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ABSTRACT

Motivated by the problem of fast processing of attention matrices, we study fast
algorithms for computing matrix-vector products for asymmetric Gaussian Kernel
matrices K ∈ Rn×n. K’s columns are indexed by a set of n keys k1, k2 . . . , kn ∈
Rd, rows by a set of n queries q1, q2, . . . , qn ∈ Rd, and its i, j entry is Kij =

e−∥qi−kj∥2
2/2σ

2

for some bandwidth parameter σ > 0. Given a vector x ∈ Rn

and error parameter ϵ > 0, our task is to output a y ∈ Rn such that ∥Kx −
y∥2 ≤ ϵ∥x∥2 in time subquadratic in n and linear in d. Our algorithms rely
on the following modelling assumption about the matrices K: the sum of the
entries of K scales linearly in n, as opposed to worst case quadratic growth. We
validate this assumption experimentally, for Gaussian kernel matrices encountered
in various settings such as fast attention computation in LLMs. We obtain the first
subquadratic-time algorithm that works under this assumption, for unrestricted
vectors.

1 INTRODUCTION

Linear-algebraic operations on kernel matrices play an important role in machine learning. One of the
most widely used operation computes a product of a Gaussian kernel matrix with another matrix or a
vector. Formally, let k : Rd × Rd → R+ be such that k(x, y) = e−∥x−y∥2

2/2σ for some parameter
σ > 0. The kernel matrix is defined by two sets, keys {k1, k2, . . . , kn} and queries {q1, q2, . . . , qn},
where ki’s and qi’s are elements of Rd. The entries of K are defined as Ki,j = k(qi, kj) for all
i, j ∈ [n]. The computational task is defined as follows: given ki’s, qi’s and x ∈ Rn, compute the
product Kx, or its approximation. In typical applications, both n, d are large but n ≫ d.

The kernel matrix-vector product has many applications in machine learning and artificial intelligence.
For example, if x is the all-ones vector, this operation corresponds to Kernel Density Estimation, a
classic tool in non-parametric statistics, where the kernel function is used to extend the empirical
distribution function over a discrete set of points smoothly to the whole space. More recently, the
problem emerged as a key computational subroutine in transformers (Vaswani et al., 2017). One
of the key computational task in training and inference of transformers is to compute the product
AV , where Ai,j = e⟨qi,kj⟩ is the “attention matrix“ and V consists of d column vectors xi. A recent
paper (Zandieh et al., 2023) gave a reduction that replaces attention matrices with Gaussian kernel
matrices, so that the algorithms for Gaussian kernel matrices could be applied to attention matrices
as well. A fast kernel matrix vector product for Gaussian kernel matrices can then not only be used
for fast attention computation but for other important computational tasks such as investigating the
spectrum of attention matrices quickly by computing its eigenvalues using the kernel noisy power
method presented in the work of Backurs et al. (2021). Thus our motivation is to study the kernel
matrix vector product, rather than solely focus on fast attention computation which is the case in the
works of Zandieh et al. (2023); Han et al. (2023) for example.

A direct algorithm for kernel matrix-vector product takes time O(n2d). The quadratic dependence on
n has been widely identified as a significant bottleneck in many applications, including transform-
ers (Kitaev et al., 2020; Choromanski et al., 2021; Beltagy et al., 2020; Chen et al., 2021; Wang et al.,
2020; Zaheer et al., 2020; Xiong et al., 2021; Zandieh et al., 2023; Han et al., 2023). Unfortunately,
Backurs et al. (2017); Keles et al. (2023); Alman & Song (2023) gave evidence that algorithms that
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compute Kx or AV in time sub-quadratic in n are unlikely to exist for high-precision algorithms
(i.e. algorithms that can achieve 1/poly(n) error in polynomial time), in the worst case. In the low
precision (i.e. algorithms that can achieve 1/poly(log n) error in polynomial time) high dimensional
regime, the work of Backurs et al. (2021) gave a o(n2) time approximate kernel matrix vector product
algorithm, however it could only handle multiplying the matrix with non-negative vectors. This forms
the baseline for our work.

Most of the algorithmic efforts have focused on designing approximation algorithms for the special
cases of matrices which occur in practice. The contributions of these studies1 are two-fold. First,
they identify classes of matrices that accurately model the matrices occurring in practice. Second,
they develop efficient algorithms for the identified classes of matrices.

1.1 OUR RESULTS

In this paper we present a new model for Gaussian kernel matrices that are observed in practice
especially in the context of large language models, and propose improved approximate matrix-vector
multiplication algorithms. Formally, for an error parameter ϵ > 0, keys k1 . . . kn and queries q1 . . . qn
defining K, and a vector x, we want to output a vector y in time o(n2) · poly(d, 1/ϵ) such that
∥Kx− y∥2 ≤ ϵ∥x∥2.

It has been observed in practice that on average over an input sequence of length n, each token in the
sequence has high correlation with only few other tokens. This implies for self-attention, Gaussian
kernel and other similarity matrices there are about n large entries. This motivates our modelling
assumption about Gaussian kernel matrices K:

The ratio of the sum of all except the largest n entries of K (i.e. the sum of the tail of
K) and the sum of the largest n entries of K (i.e. the sum of the head of K) is at most a
constant c > 0 independent of n.

(A)

In Section 4 we validate this assumption for a collection of Gaussian kernel matrices K derived
from attention matrices obtained by running BERT (Devlin et al., 2018) on sentences from Stanford
Question Answering Dataset(Rajpurkar et al., 2016) (Section 4 contains formal details about obtaining
Gaussian kernel matrices from self-attention matrices). For each attention head and layer in BERT,
we compute the head-to-tail ratio as a function of matrix size. Our experiments shows that the
maximum value of this ratio c is at most 4.6, over all sentences, heads, layers and matrix size values.
This confirms the validity of our assumption. We also perform this experiment, as well as additional
experiments on the scaling behaviour of c with the context length on BERT and other language
models such as RoBERTa (Liu, 2019) and GPT (Radford et al., 2018) in the Appendix A.1.

In Section 4 we also investigate a stronger assumption, where (informally) one postulates that there is
a small uniform upper bound on the values of the entries in the tail of the matrix, which is orders
of magnitude smaller than the values of the entries in the head of the matrix.2 This is similar to the
assumption made in Han et al. (2023), though in this paper we consider it in the context of Gaussian
kernel matrices K, not attention matrices. Our experiments indicate that this assumption does not
model matrices K well. Specifically, we show that the median ratio between the smallest entry of the
head (i.e., the nth largest entry of K) and the largest entry of the tail (i.e., the (n+ 1)th largest entry
of K) is very close to 1. In fact, even the median ratio between the nth and (2n)th largest entry is
about 20 in most cases. This demonstrates the usefulness of our assumption, which quantifies the tail
according to the ℓ1 norm, not the ℓ∞ norm. Please refer to Section 4 for precise details.

