patent claims
are analyzed by the framework to categorize patents by their technological domain and predict
acceptance. Scientific hypothesis generation draws on the title, abstract, background, summary,
descriptions and patent claims to identify assumptions and generate hypotheses about the patent’s
innovations. Multi-patent analysis leverages the title, abstract, background, summary, descrip-
tion, and claims from multiple patents to perform comparative analysis, using knowledge graphs
to organize and retrieve information, facilitating the extraction of trends and relationships. This
interconnected process ensures each task is optimized, streamlining patent analysis. Summary sec-
tion in granted patents written by experts serve as ground truth. For claim generation, the legal
claims in granted patents can serve as reference text. Ground truth for hypothesis generation can
be based on expert-curated (Gold-LLMs like GPT-40) hypotheses extracted from patent documents.
Ground truth for multi-patent analysis can be created by benchmarking against expert (Gold-LLMs
such as GPT-40) analyses of trends, relationships, and innovations across patents. In our work,
we fine-tune expert models like GPT-40 mini using datasets tailored to patent-related tasks. GPT-
40 mini can be fine-tuned (see: https://openai.com/index/gpt-4o-fine-tuning/, https:

https://huggingface.co/datasets/HUPD/hupd
https://openai.com/index/gpt-4o-fine-tuning/
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning

//platform.openai.com/docs/guides/fine-tuning) on OpenAl’s servers using domain-
specific datasets. This process is facilitated through OpenAI’s APIs, where users upload datasets,
define hyperparameters, and initiate fine-tuning. The server-side infrastructure ensures that users do
not need to manage hardware or computational resources, making GPT-40 mini easily accessible for
various applications via OpenAlI’s API platform. Fine-tuning requires adjusting key hyperparameters
such as the learning rate (1), batch size (32), and number of epochs (100). GPT-40 mini supports
an input context length of 128,000 tokens and an output limit of 16,384 tokens, making it ideal for
large patent datasets. Fine-tuning GPT-40 mini offers significant advantages over open-source models
with its ability to handle large token limits and support for continuous fine-tuning and function calling,
ensuring adaptability and efficiency.

3.3 Evaluation Metrics

We evaluate the tool learning framework [10] using metrics across four stages: task planning, tool
selection, tool calling, and response generation. In task planning, tool usage awareness (TUA)
measures the framework’s ability to correctly identify when external tools are needed based on the

5 : Number of Correct Tool Recognitions . :
user’s query. It is calculated as 7 Opportunities for Tool Recognition’ with values ranging from 0O to

1, where higher values indicate better tool awareness. Pass Rate (PR) evaluates how effectively
the framework executes the planned tasks by measuring the ratio of successful task completions

Number of Successful Task Executions
to total attempts, calculated as =P 2 = Attempted * The PR value ranges from O to

1, with higher values indicating better task execution success. Accuracy (Acc) measures how
well the framework decomposes a user query into sub-tasks and sequences them correctly. It
is calculated as Number of Cortect Of;“bgisg‘tlk‘: someet_Owdet with values ranging from 0 to 1, where
higher values indicate greater precision in task planning. Dependency Graph Consistency (DGC)
measures the framework’s ability to maintain the correct order and relationships among sub-tasks,

Number of Consistent Dependencies Maintained . .
expressed as Tol Number of Dependencies . DGC also ranges from O to 1, with higher

values indicating better robustness in handling complex task structures. These evaluation metrics
evaluate the framework’s accuracy, efficiency, and adaptability in dynamic problem-solving. In tool
selection, key metrics include Recall@K, NDCG@K, and COMP@K. Recall@K quantifies the
proportion of relevant tools within the top-K selections, with values ranging from 0 to 1, where
|TF Ty
Tyl
where (@ is the set of queries, 7° denotes the relevant (ground-truth) tools for query ¢, and T;{

represents the top-K tools selecte(qi by the framework. COMP @K is a binary completeness measure,

defined as COMP@K = \Q\ ZlQl I(T; C TJ), where the indicator function I(T7 C T) equals

1 if all relevant tools (i.e., T;) are included in the top-K set T;(, and O otherwise. Recall@K
focuses on how many relevant tools are retrieved (partial match), while COMP@K focuses on
whether all relevant tools are retrieved (complete match). NDCG@K, which stands for Normalized
Discounted Cumulative Gain at K, evaluates the ranking quality of retrieved tools by considering
both their relevance and position, with values ranging from O to 1. Retrieving relevant tools is
important, but retrieving them at higher ranks (earlier in the list) is more valuable. It is calculated as

NDCG@K = & 3012 3388 where DCG@K = 30,<, 22 =Ls is the Discounted Cumulative

Gain (DCG), and IDCG@K is the Ideal DCQG, with g; representing the relevance score of each tool
at position ¢, as graded by human experts. NDCG@K accounts for both the relevance of retrieved
tools and their ranking. In the tool calling stage, several metrics are used to evaluate performance,
including parameter consistency, error rate, parameter coverage, and execution accuracy. Parameter
Consistency (PC) measures the proportion of correctly identified and formatted parameters across

P,NPR . .
all queries, calculated as PC = a1 Q‘ Z‘Q‘ ““;75‘“‘, where @ is the set of queries, PqR represents the

higher values indicate better performance. It is calculated as Recall@K = Il QI Z‘Q‘

ideal or ground truth set of parameters that the framework should extract for query ¢, and P, is the set
of attempted parameters. It calculates the average proportion of correctly identified parameters out
of the total ground truth parameters across all queries. Error Rate (ER) evaluates the proportion of

