
Large Language Models for Verifiable Sequential
Decision-Making in Autonomous Systems

Yunhao Yang, Jean-Raphaël Gaglione, Cyrus Neary, Ufuk Topcu
The University of Texas at Austin, United States

{yunhaoyang234, jr.gaglione, cneary, utopcu}@utexas.edu

Abstract: Automaton-based representations of task knowledge play an important
role in control and planning for sequential decision-making problems. However,
obtaining the high-level task knowledge required to build such automata is often
difficult. Meanwhile, large language models (LLMs) can automatically generate
relevant task knowledge. However, the textual outputs from LLMs cannot be for-
mally verified or used for sequential decision-making. We develop a novel algo-
rithm named GLM2FSA, which constructs a finite state automaton (FSA) encoding
high-level task knowledge from a brief natural-language description of the task
goal. The proposed algorithm thus fills the gap between natural-language task de-
scriptions and automaton-based representations, and the constructed FSAs can be
formally verified against user-defined task specifications. We accordingly propose
a method to iteratively refine the queries to the LLM based on the outcomes, e.g.,
counter-examples, from verification. We demonstrate GLM2FSA’s ability to build
and verify automaton-based representations of everyday tasks and also of tasks
that require highly specialized knowledge.

Keywords: Large Language Model, Sequential Decision-Making, Formal
Method, Verification

1 Introduction

Automaton-based representations of high-level task knowledge play a key role in planning and learn-
ing in sequential decision-making. Such knowledge may include the requirements a designer wants
to enforce on an agent or a priori task information about the agent and the environment in which it
operates. Automaton-based representations are useful in many applications, such as robot control,
reinforcement learning, and program verification.

Despite their utility in a range of applications, capturing high-level task knowledge in automata
is not straightforward. Automaton learning algorithms infer such knowledge through queries to a
human expert or an automated oracle [1]. In general, these algorithms may require an excessive
number of queries to a human, and it is often unclear how an automated oracle can be constructed
in the first place. Even in cases in which an oracle exists, either the learning algorithm or the oracle
requires prior information, such as the set of possible actions available to the agent and the set of
environmental responses, i.e., symbols relevant for the automaton construction. It is often unclear
how to obtain this information. Furthermore, the soundness of the inferred automaton depends on
the choice of symbols.

We argue—and provide a proof of concept—that recent advances in generative large language mod-
els (LLMs) can help automatically distill high-level task knowledge into automaton-based repre-
sentations. Existing LLMs, such as the Generative Pre-trained Transformer series (GPT) of models
[2], are capable of generating realistic, human-like text in response to queries. Such text often en-
codes rich world knowledge. On the other hand, the outputs of LLMs are typically in a textual form
that cannot be directly utilized for sequential decision-making or automaton learning. Moreover,

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

the textual form outputs are not formally verifiable and hence cannot be used in applications where
correctness matters.

Figure 1: Illustration of the GLM2FSA algorithm.

We develop an algorithm named Gen-
erative Language Model to Finite
State Automaton (GLM2FSA) to fill the
gap between the outputs from LLMs
and automaton-based representations
of high-level task knowledge. In
particular, GLM2FSA produces con-
trollers represented as finite state au-
tomata (FSAs) from a brief natural-
language sentence describing the task
(e.g., “cross the road”). It does so by
first sending queries containing this
task description to a LLM to obtain
a list of text instructions organized in
steps (and substeps). Then, it parses
these textual instructions to define the
input and output symbols (i.e., envi-
ronment propositions and actions) of
the FSA. Finally, it interprets each step to construct a corresponding automaton state and its outgoing
transitions. GLM2FSA thus constructs FSAs representing controllers for sequential decision-making.
Figure 1 illustrates the proposed GLM2FSA algorithm, which only takes a brief textual description of
the task and outputs a FSA with automatically-defined states, symbols, and transitions.

The FSA-based controllers output by GLM2FSA are formally verifiable against user-defined task spec-
ifications. We accordingly propose a method to verify the controllers and to use the results of ver-
ification, e.g., counterexamples, as feedback in order to iteratively refine them through additional
queries to the LLM. Such systematic verification allows the algorithm to identify and guard against
potentially undesirable or nonsensical outputs from the language model, making it a necessary step
towards the safe integration of LLMs into automated decision-making systems.

We demonstrate GLM2FSA’s capabilities through experimental case studies. To the best of our knowl-
edge, GLM2FSA is the first algorithm that constructs automaton-based representations from textual
knowledge extracted from LLMs. It is also the first algorithm to provide an approach to formally
verify the knowledge from LLMs in the context of sequential decision-making.

2 Related Work

Extracting Task Knowledge from Language Models. Prior works have studied the extraction
of task knowledge from LLMs [3, 4, 5]. However, due to a lack of rich world knowledge, the lan-
guage model they use cannot generate action plans without providing detailed task descriptions.
The recently introduced family of LLMs—GPT [2]—contains rich world knowledge and can gen-
erate instructions for a given task [6]. Therefore, some works extract task knowledge by asking
GPT for the step-by-step instructions [7, 8]. Meanwhile, a number of recent works have studied
how recent advancements in the capabilities of LLMs can be used to extract task-relevant semantic
knowledge and to generate plans for task completion in the context of robotics [9, 10, 11]. In con-
trast to existing works, we are the first to use LLMs to transform natural-language task descriptions
into automaton-based representations that can be directly used for sequential decision-making and
that can be formally verified against user-defined specifications.

Symbolic Knowledge Representations. Many works focus on constructing symbolic representa-
tions of task knowledge from natural language (text) descriptions. Several works [7, 12, 13] extract
information from text descriptions of given tasks and construct knowledge graphs for the tasks.