Our algorithmic result is encapsulated by the following theorem.

Theorem 1.1. Under the assumption that K satisfies A, then in time Õ(dn1.89/ϵ2), the Algorithm 3
APPROXKMV outputs y ∈ Rn such that it satisfies ∥Kx− y∥2 ≤ ϵ∥x∥2 with probability 0.99 3.

The complete algorithm and its proof is presented in Section 3. Crucially, the running time is o(n2).
Prior to our work, subquadratic time algorithms in the high-dimensional regime (i.e. running time
depends polynomially rather than exponentially on d) for kernel matrix-vector multiplication were
not known for general vectors x, see Section 1.2. To summarize, our contributions are as follows:

1See Related work for the overview.
2Note that if this gap is large enough, it implies our assumption.
3Success probability 1− δ can be achieved for any δ > 0, with an additional log(1/δ) factor in the runtime.
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• We put forward a new modelling assumption for kernel matrices;
• On the one hand, we show empirically that our modelling assumption holds for kernel matrices

that arise in modern transformer based language models;
• On the other hand, we show that our modelling assumption provably leads to subquadratic

time algorithms for approximate matrix vector multiplication. As a result, under our modeling
assumption we obtain a sub-quadratic time algorithm for high dimensional approximate kernel-
matrix vector multiplication, that runs for general vectors.

1.2 RELATED WORK

We follow a line of work on hashing-based algorithms for kernel computations on high-dimensional
points, pioneered by Charikar & Siminelakis (2017), and continued in Backurs et al. (2018);
Siminelakis et al. (2019); Backurs et al. (2019); Charikar et al. (2020); Backurs et al. (2021);
Karppa et al. (2022); Zandieh et al. (2023). Starting at the problem of kernel density estimation
(KDE), Charikar & Siminelakis (2017) considered the data structure setting, defined as follows:
Let X be a dataset of points in Rd, and let µ ∈ (0, 1) be a precision parameter (for intuition, it
is instructive to consider µ = 1/n where n = |X|). The goal is to preprocess X so as to enable
efficiently reporting the KDE value 1

|X|
∑

x,y k(x, y) at any incoming query y, as long as the its true
KDE is at least µ. By vanilla uniform sampling, KDE queries can be answered up to relative error
1 + ϵ in time linear in 1/µ, namely O(d/ϵ2µ). Charikar & Siminelakis (2017) showed that, by using
locality sensitive hashing (LSH) (Indyk & Motwani, 1998), it is possible to answer KDE queries in
time O(d/ϵ2µρ) with ρ < 1, which is sublinear in 1/µ. For the Gaussian kernel, currently the best
known value for ρ is ρ = 0.173 + o(1), due to Charikar et al. (2020).

Charikar & Siminelakis (2017) also observed that their techniques can be used for fast algorithms for
estimating the matrix product Kx of a kernel matrix K and a vector x. In Backurs et al. (2021) this
was formalized into an algorithm that, given an n×n kernel matrix K and x ∈ Rn, outputs a vector y
that satisfies ∥Kx− y∥2 ≤ ϵ∥Kx∥2, in time Õ(n1+ρ/ϵ3+2ρ), provided that x has only non-negative
entries. For Gaussian kernel matrices, by plugging the aforementioned bound on ρ from Charikar
et al. (2020), the dependence on n is n1.173+o(1) = o(n2). To our knowledge, this is the only prior
subquadratic time algorithm for kernel matrix-vector multiplication in the high-dimensional (i.e.
when d is very large) regime.

The main limitation of Backurs et al. (2021) is the requirement that x is non-negative. They used their
kernel matrix-vector multiplication algorithm as a subroutine for estimating the top eigenvalue of K,
which based on the classical Perron-Frobenius theorem, allowed them to only deal with non-negative
vectors. However, in many applications, there is no way to enforce the non-negativity of x. Note that
this limitation is inherent to their approach: the error in their approximation guarantee is ϵ∥Kx∥2,
which in general can be zero (if x is in nullspace of K). Thus, in general it may require computing
Kx exactly, which takes time Ω(n2).4

To overcome this, we study the natural approximation guarantee ∥Kx − y∥2 ≤ ϵ∥x∥2 instead of
ϵ∥Kx∥2, see Theorem 1.1. This notion of error is independent of whether x lies in the nullspace of
K or not. This allows us to achieve subquadratic time algorithms without any restrictions, and in
particular removes the non-negativity restriction on x.

Nonetheless, we note that our algorithm improves over Backurs et al. (2021) even for inputs restricted
to their setting, i.e., where x is non-negative. This is true in two senses. First, for such inputs, their
algorithm’s error ϵ∥Kx∥2 is always at least as large as our error, ϵ∥x∥2. This is because K, being a
kernel matrix, has non-negative entries with an all-1s diagonal, hence ∥Kx∥22 = ∥x+(K − I)x∥22 =
∥x∥22 + 2xT (K − I)x + ∥(K − I)x∥22 ≥ ∥x∥22. Second, there are error regimes where even for
non-negative x, their algorithm fails to run in subquadratic time, while ours does so. For example,
consider the case when x is the all ones vector denoted by x = 1n. Then the error incurred by the
algorithm of Backurs et al. (2021) will be ϵ∥K1n∥2 and will run in time O(n1+ρ/ϵ3+2ρ) where
ρ = 0.173 as mentioned previously. Consider the case when K contains one row of all ones and
all other rows are 0, then ϵ∥K1n∥2 = ϵ · n. Thus we would have to re-scale ϵ by n0.5 to achieve

4For example, with kernel matrices, one can essentially realize a zero matrix K0, and also “hide” a single
1-entry in an otherwise zero matrix K1, see, e.g., Backurs et al. (2017). Computing Kx exactly entails
distinguishing between K0 and K1 with high probability, which requires Ω(n2) time.
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our error guarantee of ϵ∥1∥2 = ϵ · n0.5. Thus the runtime of Backurs et al. (2017) will be at least
n1+ρ · (n0.5·(3+2ρ)) = Ω(n2), failing to achieve subquadratic time better than naı̈ve matrix-vector
multiplication. On the other hand our algorithm achieves this guarantee in o(n2) time.