PE
incorrectly formatted or missing parameters, defined as ER = el Q\ ZLQll 12 ||, where PE represents

the set of erroneous parameters for query q. Execution Accuracy (EA) assesses the success of tool

invocations, expressed as EA = 15 Q‘ ZlQl I(E, = 1), where I(E, = 1) is an indicator function that

equals 1 if the tool invocation for query ¢ is successful and 0 otherwise. Each of these metrics ranges
from O to 1, with higher values indicating better performance in the tool calling stage. For response
generation, metrics include BLEU, ROUGE-L, Exact Match (EM), and F1 Score. BLEU measures n-

https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning

gram precision: BLEU = BP-exp (25:1 wy, log pn) with values ranging from O (worst) to 1 (best).

wy, represents the weight for each n-gram length (e.g., unigrams, bigrams), and p,, is the precision
of n-grams, indicating the proportion of n-grams in the candidate text that match the reference text.
BP (brevity penalty) penalizes overly short translations. ROUGE-L evaluates the longest common

subsequence: ROUGE-L = %, which also ranges from 0 to 1. Here, LC'S(X,Y) is the
length of the longest common subsequence between the candidate text X and the reference text Y,

and |Y'| is the length of the reference text. Exact Match (EM) calculates the percentage of predictions
that exactly match the reference: EM = ﬁ Zlgl I(G, = Ry), where @ is the set of queries, G, is

the generated response for query ¢, R, is the reference response, and (G, = R,) is an indicator
function that equals 1 if the generated response exactly matches the reference and O otherwise.
The F1 Score balances precision and recall: F1 = $osasionRecel with values ranging from 0 to 1.
Precision is the proportion of correctly predicted positives to total predicted positives, and recall
is the proportion of correctly predicted positives to all actual positives. These metrics provide a
comprehensive evaluation of response generation, with higher values indicating better performance.
We utilize the Exact Match (EM) metric for both classification and acceptance prediction tasks. The
F1 score for patent acceptance prediction. Precision in acceptance prediction measures how many
patents predicted as "accepted" were actually accepted, while Recall measures how many of the actual
accepted patents were correctly predicted. For patent claim generation, abstractive summarization,
multi-patent analysis for ODQA, and scientific hypothesis generation, the evaluation metrics used
are BLEU and ROUGE-L. BLEU measures n-gram precision, and ROUGE-L evaluates the longest
common subsequence to assess content overlap. These metrics ensure that generated outputs are
accurate, relevant, and aligned with reference texts across all tasks.

3.4 Results

Table |1| presents the comparative performance of various language models and the PatExpert
framework in task planning, evaluated using four key metrics: Tool Usage Awareness (TUA), Pass
Rate (PR), Accuracy (Acc), and Dependency Graph Consistency (DGC). Scores range from 0 to
1, with higher values indicating better performance. Table 2] compares the models’ performance
in tool selection based on the Recall@K, NDCG @K, and COMP @K metrics. Similarly, TableE]
outlines tool calling performance using Parameter Consistency (PC), Error Rate (ER), and Execution
Accuracy (EA). Scores range from 0 to 1, with higher values indicating better performance, except
for Error Rate, where lower values are preferable. Table [d] compares models using Exact Match
(EM) and F1 scores for classification and acceptance prediction tasks. Table[5]shows performance
on abstractive summarization using BLEU and ROUGE-L metrics. Table [6] presents patent claim
generation results, while Table [/| displays results for multi-patent analysis, both evaluated using
BLEU and ROUGE-L metrics. Table[§| presents a user-centric evaluation of various language models
and the PatExpert framework, assessed using metrics such as Likert-Scale Satisfaction (LSS), Task
Completion (TC), Context Awareness (CA), Adaptability (AD), Error Handling (EH), and Qualitative
Feedback (QF). Table[9]compares the quality of knowledge graph construction between the PatExpert
framework utilizing GPT-40 and various language models, using metrics such as Triple Accuracy
(TA), Modularity (Mod), Conductance (Cond), and Graph Completeness (GC). In our experiments,
baseline results for closed-source models like OpenAl GPT-4, Gemini 1.5 Pro, and Claude 3 were
obtained without fine-tuning, given the impracticality of such an approach due to their large size
and resource demands on consumer hardware. These proprietary models, accessed via their APIs,
were evaluated directly on patent-related tasks without additional tuning. In contrast, our proposed
framework PatExpert employs a fine-tuning strategy for the computational engines utilized by expert
sub-agents, such as GPT-40 mini, customizing them for specific patent-related tasks. This fine-tuning
enables the framework to achieve higher task-specific accuracy and relevance, especially in complex
scenarios requiring patent expertise. While the frozen baseline models generally perform well due
to their large-scale pre-training, PatExpert’s fine-tuned agents demonstrate competitive results,
especially in specialized patent workflows. This highlights the benefit of task-specific fine-tuning in
improving expert model performance for domain-specific applications. Across all tables, PatExpert
consistently outperforms other models, achieving the highest scores in task planning, tool selection,
and tool calling metrics. It leads with a TUA of 0.94, Acc of 0.91, and DGC of 0.95, reflecting
its superior ability to recognize tools and maintain task consistency. In tool selection, PatExpert
also excels with a Recall@K of 0.95 and an NDCG@K of 0.93, demonstrating high accuracy in
selecting and ranking relevant tools. Finally, in tool calling, it shows exceptional performance with a
PC of 0.95 and an EA of 0.96, along with the lowest ER of 0.04, indicating minimal errors and high
execution accuracy. OpenAl GPT-4 and Claude 3 Opus follow closely in all metrics, while models

like Gemini 1.5 Pro and Gemini 1.5 Flash perform moderately. OpenAl GPT-4 Turbo and Claude 3
Haiku score the lowest. Tables [} [B] [6] and[7]demonstrate that the PatExpert framework consistently
surpasses other models with a significant margin in tasks such as patent classification, acceptance,
abstractive summarization, claim generation, and multi-patent analysis.