2

Another work [14] analyzes the causality within the text descriptions and creates causal graphs.
In contrast with the existing works, we take advantage of the generative capabilities of LLMs to
automatically generate automaton-based representations from brief (one-sentence) textual task de-
scriptions. Such automaton-based representations can be used for formal verification, which the
knowledge graphs are not capable of.

Natural Language to Formal Language. Existing works [15, 16, 17] introduce approaches to
transform natural language to formal language specifications. Kate et al. [18] induces transforma-
tion rules that map natural-language sentences into a formal query or command language. Huang et
al. [8] constructs a form of actionable knowledge that machines can recognize and operate on se-
quentially. However, existing works either cannot operate sequentially or cannot handle conditional
transitions, e.g., multiple transitions from one state, which the work we proposed is capable of.

3 Preliminaries

Finite State Automaton. A finite state automaton (FSA) is a tuple A = ⟨Σ, A,Q, q0, δ⟩ where Σ
is the input alphabet (the set of input symbols), A is the output alphabet (the set of output symbols),
q0 ∈ Q is the initial state, and δ : Q × Σ × A × Q → {0, 1} is the transition function, which
indicates that a transition exists when it evaluates to 1. Note that we define FSA transitions to be
non-deterministic: if an agent is in state qi ∈ Q with an input symbol σ ∈ Σ, the agent can choose
the output symbol and next state among the set δ(qi, σ) := {(a, qj) ∈ A×Q|δ(qi, σ, a, qj) = 1}.

We use FSAs in the context of sequential decision-making, where the input alphabet comprises
all possible environment observations relevant to the current task. We introduce a set of atomic
proposition P such that Σ := 2P , i.e., an input symbol σ ∈ Σ is the set of atomic propositions in
P that evaluate to True. We also introduce a set of atomic propositions PA for the output alphabets
A := 2PA , and we allow for a “no operation/empty” symbol ϵ ∈ A.

In this work, we use FSAs output by the proposed algorithm to represent controllers, which are
system components responsible for making decisions and taking actions based on the system’s state.
We refer to the input and output alphabets (Σ and A) of the FSA as the condition set and action set,
where σ ∈ Σ and a ∈ A represent conditions and actions.

Semantic Parsing. Semantic parsing is a task in natural language processing (NLP) that converts
a natural language utterance to a logical form: a machine-understandable representation. We follow
the approach that predicts part-of-speech (POS) tags for each token and that builds phrase structure
depending on phrase structure rules, also known as a grammar. POS tags include noun (N), verb
(V), adjective (AJD), adverb (ADV), etc. Phrase structures are a tree-structured logical form whose
leaves are the POS tags of the given natural language utterance (i.e., sentence). Phrase structure
rules organize the POS tags into phrases like noun phrases (NP) and verb phrases (VP).

Definition 1. A Noun Phrase (NP) is a group of words headed by a noun. A Verb Phrase (VP) is
composed of a verb and its arguments. VP follows the following grammars:

VP←− V VP or VP←− V NP.

The left-hand side of the grammar is composed of the components on the right-hand side. The gram-
mar defines a verb phrase as being either composed of a verb and another verb phrase or composed
of a verb and a noun phrase.

To standardize the words under the phrase structure, the parsing approach converts all the words
to their original form, e.g., it removes singular or plural, past tense, etc. This operation eliminates
cases where phrases with the same words in different tenses are categorized as being distinct.

3

Algorithm 1: Natural Language to FSA

1: procedure STEP2FSA(function keyword handler, List[String] STEPS, List[String] keywords)
2: Q = [a state for each step] + [absorbing state] ▷ define states, a state represents a step
3: q0 = Q[0] ▷ define the initial state
4: P,A, δ = {}, {ϵ}, {} ▷ define input and output symbols and transitions
5: for state number in [0 : |Q| − 1] do
6: S NUM = step number of the current state
7: VPC , VPA, KEYS = parse(STEPS[S NUM])
8: if any(keywords) in KEYS then
9: keyword handler(Q, VPC , VPA, KEYS, keywords)

10: else
11: create δ(qS NUM,True,VPA, qS NUM+1) ▷ create a transition
12: Σ, A := Σ ∪ V PC , A ∪ V PA ▷ add input and output symbols
13: end if
14: end for
15: return P,A,Q, q0, F, δ
16: end procedure

4 Methodology

We propose an algorithm named Generative Language Model to Finite State Automaton (GLM2FSA).
The algorithm first uses a natural-language description of the task of interest to query the LLM and
to obtain step-by-step task instructions in textual form. It then automatically parses these text-based
instructions to construct a controller, represented as an automaton, which can be used for sequential
decision-making.

Extracting Textual Knowledge. The first step of the proposed approach is to distill task-relevant
textual knowledge from the LLM by iteratively prompting it with structured natural-language
queries. Given a task description of interest, the algorithm asks for steps to achieve the task.
We also provide a method to refine a step (or a substep) into its constituent substeps. The input
prompts follow the format below (prompts sent to the LLM in blue, completion of the LLM in red):

1 Steps for: task description
2 [1] step description
3 [step number] step description
4 ...
5 Substeps for: [step number] step description
6 [step number .1] substep description
7 [substep number] substep description
8 ...

This iterative querying process allows for the automated decomposition of the task description into
a structured hierarchy of steps and substeps up to a pre-specified depth. Alternatively, it could be
used as a mechanism for the refinement of the LLM’s output: steps can be automatically broken into
substeps if they are unclear or too difficult to accomplish without further guidance. This information
for step refinement could come, for example, from a downstream verification algorithm or even from
a human operator.