We note that besides LSH, there are other approaches for fast kernel computations that can be used
with the above line of work, like the fast Gauss transform (Greengard & Strain, 1991). While this
also leads to kernel matrix-vector multiplication algorithms with running time subquadratic in n,
the running time depends exponentially on the dimension d of the underlying points {ki, qj} that
define the kernel matrix, and is thus unsuitable for high-dimensional regimes, and particularly for
deep learning models.

1.3 OVERVIEW OF OUR TECHNIQUES

We now give a high level overview of our algorithm, its details with proofs are presented in Section 3.
Recall our goal is the following: given an error parameter ϵ > 0, keys k1 . . . kn and queries q1 . . . qn
defining K, and a vector x, we want to output a vector y such that ∥Kx− y∥2 ≤ ϵ∥x∥2.

Pre Processing x: Firstly since our guarantee is free from the scaling of x, we assume ∥x∥22 = n.
Now we pre-process x to explicitly calculate the contribution of extremely large entries of x to Kx,
since ∥x∥22 = n we can’t have too many extremely large entries in x. Next we round the extremely
small values of x to 0, since the entries are extremely small and entries of K are bounded by 1 this
incurs negligible error. This pre-processing of x is described formally in Section 3.1, and it renders
x’s remaining values to be in a bounded range.

Finding heavy keys: In the next phase for every query qi for i ∈ [n], we will find all the keys kj for
j ∈ [n] such that k(qi, kj) is large. We call such keys “heavy” for query qi. Then we will calculate
exactly the contribution of such heavy keys to (Kx)i for every i ∈ [n]. We will show this can be
done in time o(n2) by first showing that assumption A on K implies we cannot have too many heavy
keys per query on average, coupled with a fast locality sensitive hashing based recovery procedure to
find all heavy keys per query. This is discussed with all details in Section 3.2.

Estimating the contribution of light keys: The final phase of our algorithm will be a random
sampling based procedure to estimate the contribution of all the non-heavy, henceforth light, keys
corresponding to query qi to (Kx)i for all i ∈ [n]. We will uniformly sub-sample each light key with
probability 1/n and calculate the (scaled) contribution of the surviving keys to get a basic unbiased
estimator for the contribution of all light keys. We will show that the variance of this estimator will
depend on the sum of squares of the contribution of every light key to (Kx)i. This variance will also
be the number of repetitions, up to poly(log n, 1/ϵ) factors, we need to do of the basic estimator to
reduce its variance by averaging to within our error bound. Our main innovation is to show that the
number of repetitions for each row, which may potentially be different across rows, can approximated
using a fast Gaussian kernel density estimation primitive. Please refer to Section 3.3 for full details.

2 PRELIMINARIES AND NOTATION

For any integer n > 0 we let [n] to denote the interval {1, 2, . . . , n}. We let 1n ∈ Rn denote the all
ones vector and we use 1E to be the indicator variable for any event E. For any matrix A ∈ Rm×n

for some integers m,n > 0, we denote its i, j entry for any i ∈ [m], j ∈ [n] as Ai,j . We let A[: i, : j]
to be the sub matrix of A that contains first i rows first j columns for any i ∈ [m] and j ∈ [n]. For
any vector x we use ∥x∥2, ∥x∥1 to denote its ℓ2, ℓ1 norms respectively. For any matrix A we use
∥A∥1 to denote the sum of all of its entries. We use Õ(·) to suppress poly(log n) factors.

The first tool we will need in our algorithm are locality sensitive hash (LSH) functions which are used
for solving high-dimensional approximate nearest neighbour search problems (Indyk & Motwani,
1998; Andoni & Indyk, 2008). We first state the following claim about the LSH function of Andoni
& Indyk (2008) stated in a convenient form for us as Claim 19 in Charikar et al. (2020).

Lemma 2.1 (Claim 19 of Charikar et al. (2020)). For any constant α ∈ [0, 1], there exists a family of
hash functions H such that for rnear =

√
2σ2α lnn, the following holds for any rfar ≥ rnear,

1. Ph∼H[h(p) = h(q)] ≥ n−α for any ∥p− q∥2 ≤ rnear.

4
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2. Ph∼H[h(p) = h(q)] ≤ n−c2α(1−o(1)) for all ∥p − q∥2 = rfar and c =

min{(rfar/rnear), log1/7 n} 5.

We will also use recent algorithms for fast Gaussian kernel density estimation (KDE) (Charikar
et al., 2020; Charikar & Siminelakis, 2017; Backurs et al., 2019). In this problem we are given a
dataset P ⊆ Rd containing n points |P | = n, the Gaussian kernel k(p, q) = e−∥p−q∥2

2/2σ
2

for some
bandwidth parameter σ > 0 and p, q ∈ Rd. The goal is to preprocess the dataset to create a data
structure such that at the query phase when given a query q ∈ Rd, the data structure can approximate
(
∑

p∈P k(p, q))/n up to 1± β relative error in time o(n). We will use the following fast Gaussian
KDE result of Charikar et al. (2020).

Theorem 2.2 (Theorem 2 of Charikar et al. (2020)). Suppose we are given a set of n points P ⊆ Rd

and parameters β, µ > 0. For any point q ∈ Rd let µ(q) = (
∑n

i=1 e
−∥ki−q∥2

2/2σ
2

)/n. Then there
exists a data-structure with pre-processing time O((β−2dn/µ0.173) · log(1/δ)), such that for any
query q the data structure can output an approximation to µ(q) · 1{µ(q)≥µ} up to 1± β relative error
in time O((β−2d/µ0.173) · log(1/δ)) and success probability 1− δ.

3 ALGORITHM

The goal of this section is to describe the main algorithm and prove Theorem 1.1. We will go about
proving this using intermediate building blocks. We will work the following convenient re-phrasing
of our Assumption A - the assumption says that if we denote K as our Gaussian kernel matrix then
∥K∥1 minus the sum of the largest n entries of K is at most a constant times the sum of the largest n
entries of K, thus ∥K∥1 is at most a constant times the sum of the largest n entries of K. Since each
entry in K is bounded by 1, the assumption directly implies that ∥K∥1 = O(n).

3.1 PRE PROCESSING x

This section describes a convenient pre-processing of x, starting with the following notation.

Definition 3.1. Let γ ∈ [0, 1] be a threshold. Define the following subsets of [n] as follows,

H1 = {j ∈ [n] : x2
j ≥ nγ}, H2 = {j ∈ [n] : x2

j ≤ n−4}, H = H1 ∪H2, and T = [n] \H.