Model TUA PR Acc DGC
OpenAl GPT-4 092 09 089 093
Claude 3 Opus 091 089 088 092
Gemini 1.5 Pro 0.89 0.87 086 0.90
Gemini 1.5 Flash 0.88 0.85 0.84 0.89
OpenAlI GPT-4 Turbo 0.87 0.84 0.83 0.88
Claude 3 Haiku 0.86 083 082 0.87
PatExpert 094 092 091 0.95

Table 1: The table compares the framework performance for task planning across various language
models, using evaluation metrics ranging from O to 1. The Pass Rate (PR) measures the success of
task execution. Tool Usage Awareness (TUA) reflects the recognition of the need for tools, though this
alone does not guarantee success. Accuracy (Acc) ensures the correct decomposition and sequencing
of sub-tasks. Dependency Graph Consistency (DGC) verifies that sub-tasks are executed in the proper
order.

Model RecalleK NDCG@K COMP@K
OpenAl GPT-4 0.93 0.91 0.89
Claude 3 Opus 0.92 0.90 0.88
Gemini 1.5 Pro 0.90 0.88 0.86
Gemini 1.5 Flash 0.89 0.87 0.85
OpenAl GPT-4 Turbo 0.88 0.86 0.84
Claude 3 Haiku 0.87 0.85 0.83
PatExpert 0.95 0.93 091

Table 2: The table illustrates framework performance on tool selection, evaluated using metrics
(Recall@K, NDCG@K, COMP@K: all ranging from O to 1) against various proprietary language
models. Recall@K measures how many relevant tools were retrieved within the top-K. NDCG@K
evaluates how well the relevant tools are ranked in the top-K. COMP@K checks whether all the
relevant tools were included in the top-K, focusing on completeness.

Model PC ER EA
OpenAl GPT-4 093 0.05 0.94
Claude 3 Opus 092 0.06 093
Gemini 1.5 Pro 090 0.07 091
Gemini 1.5 Flash 0.89 0.08 0.90
OpenAl GPT-4 Turbo 0.88 0.09 0.89
Claude 3 Haiku 0.87 0.10 0.88
PatExpert 095 0.04 0.96

Table 3: The table demonstrates the framework’s performance on tool calling using metrics (PC,
ER, EA: 0 to 1) compared to various closed-source language models. PC (Parameter Consistency)
measures how consistently correct parameters are identified for tool invocation. ER (Error Rate)
measures the proportion of incorrect or missing parameters (lower is better). EA (Execution Accuracy)
measures the success rate of tool invocation based on the provided parameters.

4 Conclusion

In this work, we introduce PatExpert, an autonomous multi-agent conversational framework for
automating and optimizing patent-related tasks, including classification, acceptance prediction, claim
generation, multi-patent analysis, and scientific hypothesis generation. The framework employs
a meta-agent to orchestrate task-specific expert agents, dynamically selecting and invoking them
based on task requirements. This approach enhances patent workflows’ efficiency and accuracy
while emphasizing explainability and transparency. The integration of a critique agent, utilizing
Gold-LLM-as-a-Judge and Reward-LL.M-as-a-Judge, ensures robust error handling and iterative
feedback, contributing to the framework’s reliability. Advanced methodologies such as Graph
Retrieval-Augmented Generation (GRAG) and synthetic data generation using the Mixture-of-Agents
(MoA) approach have improved Retrieval-Augmented Fine-Tuning (RAFT) of expert models for
multi-patent analysis. Empirical results show that PatExpert improves efficiency and precision in
patent processing, reducing manual effort and enhancing compliance. Future work will expand the
framework’s capabilities to handle multilingual processing and patent translation.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob D. Uszkoreit, and Lukasz M. Kaiser.
Universal transformers, 2020. US Patent 10,740,433 B2, filed May 20, 2019, and issued August
11, 2020.

[3] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven
Truitt, and Jonathan Larson. From local to global: A graph rag approach to query-focused
summarization. arXiv preprint arXiv:2404.16130, 2024.

[4] Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen Ling, and Liang Zhao. Grag: Graph
retrieval-augmented generation. arXiv preprint arXiv:2405.16506, 2024.

[5] Jieh-Sheng Lee and Jieh Hsiang. Patent classification by fine-tuning bert language model. World
Patent Information, 61:101965, 2020.

[6] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459-9474, 2020.

[7] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730-27744, 2022.

[8] Qian Pan, Zahra Ashktorab, Michael Desmond, Martin Santillan Cooper, James Johnson,
Rahul Nair, Elizabeth Daly, and Werner Geyer. Human-centered design recommendations for
Ilm-as-a-judge. arXiv preprint arXiv:2407.03479, 2024.

[9] Florina Piroi, Mihai Lupu, Allan Hanbury, and Veronika Zenz. Clef-ip 2011: Retrieval in the
intellectual property domain. In CLEF (notebook papers/labs/workshop), 2011.

[10] Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Tool learning with large language models: A survey. arXiv preprint
arXiv:2405.17935, 2024.

[11] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[12] Eva Sharma, Chen Li, and Lu Wang. Bigpatent: A large-scale dataset for abstractive and
coherent summarization. arXiv preprint arXiv:1906.03741, 2019.

[13] Mirac Suzgun, Luke Melas-Kyriazi, Suproteem Sarkar, Scott D Kominers, and Stuart Shieber.
The harvard uspto patent dataset: A large-scale, well-structured, and multi-purpose corpus of
patent applications. Advances in Neural Information Processing Systems, 36, 2024.