Building FSA from Textual Knowledge. The next step in the proposed approach is parsing tex-
tual LLM outputs and constructing automata-based controllers. Algorithm 1, which we refer to as
GLM2FSA, transforms step descriptions from textual form to finite state automata.

The algorithm first applies semantic parsing to each step description to obtain the keywords and
verb phrases that it contains. These keywords belong to a pre-defined set of words that we use to
define our grammar for automaton construction, such as if and wait. Furthermore, each verb phrase
output by the algorithm’s semantic parsing step is interpreted either as a condition or as an action.
We define these two categories of verb phrases more precisely as follows:

4

Definition 2. VPA is a verb phrase that leads to actions, and VPC is a verb phrase indicating the
conditions for triggering the transitions.

For each verb phrase, the algorithm classifies it as VPA by default, unless the grammar associated
with the keywords specifies that it is a VPC . The algorithm adds VPA to the set of output symbolsA
and VPC to the set of atomic propositions P . In Algorithm 1, we refer to the process that executes
this keyword and verb phrase extraction as the parse function.

Category Grammar Transition Rule Example

Default
Transition VPA qi qi+1

(True,VPA)
[dial number]

Direct
Transition VPA [j] qi qj

(True, ϵ)
[proceed] [1]

Conditional
Transition

if VPC , VPA

VPA if VPC
qi qj

(VPC ,VPA)
(¬VPC , ϵ) [if] [no car], [cross]

Self
Transition

wait VPC VPA

VPA after VPC qi qi+1
(VPC ,VPA)

(¬VPC , ϵ)
[wait] [car pass]
[cross]

Table 1: Transition rules defined for keywords under a specific grammar.

Next, the algorithm constructs a FSA from the parsed steps and the verb phrases within these steps.
For each step, the algorithm adds a state qi representing the current step i to Q. The algorithm
defines the state corresponding to the first step as the initial state. It also adds an absorbing state
after the state corresponding to the final step. The absorbing state only has one self-transition with
input True and output “no operation”. Finally, the algorithm builds transitions between the states
using the various transition rules that we define in Table 1, and detail further in the appendix.

5 Verification and Refinement

Figure 2: Illustration of the proposed procedure for auto-
mated verification and refinement. We verify the automaton
generated by GLM2FSA, and we send new queries to the LLM
to refine the automaton if this verification fails.

Automaton-based representations of
knowledge are compatible with ex-
isting methods for formal verifi-
cation against task specifications.
We present an approach to ap-
ply such computational techniques
to GLM2FSA’s outputs. Given an
automaton-based controller C output
by GLM2FSA, we use a model M to
verify the behavior of C against some
task specifications of interest. We
assume the model and specifications
are provided from externally avail-
able knowledge sources.

Verifying the Automaton-Based
Controllers Against Models and
Task Specifications. We begin
with the problem of automatically
checking that the behaviors of the
controllers satisfy desired specifications when verified against a model. A model is a representation
of any a priori task-related knowledge provided by the user, e.g., an abstract model of how the task
environment responds to the actions taken by the controller. The verification procedure checks if the
controller is consistent with this existing knowledge or if it will satisfy logical-based specifications

5

when implemented against the model. Such systematic verification is necessary to identify and
guard against undesirable or nonsensical outputs from the LLM.

We define the model as M := ⟨ΣM,ΓM, QM, p0, δM, λM⟩. ΣM := A = 2PA is a set of input
symbols, where PA is a set of atomic propositions representing actions in the controller. ΓM :=
2{goal}∪P is a set of output symbols, where P is the set propositions from C and goal is a special
proposition. QM is a finite set of states, δM : QM × ΣM × QM → {0, 1} is a non-deterministic
transition function, p0 ∈ QM is an initial state, and λM : QM → ΓM is a labeling function.

We use linear temporal logic (LTL) [19] to define task specifications Φ that the controller C should
satisfy, given the modelM. LTL is a formal language that expresses system properties that evolve
over time. It is built on top of propositional logic by extending it with temporal operators—♢
(“eventually”) and □ (“always”)—which allow for reasoning about the system’s future behavior.
We provide a formal definition of LTL in the appendix, and we refer to Baier and Katoen [20] for
further details.

We define specifications Φ over atomic propositions in P ∪ PA ∪ {goal}, and evaluate them over
trajectories in the form (2P∪PA∪{goal})∗. In the context of our verification problem, specifications
Φ represent desired outcomes that the controller should satisfy, given some assumptions on the
properties of the system that the controller interacts with.

To verify that the controller C satisfies the specification Φ given the modelM, we solve the following
automated verification problem,

M⊗C |= Φ, (1)
whereM⊗C denotes the so-called product automaton describing the interactions of the controller C
with the modelM, which we define formally in the appendix. We leave the details of the automated
verification problem to Baier and Katoen [20]. In this work, we use the NuSMV model checker [21]
for this purpose. The output of the automated verification problem is binary: the automaton-based
controller C either satisfies the specification Φ given the model or it does not. We present a detailed
example of how we use the model checker to verify an example controller in the appendix.

Finally, we note that due to the stochastic nature of generative models, the LLM may often output
different phrases to represent the same concept. Hence each action may correspond to multiple
verb phrase expressions, which could cause problems during the automated verification procedure.
To ensure that the verification does not fail due to an inability to recognize synonyms, we directly
query the LLM to ask if any two verb phrases refer to the same action.

The verification step can provide formal guarantees on whether or not the controller satisfies the
provided specifications. If the controller fails the verification step, the model checker will return a
sequence of states from the product automaton indicating exactly how the specification was failed.
Such counter-examples allow users to interpret the reasons behind failures and to modify the con-
troller accordingly. If the automaton output by GLM2FSA fails to satisfy the provided task specifica-
tion, we provide two approaches to refine the controller C.

