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ABSTRACT

Low-rank fine-tuning is widely applied for the effective adaptation of large models.
Most existing methods rely on low-rank matrix factorization, whose performance is
limited by the condition number of the associated Jacobi operator. Although these
methods are computationally efficient, their performance still falls short compared
to full fine-tuning. To address this, we propose SoLoRA, which leverages an
adaptive metric to find a low-rank approximation of the full fine-tuning gradient.
This low-rank approximation can be viewed as an approximation of Hessian,
effectively incorporating second-order information to achieve faster convergence
and higher optimization efficiency. Furthermore, the low-rank approximation in
SoLoRA is computationally simple and easy to implement, achieving a close
approximation to the performance of full fine-tuning with almost no additional
computational overhead. We conduct fine-tuning experiments on large language
models and diffusion models, and the results consistently demonstrate that SoLoRA
achieves superior performance advantages over state-of-the-art low-rank fine-tuning
methods.

1 INTRODUCTION

Large language models (LLMs) (Liu et al., 2024a; Yang et al., 2024) and vision-language mod-
els (Achiam et al., 2023) have demonstrated outstanding performance in various applications, such
as chatbot, image generation, and editing. With their strong generalization capabilities and ver-
satility, they have been widely adopted for a range of downstream tasks.To better adapt LLMs to
specific downstream tasks, it is often necessary to fine-tune their parameters. However, full fine-
tuning is evidently expensive, incurring significant computational and storage costs. To address this,
parameter-efficient fine-tuning (PEFT) has emerged to reduce the overhead of fine-tuning.

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a representative PEFT method. It assumes that
weight updates during fine-tuning exhibit a low “intrinsic rank”. By freezing the pretrained weights
and introducing two low-rank matrices, B ∈ Rm×r and A ∈ Rr×n, for updates, LoRA reduces the
number of trainable parameters. Compared to full fine-tuning, the number of trainable parameters in
LoRA is O((m+n)r), where r ≪ {m,n}, significantly lowering the number of trainable parameters,
memory consumption, and fine-tuning costs. Owing to these advantages, LoRA and its numerous
variants (Hu et al., 2022; Hayou et al., 2024; Zhang and Pilanci, 2024; Wang et al., 2024; Zhao et al.,
2024; Zhu et al., 2024; Wang et al., 2025; Mo et al., 2025; Zhang et al., 2025) have been widely
applied in practical applications.

Although LoRA offers significant advantages, most existing fine-tuning algorithms are based on
a factorization framework that updates the two low-rank factors separately. Such factorization-
based methods are sensitive to the condition number of the low-rank factors, which can result in
slow convergence. ScaledGD (Tong et al., 2021; Zhang and Pilanci, 2024) addresses this issue by
introducing two preconditioners, effectively eliminating the dependency on the condition number and
making its convergence rate condition-number-independent. However, ScaledGD still suffers from
parameter redundancy, and its fine-tuning efficiency falls short of matching that of full-parameter
fine-tuning.

LoRA-Pro (Wang et al., 2025) demonstrates that applying gradients GA and GB to the low-rank
factors A and B is equivalent to performing full fine-tuning on the weight matrix W with a low-rank
gradient G̃. Building on this insight, LoRA-Pro reduces the discrepancy between G̃ and the full
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fine-tuning gradient G by solving the optimization problem min ∥G̃−G∥2F , thereby bridging the
performance gap between LoRA and full fine-tuning. LoRA-Pro employs the standard metric inherited
from the Euclidean space of the weight matrices to approximate G. However, approximation is often
more effective under a weighted metric rather than the standard metric. For example, AdaGrad (Duchi
et al., 2011) and SOAP (Vyas et al., 2025) leverage historical gradient information to adaptively adjust
the step size of each gradient component, effectively utilizing weighted metrics in the Euclidean
space of the weight matrix. K-FAC (Martens and Grosse, 2015; Eschenhagen et al., 2023) uses a
weighted metric based on the Kronecker product to approximate the Hessian, thereby constructing an
efficient preconditioner.

Inspired by this, we propose a novel algorithm called Second-Order Low-Rank Adaption (SoLoRA),
which aims to further narrow the performance gap between low-rank fine-tuning and full fine-tuning.
SoLoRA leverages an adaptive metric derived from AdaGrad (Duchi et al., 2011) and SOAP (Vyas
et al., 2025) to identify a low-rank approximation of the full fine-tuning gradient. Notably, this
low-rank approximation can also serves as a rank-1 approximation of the Hessian, enabling SoLoRA
to effectively incorporate second-order information from the loss function for faster convergence.
Moreover, the optimal low-rank approximation identified by SoLoRA does not directly depend on
the full fine-tuning gradient, making SoLoRA simple and easy to implement. Experiments on GPT-2
and diffusion models demonstrate that SoLoRA, by adopting a weighted metric-based approximation,
outperforms both standard metric-based approximations and existing low-rank fine-tuning methods,
achieving superior performance.

2 LOW-RANK FINE-TUNING OF LARGE LANGUAGE MODELS

In this section, we revisit existing low-rank fine-tuning methods from a fresh theoretical perspective,
highlighting their gaps compared to full fine-tuning. Based on this analysis, we discuss the limitations
of these low-rank fine-tuning algorithms and elucidate their fundamental distinctions.

2.1 RETHINKING LOW-RANK FINE-TUNING: CONNECTIONS AND LIMITATIONS

As a representative parameter-efficient fine-tuning method, low-rank fine-tuning works by freezing
the pretrained weights W0 ∈ Rm×n and assuming that the weight update W exhibits a low-rank
structure during downstream task adaptation. Consequently, the adaptation process is formulated as a
low-rank constrained optimization problem:

min
W∈Rm×n

L(W0 +W ), subject to rank(W ) = r,

where L(·) denotes the training loss function and r ≪ min{m,n}. Proximal gradient descent
is a widely adopted method for solving the above low-rank optimization problem. For instance,
GaLore (Zhao et al., 2024) updates the weight matrix via

Wt+1 = Hr(Wt − αt∇WtL(W0 +Wt)),

where Hr represents the r-truncated singular value decomposition (SVD) applied to each weight ma-
trix, αt is the learning rate of Wt. This requires performing SVD on every layer at each optimization
step, which has a computational complexity O(m3), leading to time-consuming.

To avoid the expensive SVD computation at each training step, LoRA and its variants (Hu et al.,
2022; Wang et al., 2024; Hayou et al., 2024; Liu et al., 2024b; Wang et al., 2025; Zhang et al., 2025)
train the network directly via a low-rank factorization. These methods aim to solve the following
non-convex optimization problem based on the factorization:

min
W∈Rm×n

L(W0 +W ), subject to W = BA,

where B ∈ Rm×r,A ∈ Rr×n. Here, we define G([B,A]) = W as a generator that constructs
weight matrices from the low-rank factors. Under this definition, the optimization problem can be
reformulated as:

min
B∈Rm×r,A∈Rr×n

L(W0 + G([B,A])).

For factorization-based gradient algorithms, the updates can be expressed as follows, leveraging the
chain rule:

[Bt+1,At+1] = [Bt,At]− ηtJ
∗
G([Bt,At])∇WtL

(
W0 + G([Bt,At])

)
, (1)
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where J∗
G is the adjoint of the Jacobian operator of G and ηt is the learning rate of Bt and At. To

further analyze the gap between low-rank fine-tuning and full fine-tuning, we return to the update of
the weight matrix W . By applying the generator operator G to both sides of (1), we get

G([Bt+1,At+1]) = G
(
[Bt,At]− ηtJ

∗
G([Bt,At])∇WtL

(
W0 + G([Bt,At])

))
.

To facilitate comparison with the gradient descent algorithm based on the weight matrix W , we
perform a Taylor expansion around [Bt,At],

Wt+1 ≈ Wt − αtJG([Bt,At])J
∗
G([Bt,At])∇WtL(W0 +Wt), (2)

where JG([Bt,At])[·, ·] : [Rm×r,Rr×n] → Rm×n is the Jacobian operator. From this update form,
it becomes clear that, compared with full fine-tuning, a key limitation of low-rank fine-tuning lies in
the explicit dependence of the factor gradients on JGJ

∗
G , whose condition number is determined by

the condition numbers of the low-rank factors B and A (Chen et al., 2019; Chi et al., 2019). This
dependency introduces potential instability during training, particularly when fine-tuning complex
neural networks or large language models, which often results in performance degradation (Hayou
et al., 2024; Zhang and Pilanci, 2024).