[14] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents
enhances large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

[15] Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and
Joseph E Gonzalez. Raft: Adapting language model to domain specific rag. arXiv preprint
arXiv:2403.10131, 2024.

A Appendix / supplemental material

As shown in all tables (Table [4] Table [5] Table [6] Table [7), PatExpert framework consistently
outperforms other models in patent classification, acceptance, abstractive summarization, patent
claim generation, and multi-patent analysis tasks.

Model Classification Acceptance
EM F1 EM F1
OpenAl GPT-4 0.80 087 0.81 0.88
Claude 3 Opus 076 083 077 0.34
Gemini 1.5 Pro 073 080 0.74 0.81
Gemini 1.5 Flash 069 076 070 0.77
OpenAI GPT-4 Turbo 0.66 0.73 0.67 0.74
Claude 3 Haiku 0.63 070 0.64 0.71
PatExpert 090 095 091 0.96

Table 4: The table presents the performance of various language models and the PatExpert framework.
Results are shown for both classification and acceptance tasks, with Exact Match (EM) and F1 scores
(range: O to 1) for each task. In patent classification and acceptance tasks, Exact Match (EM)
measures the percentage of exact prediction matches, while F1 Score balances precision and recall,
evaluating how well the model predicts correct classes or decisions.

Model BLEU ROUGE-L
OpenAl GPT-4 0.72 0.70
Claude 3 Opus 0.70 0.69
Gemini 1.5 Pro 0.64 0.62
Gemini 1.5 Flash 0.61 0.59
OpenAl GPT-4 Turbo 0.60 0.58
Claude 3 Haiku 0.59 0.57
PatExpert 0.85 0.83

Table 5: The table presents the performance of various language models and the PatExpert framework
for abstractive summarization tasks. The models are evaluated using BLEU and ROUGE-L metrics
(range: O to 1), where higher values indicate better performance in generating coherent and concise
summaries.

Model BLEU ROUGE-L
OpenAl GPT-4 0.74 0.72
Claude 3 Opus 0.72 0.70
Gemini 1.5 Pro 0.70 0.68
Gemini 1.5 Flash 0.68 0.66
OpenAl GPT-4 Turbo 0.66 0.64
Claude 3 Haiku 0.64 0.62
PatExpert 0.88 0.86

Table 6: The table summarizes the performance of several language models, including the PatExpert
framework, on patent claim generation tasks. Evaluation is based on BLEU and ROUGE-L metrics
(scored from O to 1), with higher values reflecting improved accuracy and conciseness in the generated
patent claims.

Model BLEU ROUGE-L
OpenAl GPT-4 0.82 0.79
Claude 3 Opus 0.80 0.77
Gemini 1.5 Pro 0.78 0.75
Gemini 1.5 Flash 0.76 0.73
OpenAI GPT-4 Turbo 0.74 0.71
Claude 3 Haiku 0.72 0.69
PatExpert 0.90 0.87

Table 7: The table summarizes the performance of various language models and the PatExpert
framework in multi-patent analysis tasks. The models are assessed using BLEU and ROUGE-L
metrics (scored from O to 1), where higher scores indicate better ability to accurately synthesize
information across multiple patents.

In classification and acceptance, PatExpert framework achieves the highest EM (0.90, 0.91) and
F1 (0.95, 0.96), significantly surpassing OpenAl GPT-4 and Claude 3 Opus. In abstractive summa-
rization, PatExpert leads with a BLEU score of 0.85 and ROUGE-L of 0.83, demonstrating superior

10

summarization capabilities. For patent claim generation, it achieves BLEU and ROUGE-L scores
of 0.88 and 0.86, respectively. In multi-patent analysis, PatExpert again scores highest with BLEU:
0.90 and ROUGE-L: 0.87, showing its strength in synthesizing information across multiple patents.
Overall, PatExpert outperforms all other models across all tasks.

A.0.1 User-Centric Evaluation

The user-centric evaluation (UCE) approach for assessing tool learning frameworks (with a focus only
on multi-patent analysis) includes various measures for a comprehensive assessment. User satisfaction
and usability are gauged through Likert-scale surveys (LSS), with scores ranging from 1 to 5. Task
completion (TC) is evaluated using a binary Yes/No metric. Context awareness (CA) is measured by
evaluating the framework’s coherence across related queries, while adaptability (AD) is tested using
various query types, both rated on a scale of 1 to 5. Error handling (EH) is assessed by introducing
deliberate errors and scoring the framework’s response from 1 to 5. Additionally, qualitative feedback
(QF) is gathered and categorized as High, Medium-High, or Medium, providing nuanced insights.
This multi-faceted UCE approach offers a holistic view of the framework’s effectiveness, highlighting
strengths and areas for improvement to better meet user needs and expectations.

Model LSS TC CA AD EH QF
OpenAl GPT-40 47 Yes 45 44 43 High
OpenAl GPT-4 Turbo 45 Yes 43 42 4.1 Medium-High
Claude 3 Haiku 44 Yes 42 41 40 Medium
Claude 3 Opus 43 Yes 41 40 39 Medium-High
Gemini 1.5 Pro 46 Yes 44 43 42 High
Gemini 1.5 Flash 42 Yes 4.0 39 38 Medium
PatExpert 48 Yes 46 45 44 High

Table 8: The table showcases user-centric evaluation metrics comparing the framework performance
to various language models (LSS, CA, AD, EH: 1 to 5; TC: Yes/No; QF: High, Medium-High,
Medium).