Counterexample-Guided Controller Refinements. The first approach asks the user to manually
modify the input prompt to the LLM and to use the resulting outputs to update the controller. As
previously described, if the verification steps fails, the model checker generates a counter-example.
The user can then use this information to modify the LLM’s input prompt in a way that addresses
the issue observed in the counter-example. After obtaining the LLM’s outputs, we apply GLM2FSA

again to construct the updated controller.

Automated Refinement Through Substep Expansions. The second approach queries the LLM
for substeps to automatically refine the controller C. We can then again solve the verification problem
for the newly-updated C. This leads to an iterative process that uses the information provided by the
verification step to improve the distilled automaton.

During each refinement step, we apply Algorithm 2 (included in the appendix) to query the LLM for
the next-layer steps (DEPTH = DEPTH + 1). This expands each of the automaton’s transitions into

6

p0 :
¬goalstart

p1 :
¬goal

p2 : C1

p3 : C2

p4 : goal

p5 :
¬goal

¬ locate TL

locate TL

¬ look way

look way

look way

¬ cross road

¬
cross

road

cross road

¬ cross road

¬
cr

os
s

ro
ad

cross road

Tr
ue

True

(a) A model M for “cross the road.” PC stands for Pedestrian Crossing, C1 = green ∧¬ car come ∧¬ goal,
and C2 = (car come ∨¬ green) ∧¬ goal. We annotate each node as “state: label.”

q1start q2 q3 q4
(True,

“locate traffic light”)

(¬ turn green, ϵ)

(turn green,
“look way”)

(car come, ϵ)

(¬ car come,
“cross road”)

(True, ϵ)

(b) The FSA for the task “cross the road at the traffic light.”

q1start q2 q3 q4
(True,

“locate traffic light”)

(¬ turn green, ϵ)

(turn green,
“look way”)

(car come ∨¬ turn green, ϵ)

(turn green ∧¬ car come,
“cross road”)

(True, ϵ)

(c) The final FSA after the manual refinement.

Figure 3: The iterations of refinements. The user manually queries GPT-3 to refine the steps based
on the counterexample from the verification.

more detailed representations, describing its necessary substeps. We refer to the state that represents
the beginning of the transition to be expanded as the parent state and the states that represent that
transition’s substeps as the child states. We continue the loop of expanding the automaton’s transi-
tions and applying automated verification until all the specifications are satisfied or the maximum
number of layers is reached. This maximum number of layers is a user-defined constant. If we reach
the maximum number of layers and still cannot satisfy the specifications, we consider the task to be
unrepresentable by an automaton.

To prevent the above iterative refinement procedure from generating unnecessarily large automaton-
based controllers, we also design a pruning process. This pruning process proceeds as follows: 1)
start from the deepest-layer steps and replace the first set of children states with their parent state,
2) check if the controller still satisfies all the specifications, 3) keep the controller as it is if the
specifications are satisfied, otherwise add the children states back, and 4) continue steps 1 to 3 for
all of the children states at each level of the hierarchy.

6 Experimental Results

Controller construction. To demonstrate the application of GLM2FSA to a relatively simple com-
monsense task, we begin with the task prompt “cross the road at the traffic light.” We present three
additional examples, which include substep expansions and controllers designed for more complex,
domain-specific tasks, in the appendix. In all of the experiments, we use the text-davinci-003 model
from the GPT-3 model family [2] as the LLM queried by GLM2FSA.

First, we apply the algorithm to construct a FSA for step descriptions. In this example, we query the
LLM for the text-based steps of crossing the road at a traffic light. The queries and the responses
from the LLM are as follows:

7

1 Steps for: Cross the road at the traffic light
2 [1] Locate the traffic light.
3 [2] Wait for the traffic light to turn green.
4 [3] Look both ways before crossing the road.
5 [4] Cross the road if no cars are coming.

GLM2FSA constructs a FSA to represent these steps, illustrated in Figure 3b. The constructed FSA
successfully represents all the required knowledge, including actions and conditions. The task
steps are represented by states in the FSA. The algorithm creates the set of atomic propositions
P = {car come, turn green, traffic light} and output propositions PA = { “look way”, “cross road”,
“locate traffic light”, ϵ} from the extracted verb phrases. Figure 3b indicates that GLM2FSA is ca-
pable of building automaton-based representations that are unambiguous and able to represent task-
relevant knowledge in step descriptions.

Verification and Refinement. We begin by verifying the correctness of the controller C from
Figure 3b using the model M illustrated in Figure 3a. We define the specification as Φ =
traffic light ∧ □♢(green ∧¬ car come)→♢ goal (if the agent is at a traffic light and there always

will eventually be a time when the traffic light is green and no car is coming, then it should eventually
reach the goal).

In this example, the controller fails the verification step with a counter-example of state sequences
p0 → p1 → p3 → [infinite loop p5]. State p5 inM is reached because it is possible for the controller
to take action “cross road” when the traffic light is red. This mistake happens in scenarios where the
traffic light switches from green to red while the agent is waiting for cars to stop coming. This is a
potentially dangerous edge case that the LLM fails to consider. We emphasize that this edge case
could easily be missed by a human as well. It is only by formally verifying the possible behaviors
of the system against the model that the potential problem becomes apparent.