2.2 PRECONDITIONED LOW-RANK ADAPTION FINE-TUNING

Under the widely adopted generator form G([B,A]) = BA, the Jacobian operator JG([Bt,At])[·, ·] :
[Rm×r,Rr×n] → Rm×n and its adjoint operator J∗

G([Bt,At])(·) : Rm×n → [Rm×r,Rr×n] are
given by

JG([Bt,At])[P ,Q] = PAt +BtQ,

for any factor pairs [P ,Q] ∈ [Rm×r,Rr×n], and

J∗
G([Bt,At])(C) = [CA⊤

t ,B
⊤
t C],

for any matrices C ∈ Rm×n. For detailed derivations and additional information regarding the
Jacobian, please refer to Appendix D.1. Substituting JG and J∗

G into (2), we can rewrite (2) as

Wt+1 ≈ Wt − αtGt ·A⊤
t At − αtBtB

⊤
t ·Gt

≈ (Bt − ηtGt ·A⊤
t )(At − ηtB

⊤
t ·Gt)

= (Bt − ηtGBt
)(At − ηtGAt

),

where Gt = ∇Wt
L(W0 +Wt), GBt

= ∇Bt
L(W0 +Wt) and GAt

= ∇At
L(W0 +Wt) are the

gradient of the loss function L with respect to Wt, Bt and At. This formulation aligns with the
update rule of standard LoRA (Vanilla LoRA) (Hu et al., 2022), in which the factors B and A are
updated with the same learning rate. Consequently, the convergence rate of standard LoRA depends
on the condition number of JG .

To mitigate this dependence on the condition number of JG , several improvements have been proposed.
LoRA+ (Hayou et al., 2024) enhances feature learning efficiency by scaling the update ηtGBt

with
a factor of 24 when training Roberta (Liu et al., 2019) with LeCun initialization (LeCun et al.,
2002). This adjustment can be regarded as applying a constant preconditioner on GBt

. However,
LoRA+ does not completely eliminate the dependence on the condition number of JG . Imbalance-
Regularized LoRA (Zhu et al., 2024) further alleviates the impact of JG by introducing regularization
terms on the low-rank factors Bt and At, which effectively reduce parameter redundancy. Going
further, Riemannian preconditioned LoRA (Zhang and Pilanci, 2024) applies r × r preconditioners
(AtA

⊤
t )

−1 and (B⊤
t Bt)

−1 to GBt and GAt respectively, making the update of Wt equivalent to
projecting the gradient onto the row space of At and the column space of Bt. Specifically,

Bt+1At+1 = (Bt − ηtGBt
· (AtA

⊤
t )

−1)(At − ηt(B
⊤
t Bt)

−1 ·GAt
)

≈ Wt − αtGt ·A⊤
t (AtA

⊤
t )

−1At − αtBt(B
⊤
t Bt)

−1B⊤
t ·Gt

= Wt − αtProjrow(At)
(Gt)− αtProjcol(Bt)

(Gt).

Although Riemannian preconditioned LoRA alleviates the influence of condition number of JG to
some extent via two preconditioners, it still has an important limitation: it ignores the projection
onto the intersection of the row space of At and the column space of Bt. Specifically, the term
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Bt(B
⊤
t Bt)

−1B⊤
t ·Gt ·A⊤

t (AtA
⊤
t )

−1At is omitted, which causes the update direction to deviate
from the steepest descent direction. To compensate for the missing information in this cross subspace,
LoRA-Pro (Wang et al., 2025) proposes solving

min
∆Bt ,∆At

∥Gt − (Bt∆At
+∆Bt

At)∥2F ,

to more accurately approximate the full fine-tuning gradient and obtain an equivalent low-rank
gradient for the factors Bt and At. Optimizing this objective yields the factor updates{

∆Bt
= [I −Bt(B

⊤
t Bt)

−1B⊤
t ]GtAt

⊤(AtA
⊤
t )

−1 −BtXt,

∆At
= (B⊤

t Bt)
−1B⊤

t Gt +XtAt,

for some Xt ∈ Rr×r. The corresponding update of the weight matrix is

Bt∆At +∆BtAt

= Bt(B
⊤
t Bt)

−1B⊤
t Gt +BtXtAt + [I −Bt(B

⊤
t Bt)

−1B⊤
t ]GtAt

⊤(AtA
⊤
t )

−1At −BtXtAt

=
(
Bt(B

⊤
t Bt)

−1B⊤
t

)
Gt +Gt

(
At

⊤(AtA
⊤
t )

−1At

)
−

(
Bt(B

⊤
t Bt)

−1B⊤
t

)
Gt

(
At

⊤(AtA
⊤
t )

−1At

)
= Projcol(Bt)

(Gt) + Projrow(At)
(Gt)− Projcol(Bt)∩row(At)

(Gt) = PTt
(Gt).

(3)

where Mr is the Riemannian manifold of all rank r matrices, and Tt denotes the tangent space of
Mr at the point Wt. By Proposition D.2, PTt(Gt) is the orthogonal projection of Gt onto Tt.

Although LoRA-Pro is capable of finding a low-rank approximation of the full fine-tuning gradient
under a standard metric, it requires solving a Sylvester equation at each iteration to compute Xt,
leading to extremely high computational costs and time overhead (Lu, 1971; Dmytryshyn et al., 2025).
In comparison, gradient approximations based on weighted metrics are often more effective, as they
better utilize the second-order information of the loss function. For instance, classical methods such as
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2000) and the Gauss–Newton
method (Nocedal and Wright, 2006) both benefit from weighted metrics. Previous research has
demonstrated that weighted metrics can significantly enhance algorithmic efficiency across a variety
of problems (Duchi et al., 2011; Bian et al., 2024). Motivated by this, we propose designing a novel
weighted metric to further improve the approximation of full fine-tuning gradients and to fully exploit
the second-order information embedded in the loss function, enabling a more effective low-rank
approximation.

3 THE PROPOSED ALGORITHMS

Empirical evidence suggests that the weighted metric are often more effective than the standard
metric in deep learning. For instance, AdaGrad(Duchi et al., 2011; Shazeer and Stern, 2018) and
SOAP (Gupta et al., 2018; Morwani et al., 2024; Vyas et al., 2025) adaptively adjust the step size
of each gradient component based on historical gradient information, which is equivalent to using a
weighted metric for the weight matrix. Similarly, K-FAC (Martens and Grosse, 2015; Eschenhagen
et al., 2023) employs a Kronecker product-based weighted metric to approximate the Hessian, thereby
constructing an efficient preconditioner. In this section, we introduce a novel weighted metric and
derive a low-rank approximation of the full fine-tuning gradient G based on this metric. This low-rank
approximation can be viewed as a rank-1 approximation of the Hessian, allowing our algorithm
to effectively exploit the second-order information of the loss function, thereby narrowing the gap
between the performance of low-rank fine-tuning and full fine-tuning.

3.1 CONSTRUCTION OF THE ADAPTIVE METRIC

The core idea of AdaGrad (Duchi et al., 2011) and Adam (Kingma and Ba, 2014) is to construct a
weighted operator ht through the outer product of gradients, followed by a diagonalization operation.
Specifically, by vectorizing the gradient matrix Gt ∈ Rm×n into gt ∈ Rmn×1, the linearized

weighted operator ht is denoted as ht =
(
h2
t−1+diag(gtg

⊤
t )

) 1
2 , where diag(·) extracts the diagonal

elements of the matrix. This operator ht is then used to define a new weighted inner product, under
which the gradient descent update to linearized weight wt is derived wt+1 = wt − gt/ht. AdaGrad

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

employs the elements of ht to rescale the gradient element-wise. However, when applied to gradient
updates in matrix form, this element-wise rescaling approach ignores the structural information of
the matrix, i.e., the relationships between rows and columns. To better utilize matrix structures,
Shampoo (Gupta et al., 2018) adopts the Kronecker product to approximate the construction of
the weighted matrix. Specifically, Shampoo constructs two matrices, Lt = Lt−1 + GtG

⊤
t and

Rt = Rt−1 +G⊤
t Gt, and defines a weighted inner product based on these matrices. Under this

inner product, the matrix update is performed by Wt+1 = Wt − L
− 1

4
t GtR

− 1
4

t . SOAP (Morwani
et al., 2024; Vyas et al., 2025) further improves upon Shampoo by noting that the square root
operation in Shampoo is equivalent to running Adafactor (Shazeer and Stern, 2018) in the eigenbasis
of the Shampoo preconditioner. To enhance the computational efficiency of Shampoo, SOAP runs
Adam in the eigenbasis of the Shampoo preconditioner. However, frequent eigen-decomposition
computations result in high computational costs. To balance leveraging matrix structural information
and maintaining computational efficiency, we proposes a hybrid weighted inner product that is easier
to implement, better aligns with matrix structures, and fully utilizes the relationships between matrix
rows and columns.