Model TA Mod Cond GC
PatExpert W/ OpenAl GPT-4 Turbo 94% 0.84 0.16 0.97
PatExpert W/ Claude 3 Haiku 93% 082 0.17 096
PatExpert W/ Claude 3 Opus 92% 081 0.18 0.95
PatExpert W/ Gemini 1.5 Pro 94% 084 0.16 097
PatExpert W/ Gemini 1.5 Flash 92% 080 0.18 094
PatExpert W/ GPT-40 95% 0.85 0.15 0.98

Table 9: The table presents a comparison of structured knowledge graph quality metrics, which
compares the quality of structured knowledge graphs generated by a framework using GPT-40 and
various language models. The comparison includes the following metrics: TA (0%-100%), Mod (-1
to 1), Cond (0 to 1), and GC (0 to 1).

A.0.2 Knowledge Graph Quality Evaluation

In this work, we utilize Gold-LLMs like GPT-40 to extract entities and relationships from unstructured
text, enabling automated taxonomy creation and ontology expansion. By identifying key concepts
and connections, Gold-LLMs help build comprehensive knowledge graphs. To evaluate a constructed
knowledge graph, we use several metrics. These evaluation metrics are crucial for maintaining the
quality, accuracy, and usefulness of the knowledge graph, particularly in applications like semantic
search, information retrieval, and data integration. Triple Accuracy (TA) ensures that subject-
predicate-object triples correctly represent the underlying knowledge, validated against ground truth
by calculating the percentage of exact matches. For ground truth, we use claude 3.5 Sonnet to
construct baseline knowledge graphs (KGs). For entity coherence, we use clustering metrics like
modularity and conductance. Modularity evaluates how well a graph is divided into clusters; a
higher score indicates that nodes within the same cluster are densely connected, while connections
between clusters are sparse. Conductance measures cluster quality by comparing the number of
external to internal edges, with lower values suggesting more cohesive clusters. Graph Completeness
(GC) evaluates whether the graph covers all relevant entities and relationships, identifying gaps or
missing connections. It is calculated as the ratio of entities and relationships in the generated graph
to a reference. TA ranges from 0% (no correct triples) to 100% (all triples match the ground truth).
Modularity (Mod) spans from -1 to 1, with values closer to 1 indicating strong clustering and values

11

closer to -1 or 0 suggesting poor clustering. Conductance (Cond) ranges from 0 to 1, with lower
values indicating more cohesive clusters. GC ranges from O to 1, with 1 indicating full coverage of
all relevant entities and relationships.

A.1 Multi-Patent Analysis

Multi-patent analysis involves examining and comparing multiple patents to identify trends, rela-
tionships, and insights across innovations or technologies. General-purpose LLMs using Retrieval-
Augmented Generation (RAG) are not inherently equipped to incorporate external information in
open-domain question answering (ODQA) to ground responses in factual data for patent-related
tasks. We propose a methodology to enhance LLMs performance in ODQA for multi-patent analysis
tasks by utilizing the Retrieval-Augmented Fine-Tuning (RAFT) methodology. RAFT integrates
dynamically retrieved content during fine-tuning, improving LLMs ability to generate accurate,
context-grounded responses. Our approach includes generating high-quality synthetic RAFT datasets
(question-context-answer (QCA) triples) tailored for patents using a multi-step pipeline involving
the Mixture-of-Agents (MoA) methodology, where multiple Gold-LLMs collaborate to generate
contextually accurate answers. Quality evaluation techniques ensure the robustness and effectiveness
of the synthetic RAFT dataset. The expert model for the multi-patent analysis task is fine-tuned on
the synthetic dataset, enabling it to produce more accurate responses. Additionally, we construct
a knowledge graph from patent documents to facilitate efficient semantic search and retrieval of
relevant information. During inference, the expert model accesses the knowledge graph to provide
auxiliary context, generating coherent, grounded, and accurate responses to complex patent-related
queries. In the following sections, we discuss the synthetic data generation process, including the
creation of question-context-answer (QCA) triples, the Mixture-of-Agents (MoA) approach, and
quality evaluation techniques. We also cover the integration of the knowledge graph and its impact
on improving the expert model’s performance in patent analysis tasks during inference.

A.1.1 Synthetic Data Generation

Retrieval-Augmented Generation (RAG [6]) provides LLMs with relevant external information from
document databases, enabling them to generate outputs that are more contextually accurate, detailed,
and grounded for ODQA tasks. This approach helps overcome the limitations of static, pre-trained
knowledge in LLMs. In traditional RAG, documents are parsed and processed to extract text, then
divided into smaller chunks using fixed-size chunking strategies to facilitate more precise retrieval of
relevant content. Each chunk is embedded into a low-dimensional dense vector space that captures
its semantic content, allowing for efficient indexing and retrieval of relevant chunks in response
to queries. This method enhances generation by conditioning the language model on retrieved,
contextually relevant chunks, leading to more accurate and grounded outputs. However, traditional
RAG methods face several challenges that limit their effectiveness. These methods primarily rely
on small text chunks, requiring the retriever to search through a large database to find relevant
information. This can be inefficient, as the retriever often needs to recall numerous text chunks,
sometimes necessitating re-ranking to optimize performance. Moreover, small text chunks can lead
to semantic incompleteness and the loss of critical details due to document truncation. Dividing
crucial context or concepts into multiple segments can impair coherence. Choosing an optimal chunk
size is challenging: if chunks are too small, context is lost; if they are too large, retrieval becomes
less precise—clearly, one size does not fit all. General-purpose LLMs are typically pre-trained on
large text corpora using self-supervised learning techniques, such as predicting the next word in a
sentence (autoregressive models) or filling in masked tokens (masked language models). To adapt
LLMs for specific tasks, they undergo fine-tuning on task-specific datasets, enhancing their ability to
follow instructions, improve contextual understanding, and solve complex problems. Despite these
advancements, LLMs are generally not pre-trained or fine-tuned to inherently incorporate external
retrieved context from databases, which is crucial for generating more accurate answers in ODQA. To
address these limitations, the Retrieval-Augmented Fine-Tuning (RAFT [15]) methodology optimizes
LLMs to integrate retrieved content from external databases during fine-tuning. This approach
enables language models to combine their internal parametric knowledge with dynamically retrieved
external information, allowing for accurate and grounded responses in ODQA tasks. RAFT effectively
overcomes the limitations of LLMs having only limited pre-trained, task-specific knowledge and their
inability to utilize relevant external information from databases. However, synthetic RAFT datasets
tailored for patent-related tasks are not readily available and require custom creation. To overcome
these challenges, we employ a meticulous multi-step approach involving synthetic data generation and