Once the model checker returns a counterexample, we can use the information from the counterex-
ample to manually refine the controller. To handle the above corner case, we simply need to ensure
that the traffic light is green and that there are simultaneously no cars coming before taking the
“cross road” action. So, to address the issue, the user can modify the input prompt as follows:

1 Refine the following steps to ensure the action "cross the road" is performed
under conditions "traffic light turns green" and "no cars are coming ":

2 [1] Locate the traffic light.
3 ...
4 [4] Cross the road if no cars are coming.
5 [1] Locate the traffic light.
6 [2] Wait for the traffic light to turn green.
7 [3] Look both ways before crossing the road.
8 [4] Cross the road if no cars are coming and the traffic light is green.

We then apply the algorithm GLM2FSA again to the refined responses and construct a refined con-
troller. We present the refined controller in Figure 3c. Now, the controller passes all the verification
steps, and hence it is finalized.

7 Conclusions

We provide a proof-of-concept for the automatic construction of automaton-based representations
of abstract task knowledge from LLMs. We propose an algorithm, GLM2FSA, that accepts brief
natural-language descriptions of tasks as input, queries a LLM, and then constructs an automaton
from the language model’s responses. The algorithm is highly automated, requiring only a short task
description to build machine-understandable knowledge representations. We additionally propose
methods to formally verify the automata produced by GLM2FSA, and to use the results of verification
to iteratively refine the inputs to the LLM. Experimental results demonstrate the capabilities of
GLM2FSA: The generated automaton-based controllers capture task-relevant knowledge, even when
the relvant keywords for controller construction is not included in the original input prompt.

8

References
[1] K. S. Narendra and M. A. L. Thathachar. Learning automata - a survey. IEEE Transactions on

Systems, Man, and Cybernetics, 4(4):323–334, 1974. doi:10.1109/TSMC.1974.5408453.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners. Advances in Neural Information
Processing Systems, 33:1877–1901, 2020.

[3] W. Xiong, J. Du, W. Y. Wang, and V. Stoyanov. Pretrained encyclopedia: Weakly supervised
knowledge-pretrained language model. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=BJlzm64tDH.

[4] J. Davison, J. Feldman, and A. M. Rush. Commonsense knowledge mining from pre-
trained models. In Conference on Empirical Methods in Natural Language Processing, pages
1173–1178, 2019. doi:10.18653/v1/D19-1109. URL https://doi.org/10.18653/v1/

D19-1109.

[5] F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A. Miller. Language
models as knowledge bases? In Conference on Empirical Methods in Natural Language
Processing, pages 2463–2473, 2019.

[6] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Mea-
suring massive multitask language understanding. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

[7] P. West, C. Bhagavatula, J. Hessel, J. D. Hwang, L. Jiang, R. L. Bras, X. Lu, S. Welleck, and
Y. Choi. Symbolic knowledge distillation: from general language models to commonsense
models. In Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 4602–4625, 2022. doi:10.18653/v1/2022.
naacl-main.341. URL https://doi.org/10.18653/v1/2022.naacl-main.341.

[8] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Ex-
tracting actionable knowledge for embodied agents. In International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 9118–9147, 2022.

[9] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor. ChatGPT for robotics: Design principles
and model abilities, 2023. Published by Microsoft.

[10] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan,
E. Jang, R. Julian, D. Kalashnikov, S. Levine, Y. Lu, C. Parada, K. Rao, P. Sermanet, A. Toshev,
V. Vanhoucke, F. Xia, T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes, N. Sievers,
C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao, P. Pastor, L. Luu, K. Lee, Y. Kuang,
S. Jesmonth, N. J. Joshi, K. Jeffrey, R. J. Ruano, J. Hsu, K. Gopalakrishnan, B. David, A. Zeng,
and C. K. Fu. Do as I can, not as I say: Grounding language in robotic affordances. In
Conference on Robot Learning, volume 205 of Proceedings of Machine Learning Research,
pages 287–318, 2022.

[11] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, T. Jackson, N. Brown, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models. In Conference
on Robot Learning, volume 205 of Proceedings of Machine Learning Research, pages 1769–
1782, 2022.

[12] N. Rezaei and M. Z. Reformat. Utilizing language models to expand vision-based common-
sense knowledge graphs. Symmetry, 14:1715, 2022.

9

http://dx.doi.org/10.1109/TSMC.1974.5408453
https://openreview.net/forum?id=BJlzm64tDH
http://dx.doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/D19-1109
https://openreview.net/forum?id=d7KBjmI3GmQ
http://dx.doi.org/10.18653/v1/2022.naacl-main.341
http://dx.doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341

[13] M. He, T. Fang, W. Wang, and Y. Song. Acquiring and modelling abstract commonsense
knowledge via conceptualization. arXiv preprint arXiv:2206.01532, 2022.

[14] Y. Lu, W. Feng, W. Zhu, W. Xu, X. E. Wang, M. Eckstein, and W. Y. Wang. Neuro-symbolic
procedural planning with commonsense prompting. arXiv preprint arXiv:2206.02928, 2022.

[15] C. Baral, J. Dzifcak, M. A. Gonzalez, and J. Zhou. Using inverse lambda and generaliza-
tion to translate english to formal languages. In International Conference on Computational
Semantics, pages 35–44, 2011. URL https://aclanthology.org/W11-0105/.

[16] D. Sadoun, C. Dubois, Y. Ghamri-Doudane, and B. Grau. From natural language requirements
to formal specification using an ontology. In International Conference on Tools with Artificial
Intelligence, pages 755–760, 2013. doi:10.1109/ICTAI.2013.116. URL https://doi.org/

10.1109/ICTAI.2013.116.

[17] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner. ARSENAL: auto-
matic requirements specification extraction from natural language. In NASA Formal Meth-
ods, volume 9690 of Lecture Notes in Computer Science, pages 41–46, 2016. doi:10.1007/
978-3-319-40648-0 4. URL https://doi.org/10.1007/978-3-319-40648-0_4.