Specifically, we define the weighted factors Lt and Rt as follows:

Lt = diag(lt/
√

∥lt∥1) with lt = β1lt−1 + (1− β1)

n∑
j=1

(Gt ⊙Gt)i,j ,

Rt = diag(rt/
√

∥rt∥1) with rt = β2rt−1 + (1− β2)

m∑
i=1

(Gt ⊙Gt)i,j ,

(4)

where ⊙ denotes the Hadamard (element-wise) product, ∥ · ∥1 denotes the l1-norm, β1, β2 are decay
factors in the range [0, 1]. The term

∑n
j=1(Gt ⊙ Gt)i,j forms a vector of the diagonal elements

of the matrix GtG
⊤
t , and similarly,

∑m
i=1(Gt ⊙Gt)i,j forms a vector of the diagonal elements of

the matrix G⊤
t Gt. As stated in (Shazeer and Stern, 2018), Lt and Rt are rank-1 approximations

of Hessian, which are optimal with respect to the generalized Kullback-Leibler divergence. In this
way, the memory requirement is reduced from O(mn) to O(m+ n). At the same time, compared to
Shampoo, the computational complexity of Lt and Rt is reduced to O(mn).

Based on Lt and Rt, we define an adaptive weighted inner product in Rm×n. For any Y ,Z ∈ Rm×n,
the adaptive weighted inner product is given by:

⟨Y ,Z⟩Ht = ⟨HtY ,Z⟩ = ⟨L
1
2
t Y R

1
2
t ,Z⟩. (5)

For any matrix K ∈ Rm×n, the inverse operation of the operator Ht is defined as

H−1
t K = L

− 1
2

t KR
− 1

2
t .

3.2 SECOND-ORDER LOW-RANK ADAPTION FOR FINE-TUNING

Based on the adaptive weighted inner product, we aim to incorporate second-order information into
the update of the weight matrix W . To achieve this, we consider the update of the weight matrix W
in step t. Let the update to W at step t be denoted as ∆t. In this step, we solve the problem:

min
∆t

L
(
(W0 +Wt)−∆t

)
.

We then expand the loss function L(W ) around the point W0 +Wt using its second-order Taylor
expansion. By utilizing the weighted inner product as a rank-1 approximation of Hessian, the
optimization problem can be formulated as:

argmin
∆t

L((W0 +Wt)−∆t)

≈ argmin
∆t

L(W0 +Wt)− ⟨∆t,Gt⟩+
1

2
⟨Ht∆t,∆t⟩,

= argmin
∆t

L(W0 +Wt)− ⟨∆t,H
−1
t Gt⟩Ht

+
1

2
⟨∆t,∆t⟩Ht

+
1

2
⟨H−1

t Gt,H
−1
t Gt⟩Ht

= argmin
∆t

L(W0 +Wt) +
1

2
∥∆t −H−1

t Gt∥2Ht
.

5
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From this expression, it is evident that the optimization problem is equivalent to finding the optimal
∆t for the following objective:

min
∆t

∥∆t −H−1
t Gt∥2Ht

. (6)

Let the optimal update be denoted as ∆opt
t . From the form of (6), it becomes clear that ∆opt

t serves as
an approximation of the Newton direction

−∆opt
t ≈ −∇2L(W0 +Wt) · ∇L(W0 +Wt).

Thus, the weight matrix is updated as Wt+1 = Wt−∆opt
t . The advantages of this update are evident:

• It completely eliminates the adverse effects of the condition number of the Jacobian operator
JG , thereby improving the stability of the algorithm.

• It effectively incorporates the second-order information of the loss function, enhancing
optimization efficiency.

To further reduce memory consumption, we adopt the low-rank factorization strategy of LoRA,
representing the update ∆t in terms of updates to the low-rank factors At and Bt, denoted as ∆At

and ∆Bt , respectively. As noted in (Wang et al., 2025), the changes in the factors At and Bt are
intrinsically related to the updates in the weight matrix Wt, which can be expressed as

∆t = ∆BtAt +Bt∆At .

Therefore, the minimization problem (6) can be equivalently transformed into:

min
∆Bt ,∆At

∥∆BtAt +Bt∆At −H−1
t Gt∥2Ht

. (7)

To make the optimization process more explicit, we first rewrite (7) as:

arg min
∆Bt ,∆At

∥P̃Tt

(
∆BtAt +Bt∆At −H−1

t Gt

)
+ P̃⊥

Tt

(
∆BtAt +Bt∆At −H−1

t Gt

)
∥2Ht

= arg min
∆Bt ,∆At

∥∆BtAt +Bt∆At − P̃Tt(H
−1
t Gt)∥2Ht

+ ∥P̃⊥
Tt

(
H−1

t Gt

)
∥2Ht

,

(8)

where P̃⊥
Tt
(·) denotes the projection onto the space orthogonal to the tangent space. This equivalence

holds because ∆Bt
At+Bt∆At

lies in the tangent space Tt (see Proposition D.4). This implies that,
to find the optimal ∆Bt

and ∆At
, we ultimately need to solve the following equivalent problem:

min
∆Bt ,∆At

∥∆Bt
At +Bt∆At

− P̃Tt
(H−1

t Gt)∥2Ht
. (9)

Here, P̃Tt(H
−1
t Gt) represents the projection of H−1

t Gt onto Tt, with its explicit form given as

P̃Tt(L
− 1

2
t GtR

− 1
2

t ) = P̃Bt
L

− 1
2

t GtR
− 1

2
t +L

− 1
2

t GtR
− 1

2
t Q̃At

− P̃Bt
L

− 1
2

t GtR
− 1

2
t Q̃At

, (10)

where P̃Bt
= Bt(B

⊤
t L

1
2
t Bt)

−1B⊤
t L

1
2
t and Q̃At

= R
1
2
t A

⊤
t (AtR

1
2
t A

⊤
t )

−1At. The detailed deriva-
tion is provided in Appendix D.3.

For problem (9), we provide its explicit solution in the following Theorem 3.1. For the proof of
Theorem 3.1, please refer to Appendix D.3.
Theorem 3.1 (Optimal updates for low-rank factors). Let Wt = BtAt be a rank-r factorization at t-

th step, and let P̃Tt
(L

− 1
2

t GtR
− 1

2
t ) denote the projection of the preconditioned gradient L− 1

2
t GtR

− 1
2

t
onto the tangent space Tt at Wt. Consider the following optimization problem:

min
∆Bt ,∆At

1

2
∥∆Bt

At +Bt∆At
− P̃Tt

(L
− 1

2
t GtR

− 1
2

t )∥2Ht
, (11)

where ∥ · ∥Ht
is the norm induced by the operator Ht. Then the optimal solutions for ∆Bt

and ∆At

are given by

∆opt
Bt

= [I −Bt(B
⊤
t L

1
2
t Bt)

−1B⊤
t L

1
2
t ]L

− 1
2

t GBt
(AtR

1
2
t A

⊤
t )

−1 −BtXt,

∆opt
At

= (B⊤
t L

1
2
t Bt)

−1GAt
R

− 1
2

t +XtAt,

where Xt ∈ Rr×r is an arbitrary matrix.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

From Theorem 3.1, we observe that although Gt appears in the solution, it does not directly appear in
the closed-form expression. Instead, the solution depends on the low-rank gradients GAt

and GBt
,

ensuring low memory overhead. This efficient representation allows for straightforward gradient
updates: first, compute the gradients using standard backpropagation, and then adjust ∆Bt

and ∆At

according to the closed-form solution. While ∆Bt
and ∆At

depend on Xt, the choice of Xt is
critical for balancing the updates. Next, we minimize the weighted norm of the difference between
the two update components, ∆BtAt and Bt∆At . This yields the optimal Xt in Theorem 3.2 (proof
provided in Appendix D.3).

Once the matrix Xt is computed, ∆Bt
and ∆At

can be derived. Using the updates ∆Bt
and

∆At
, we propose Second-order Low-Rank Adaption (SoLoRA), summarized in Algorithm 1. The

computational complexity is analyzed in Appendix C.
Theorem 3.2 (Optimal Solution for Balancing Matrix Xt). Let Xt ∈ Rr×r. Consider the following
optimization problem with respect to Xt,

min
Xt∈Rr×r

1

2
∥∆Bt

At −Bt∆At
∥2Ht

, (12)

where ∆Bt
and ∆At

are functions of Xt given in Theorem 3.1. Then the optimal solution for Xt is
given by

Xopt
t = −1

2
(B⊤

t L
1
2
t Bt)

−1B⊤
t GtA

⊤
t (AtR

1
2
t A

⊤
t )

−1.