12

validation through a custom pipeline that creates high-quality RAFT datasets for fine-tuning LLMs to
utilize relevant external information in patent-related ODQA tasks. It also filters out lower-quality
instances to ensure robustness, employing both a ‘Reward-LLM-as-Judge* [7]] and ‘LLM-as-a-Judge*
[8] approach based on quality evaluation metrics. The RAFT dataset includes questions and relevant
context retrieved from documents, along with chain-of-thought (CoT) reasoning-based answers. For
each text chunk of a patent document, we generate multiple questions using Gold-LLMs. We apply the
Mixture-of-Agents (MoA [14]) methodology to synthesize information from both the text chunks and
relevant text chunks retrieved from patent databases by a retriever, generating contextually accurate
answers to the questions. The MoA framework leverages the strengths of multiple Gold-LLMs within
a layered architecture, enhancing natural language understanding and generation by incorporating
outputs from other language models as additional context through collaborative synthesis. The MoA
architecture consists of [layers, each containing n LLMs, denoted as A; ; (i-th layer, j-th agent),
which process inputs and generate outputs. These outputs are then aggregated and synthesized into a
refined response y;, which serves as auxiliary input for the next layer. The output of the i-th layer, y;,
is expressed as:

n

Yi = @[Ai,j(zi)] +T1, Tip1 =Y
j=1

where @ represents applying an aggregate-and-synthesize prompt to integrate multiple language
model outputs into a coherent, high-quality response. In the final layer, a single, more capable
Gold-LLM aggregates and synthesizes the outputs from the previous layers to generate a coherent,
high-quality response. In the MoA technique, Gold-LLMs function either as proposers, generating
diverse, context-rich responses, or as aggregators, synthesizing these into comprehensive outputs.
Our implementation uses the LLaMA-3.1-405B-instruct and NemoTron-4-340B-instruct models as
proposers, with GPT-4 Turbo serving as the aggregator. The architecture consists of two layers, each
with two proposers and one aggregator working together to produce a coherent response. We utilize
the ‘Reward-LLM-as-a-Judge’, such as the multidimensional Nvidia NemoTron-4-340B-Reward
model, to evaluate the quality of the question-answer pairs, focusing on attributes such as helpfulness,
correctness, coherence, complexity, and verbosity. Additionally, we utilize ‘LLM-as-a-Judge’,
with GPT-4o acting as an expert judge to evaluate answers by rating them on relevance, accuracy,
faithfulness, and coherence using a Likert scale from 1 to 5. At each layer, structured feedback
from both the ‘Reward-LLM-as-a-Judge’ and ‘LLM-as-a-Judge’ models drives iterative refinement
without fine-tuning, relying solely on prompting and generation to enhance response quality. In
summary, the synthetic data generation pipeline operates by ingesting documents, generating diverse
questions covering various scenarios and contexts, and using the MoA architecture to produce detailed,
contextually relevant answers to fine-tune the expert model for multi-patent analysis. Our method
then employs knowledge distillation to transfer knowledge from teacher models (LLaMA-3.1-405B-
instruct, NemoTron-4-340B-instruct, GPT-4 Turbo) to a student model (GPT-40 mini), enabling the
student model to replicate the larger model’s outputs and behaviors through instruction-tuning on
synthetic RAFT datasets. We fine-tune the expert model (i.e., GPT-40 mini) on the multi-patent
analysis task using synthetic RAFT datasets generated from the MoA framework. During inference,
the relevant context related to the end-user question is retrieved from the knowledge graph database
(discussed in Subsection [A.T.2)), enhancing the expert model for multi-patent analysis response
generation and resulting in coherent, knowledge-grounded, and accurate answers. In Subsection[A.1.2]
we discuss the construction of knowledge graphs from patents, followed by retrieval of relevant
knowledge from the knowledge graph database, providing external context to the expert model for
answering questions.

A.1.2 Knowledge Graph Modeling for Semantic Search and Retrieval

In Graph Retrieval-Augmented Generation (GRAG [3} 4]]), structured information is extracted from
unstructured documents using parsing techniques and integrated into a knowledge graph. This
facilitates efficient indexing and retrieval of contextually relevant content from knowledge graphs,
enhancing language models for better performance in ODQA tasks. The process begins with parsing
documents to extract structured data, such as text. This information is then integrated into graph
databases such as Neo4j Aura, Amazon Neptune, or NebulaGraph, which are designed for storing
and querying graph data. These databases organize the information into nodes and relationships
within property graphs, preserving contextual and semantic information. The graph database enables
efficient querying of property graphs, leading to more accurate responses compared to traditional
keyword-based searches. Traditional RAG approaches rely on unstructured, plain-text retrieval,