[18] R. J. Kate, Y. W. Wong, and R. J. Mooney. Learning to transform natural to formal languages.
In National Conference on Artificial Intelligence, pages 1062–1068, 2005. URL http://www.

aaai.org/Library/AAAI/2005/aaai05-168.php.

[19] A. Pnueli. The temporal logic of programs. In Symposium on Foundations of Computer Sci-
ence, pages 46–57, 1977. doi:10.1109/SFCS.1977.32. URL https://doi.org/10.1109/

SFCS.1977.32.

[20] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[21] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking. In Computer
Aided Verification, volume 2404 of Lecture Notes in Computer Science, pages 359–364, 2002.
doi:10.1007/3-540-45657-0 29. URL https://doi.org/10.1007/3-540-45657-0_29.

10

https://aclanthology.org/W11-0105/
http://dx.doi.org/10.1109/ICTAI.2013.116
https://doi.org/10.1109/ICTAI.2013.116
https://doi.org/10.1109/ICTAI.2013.116
http://dx.doi.org/10.1007/978-3-319-40648-0_4
http://dx.doi.org/10.1007/978-3-319-40648-0_4
https://doi.org/10.1007/978-3-319-40648-0_4
http://www.aaai.org/Library/AAAI/2005/aaai05-168.php
http://www.aaai.org/Library/AAAI/2005/aaai05-168.php
http://dx.doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29

A Additional Background and Definitions

Large Language Models. A large language model (LLM) produces human-like text completion
from a given initial text (prompt). The produced texts continue filling the content from that prompt.
Recent LLMs are deep learning models with millions or billions of parameters.

Generative Pre-trained Transformer Series are the current state-of-the-art LLMs. We use GPT-3
in our experiments. It is pretrained by five large-scale datasets with over 5 billion words. GPT-3
offers four primary models with different capabilities for different tasks [2]. Davinci-003 is the
most capable model that can do question-answering, next-sentence prediction, and text insertion.
We query Davinci-003 to obtain task instructions for empirical analysis.

GPT-3 allows users to customize settings by setting the hyper-parameters. For instance, max tokens
restricts the maximum number of tokens (words and punctuation) of the generated text, and tem-
perature defines the randomness of the outputs. We propose an algorithm that specifies grammar
rules for certain keywords. Hence we set bias on the keywords to ensure the model outputs them
instead of their alternations. Setting bias to keywords eliminates the need to transform synonyms to
the corresponding keywords or define new rules for those synonyms.

Linear Temporal Logic. Formally, LTL formulas are defined inductively as: φ := p ∈ PA | ¬φ |
φ ∨ φ | ◦φ | φUφ Intuitively, an LTL formula consists of

• A set of atomic propositions, denoted by lowercase letters (e.g., car come), represent the
system’s state.

• A set of temporal operators describes the system’s temporal behavior.

• A set of logical connectives, such as negation (¬), conjunction (∧), and disjunction (∨),
that can be used to combine atomic propositions and temporal operators.

As syntax sugar, along with additional constants and operators used in propositional logic, we allow
the standard temporal operators ♢ (“eventually”) and □ (“always”).

Product Automaton. Let a controller be C := ⟨Σ, A,Q, q0, δ⟩ with input alphabet Σ := 2P ,
output alphabet A := 2PA , and non-deterministic transition function δ : Q×Σ×A×Q→ {0, 1}.

Let a model be a tupleM := ⟨ΣM,ΓM, QM, p0, δM, λM⟩ with input alphabet ΣM = A , output
alphabet ΓM = 2P∪{goal}, a non-deterministic transition function δM : QM×ΣM×QM → {0, 1},
and a label function λM : QM → ΓM.

We define the product automaton as a transition system P = M⊗ C := ⟨QP, δP, q
P
init, λP⟩ as

follows:

QP := QM ×Q
δP((p, q)) := {(p′, q′) ∈ QP|δ(q, λM(p) ∩ Σ, a, q′) = 1 and δM(p, a, p′) = 1, for some a ∈ A}

qPinit := (p0, q0)

λP((p, q), (p′, q′)) := {λM(p) ∪ a|a ∈ A and δ(q, λM(p) ∩ P, a, q′) = 1 and δM(p, a, p′) = 1}

Here, δP : QP → 2QP is a non-deterministic transition function, and λP : QP ×
QP → 2P∪PA∪{goal} is a label function. The product automaton generates infinite trajectories
(p0, q0), (p1, q1), . . . by beginning in an initial state qPinit and following the nondeterministic transi-
tion function δP thereafter. Labeled trajectories are then generated by applying the labeling func-
tion λP to these trajectories within the product automaton, i.e. ψ0ψ1, . . . ∈ (2P∪PA∪{goal})∗ where
ψi ∈ λP((pi, qi), (pi+1, qi+1)). When using the product automaton to solve the model-checking
problem from Equation (1), we check that all possible labeled trajectories generated by the product
automaton belong to the language defined by the LTL specification.

11

Algorithm 2: Query the LLM for Task Instructions

1: procedure GLM2STEP(String TASK DESC, integer DEPTH, List[String] keywords) ▷ Obtain
the instructions for a given task; depth indicates how detailed the instructions are.