Let yH , yT ∈ Rn be defined as follows, (yH)i =
∑

j∈H1
k(qi, kj)xj and (yT )i =∑

j∈T k(qi, kj)xj for all i ∈ [n].

We now state the following lemma which says that yH + yT are a good approximation of Kx and
yH can be computed in o(n2) time. Its proof is provided in Appendix A.

Lemma 3.2. In time O(d · n2−γ) we can output the set H and vector yH . Moreover ∥Kx− (yH +
yT )∥2 ≤ ϵ∥x∥2.

3.2 FINDING HEAVY KEYS

The next objective is to approximate yT . The goal of this section is to give the algorithm that
explicitly finds for all queries qi for i ∈ [n], the set of all keys kj which have a large contribution to∑

j∈T xjk(qi, kj). We call such keys “heavy” and we now formally define them.

Definition 3.3. Let α ∈ [0, 1] be a threshold. Consider any i ∈ [n]. For query qi define the set of
“heavy” keys Si = {j ∈ [n] : k(qi, kj) ≥ n−α}.

We now state the main lemma which says that we can find the set of heavy keys for all rows in o(n2)
time, its proof is in Appendix A. The pseudocode of the algorithm is presented in Algorithm 1.

Lemma 3.4. In time Õ(d · n1+2α) Algorithm 1 FINDHEAVY returns all the sets Si for i ∈ [n]. The
algorithm succeeds with probability 0.99.

5The o(1) factor in the exponent in the far collision probability is O(log logn/ log1/3 n), and it is justified
as long as c = O(log1/7 n).
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Algorithm 1: FINDHEAVY

1: Input: Keys k1, k2, . . . , kn, Queries q1, q2, . . . , qn threshold α > 0.
2: Output: Sets Si for all i ∈ [n] as per Lemma 3.4.
3: Let T = 10nα log n.
4: Let H be an Hash family as per Lemma 2.1.
5: Sample T i.i.d. h1, . . . , hT ∼ H. Hash entire dataset using these T hash functions.
6: for i ∈ [n] do
7: Scan all the buckets ht(xi) for all t ∈ [T ] and return all points in

Si = {x ∈ P : k(x, xi) ≥ n−α}.
8: end for

3.3 ESTIMATING CONTRIBUTION OF LIGHT KEYS

After finding Si, what remains is approximating
∑

j∈T\Si
k(qi, kj)xj for all i ∈ [n] up to additive

error ϵ. This is the main goal of this section formalized in the lemma below, its full proof is in
Appendix A.

Lemma 3.5. In time Õ(d · (n2+γ−α + n1.78+γ/ϵ2)) Algorithm 2 APPROXLIGHT, when executed
on sets Si for i ∈ [n] as per Lemma 3.4 and set T , returns a vector z ∈ Rn which satisfies
|zi −

∑
j∈T\Si

k(qi, kj)xj | ≤ ϵ for all i ∈ [n] with probability 0.99.

Algorithm 2: APPROXLIGHT

1: Input: Keys k1, k2, . . . , kn, Queries q1, q2, . . . , qn, vector x, parameters α, γ, ϵ > 0, set T and
sets Si for all i ∈ [n].

2: Output: A vector z ∈ Rn as per Lemma 3.5.
3: Let Bm = {j ∈ T : x2

j ∈ [(1 + ϵ)m−1, (1 + ϵ)m]} for m ∈ [−4 log1+ϵ(n), γ log1+ϵ(n)].
4: For every m and j ∈ Bm let x2

j = (1 + ϵ)m.
5: For every Bm create a data structure as per Lemma 2.2 with data set {kj : j ∈ Bm}, error

parameter n−0.218, µ = ϵ2/(n log2(n)(1 + ϵ)m|Bm|), δ = 1/n2, and kernel function k2(·, ·).
6: for i ∈ [n] do
7: Let ti be the data structure output for query qi, and let

si = ti −
∑

j∈Si
x2
jk(qi, kj)

2 + n−0.218ti.
8: Sub-sample every key in T \ Si with probability 1/n, and sum n · xjk(qi, kj) for every

surviving key kj .
9: Take average of 10nsi/ϵ2 such repetitions, then median of 10 log n such averages.

10: Set zi to be this median.
11: end for
12: Return z.

We now have all the parts to state the proof of our main theorem, Theorem 1.1. The pseudocode of
the complete algorithm is presented in Algorithm 3 APPROXKMV.

Proof of Theorem 1.1. We first use Lemma 3.2 to estimate yH in time O(d · n2−γ). We then let
T = [n] \ H . Next, we run Algorithm 1 FINDHEAVY to find sets Si for all i ∈ [n]. Its cor-
rectness is guaranteed by Lemma 3.4, and it runs in time Õ(d · n1+2α). Finally we run Algo-
rithm 2 APPROXLIGHT on the set T and sets Si for all i ∈ [n], to obtain the vector z in time
Õ(d · (n2+γ−α + n1.78+γ/ϵ2)). z satisfies the guarantees as per Lemma 3.5. We then define the
vector ỹT ∈ Rn as follows, (ỹT )i = zi +

∑
j∈Si

k(qi, kj)xj for all i ∈ [n] and let y = ỹT + yH .
Thus we get that ∥Kx − y∥2 ≤ ∥Kx − yH − yT ∥2 + ∥ỹT − yT ∥2 ≤ 2ϵ∥x∥2, where we used the
fact that |(ỹT )i − (yT )i| = |zi −

∑
i∈T\Si

k(qi, kj)xj | ≤ ϵ for all i ∈ [n]. We scale down ϵ by 2
and set γ = 0.109, α = 1/3 to balance the exponents in the runtime, to obtain the overall runtime of
Õ(dn1.89/ϵ2). A union bound over success probabilities gives the final success probability.
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Algorithm 3: APPROXKMV
1: Input: Keys k1, k2, . . . , kn, Queries q1, q2, . . . , qn, vector x, parameter ϵ > 0.
2: Output: A vector y ∈ Rn such that ∥Kx− y∥2 ≤ ϵ∥x∥2.
3: Let H ⊆ [n] and yH ∈ Rn be the output of Lemma 3.2 for γ = 0.109. Let T = [n] \H .
4: Let Si for all i ∈ [n] be the output of Algorithm 1 FINDHEAVY when executed for α = 1/3.
5: Let z ∈ Rn be the output of Algorithm 2 APPROXLIGHT when executed for set T , sets Si

∀i ∈ [n], γ = 0.109, α = 1/3 and ϵ.
6: Output the vector y ∈ Rn defined as yi = zi + (yH)i +

∑
j∈Si

k(qi, kj)xj .