Algorithm 1 Second-order Low-Rank Adaption (SoLoRA) with SGD for Fine-tuning.

1: Initialize B1 = 0m×r, A1 = Kaiming uniformr×n, l0 = 0m, r0 = 0n.
2: for t = 1, · · · , T do
3: lt = β1lt−1 + (1− β1)

∑n
j=1(Gt ⊙Gt)i,j , Lt = diag(lt/

√
∥lt∥1).

4: rt = β2rt−1 + (1− β2)
∑m

i=1(Gt ⊙Gt)i,j , Rt = diag(rt/
√

∥rt∥1).
5: ∆Bt

=
[
I − 1

2Bt(B
⊤
t L

1
2
t Bt)

−1B⊤
t L

1
2
t

]
L

− 1
2

t GBt
(AtR

1
2
t A

⊤
t )

−1.

6: ∆At = (B⊤
t L

1
2
t Bt)

−1GAtR
− 1

2
t

[
I − 1

2R
1
2
t A

⊤
t (AtR

1
2
t A

⊤
t )

−1At

]
.

7: Bt+1 = Bt − ηt∆Bt
, At+1 = At − ηt∆At

.
8: end for

3.3 SECOND-ORDER LOW-RANK ADAPTION WITH MOMENTUM FOR FINE-TUNING.

First-order momentum methods, such as Adam and AdamW (Kingma and Ba, 2014; Loshchilov and
Hutter, 2017), have been shown to be highly effective in stochastic optimization. By maintaining
an exponential moving average of both the per-coordinate gradient statistics and the raw gradients,
Adam stabilizes updates, reduces gradient variance, and minimizes sensitivity to manual learning
rate tuning. To incorporate these advantages into our second-order low-rank adaptation framework,
we integrate the exponential moving average of the gradients into SoLoRA. The enhanced method
preserves the curvature-aware geometric properties of SoLoRA while inheriting the stability and
adaptivity of Adam, resulting in more reliable and efficient fine-tuning. The pseudocode is present in
Algorithm 2.

4 EXPERIMENTAL RESULTS

To evaluate the performance of our SoLoRA algorithm, we apply it to fine-tuning tasks for the large
language model GPT-2 (see Section 4.1 and Appendix A) and diffusion models (see Appendix B).
In the experiments, we compare two kinds of optimization algorithms: SGD-based algorithms and
AdamW-based algorithms. The SGD-based algorithms include: LoRA with SGD optimizer (referred
to as SGD) (Hu et al., 2022), Scaled GD (Zhang and Pilanci, 2024; Tong et al., 2021), LoRA-Pro
with SGD optimizer (Wang et al., 2025), and our SoLoRA with SGD optimizer (Algorithm 1). The
AdamW-based algorithms include: LoRA with AdamW optimizer (referred to as AdamW) (Hu et al.,
2022), Scaled AdamW (Zhang and Pilanci, 2024), LoRA-Pro with AdamW optimizer (Wang et al.,
2025), and our SoLoRA with AdamW optimizer (Algorithm 2). All experiments are implemented
using PyTorch (Paszke et al., 2019) and conducted on NVIDIA GeForce RTX 4090 or 3090 GPUs.
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Algorithm 2 Second-order Low-Rank Adaption (SoLoRA) with Momentum for Fine-tuning.

1: Initialize moment M0 = 0m×n, B1 = 0m×r, A1 = Kaiming uniformr×n; l0 = 0m, r0 = 0n,
weight decay λ, coefficients β1 = β2, and β3.

2: for t = 1, · · · , T do
3: lt = β1lt−1 + (1− β1)

∑n
j=1(Gt ⊙Gt)i,j , Lt = diag(lt/

√
∥lt∥1).

4: rt = β2rt−1 + (1− β2)
∑m

i=1(Gt ⊙Gt)i,j , Rt = diag(rt/
√

∥rt∥1).
5: Mt = β3Mt−1 + (1− β3)Gt.

6: ∆Bt
=

[
I − 1

2Bt

(
B⊤

t L
1
2
t Bt

)−1

B⊤
t L

1
2
t

]
L

− 1
2

t MtA
⊤
t

(
AtR

1
2
t A

⊤
t

)−1

.

7: ∆At
=

(
B⊤

t L
1
2
t Bt

)−1

B⊤
t MtR

− 1
2

t

[
I − 1

2R
1
2
t A

⊤
t

(
AtR

1
2
t A

⊤
t

)−1

At

]
.

8: Bt+1 = (1− ληtBt)− ηt

√
1−βt

1

1−βt
3
∆Bt

, At+1 = (1− ληtAt)− ηt

√
1−βt

1

1−βt
3
∆At

.
9: end for

4.1 GPT-2 FINE-TUNING

In this section, we conduct fine-tuning experiments on the GPT-2 model (Radford et al., 2019) using
SoLoRA. First, we perform fine-tuning on the GPT-2 small model with ranks 16 and 64, evaluated
on the E2E natural language generation challenge (Novikova et al., 2017). The results are shown
in Table 1. The experimental setup follows (Zhang and Pilanci, 2024), but we independently tune
the learning rate for each optimizer using grid search. As shown in Table 1, the model trained with
SoLoRA outperforms all other methods across all evaluation metrics, regardless of whether the SGD
or AdamW optimizer is used. To further validate the efficiency of SoLoRA, we compare the loss
reduction trends when employing different optimizers under the same runtime and the same number
of iterations. These results are illustrated in Figures 1 and 2. The findings demonstrate that SoLoRA
achieves significantly faster loss reduction than other algorithms within the same runtime, thanks to
its effective utilization of second-order information of the loss function.
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3.00

3.25

3.50

Lo
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Training Loss Curves for SGD Based Optimizers
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SGD
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LoRA-Pro SGD
SoLoRA SGD

(a) Training loss curve over training step when fine-
tuning using SGD-based methods.
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SoLoRA SGD

(b) Training loss curve over training time when fine-
tuning using SGD-based methods.

Figure 1: Training loss GPT-2 small model (r = 64) fine-tuned using different SGD-based optimizers.
Evaluation is conducted on E2E Natural Language Generation Challenge.

Optimizing low-rank factorization matrices presents inherent challenges, particularly when the weight
matrix contains small singular values — a scenario that often arises with larger ranks, such as ranks
16 and 64 in this experiment. Under these conditions, the curvature of Hessian becomes very large,
resulting in a high condition number and making the optimization problem ill-conditioned. Despite
these challenges, SoLoRA demonstrates superior performance in both computational efficiency and
final evaluation metrics. This highlights the ability of SoLoRA to effectively mitigate the impact
of JG’s condition number while leveraging the second-order information from the loss function.
To further evaluate SoLoRA, we conducted additional experiments on GPT-2 models of varying
sizes with rank 4. The results are presented in Table 2 (see Appendix A), reaffirm the advantages
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of SoLoRA. Finally, we test the stability of SoLoRA under different learning rates, with the results
shown in Figure 3 (see Appendix A). The experiments reveal that, compared to other algorithms,
SoLoRA exhibits greater stability across varying ranks and learning rates.