13

which has limitations when dealing with complex queries that require the integration of multiple,
possibly disparate, text segments. In contrast, Graph RAG builds and utilizes a knowledge graph
where entities and their relationships are explicitly modeled. This graph-based representation allows
for better capturing and leveraging the underlying structure of the extracted data from documents,
enhancing knowledge retrieval by enabling graph traversal structured by a schema and guided by
an ontology. The vector semantic similarity search technique converts graph-structured data and
queries into vector embeddings. Based on the similarity of these embeddings in the shared semantic
space of the graph database, it retrieves and integrates nodes and relationships that are most relevant,
enhancing retrieval accuracy by combining semantic similarity with contextual information. The
retrieved information is then processed by a language model to generate accurate and contextually
rich responses to complex queries. We lay the groundwork for constructing a knowledge graph by
chunking text, embedding chunks, and extracting triples—data structures consisting of a subject,
predicate, and object that represent relationships between entities—for efficient querying and retrieval.
Text chunking involves breaking large documents into smaller, manageable segments, referred to as
chunks, to enhance processing efficiency and retrieval accuracy. Using the sliding window technique,
a fixed-size window moves across the text with a set stride, creating overlapping chunks that preserve
context. Given a document Dy, with a total of N tokens, it is divided into overlapping chunks based
on a chunk length [(the number of tokens in each chunk) and a stride s. The i-th chunk ¢; is defined
as:

¢i = Dgocl(i —1) x s: (i —1) x s+ 1]
Dyoc[(i — 1) x s: (i — 1) x s+] represents the substring of Dy, starting at position (i — 1) x s
and extending for [tokens. Each chunk is associated with metadata, such as the title, summary,
and keywords, which are concatenated with the text chunk itself to refine searches and provide
contextual information. Text embedding models, such as OpenAI’s text-embedding-3-small, convert
these chunks into dense vectors e., € R?. This approach improves the preservation of contextual
information and enhances the efficiency of vector search engines. The parsed text segments are
stored as chunk nodes in a graph database. In the graph representation of text chunks, we denote
nodes as Vr = {v4,,vs,,...,0s, }, where each node v, corresponds to a specific chunk with
associated content ¢; and vector embeddings e.,. K represents the number of chunks generated
from the document using the sliding window technique. |Vr| indicates that there are K nodes in
the graph representation of text chunks. To facilitate easier querying, reasoning, and integration,
these coarse-grained chunks are transformed into a fine-grained, structured, and standardized form.
A Gold-LLM, such as GPT-40, processes these chunk nodes to infer and extract knowledge graph
triples. Knowledge graph triples (es,;,7:j, €o,;) are extracted from chunk nodes, where e, and
€o,; are the subject and object nodes, respectively, and 7;; is the relation edge. Each text chunk ¢;
generates a set of triples {7;1, 72, . . ., Tins, }» Where M, is the number of triples extracted from chunk
c;. Here, 7 is the index that identifies the specific chunk or node, and j is the index that distinguishes
between multiple elements, such as triples, related to the same chunk or node. Each triple 7;; is
defined as:

Tij = (€555 7ij» €oy;)

Here, 7;; represents the j-th extracted triple from chunk c;, with e, ; as the subject node, r;; as the
relation, and e,,; as the object node. The complete set of entity nodes, including both subject and
object entities from all triples, is represented as:

Ve = {es,;, o, | Tij = (€s,;:Tij €0,;) }

These triples, consisting of subject, relation, and object entities formatted as single-hop paths,
enhance the semantic understanding and usability of the information. Extracting triples provides
finer granularity by breaking a text chunk into multiple distinct facts or relationships. Entity nodes
are linked to chunk nodes through ‘MENTIONS relationships, which signify that an entity is
mentioned within a particular chunk. Let’s denote the ‘MENTIONS relationship as Ment(vy,, €5, ;)
for a subject entity or Ment(vy,, €,,;) for an object entity. The dynamic ontology derived from
the triples provides a framework for structured knowledge representation. This ontology describes
node types (entity nodes V) and their interconnections (r;;, Ment(v, , e,), and Ment(vy,, €, ;),
which together help in structuring and interpreting the knowledge contained within the graph. The
schema outlines the database structure for organizing and representing entities (Vz) and relationships
(45, Ment(vy,, €5,), Ment(vy, , €,,,). In summary, GRAG extracts structured data from unstructured
documents and integrates it into a graph database like Neo4j to enhance retrieval accuracy while
maintaining context. Text is parsed and converted into nodes with metadata and vector embeddings,

14

enabling structured knowledge representation and facilitating efficient semantic similarity searches.
The KG expert model, such as GPT-40 mini, combines advanced language understanding capabilities
with structured data stored in a graph database like Neo4j to interpret user queries for semantic
similarity searches. We convert the user query) into a vector embedding e € R? using a sentence
embedding model. To find relevant nodes, we compute the cosine similarity between eg and all
node vectors using sim(eg, €,,) = m, where v, is an entity node (e;;). We then retrieve the

top-K nodes with the highest similarity scores among entity nodes (es,; and e, ;). For each selected
entity node e;;, we perform graph traversal to extract one-hop triples: Tc,, = {(eij, 7ij,€0,;) |
€o;; 1S an object node connected toe;; via relation rij} and retrieve the associated parent
text chunk nodes (v,). The parent chunk nodes containing both entities e;; and e,,; are identified by
Ce,; N Ce, . = {vy, | chunk vy, contains both e;; and e, }, while those containing either entity
; i ; _
are found using Ce,; U Ce, = {vy, | chunk vy, contains either e;; or e,,, }. By combining these
results, we obtain: '
Re'ij = {(eiﬁ Tijs€Coijs Ceij) Cﬁo”‘) | (Cij, Tijs 60:3‘) € 7-Pu}