4 EMPIRICAL VALIDATION OF OUR MODEL

In this section we empirically evaluate our modelling assumption on the Gaussian matrices observed
in the context of fast attention computation for transformer models. We start by introducing our main
computation problem of interest: multiplying the dot product self-attention matrix by a vector, an
operation that naturally arises in widely used Transformer models (Vaswani et al., 2017). Consider
a sequence of n tokens. For each token i there is key, query and value embedding denoted by
ki, qi, vi ∈ Rd respectively, for all i ∈ [n]. We use Q,K, V ∈ Rn×d to denote the query and
key matrices whose ith rows are qi, ki, vi respectively for all i ∈ [n]. Let A to denote the n × n

un-normalized attention matrix whose (i, j)th entry is e⟨qi,kj⟩/
√
d for all (i, j) ∈ [n] × [n]. Thus

A = exp(QKT /
√
d) where exp(.) is entry wise exponentiation. Let D = diag(A1n) denote the

diagonal matrix containing the row sums of A on the corresponding diagonal entry. The main
computational problem in self-attention is to compute D−1AV , which naively takes Ω(n2 · d) time.

Consider the computational problem of computing the matrix-vector product Ax for an arbitrary
vector x ∈ Rn. When x = 1n, the all ones vector, then A1n will be the vector of row sums and
thus can be used to compute the diagonal scaling matrix D = diag(A1n). Finally for the value
embedding of each token vi we can compute Avi for all i ∈ [n] to compute AV . We will now use
the following lemma to reduce this problem to an instance of the problem we study - Gaussian kernel
matrix-vector computation. Its proof is provided in Appendix A. We note that a similar reduction
from attention matrices to Gaussian kernel matrices was presented in Zandieh et al. (2023); the new
reduction we give here is preferable, as it has better precision guarantees, and is also independent of
the vector x being multiplied with the attention matrix (thus, our reduction need only be performed
once per matrix, rather than once per matrix-vector pair as in Zandieh et al. (2023)).
Lemma 4.1. For any collection of vectors {ki}ni=1, {qi}ni=1 ⊆ Rd, there exists a corresponding
collection of vectors {k′i}ni=1, {q′i}ni=1 ⊆ Rd+1 such that for any vector x ∈ Rn,∑

j∈[n]

xje
⟨qi,kj⟩√

d = e∥qi∥
2
2 · emaxj∈[n] ∥kj∥2

2 ·
∑
j∈[n]

xje
−

∥q′i−k′
j∥

2
2

2
√

d ∀i ∈ [n].

This lemma and the discussion preceding it imply that we can use a Gaussian kernel matrix vector
multiplication algorithm to calculate Ax for any arbitrary x ∈ Rn.

We formalize the modelling assumption A and state it as follows,

For a set of n keys and queries {ki}ni=1, {qi}ni=1 ⊆ Rd, consider the self-attention matrix
A ∈ Rn×n defined as Ai,j = e⟨qi,kj⟩/

√
d for all i, j ∈ [n]. Let {k′i}ni=1, {q′i}ni=1 ⊆

Rd+1 be the set of keys and queries obtained after applying the reduction of Lemma
4.1, and K ∈ Rn×n be the Gaussian kernel matrix obtained from them defined as
Ki,j = e−∥q′i−k′

j∥
2
2/2

√
d. Then the ratio of ∥K∥1 minus the sum of the top n entries of

K and the sum of the top n entries of K is at most a constant c > 0 independent of n.

(A)

To validate this assumption experimentally, we proceed as follows:

• we take attention matrices computed in practice by a Transformer model on real data;
• for each attention matrix and its associated keys and queries computed by the model, we apply the

reduction of Lemma 4.1 to obtain a Gaussian kernel matrix;
• we verify our assumption (A) for this Gaussian kernel matrix.
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Evaluation methodology: We consider a pre-trained BERT base (uncased) model (Devlin et al.,
2018), which is a transformer based model pre-trained on a large corpus of English data. We use
the Huggingface transformers library for our experiments (Wolf et al., 2019). This model has 12
layers with 12 self-attention heads per each layer. We then obtain the attention matrices from this
model as follows - We consider all sentences obtained from responses of all questions in the public
Stanford Question Answering Dataset (SQuAD) dataset (Rajpurkar et al., 2016). Our experiments
are performed on the Google colaboratory platform’s free tier version. For each sentence we use
the tokenizer used in the BERT pre-training to tokenize the sentence. Then we feed this sequence
of tokens into BERT and inspect all the self-attention activations across each layer. Our code is in
the supplementary material. We also present additional experimental evaluation on other models
RoBERTa (Liu, 2019) and GPT (Radford et al., 2018) in the appendix Section A.1.

Fix a sentence, suppose it has n tokens after tokenization, and pass it through BERT. Then fix a layer
and an attention head in that layer. We obtain the key and query embeddings {ki, qi} produced by
this attention head. Then we use the reduction of Lemma 4.1 to produce the modified set of keys
and queries {k′i, q′i} that we use to construct a Gaussian kernel matrix denoted by K ∈ Rn×n as
described in A. To demonstrate Assumption A, we consider all principal sub matrices of K. More
specifically, we consider K[: i, : i] for i ∈ [50, n]. This is natural for studying how our model scales
with input sequence length as K[: i, : i] is the kernel matrix obtained from the prefix of the input
sequence containing the first i tokens. We choose a min prefix length of 50 so as to start observing
asymptotic behavior. The maximum n goes up to is 512, the max context length of BERT.

Experiment (i). For a prefix length i ∈ [50, n], we compute the sum of the top i largest entries in
K[: i, : i] denoted by ai and we compute the sum of the remaining i2 − i entries in K[: i, : i] which
will be ∥K[: i, : i]∥1 − ai. We then compute the max of (∥K[: i, : i]∥1 − ai)/ai over all i ∈ [n].
We then take the max of maxi∈[n](∥K[: i, : i]∥1 − ai)/ai over every sentence in the collection of
sentences we consider. We thus get an accumulated max ratio over all sentences for each head and
each layer. Figure 1 lists these accumulated max ratios per layer per attention head.

Figure 1: Statistics of max ratios.