2: GLM.bias = keywords
3: PROMPT = “Steps for: ” + TASK DESC + “\n [1]”
4: ANSWER = GLM(PROMPT)
5: STEP NUMBERS = [“[1]”, “[2]”,...]
6: for i in range(1, DEPTH) do
7: SUB NUMBERS = []
8: ANSWER = []
9: for number in STEP NUMBERS do

10: SUB PROMPT = “Substeps for ”+number
11: ANSWER.append(GLM(SUB PROMPT))
12: SUB NUMBERS.append(“[1.1]”,...)
13: end for
14: STEP NUMBERS = SUB NUMBERS
15: end for
16: return STEPS = (STEP NUMBERS, ANSWER)
17: end procedure

Category Grammar Transition Rule Example

Default
Transition VPA qi qi+1

(True,VPA)
[dial number]

Direct
Transition VPA [j] qi qj

(True, ϵ)
[proceed] [1]

Conditional
Transition

if VPC , VPA

VPA if VPC
qi qj

(VPC ,VPA)
(¬VPC , ϵ) [if] [no car], [cross]

Conditional
Transition
(if else)

if VPC , VPA
1. if ¬ VPC , VPA

2

if VPC , VPA
1 else VPA

2

VPA
1 if VPC , else VPA

2

qi qjqk
(VPC ,
VPA

1)
(¬VPC ,
VPA

2)

[if] [no car],
[cross]. [if], [car]
[stay].

Self
Transition

wait VPC VPA

VPA after VPC qi qi+1
(VPC ,VPA)

(¬VPC , ϵ)
[wait] [car pass]
[cross]

VPA until VPC qi qi+1
(VPC , ϵ)

(¬VPC ,VPA)
[stay] [until] [car
pass]

Table 2: Transition rules defined for keywords under a specific grammar.

B Additional Explanations on GLM2FSA

Algorithm 2 depicts an iterative process that first queries the LLM for steps to accomplish the task
description and subsequently for substeps to accomplish these individual steps.

Table 2 shows the grammar rules and their corresponding transition rules. Note that if a verb phrase
VP includes one or more of the words and, or, no, or not, then the algorithm refines VP as follows:

• no/not VP1 = ¬ VP1,

• VP1 and VP2 = VP1∧ VP2,

• VP1 or VP2 = VP1∨ VP2.

C Additional Explanations on Transition Rules

Default Transitions. We define default transitions as transitions from the current state to the next
state with condition True . Each state qi only has one outgoing transition to its next state qi+1, with

12

the verb phrases from the ith step as the output symbols. A default transition δ(qi,True,VPA
i , qi+1)

exists, unconditionally of the valuation of the atomic propositions in P (hence the condition True).
A demonstration of the default transition is presented in the first row of Table 2.

Occasionally, the algorithm replaces the default transitions with special transitions defined by a
grammar over the keywords, which we define in Table 2.

Direct State Transitions. We define a transition from the current state qi to a state other than the
next state qi+1, called a direct state transition. The direct state transition happens when there is a
verb phrase in the step description consisting of the number corresponding to another step. The rule
for direct state transitions is presented in Table 2.

The algorithm builds a direct state transition from the current state to the state representing step j
with output symbol ϵ (no operation).

Conditional Transitions. We define a type of transition named conditional transition, in which
the transition only happens when certain conditions are satisfied. The condition of a conditional
transition is a conjunction of one or more atomic propositions in P . The conditional transition is
caught by the keyword ‘if’. The transition rule for conditional transition is defined in the third row
of Table 2.

The algorithm builds two transitions from each sentence with the above patterns. The first transition
consists of a starting state qi, a conjunction of atomic propositions VPC , a target state qj , and a set
of outputs VPA. The second transition is a self-transition at qi with a condition ¬VPC . The second
transition does not have any output.

If the VPA does not lead to a direct state transition, the first transition ends at qi+1.

Self-Transitions. We define a type of transition called self-transition, whose starting and target
states are identical. The algorithm builds two transitions: a self-transition whose starting and target
states are both the current state, and a second transition that originates from the current state and ends
at the next state. The algorithm triggers self-transition when observing a verb phrase containing the
keywords ‘wait’, ‘after’, or ‘until’. The rules for building the two transitions are defined in the fourth
row in Table 2.

D Additional Examples of Controller Construction

Phone Call Example: Hierarchical Expansions of Automaton Substeps. We have shown the
capability of GLM2FSA to generate first-layer step descriptions. In this example, we explore generat-
ing second-layer descriptions as well, and integrating the descriptions from the two layers.

In practice, we do not need the details for all the steps generated by the LLM. Some step descrip-
tions are straightforward, while others may need further explanation. Therefore, we apply GLM2FSA

to build a finite state automaton (FSA) that represents the first-layer and the second-layer step de-
scriptions simultaneously.

First, we apply the algorithm to query the LLM and obtain the step and substep descriptions:

1 Steps for: Make a phone call with a cellphone
2 [1] Find the phone number you want to call.
3 [2] Dial the number on your cellphone.
4 [3] Press the call button.
5 [4] Wait for the person to answer the phone.
6
7 Substeps for: [2] Dial the number on your cellphone
8 [2.1] Enter the country code.
9 [2.2] Enter the area code.

10 [2.3] Enter the 7-digit phone number.

Note that in this example we only request substeps for the second step, whose action is “dial num-
ber”, while the other steps are already straightforward.

13

q1start

q2 q3 q4

q5

q21

q22

q23

(True,

“find number”
) (True,

“dial number”)
(True, ϵ)

(True,
“enter country code”)

(True,

“enter area code”)

(True,
“enter phone number”)

(True,
“press call botton”)

(answer, ϵ)

(¬answer, ϵ)

(True, ϵ)

Figure 4: Automaton-based representation for “making a phone call with a cellphone”. Transitions
in black solid lines show the first-layer steps. Transitions in blue dashed lines show the FSA the
steps associated with q2 is extended to its substeps for more details.