Table 1: Scores of GPT-2 small model fine-tuned using different optimizers. Evaluation is conducted
on E2E Natural Language Generation challenge.

rank Method E2E
BLEU NIST MET ROUGE-L CIDEr

16

SGD 65.4 8.07 40.7 67.0 2.07
Scaled GD 68.8 8.75 45.0 69.2 2.39

LoRA-Pro SGD 68.3 8.67 45.1 69.3 2.37
SoLoRA SGD (ours) 70.0 8.82 46.6 71.6 2.53

AdamW 69.5 8.77 46.4 71.2 2.48
Scaled AdamW 69.8 8.79 46.5 71.7 2.51

LoRA-Pro AdamW 69.7 8.73 46.8 71.7 2.51
SoLoRA AdamW (ours) 70.2 8.85 46.6 71.9 2.52

64

SGD 64.7 8.08 40.8 66.7 2.04
Scaled GD 68.5 8.68 45.0 69.4 2.38

LoRA-Pro SGD 68.6 8.71 45.4 69.7 2.38
SoLoRA SGD (ours) 70.1 8.85 46.7 71.8 2.53

AdamW 69.6 8.76 46.7 71.5 2.50
Scaled AdamW 70.0 8.83 46.4 71.5 2.50

LoRA-Pro AdamW 70.0 8.82 46.6 71.5 2.51
SoLoRA AdamW (ours) 70.2 8.84 46.8 72.1 2.52

5 CONCLUSION

This paper addresses the performance limitations of low-rank fine-tuning in efficiently adapting large
models by proposing the second-order low-rank adaptation algorithm, SoLoRA. SoLoRA leverages
an adaptive metric inspired by AdaGrad (Duchi et al., 2011) and SOAP (Vyas et al., 2025) to efficiently
compute a low-rank approximation of the full fine-tuning gradient. This approximation, which can
be viewed as a rank-1 approximation of Hessian, effectively incorporates second-order information,
accelerating convergence and improving optimization efficiency. Compared to existing low-rank fine-
tuning methods, SoLoRA not only exploits second-order information but also completely eliminates
the impact of the condition number of Jacobian operator. Moreover, as its low-rank approximation
does not directly depend on the full gradient, SoLoRA is simpler and more efficient to implement.
Experiments on GPT-2 and diffusion models consistently demonstrate that SoLoRA outperforms
state-of-the-art low-rank fine-tuning methods. It achieves performance close to full fine-tuning while
incurring almost no additional computational cost. This strongly demonstrates that second-order
low-rank approximations based on our adaptive weighted metric provide a practical path to bridging
the gap between parameter efficiency and optimal performance, paving the way for efficient and
robust task transfer and personalized customization in large models.

Ethics statement This paper conforms with the ICLR Code of Ethics.

Reproducibility statement We are committed to the reproducibility of our research. To this end,
we have made all source code, environmental configurations, and data access instructions available in
the supplementary material. Furthermore, the key parameters for our experiments are provided in
Table 3, Table 4 , and Table 6 to facilitate the replication of our findings.
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A SUPPLEMENTARY EXPERIMENTS OF GPT-2 FINE-TUNING

A.1 EXPERIMENTAL RESULTS FOR DIFFERENT MODEL SIZE

To more comprehensively validate the advantages of SoLoRA, we conduct experiments not only on
the small GPT-2 model but also on GPT-2 models of varying sizes for broader evaluation. All models
are fine-tuned with rank 4, and the evaluation results are presented in Table 2. The specific parameter
settings can be found in Table 3 and Table 4. By testing on models of different sizes, the experimental
results clearly demonstrate that SoLoRA significantly outperforms other algorithms, regardless of
whether the SGD optimizer or the AdamW optimizer is used. This further confirms the effectiveness
and stability of the SoLoRA algorithm, enabling it to maintain excellent performance across models
of different sizes and under different optimizers.
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(a) Training loss curve over training steps when fine-
tuning using AdamW-based method.
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(b) Training loss curve over training time when fine-
tuning using AdamW-based method.

Figure 2: Training loss of GPT-2 small model (r = 64) fine-tuned using different AdamW-based
optimizers. Evaluation is conducted on E2E Natural Language Generation Challenge.

A.2 TRAINING LOSS CURVE USING DIFFERENT OPTIMIZERS

To further explore the performance advantages of SoLoRA, we compare the runtime of different
optimizers when fine-tuning large language models, with the results shown in Figures 1 and 2.
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These results strongly demonstrate the significant efficiency improvements achieved by the SoLoRA
method in fine-tuning tasks. Additionally, Figure 3 illustrates the stability of SoLoRA under different
learning rates. The experimental results show that SoLoRA maintains stable performance across
a wide range of learning rates, which is crucial for parameter tuning in practical applications. To
more comprehensively evaluate the stability of SoLoRA, we also compare it with Scaled AdamW
and LoRA-Pro AdamW, under varying learning rates. The results are presented in Figure 3. The
comparison reveals that SoLoRA exhibits superior stability across different ranks and learning rates.
This indicates that SoLoRA is not only insensitive to changes in learning rates but also robust across
varying LoRA ranks. As a result, it reduces the difficulty of hyperparameter tuning and enhances its
practicality in fine-tuning.

Table 2: Scores of GPT-2 small and medium models (r = 4) fine-tuned using different optimizers.
Evaluation is conducted on E2E Natural Language Generation challenge. See Appendix A.1 for
experimental details.

Model Method E2E
BLEU NIST MET ROUGE-L CIDEr

GPT-2 small

SGD 54.8 4.56 34.0 63.3 1.29
Scaled GD 68.5 8.72 45.5 69.4 2.40

LoRA-Pro SGD 68.4 8.72 45.5 69.6 2.43
SoLoRA SGD (ours) 69.5 8.77 46.5 71.5 2.50

AdamW 69.1 8.75 46.0 70.5 2.47
Scaled AdamW 69.5 8.80 46.2 70.9 2.48

LoRA-Pro AdamW 69.2 8.73 45.9 70.8 2.47
SoLoRA AdamW (ours) 70.0 8.84 46.3 71.3 2.50

GPT-2 medium

SGD 66.6 8.54 44.2 68.2 2.32
Scaled GD 69.2 8.71 46.3 70.9 2.48

LoRA-Pro SGD 69.7 8.77 46.5 70.9 2.50
SoLoRA SGD (ours) 70.3 8.84 46.9 71.7 2.54

AdamW 68.9 8.69 46.5 71.3 2.51
Scaled AdamW 69.6 8.77 46.6 71.8 2.52

LoRA-Pro AdamW 69.8 8.78 46.5 71.7 2.52
SoLoRA AdamW (ours) 70.3 8.84 46.7 71.8 2.53

A.3 PARAMETER SETTINGS

To ensure the reproducibility of the experiments described in Section 4 and to facilitate verification
and comparison by others, we provide the complete details of the experimental parameter settings.
Tables 3 and 4 list the parameters used during the fine-tuning of GPT-2 models and the learning rates
corresponding to different optimizers, respectively. Specifically, we conduct experiments with GPT-2
models of various sizes. “Rank 4 (M)” represents a medium-sized model using LoRA with rank 4,
while “Rank 4”, “Rank 16”, and “Rank 64” represent small models using LoRA with ranks 4, 16, and
64, respectively. To ensure the fairness of the experimental setup, we follow the parameter settings in
LoRA (Hu et al., 2022) and Riemannian Preconditioned LoRA (Zhang and Pilanci, 2024). However,
considering the sensitivity of different optimizers to learning rates, we use a grid search strategy to
independently tune the optimal learning rate for each optimizer. This ensures that each optimizer
operates under its best-performing configuration, providing more objective and reliable experimental
results.

B SUPPLEMENTARY EXPERIMENTS OF DIFFUSION MODEL FINE-TUNING

As diffusion models increasingly become the mainstream method in image generation, LoRA plays an
indispensable role in personalization and style transfer for specific characters. It demonstrates unique
advantages, particularly in terms of parameter efficiency, training stability, and rapid convergence. To
systematically evaluate the effectiveness of our optimizer SoLoRA in such personalized generation

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000
Training Steps

2.4

2.6

2.8

3.0

Lo
ss

Training Loss Curves for SoLoRA
Training Loss (avg)
SoLoRA AdamW, lr=1e-4
SoLoRA AdamW, lr=1e-3
SoLoRA AdamW, lr=8e-4

(a) Training loss curve over training step when fine-
tuning using SoLoRA AdamW with different learning
rates. LoRA rank is 16, with 8e-4 being the optimal
learning rate.

0 5000 10000 15000 20000
Training Steps

2.4

2.6

2.8

3.0

Lo
ss

Training Loss Curves for SoLoRA
Training Loss (avg)
SoLoRA AdamW, lr=5e-5
SoLoRA AdamW, lr=1e-3
SoLoRA AdamW, lr=3e-4

(b) Training loss curve over training step when fine-
tuning using SoLoRA AdamW with different learning
rates. LoRA rank is 64, with 3e-4 being the best
learning rate.
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LoRA-Pro AdamW, lr=4e-4

(c) Training loss curve over training step when fine-
tuning using LoRA-Pro AdamW with different learn-
ing rates. LoRA rank is 64, with 4e-4 being the best
learning rate.
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Scaled AdamW, lr=2e-3

(d) Training loss curve over training step when fine-
tuning using Scaled AdamW with different learning
rates. LoRA rank is 64, with 2e-3 being the best
learning rate.

Figure 3: Training loss curve over training step of GPT-2 small model (r = 16 and 64) fine-
tuned using different learning rates. Evaluation is conducted on E2E Natural Language Generation
Challenge. Our optimizer is stable across different learning rates under varying ranks.

Table 3: Training and Inference Configuration for GPT-2 Fine-tuning.