Experiment (ii). Next, we consider a set of experiments to show that the large values in the reduced
Gaussian kernel matrices after the removal of the largest n elements, are comparable to the values in
the largest n elements.

We consider the same collection of sentences from the entire SQuAD dataset as before. We fix a
sentence, with number of tokens denoted by n after tokenization, and pass it through BERT. Then
for each layer and each head we extract the key and query embeddings and construct the reduced
Gaussian kernel matrix K using Lemma 4.1. Then we calculate the ratio of the nth and 2nth largest
as well as of the nth and (n+ 1)th largest entries of K, and take the median of these ratio across all
all sentences. Thus we get two median ratios per head per layer. Figure 3 shows a visualization of
these median ratios the reduced Gaussian kernel matrices.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Median ratio of nth and 2nth largest. (b) Median ratio of nth and (n+ 1)th largest.

Figure 2: Statistics of ratio of nth largest with 2nth and (n+ 1)th largest entries.

4.1 RESULTS

Experiment (i): From inspecting the numbers in Figure 1 across all 12 layers and 12 heads per layer,
we observe that all of these are less than 4.6, and often significantly smaller. We interpret this as
strong evidence that the constant c in Assumption (A) is small, thus validating our model.

Experiment (ii): From Figure 3a we observe that for most of the attention heads, the median ratio of
nth and 2nth largest entries of the reduced Gaussian kernel matrices is about 20 or less 6. This implies
that in most cases, the nth largest and the 2nth largest entries have comparable value. Moreover
from Figure 2b we observe that for almost all attention heads, the median ratio of nth and (n+ 1)th

largest is about 1. The implication of this result is that we cannot rely on the strong assumption, that
after the removal of the largest n entries, there is small uniform upper bound on the values of the
remaining entries on the matrices we study. We interpret this as further motivation for our assumption
(A), which only assumes total sum of entries in the largest n entries and the sum of the remaining
entries after removing the largest n is comparable.

5 CONCLUSION

In this paper we study fast algorithms for approximate Gaussian kernel matrix vector multiplication
motivated by the problem of fast processing of attention matrices encountered in modern language
models.

Our results are two fold, first we do an empirical study of Gaussian kernel matrices derived from
attention matrices in the context of fast attention computation using pre-trained language models to
arrive at a modelling assumption that the sum of all but the largest n entries of the Gaussian kernel
matrix is comparable to the sum of the largest n entries. This modelling assumption implies the
sum of entries of the whole matrix scales linearly in the matrix dimension as opposed to worst case
quadratic growth.

Our second contribution is to design a provable approximate matrix vector multiplication algorithm
for these class of matrices that runs in time subquadratic in the matrix dimension. Our algorithm is
not only faster than previous algorithms but also can handle multiplying the matrix with vectors that
can have negative entries, which was not possible with previous algorithms.

A limitation of our work is that our algorithms operate under a structural assumption on the input
matrices—namely, of the linear growth of the sum of the entries in the matrix K. Although we
provide an empirical validation of this assumption, the set of matrices occurring in practice is very
rich, and no assumption will model such matrices perfectly.

6The blank white entries correspond to infinite entries due to a division by 0.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Communications of the ACM, 51(1):117–122, 2008.

Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of empirical risk
minimization: Kernel methods and neural networks. Advances in Neural Information Processing
Systems, 30, 2017.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation for
smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science, pp.
615–626, 2018.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation in
high dimensions. Advances in neural information processing systems, 32, 2019.

Arturs Backurs, Piotr Indyk, Cameron Musco, and Tal Wagner. Faster kernel matrix algebra via
density estimation. In International Conference on Machine Learning, pp. 500–510. PMLR, 2021.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science, pp. 1032–1043.
IEEE, 2017.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science, pp. 172–183. IEEE, 2020.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. In Advances in Neural Information Processing Systems, 2021.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In International Conference on Learning Representations, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Leslie Greengard and John Strain. The fast Gauss transform. SIAM Journal on Scientific and
Statistical Computing, 12(1):79–94, 1991.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Conference
on Learning Representations, 2023.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Matti Karppa, Martin Aumüller, and Rasmus Pagh. Deann: Speeding up kernel-density estimation
using approximate nearest neighbor search. In International Conference on Artificial Intelligence
and Statistics, pp. 3108–3137. PMLR, 2022.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

10

http://arxiv.org/abs/1810.04805


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. OpenAI Blog, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1264. URL https://aclanthology.org/D16-1264.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Rehashing kernel
evaluation in high dimensions. In International Conference on Machine Learning, pp. 5789–5798,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

We consider the same experimental setup for two additional models, RoBERTa (Liu, 2019), which
builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective
and training with much larger mini-batches and learning rates, and GPT-1 model by OpenAI (Radford
et al., 2018). Again we use the Huggingface transformers library (Wolf et al., 2019) for loading
the pre-trained models and we consider their default configurations in the library - both of these
models have configuration of 12 layers with 12 self-attention heads per each layer and max context
length 512. We consider all sentences obtained from responses of all questions in the public Stanford
Question Answering Dataset (SQuAD) dataset (Rajpurkar et al., 2016).

For each sentence we use the corresponding Huggingface tokenizer to tokenize the sentence. Then
we feed this sequence of tokens into the model and inspect all the self-attention activations across
each layer.
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A.1.1 SETUP

Fix a sentence, suppose it has n tokens after tokenization, and pass it through the model. Then fix a
layer and an attention head in that layer. We obtain the key and query embeddings {ki, qi} produced
by this attention head. Then we use the reduction of Lemma 4.1 to produce the modified set of keys
and queries {k′i, q′i} that we use to construct a Gaussian kernel matrix denoted by K ∈ Rn×n as
described in A. To demonstrate Assumption A, we consider all principal sub matrices of K. More
specifically, we consider K[: i, : i] for i ∈ [50, n]. This is natural for studying how our model scales
with input sequence length as K[: i, : i] is the kernel matrix obtained from the prefix of the input
sequence containing the first i tokens. We choose a min prefix length of 50 so as to start observing
asymptotic behavior. The maximum n goes up to is 512, the max context length of each model.

A.1.2 STATISTICS OF MAX RATIOS

For a prefix length i ∈ [50, n], we compute the sum of the top i largest entries in K[: i, : i] denoted by
ai and we compute the sum of the remaining i2−i entries in K[: i, : i] which will be ∥K[: i, : i]∥1−ai.
We then compute the max of (∥K[: i, : i]∥1 − ai)/ai over all i ∈ [n]. We then take the max of
maxi∈[n](∥K[: i, : i]∥1 − ai)/ai over every sentence in the collection of sentences we consider. We
thus get an accumulated max ratio over all sentences for each head and each layer. Figure 3 lists these
accumulated max ratios per layer per attention head for both RoBERTa and GPT-1.