When a query is posed, the knowledge graph is traversed to retrieve relevant nodes and relationships
from the graph database and is integrated with the expert model’s pre-existing knowledge to generate
coherent and contextually appropriate responses. This approach leverages the expert model’s language
generation capabilities while grounding its outputs in structured knowledge, leading to more accurate
and informative answers. Entity deduplication in knowledge graphs resolves duplicates, reducing
inconsistencies and redundancy. Our approach to entity deduplication integrates advanced techniques
such as cosine similarity for vector-based evaluation and Levenshtein distance for string-based
comparison, ensuring precise entity matching. For example, in a knowledge graph containing
entities like ‘IBM’ and ‘International Business Machines’ or ‘Google LLC’ and ‘Google’, it first
identifies these semantically related nodes and groups them into clusters based on overlapping
characteristics. It then filters and merges these clusters, prioritizing the preservation of essential
properties while eliminating redundancy. This process results in an optimized, deduplicated graph
structure, enhancing the graph’s effectiveness for knowledge extraction from unstructured documents
and semantic search. The improved structure facilitates better contextual retrieval, leading to more
accurate responses. In the specific domain of cross-document knowledge integration, a unified
knowledge graph created from multiple patents, supported by LLM-driven ontology extraction and
schema alignment, effectively organizes and standardizes patent data, enabling precise exploration,
easier identification of trends and gaps, and promoting faster, data-driven innovation. In summary,
transforming documents into structured knowledge graphs enables efficient, context-aware retrieval of
information from unstructured data, enhancing the framework’s ability to reason and generate relevant
solutions for complex patent-related tasks, thereby improving efficiency in Q&A tasks. Please note:
the expert model for multi-patent analysis accesses the KG search engine as a tool.

A.2 Scientific Hypothesis Generation

In this work, we employed teacher-student transfer learning via knowledge distillation using Gold-
LLMs, such as GPT-4o, to extract or generate scientific hypotheses from granted patents. This
process created a synthetic dataset to fine-tune expert models, such as GPT-40-mini, for the task of
patent hypothesis generation. It is important to note that hypothesis generation provides a broader,
conceptual explanation of the problem the invention solves and how it works, rather than focusing
on legal protection. Patent claims, by contrast, define the specific legal boundaries and technical
implementations that the patent protects, emphasizing the structural or procedural aspects of the
invention in a precise and formal manner. We utilized Gold-LLMs, such as GPT-4o, to analyze a set
of granted patents, extracting Subject-Action-Object (SAO) triplets to uncover the key hypotheses
and innovations within the patent documents. The approach began by parsing the granted patents,
focusing on key sections such as claims and detailed descriptions, which outline the scope of the
patent’s innovation. The Gold-LLM identified and extracted SAO triplets, which are essential for
identifying the central technical contributions of the patents. In this context, the subject represents the
core invention or technology, the action describes the method or process being applied, and the object
defines the outcome or product of the action. The Gold-LLM then synthesized the SAO triplets for
each patent, generating a comprehensive hypothesis that represents the innovations and technical
contributions of the patents. This hypothesis provides a high-level overview of the key technologies
and innovations within each patent, allowing for the identification of unique contributions, and
potential advancements. By extracting a hypothesis for each patent, it becomes possible to cross-

15

reference these insights with prior art and technical literature, ensuring that the innovations are novel
and consistent with the granted claims. This process enables scalable, automated analysis of patents,
streamlining the detection of valuable technological breakthroughs and trends in patent data. We
used standard natural language processing (NLP) metrics such as BLEU, ROUGE, and METEOR
to compare the generated hypotheses from expert models against reference summaries from Gold
LLMs. Table[I0]illustrates the hypothesis generation for the Universal Transformers [2] patent using
a Gold LLM such as GPT-4o.

Subject-Action-Object (SAO) Structure and Hypothesis for Universal Transformer.

Subject.

Universal Transformer (UT) architecture.

Action.

Introduces recurrent self-attention across depth, parameter sharing across layers, and
an adaptive computation time (ACT) mechanism to dynamically adjust the number of
computational steps per sequence element.

Object.

Overcome the limitations of traditional Transformers and LSTMs, particularly in general-
ization to longer sequences and computational efficiency in tasks like machine translation,
language modeling, and algorithmic problem-solving, resulting in state-of-the-art perfor-
mance on a variety of complex sequence tasks.

Hypothesis.

The Universal Transformer (UT) architecture introduces a novel combination of recur-
rent self-attention mechanisms in depth with parameter sharing across layers and an
adaptive computation time (ACT) mechanism for per-position dynamic adjustment of
computational depth. Unlike traditional Transformers, which fix the depth of compu-
tation per sequence element, or LSTMs, which rely on sequential recurrence, the UT’s
recurrence in depth allows iterative refinement of representations and dynamic compu-
tation, enabling improved generalization to longer sequences and complex algorithmic
tasks. This innovation offers computational universality and superior performance on
sequence-to-sequence tasks like machine translation and language modeling, where it
consistently surpasses both feed-forward Transformers and LSTMs.

Table 10: The table provides the Subject-Action-Object (SAO) structure and hypothesis for the
Universal Transformer (UT) architecture, highlighting its key innovations and advantages over
traditional models like Transformers and LSTMs.

16

	Introduction
	Proposed Method
	Experiments
	Datasets & Experimental Settings
	Experimental Settings
	Evaluation Metrics
	Results

	Conclusion
	Appendix / supplemental material
	User-Centric Evaluation
	Knowledge Graph Quality Evaluation

	Multi-Patent Analysis
	Synthetic Data Generation
	Knowledge Graph Modeling for Semantic Search and Retrieval

	Scientific Hypothesis Generation