Training LoRA α Inference
Parameter Value Parameter Value Parameter Value

Dropout Probability 0.1
Batch Size 8
Number of Epochs 5 α (for Rank 4) 32 Beam Size 10
Warm-up Steps 500 α (for Rank 16) 32 Length Penalty 0.8
Learning Rate Scheduler Linear α (for Rank 64) 128 No Repeat Ngram Size 4
Label Smoothing 0.1
Weight Decay 0.01
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Table 4: Core Optimizer Parameters for GPT-2 fine-tuning.

Methods Learning Rate (×10−3)
β3 β1 = β2Rank 4 Rank 4 (M) Rank 16 Rank 64

SGD 90 90 200 90 / /
Scaled GD 20 20 40 10 / /

LoRA-Pro SGD 40 40 40 40 / /
SoLoRA SGD 0.05 0.05 0.5 0.8 / 0.98

AdamW 0.2 0.2 0.2 0.2 0.9 0.999
Scaled AdamW 0.8 0.8 2 4 0.7 0.8

LoRA-Pro AdamW 0.1 0.1 0.2 0.4 0.9 0.999
SoLoRA AdamW 0.5 0.1 0.8 0.3 0.9 0.98

scenarios, we conduct experiments using the Mix-of-Show framework (Gu et al., 2023). This
framework integrates Embedding Decomposed LoRA (EDLoRA) into the model, which further
reduces the number of trainable parameters while maintaining expressive power. This design better
aligns with the dual demands of computational efficiency and generalization stability in real-world
applications. To ensure reproducibility and fair comparison, we follow the training and inference
settings from (Zhang and Pilanci, 2024; Gu et al., 2023). Specifically, we disable fine-tuning of
all embedding vectors and only fine-tune LoRA-related components of the text encoder and U-Net
submodules.

Our evaluation encompasses two main aspects: quantitative assessment of the generated images
based on objective metrics, as detailed in Section B.1, and qualitative demonstrations of the generated
images to visually showcase the effectiveness of the optimizer. For qualitative evaluation, we use
examples of Harry Potter and Hermione Granger to visually compare the performance of different
optimizers in terms of identity preservation, scene conformity with prompt, and style diversity. As
shown in Section B.2 and Section B.3, we conduct image generation under different LoRA scaling
factors and compare the performance of various optimizers across multiple learning rates. This design
not only evaluates the robustness of the optimizers under multi-scale hyperparameters but also reflects
their overall impact on generation quality and consistency in real-world scenarios.

All experimental results consistently demonstrate the advantages of the SoLoRA algorithm. Both
the quantitative evaluation metrics and the qualitative image demonstrations highlight the superior
performance of SoLoRA. This success can be attributed to the ability of SoLoRA to effectively
leverage the second-order information of the loss function, enabling more precise updates to model
parameters. Furthermore, the low-rank approximations of gradients derived from our proposed
adaptive weighted gradient strategy bring the performance of low-rank fine-tuning closer to that of
full-parameter fine-tuning. This allows SoLoRA to achieve comparable performance to full-parameter
fine-tuning while significantly reducing computational costs.

B.1 EVALUATION METRICS OF DIFFUSION MODELS

For quantitative evaluation, we employ two metrics: CLIP score (Hessel et al., 2021) and FID
(Heusel et al., 2017). The CLIP score, based on the ViT-B/32 variant of the CLIP model (Radford
et al., 2021), measures the consistency between the generated images and the input text prompts. The
score ranges from 0 to 100, with higher scores indicating better alignment between the generated
image and the text prompt. On the other hand, FID assesses the similarity between the distribution of
generated images and the reference images. Lower FID values indicate higher similarity and better
overall image quality. The experimental results are shown in Table 5.

In terms of FID, regardless of whether the SGD or AdamW optimizer is used, or whether the scaling
factor is 0.7 or 1, our algorithm consistently achieve significantly lower FID values compared to all
other methods. This strongly indicates that the distribution of images generated by our algorithm
closely matches the distribution of the reference images. For the CLIP score, our algorithm achieve
the best performance when the scaling factor is set to 1, outperforming all other methods. However,
when the scaling factor is 0.7, the CLIP score of our algorithm is comparable to those of LoRA-Pro
and AdamW algorithm. It is important to note that this does not imply that the quality of the images
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generated by our algorithm is inferior to others. On the contrary, this highlights one of the key
strengths of our algorithm: by effectively leveraging second-order information from the loss function,
the images generated by our method SoLoRA, not only maintain strong relevance to the text prompt
but also exhibit richer details and greater diversity. For instance, in Figure 6, the clothing worn by
the generated Harry Potter characters is more diverse, incorporating features that go beyond the
simple text prompt. Similarly, in Figure 8, in addition to generating Harry Potter wearing a brown
hat, our algorithm introduces more varied gestures for Harry Potter. These richer and more diverse
features, while potentially causing a slight decrease in the CLIP score (as CLIP tends to prioritize
strict prompt-image alignment and might not fully reward additional details beyond the prompt),
actually enhance the overall quality and creativity of the generated images.

Table 5: CLIP and FID scores of different optimizers with different scaling factors for Mix-of-Show.

Methods scaling=0.7 scaling=1

CLIP↑ FID↓ CLIP↑ FID↓
SGD 27.79 69.90 31.40 40.95
Scaled GD 31.23 35.86 30.60 29.62
LoRA-Pro SGD 31.47 34.30 30.48 29.19
SoLoRA SGD (ours) 31.47 30.17 31.58 28.18
AdamW 31.47 34.15 30.68 27.80
Scaled AdamW 24.21 48.23 24.51 34.18
LoRA-Pro AdamW 31.04 29.18 30.60 28.18
SoLoRA AdamW (ours) 31.47 29.01 30.73 27.13

B.2 EXPERIMENTAL RESULTS FOR DIFFERENT LORA SCALING FACTORS

To validate the effectiveness of the proposed optimizer, we compared the generated images of models
trained using each optimizer under different LoRA scaling factors s. For the sake of fairness, we
employed the optimal parameters for each optimizer, detailed in Table 6 for ease of replication.

Figure 4 and 5 show the generated results for Harry Potter and Hermione Granger when fine-tuning
the model using different AdamW-based optimizers, with the scaling factor set to 1.0. Figure 6 and
7 show the model’s generated results when fine-tuned using different SGD-based optimizers, with
scaling factors uniformly set to 1.0. Figure 8 and 9 present the generated results by using different
AdamW-based optimizers, employing the scaling factor of 0.7. Experimental results demonstrate
that the models trained with our optimizer generate high-quality images, accurately reproducing the
identity of Harry Potter and Hermione Granger while demonstrating diverse scene layouts adhering
to the input prompts.

B.3 EXPERIMENTAL RESULTS FOR DIFFERENT LEARNING RATES

To illustrate the stability of the proposed optimizer, we fix the scaling factor to 1.0 and conduct
experiments for each optimizer when using different learning rates. For AdamW-based optimizers,
we set AdamW to employ the “Small LR” learning rate combination of 5e-6 and 5e-5 for text-encoder
and U-Net, and the “Large LR” learning rate combination of 1e-5 and 1e-4. For Scaled AdamW,
LoRA-Pro AdamW, and SoLoRA AdamW, we employed the same learning rate combinations, the
“Small LR” of 5e-6 and 5e-6, and the “Large LR” combination of 1e-5 and 1e-5. For SGD-based
optimizers, SGD, Scaled GD, and LoRA-Pro SGD, we employ the “Small LR” combination of 1e-2
and 1e-2, and the “Large LR” combination of 1e-1 and 1e-1, whereas SoLoRA SGD utilized the
“Small LR” combination of 5e-6 and 5e-6, and the “Large LR” combination of 1e-5 and 1e-5.

The experimental results, presented in Figures 10 and 11, illustrate the effectiveness of our proposed
optimizer across both small and large learning rates. This consistent performance signifies a higher
degree of stability compared to the alternatives. Such stability is paramount when fine-tuning
diffusion models, as their training is characterized by a non-stationary loss landscape. Therefore, the
optimizer’s ability to remain effective under varying learning rates makes it a robust and advantageous
choice for this application.
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AdamW with s=1.0

Scaled AdamW with s=1.0

LoRA-Pro AdamW with s=1.0

SoLoRA AdamW with s=1.0 (ours)

Figure 4: Generated results based on the prompt “Harry Potter is walking near Mount Fuji” when
fine-tuned using AdamW-based optimizers. All optimizers employed a LoRA scaling factor of 1.0,
with the best learning rate. The results indicate that the output of the model trained with our optimizer
incorporates the character “Harry Potter”, the action“walking”, and the scene “Mount Fuji”, yielding
superior image quality compared to alternative approaches.