(a) Max ratio heatmap for GPT-1. (b) Max ratio heatmap for RoBERTa.

Figure 3: Statistics of max ratios.

From inspecting the numbers in Figure 3 across all 12 layers and 12 heads per layer, we observe that
all of these are less than 5.15 for GPT and 5.39 for RoBERTa, and often significantly smaller. We
interpret this as further evidence that the constant c in Assumption (A) is small, thus validating our
model.

A.1.3 SCALING OF THE CONSTANT c WITH CONTEXT LENGTH

We perform additional experiments to validate our hypothesis that the constant c in Assumption
A does not scale increasingly with the context length. For each of the considered models, BERT
RoBERTa and GPT, we consider the following experiment.

Recall the setup of Section A.1.1. We consider context lengths starting from 50 to 512 in increments
of 50. Then for each context length i in this list, we again let ai be the sum of entries in K[: i, : i]
and compute the max over (∥K[: i, : i]∥1 − ai)/ai across all layers and heads, and then take the
average and standard deviation of this over all sentences in the dataset. Thus for each context length
i from 50 to 512 in increments of 50, we obtain a max ratio across all layers, heads and sentence
prefixes of length i in the dataset. The maximum is over all sentences that are of length at least i after
tokenization. We plot these averages with standard deviations as the width of the error bars on the y
axis and the context length on the x axis in Figure 4. We can interpret from the figures that the value
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of c stays constant within a range of the figures as strong evidence for our modeling assumption that
c stays constant with the sequence length.

(a) Scaling of c for BERT. (b) Scaling of c for RoBERTa. (c) Scaling of c for GPT.

Figure 4: Scaling of c with context length.

A.2 FULL PROOFS

In the appendix we provide the full proofs of Lemmas 3.2,3.4, 3.5 and 4.1.

Proof of Lemma 3.2. Since we know that
∑

j∈[n] x
2
j = n, a simple Markov bound implies that

|H1| ≤ n1−γ . Corresponding to the entries in H1 we explicitly calculate yH using its definition in
Definition 3.1. To do this we need to explicitly calculate n · |H1| entries of K, which takes time
n · |H1| ·O(d) = O(d · n2−γ).

Next, since each entry in the matrix K has value at most 1, we have that (Kx − yH − yT )i ≤
n · n−4 = n−3 for all i ∈ [n]. Thus ∥Kx− yH − yT ∥2 ≤ n−3 ·

√
n ≤ ϵ∥x∥2 since ϵ = Θ(1) and

∥x∥2 =
√
n.

Proof of Lemma 3.4. Fix any query qi for i ∈ [n] and let µi = (
∑n

j=1 k(qi, kj))/n, thus using a
Markov bound we get the following,

|Si| ≤ nα · (nµi) = n1+αµi.

Consider T = 10nα log n independent LSH hash functions h1, . . . , hT ∼ H as per Lemma 2.1.
Then for any key kj for j ∈ Si we have the following,

P[∃t ∈ [T ] s.t. ht(qi) = ht(kj)] = 1− (1− 1/nα)10n
α logn ≥ 1− 1/n10.

Taking union bound over all rows i ∈ [n] and at most n heavy points per row, we get that with
probability at least 1− 1/n, Si can be recovered during query time by scanning the buckets that qi
hash to for all i ∈ [n].

Now for any i ∈ [n] let Li,m = {j ∈ [n] : k(qi, kj) ∈ [2−m, 2−m+1]} for m ∈ {α log n, log(1/µi)}
and let Li =

⋃log 1/µi

m=α logn Li,m. Then again by a Markov argument we know that |Li,m| ≤ 2mnµi for
all i ∈ [n]. Note that for any independent copy of the LSH hash function ht we have the following
for all j ∈ Li,m

P[ht(qi) = ht(kj)] ≤ n−α(1−o(1))·m ln 2
α lnn = 2−m(1−o(1)).

Thus by linearity of expectation we have that

E[|{j ∈ Li,m : ht(qi) = ht(kj)}|] ≤ |Li,m|2−m(1−o(1)) ≤ 2n1+o(1)µi

for all j. Thus again by linearity of expectation this implies that

E[|{j ∈ Li : ∃t ∈ [T ] s.t. ht(qi) = ht(kj)}|] ≤ Õ(n1+α+o(1)µi).

Thus we get that in expectation the number of non-heavy points across all rows that we may have to
scan due to collision is at most

∑n
i=1 Õ(n1+α+o(1)µi) = Õ(n1+α) since

∑n
i=1 µi = 1

TK1/n =
O(1). This also holds with probability at least 0.99 due to Markov’s inequality.
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This implies that in time n · T = Õ(n1+α) we can hash all keys during pre-processing. Then for
every row i, we can scan all the buckets that query qi hashes to across all repetitions and return the
union of all keys kj landing in the same bucket as qi satisfying k(qi, kj) ≥ n−α. As per our previous
discussion we get that with probability 0.99, this scan will take us time

T ·
n∑

i=1

(|Si|) + Õ(n1+α+o(1)) = Õ(n1+2α)

and we will recover Si for all i ∈ [n]. For every row i, we will brute force calculate
∑

j∈Si
xjk(qi, kj)

and this will take us overall time
n∑

i=1

|Si| ≤ n1+α
n∑

i=1

µi = Õ(n1+α). (1)

Next we present the proof of Lemma 3.5

Proof of Lemma 3.5. Let Li = T \ Si for every i ∈ [n]. Let Kij be the i, j element of K, and let Ki

denote the ith row of K. For each row i, we will sub-sample every key in Li with probability 1/n
(This can be done by sub-sampling every key with probability 1/n and only retaining those keys with
index in Li). Thus define the following random variable Xij = n · xjKij with probability 1/n and
0 otherwise, thus E[

∑
j∈Li

Xij ] =
∑

j∈Li
xjKij . Thus V ar(Xij) ≤ (n · xjKij)

2/n = n · x2
jK

2
ij .