The algorithm builds two FSAs representing the first-layer steps and the second-layer substeps,
respectively. Then, we remove the outgoing transition from the state q2 corresponding to the second
step. Instead, we build an outgoing transition from q2 to the initial state of the FSA for second-layer
substeps and replace the transition to the final state with the transition to state q3. Hence we create
a partially extended FSA.

This example indicates that GLM2FSA can construct partially scalable FSAs. Every state in the con-
structed FSA can be extended to represent more details.

Secure Multi-Party Computation: Distilling Domain-Specific Task Knowledge. In addition to
the daily-life tasks presented above, we show that GLM2FSA can also devise controllers for domain-
specific tasks, which require highly specialized task knowledge. Such examples expand the applica-
tion of GLM2FSA to fields where human expertise would previously have been required.

In particular, we consider the task of “secure multi-party computation”. Secure multi-party compu-
tation (MPC) is a technique that allows multiple parties to jointly compute a function on their private
inputs without revealing anything about their inputs to each other or to any other third party. MPC
is a specialized problem in computer security, which may not be well-known by people outside this
field.

We query LLM and get responses as the following:

1 Steps for: secure multi -party computation
2 [1] Define problem and inputs.
3 [2] Secret sharing of inputs.
4 [3] Compute secret shares.
5 [4] Reconstruct the final result.
6 [5] Output verification.
7 [6] Decrypt the final result.
8
9 Substeps for: [2] Secret sharing of inputs.

10 [2.1] Generate random secret shares.
11 [2.2] Securely store secret shares.
12
13 Substeps for: [3] Compute secret shares.
14 [3.1] Encrypt secret share.
15 [3.2] Distribute encrypted shares.
16 [3.3] Compute ciphertext.
17 [3.4] Broadcast result.

For presentation purposes, we combine the first-layer steps and some of the substeps in one FSA
and show it in Figure 5, where we indicate the first-layer steps and second-layer substeps in black
and blue, respectively. This example demonstrates the capability of the proposed approach to au-
tomatically distill domain-specific knowledge into control-oriented automata representations from
natural-language task descriptions, even when applied to highly specialized problems. We provide
additional examples of domain-specific tasks in the Appendix.

14

q1start q2

q21 q22

q3

q31 q32

q33

q34

q4

q5q6

q7

(True,
“define problem”)

(T
ru

e,
ϵ)

(True,
“generate share”)

(True,
“store

share”)

(True,
“secret share”)

(Tr
ue

,

“c
om

pu
te

sh
are

”)

(True, ϵ)

(True,
“encrypt share”)

(True,
“distribute

share”)
(True,

“com
pute

ciphertext”)

(True,

“broadcas
t res

ult”)

(True,

“reconstruct result”)

(True,
“output verification”)

(Tr
ue

,

“d
ec

ryp
t r

esu
lt”

)(True, ϵ)

Figure 5: Example FSA for secure multi-party computation. The first-layer steps are represented by
the states in black and the second-layer substeps are represented by the states whose transitions are
in blue.

q1start

q2 q3

q4

q5q6

(True,

“understa
nd guideline”)

(True,
“complete train”)

(True,
“follow SOP”)

(True,

“w
ear

PPE”)

(True,
“handle” ∧ “store” ∧ “dispose material”)

(True, ϵ)

Figure 6: The distilled FSA-based controller for a biosafety laboratory test example.

Biosafety Laboratory: Distilling Domain-Specific Task Knowledge. Another example is the
task of “passing a biosafety laboratory test”. The biosafety laboratory (BSL) test examines if a
technician is capable of doing biology or biomedical experiments. This is a specialized task in the
biomedical field. We send a prompt to GPT-3 and get the following responses:

1
2 Steps for: passing a biosafety laboratory test
3 [1] Understand the biosafety guidelines.
4 [2] Complete necessary safety training.
5 [3] Follow the laboratory ’s SOPs (standard operating procedures).
6 [4] Wear appropriate PPE (personal protective equipment).
7 [5] Properly handle , store , and dispose of materials.
8

Then, we construct the FSA, displayed in Figure 6, to represent how to pass a BSL test.

E Additional Examples of Controller Verification

Phone Call Example: Verifying Substeps. In this example, we build two models to separately
verify the first-layer steps (black) and second-layer substeps (blue), of the controller for the phone
call example, illustrated in Figure 4.

We build a first model (Figure 7a) to verify that the required first-layer steps are executed in the
correct order. We then use the second model (7b) to check the correctness of the second-layer
substeps represented in blue in Figure 4. For both models, the specifications will be satisfied if and
only if all actions are taken in the correct consecutive order.

15

p0 :
¬ goalstart

p1 :
¬ goal

p2 :
¬ goal

p3 :
goal¬ find number

find number dial number

¬ dial number

press call button

¬ press call button

True

(a) The model used to verify the first-layer steps.

p0 :
¬ goalstart

p1 :
¬ goal

p2 :
¬ goal

p3 :
goal¬ enter country code

enter
country

code
enter area code

¬ enter area code

enter phone number

¬ enter phone number

True

(b) The model used to verify the substeps for “dialing a number”.

Figure 7: we use the models to verify the FSA for the task “making a phone call with a cellphone”.
For both models, we have a specification Φ = ♢ goal.

In both cases, the controller C from Figure 7 passes the verification step. This example demon-
strates that first-layer and second-layer substeps (and more broadly, substeps at any layer of a task
hierarchy) can be verified independently against separate models and specifications.

16

	Introduction
	Related Work
	Preliminaries
	Methodology
	Verification and Refinement
	Experimental Results
	Conclusions
	Additional Background and Definitions
	Additional Explanations on GLM2FSA
	Additional Explanations on Transition Rules
	Additional Examples of Controller Construction
	Additional Examples of Controller Verification