AdamW with s=1.0

Scaled AdamW with s=1.0

LoRA-Pro AdamW with s=1.0

SoLoRA AdamW with s=1.0 (ours)

Figure 5: Generation results from the prompt “A photo of Hermione Granger on the beach, small
waves, detailed symmetric face, beautiful composition” using AdamW-based optimizers. All the
optimizers apply LoRA scaling factor as 1.0, with the best learning rate. Results demonstrate that the
model trained with our optimizer generates higher-quality images than others, especially the face of
Hermione Granger and the scene.
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SGD with s=1.0

Scaled GD with s=1.0

LoRA-Pro SGD with s=1.0

SoLoRA SGD with s=1.0 (ours)

Figure 6: Generated results based on the prompt “Harry Potter standing near the lake” when fine-tuned
using SGD-based optimizers. All optimizers employed a LoRA scaling scaling factor of 1.0, with the
best learning rate. Results demonstrate that the output images of the model trained with our optimizer
have higher-quality than others, especially the face of Harry Potter.

SGD with s=1.0

Scaled GD with s=1.0

LoRA-Pro SGD with s=1.0

SoLoRA SGD with s=1.0 (ours)

Figure 7: Generated results based on the prompt “Hermione Granger wearing a brown shirt” when
fine-tuned using SGD-based optimizers. All optimizers employed a LoRA scaling factor of 1.0,
with the best learning rate. Results demonstrate that the model trained with SoLoRA generates
higher-quality images than others, especially the face of Hermione Granger.
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AdamW with s=0.7

Scaled AdamW with s=0.7

LoRA-Pro AdamW with s=0.7

SoLoRA AdamW with s=0.7 (ours)

Figure 8: Generated results based on the prompt “Harry Potter wearing a brown hat” when fine-tuned
using AdamW-based optimizers. All optimizers employed a LoRA scaling factor of 0.7, with the best
learning rate. The results indicate that the output of the model trained with SoLoRA incorporates
the character “Harry Potter”, and the “hat”, yielding superior image quality compared to alternative
approaches.

AdamW with s=0.7

Scaled AdamW with s=0.7

LoRA-Pro AdamW with s=0.7

SoLoRA AdamW with s=0.7 (ours)

Figure 9: Generation results from the prompt “A photo of Hermione Granger on the beach, small
waves, detailed symmetric face, beautiful composition” using AdamW-based optimizers. All the
optimizers apply LoRA scaling factor as 0.7. According to the author’s recommendation, the
optimizer AdamW and Scaled AdamW utilized a learning rate of 1e-5 for text-encoder and 1e-4 for
U-Net, whereas LoRA-Pro AdamW and our SoLoRA optimizer adopted 1e-5 for text-encoder and
U-Net. Results demonstrate that SoLoRA generates higher-quality images for both scaling factors
than others, including the face of Hermione Granger and the scene.
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Figure 10: Generated results based on the prompt “ Hermione Granger in front of Eiffel Tower” using
AdamW-based optimizers. All the optimizers apply LoRA scaling factor as 1.0. “Small LR” and
“Large LR” represents using different learning rate, please refer to Appendix B.3 for more details.

Figure 11: Generated results based on the prompt “ Photo of Harry Potter” using SGD-based
optimizers. All the optimizers apply LoRA scaling factor as 1.0. “Small LR” and “Large LR”
represent using different learning rate, please refer to Appendix B.3 for more details.
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Table 6: Optimizer Parameters for fine-tuning the Mix-of-Show Model.

Methods Learning Rate
β3 β1 = β2Text-Encoder U-Net

SGD 1e-1 1e-1 / /
Scaled GD 1e-1 1e-1 / /

LoRA-Pro SGD 1e-1 1e-1 / /
SoLoRA SGD 1e-5 1e-5 / 0.98

AdamW 1e-5 1e-4 0.9 0.999
Scaled AdamW 1e-5 1e-4 0.7 0.8

LoRA-Pro AdamW 1e-5 1e-5 0.9 0.999
SoLoRA AdamW 1e-5 1e-5 0.9 0.98

C COMPUTATIONAL AND MEMORY COMPLEXITY ANALYSIS OF SOLORA

The update rule of SoLoRA is given by
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We now analyze the computational complexity of computing the updates ∆At
and ∆Bt

. For
simplicity, we focus on ∆At , as the complexity for ∆Bt is symmetric.

• Compute gradient Gt. The stochastic gradient Gt of Wt is obtained during the backpropa-
gation process.

• Row and column sums for lt and rt. Compute lt and rt by summing the square of the
element of Gt along rows or columns, which is in the computation O(mn). L
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The computation complexity of ∆At
is O(mn+(m+n)r2+ r3). The computation of ∆Bt

follows
a similar structure, with symmetric terms. Its complexity is also O(mn+ (m+ n)r2 + r3). Then
we have

• Per Iteration Computational Complexity. Combining the computations of ∆At
and

∆Bt
, the total computation complexity per iteration is O(mn+ (m+ n)r2 + r3).

• Memory Complexity. The algorithm requires storing the vectors lt and rt in each iteration,
hence the memory complexity is O(m+ n).
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D PROOF OF THEORETICAL RESULTS

D.1 COMPUTATION OF JACOBIAN

Proposition D.1 (Computation of JG and J∗
G). Let [B,A] be a pair of low-rank factors with

B ∈ Rm×r,A ∈ Rr×n. Define the generator G : [Rm×r,Rr×n] → Rm×n by G([B,A]) = BA.
Denote the Jacobian of G by JG and its adjoint by J∗

G . Then, for any [P ,Q] ∈ [Rm×r,Rr×n] and
any C ∈ Rm×n,

• JG([B,A])[P ,Q] = PA+BQ,

• J∗
G([B,A])(C) = [CA⊤,B⊤C],

• JG([B,A])J∗
G([B,A])(C) = CA⊤A+BB⊤C.

Proof. The Jacobian operator JG([B,A])[P ,Q] : [Rm×r,Rr×n] → Rm×n represents the derivative
of G at [B,A] along the direction [P ,Q]. Similarly, J∗

G([B,A])(C) : Rm×n → [Rm×r,Rr×n]
is the adjoint of JG at [B,A] along the direction C. For more details, see (Absil et al., 2009,
Section 6.1).

(i) The computation of JG . Let B(t) : R → Rm×r and A(t) : R → Rr×n be differentiable
curves with B(0) = B and A(0) = A. By the chain rule, the Jacobian of G at [B,A]
along these curves is

JG([B(t),A(t)])[Ḃ(t), Ȧ(t)]

∣∣∣∣
t=0

=

[
dG([B,A])

dB

]
Ḃ(t)

∣∣∣∣
t=0

+

[
dG([B,A])

dA

]
Ȧ(t)

∣∣∣∣
t=0

= Ḃ(t)A(t)

∣∣∣∣
t=0

+ B(t)Ȧ(t)

∣∣∣∣
t=0

= Ḃ(0)A+BȦ(0),

where Ḃ(t) and Ȧ(t) denote the derivatives of B(t) and A(t) with respect to t. The second
line follows because G([B,A]) = BA, hence dG([B,A])

dB and dG([B,A)]
dA are both linear

operators.

Since Ḃ(0) and Ȧ(0) are arbitrary, for any [P ,Q] ∈ [Rm×r,Rr×n], we obtain

JG([B,A])[P ,Q] = PA+BQ.

(ii) The computation of J∗
G . For brevity, write JG [P ,Q] for JG([B,A])[P ,Q] and J∗

G(C) for
J∗
G([B,A])(C). By definition of the adjoint (with respect to the Frobenius inner product),

for any [P ,Q] ∈ (Rm×r,Rr×n) and C ∈ Rm×n,〈
JG [P ,Q],C

〉
=

〈
[P ,Q], J∗

G(C)
〉
.

For the left-hand side,〈
JG [P ,Q],C

〉
=

〈
PA+BQ,C

〉
=

〈
PA,C

〉
+
〈
BQ,C

〉
=

〈
P ,CA⊤〉+ 〈

Q,B⊤C
〉
.

For the right-hand side, writing J∗
G(C) = [C1,C2], then〈

[P ,Q], J∗
G(C)

〉
=

〈
[P ,Q], [C1,C2]

〉
=

〈
P ,C1

〉
+
〈
Q,C2

〉
.

Hence C1 = CA⊤ and C2 = B⊤C, and therefore J∗
G([B,A])(C) = [CA⊤,B⊤C].