Thus V ar(
∑

j∈Li
Xij) ≤ n · (

∑
j∈Li

x2
jK

2
ij). Thus by Chebyshev’s inequality

∑
j∈Li

Xij =∑
j∈Li

xjKij±ϵ with probability 0.9 for any fixed i if we take the average of 10n·(
∑

j∈Li
x2
jK

2
ij/ϵ

2)

independent repetitions of
∑

j∈Li
Xij . If we take the median of 10 log(n) independent repetitions,

then by Chernoff bound we get an estimator that is within
∑

j∈Li
xjKij±ϵ with probability 1−1/10n.

Now by a union bound this holds for all rows with probability 0.9. The expected number of samples
taken across all rows is

10 log n
∑
i∈[n]

n

∑
j∈Li

x2
jK

2
ij/ϵ

2

 = Õ

n1+γ

ϵ2

∑
i∈[n]

∑
j∈Li

K2
ij

 .

It can be seen that under the constraint that all Kij ≤ n−α ∀j ∈ Li and ∥K∥1 = O(n),∑
i∈[n]

∑
j∈Li

K2
ij ≤ n−α

∑
i∈[n]

∑
j∈Li

Kij = O(n1−α).

Plugging this back into the expression on the expected number of samples across all rows and
applying Markov’s inequality, we get that with probability at least 0.99 the total amount of samples
taken is

Õ(n2+γ−α/ϵ2). (2)
What remains to estimate

∑
j∈Li

x2
jK

2
ij for each row i ∈ [n] to get the number of times we need to

repeat the estimator for averaging to reduce the variance. We will do this using a KDE data structure
to estimate

∑
j∈T x2

jK
2
ij and subtracting

∑
j∈Si

x2
jK

2
ij explicitly from the estimate for each i ∈ [n].

We will do this as follows. Let β ∈ [0, 1] be a parameter. We will first do a convenient bucketing of
entries in x.
Rounding: First we will round the entries of x2

j to the nearest powers of (1 + ϵ)m for integers m
in [−4 log1+ϵ(n), γ log1+ϵ(n)]. This covers all x2

j ∈ [n−4, nγ ], thus all j ∈ T . Let Bm = {j ∈
T : x2

j ∈ [(1 + ϵ)m−1, (1 + ϵ)m]}. For every m ∈ [−4 log1+ϵ(n), γ log1+ϵ(n)] and j ∈ Bm let
x2
j = (1 + ϵ)m. This implies the following for all i ∈ [n],∑

j∈T

K2
ijx

2
j −

∑
j∈T

K2
ijx

2
j ≤ 2ϵ

∑
j∈T

K2
ijx

2
j .

Estimation within each bucket: Fix an m ∈ [−4 log1+ϵ(n), γ log1+ϵ(n)] . Note that since ∥x∥22 = n
and for each j ∈ Bm we have that x2

j ≥ (1 + ϵ)m, we have that |Bm| ≤ n/(1 + ϵ)m. Now for every
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Bm we will create a Gaussian KDE data structure with data set as {kj : j ∈ Bm}, relative error
parameter of n−β , failure probability δ = 1/n2, and a KDE lower bound of ϵ2

n log2(n)(1+ϵ)m|Bm| .
This lower bound satisfies the following from the bound on the size of Bm,

ϵ2

n log2(n)(1 + ϵ)m|Bm|
≥ ϵ2

n2 log2(n)
.

Thus, the KDE data structure can be created and queried n times in time Õ(dn·(n2/ϵ2)0.173/n−2β) =

Õ(dn1.346+2β/ϵ0.346). This setting of the KDE lower bound implies that if for any row i ∈ [n], the
KDE value corresponding to this bucket is less than this lower bound then its contribution is at most∑

j∈Bm

xjKij ≤
√
n ·

∑
j∈Bm

x2
jK

2
ij

≤

√
n · (1 + ϵ)m+1|Bm| · ϵ2

n log2(n)(1 + ϵ)m|Bm|

≤ ϵ

log n
.

This implies that since there are at most O(log n) many buckets, ignoring the contribution of buckets
with KDE smaller than the corresponding lower bound results in an additive error of ϵ in the end.

Thus without loss of generality we will assume that all buckets contributing to
∑

j∈T x2
jK

2
ij for

i ∈ [n] have contribution above the corresponding KDE lower bound. This implies in time
Õ(dn1.346+2β/ϵ0.346) we can output an estimate ti satisfying the following for all i ∈ [n],∑

j∈T

x2
jK

2
ij ≤ ti ≤

∑
j∈T

x2
jK

2
ij + n−β

∑
j∈T

x2
jK

2
ij .

We will use ti −
∑

j∈Si
x2
jK

2
ij + n−βti as an estimate of

∑
j∈Li

x2
jK

2
ij . This is clearly an over

estimate of
∑

j∈Li
x2
jK

2
ij from the guarantee on ti, and the over-estimation error will just lead to

oversampling in the previous discussion. The additional number of samples we will take due to this
oversampling due to the error is

Õ((n/ϵ2) · n−β
∑
i∈[n]

∑
j∈T

xjK
2
ij) = Õ((n1−β+γ/ϵ2) ·

∑
i∈[n]

∑
j∈T

K2
ij).

Now we know that since Kij ≤ 1 for all entries in K, we have that
∑

i∈[n]

∑
j∈T K2

ij ≤∑
i,j∈[n] Kij = O(n). Thus overall the additional number samples needed due to oversampling

caused by estimation error is Õ(n2+γ−β/ϵ2) Thus combining this additional additive oversampling
factor with the sample complexity bound of the equation 2, we get that the total sample complexity is

Õ(n2+γ−α + n2+γ−β/ϵ2). (3)

The total time to estimate the sampling probabilities is Õ(dn1.346+2β/ϵ0.346). Balancing this with
O(n2+γ−β/ϵ2) we set β = 0.218. Plugging in these values, the overall runtime is Õ(d(n2+γ−α +
n1.78+γ/ϵ2)).

We finally state the proof of Lemma 4.1.

Proof of Lemma 4.1. Let α = −maxj∈[n] ∥kj∥22 and let wj =
√
(−∥kj∥22 + α) for all j ∈ [n].

Append wj and 0 as (d+ 1)th coordinates to kj and qj respectively to obtain k′j , q
′
j ∈ Rd+1. Then

we can observe the following,

e
−

∥q′i−k′
j∥

2
2

2
√

d = e
∥qi−kj∥

2
2

2
√

d
−

w2
j

2
√

d

= e
− ∥qi∥

2
2

2
√

d · e−
maxj∈[n] ∥kj∥

2
2

2
√

d · e
⟨qi,kj⟩√

d .

Multiplying this with xj and summing up over all j ∈ [n], we finish the proof of the lemma.
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