(iii) Finally, JG([B,A])J∗
G([B,A])(C) = JG([B,A])[CA⊤,B⊤C] = CA⊤A + BB⊤C

as claimed.
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D.2 ORTHOGONAL PROJECTION TO TANGENT SPACE

In this subsection, we derive the orthogonal projection onto the tangent space under both the standard
metric and the weighted metric. The specific forms of Lt and Rt are presented here and will not be
repeated in subsequent propositions and proofs. For the sake of simplicity, the subscript t will be
omitted in this subsection.

Lt = diag(lt/
√

∥lt∥1) with lt = β2lt−1 + (1− β2)

n∑
j=1

(Gt ⊙Gt)i,j ,

Rt = diag(rt/
√

∥rt∥1) with rt = β3rt−1 + (1− β3)

m∑
i=1

(Gt ⊙Gt)i,j ,

(13)

where ⊙ denotes the Hadamard (elementwise) product and Gt = ∇L(W0 +Wt).
Proposition D.2 (Orthogonal Projection to Tangent Space Under the Standard Metric). Let W ∈ Mr

be a rank-r matrix with a low-rank decomposition W = BA, where B ∈ Rm×r,A ∈ Rr×n. Denote
by TW the tangent space of the smooth manifold Mr at the point W . Then, the orthogonal projection
of any matrix Z ∈ Rm×n onto TW is given by

PTW
(Z) = B(B⊤B)−1B⊤Z +ZA⊤(AA⊤)−1A−B(B⊤B)−1B⊤ZA⊤(AA⊤)−1A.

Proof. Suppose W has a compact singular value decomposition, given by W = UΣV ⊤, where
U ∈ Rm×r,Σ ∈ Rr×r,V ∈ Rn×r. Then the tangent space TW at W is characterized as

TW = {UM⊤ +NV ⊤, for M ∈ Rm×r,N ∈ Rn×r}.
Therefore, the orthogonal projection of Z onto TW is known to be (Wei et al., 2016)

PTW
(Z) = UU⊤Z +ZV ⊤V −UU⊤ZV ⊤V . (14)

Since the columns of B and U span the same column space (i.e., the column space of W ), then there
exists an invertible matrix S ∈ Rr×r such that B = US and U = BS−1. Using this relation, we
have

U⊤U = (BS−1)⊤BS−1 = S−⊤(B⊤B)S−1.

Since U⊤U = Ir, it follows that

S−⊤(B⊤B)S−1 = Ir =⇒ B⊤B = S⊤S.

Using this, we compute UU⊤

UU⊤ = BS−1S−⊤B = B(S⊤S)−1B⊤ = B(B⊤B)−1B⊤ (15)

Similarly, since the rows of A and the columns of V span the same row space (i.e., the row space of
W ), there exists an invertible matrix Q ∈ Rr×r such that A = QV ⊤ and V ⊤ = Q−1A. Further,
using V ⊤V = Ir, we obtain

V ⊤V = Q−1(AA⊤)Q−⊤ = Ir,

hence AA⊤ = QQ⊤ and

V V ⊤ = A⊤Q−⊤Q−1A = A⊤(QQ⊤)−1A = A⊤(AA⊤)−1A (16)

Substituting (15) and (16) into (14) yields

PTW
(Z) = B(B⊤B)−1B⊤Z +ZA⊤(AA⊤)−1A−B(B⊤B)−1B⊤ZA⊤(AA⊤)−1A.

Proposition D.3 (Orthogonal Projection onto the Tangent Space Under the Weighted Metric). Let
W ∈ Mr has a low-rank decomposition W = BA, where B ∈ Rm×r,A ∈ Rr×n. Denote the
tangent space of the Riemannian manifold Mr at the point W as TW . The weighted metric is
defined as ⟨Y ,Z⟩H = ⟨L 1

2Y R
1
2 ,Z⟩ for any Y ,Z ∈ Rm×n. Then, the orthogonal projection of

any matrix Z ∈ Rm×n onto TW under the weighed metric is given by

PTW
(Z) = B(B⊤L

1
2B)−1B⊤L

1
2Z +ZR

1
2A⊤(AR

1
2A⊤)−1A

−B(B⊤B)−1B⊤L
1
2ZR

1
2A⊤(AA⊤)−1A.
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Proof. This proof is inspired by (Bian et al., 2024). Here, we briefly provide a sketch of the proof.

(i) The new orthonormal basis under the weighted metric. Let W = UΣV ⊤ be a be a compact
SVD with U = [u1,u2, · · · ,ur] ∈ Rm×r,V = [v1,v2, · · · ,vr] ∈ Rn×r. Normalize the
singular vectors under the weighted vector

⟨x,y⟩
L

1
2
= ⟨L 1

2x,y⟩ in Rm and ⟨x,y⟩
R

1
2
= ⟨R 1

2x,y⟩ in Rn

to obtain

Ũ = U(U⊤L
1
2U)−

1
2 := [ũ1, ũ2, · · · , ũr] ∈ Rm×r,

Ṽ = V (V ⊤R
1
2V )−

1
2 := [ṽ1, ṽ2, · · · , ṽr] ∈ Rn×r.

Next, we extend Ũ and Ṽ to full orthonormal basis of (Rm, ⟨·, ·⟩
L

1
2
) and (Rn, ⟨·, ·⟩

R
1
2
) re-

spectively. Then, an orthonormal basis of TW with respect to ⟨·, ·⟩Ht
is {ũiṽ

⊤
j }min{i,j}≤r.

(ii) Orthogonal projection represented by the new orthonormal basis. Using the orthonormal
bases Ũ and Ṽ , the projection of Z onto TW is expressed as:

P̃TW
(Z) =

∑
(i,j):min{i,j}≤r

⟨Z, ũiṽ
⊤
j ⟩Ht

· ũiṽ
⊤
j =

∑
(i,j):min{i,j}≤r

⟨L 1
2ZR

1
2 , ũiṽ

⊤
j ⟩ · ũiṽ

⊤
j

=
∑

(i,j):min{i,j}≤r

ũ⊤
i L

1
2ZR

1
2 ṽj · ũiṽ

⊤
j

= ŨŨ⊤L
1
2Z +ZR

1
2 Ṽ Ṽ ⊤ − ŨŨ⊤L

1
2ZR

1
2 Ṽ Ṽ ⊤.

(iii) Express the basis projectors via factors B and A. Since B and A span the same spaces as
U and V , we derive

ŨŨ⊤ = B
(
B⊤L

1
2B

)−1

B⊤, Ṽ Ṽ ⊤ = A⊤
(
AR

1
2A⊤

)−1

A.

Substituting these expressions into the formula for P̃TW
, we obtain

P̃TW
(Z) = B(B⊤L

1
2B)−1B⊤L

1
2Z +ZR

1
2A⊤(AR

1
2A⊤)−1A

−B(B⊤L
1
2B)−1B⊤L

1
2ZR

1
2A⊤(AR

1
2A⊤)−1A.

Proposition D.4. Suppose W ∈ Mr has a low-rank decomposition W = BA, where B ∈ Rm×r

and A ∈ Rr×n. For any matrix M ∈ Rm×r,N ∈ Rr×n, the matrix MA+BN lies in the tangent
space TW at W of Mr at the point W .

Proof. Let W ∈ Mr has a compact singular value decomposition W = UΣV ⊤, where U ∈
Rm×r,Σ ∈ Rr×r, and V ∈ Rn×r. By definition, the tangent space TW at W is given by

TW = {UK⊤
1 +K2V

⊤|K1 ∈ Rn×r,K2 ∈ Rm×r}.

Since B and A are low-rank factors of W , there exist invertible matrices S ∈ Rr×r and Q ∈ Rr×r

such that
B = US, A = QV ⊤.

Substituting these expressions, the matrix MA+BN can be rewritten as

MA+BN = MQV ⊤ +USN .

The first term, MQV ⊤, lies in span(V ⊤), and the second term, USN , lies in span(U). Thus, the
sum MQV ⊤ +USN lies in the tangent space TW by the definition of the tangent space. Then, it
follows that MA+BN is on the tangent space TW . This completes the proof.
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D.3 PROOFS OF THEOREM 3.1 AND THEOREM 3.2

Proof of Theorem 3.1. Define

Γ(∆Bt ,∆At) :=
1

2
∥∆BtAt +Bt∆At − P̃Tt(L

− 1
2

t GtR
− 1

2
t )∥2Ht

.

Differentiating Γ(∆Bt
,∆At

) with respect to ∆Bt
and ∆At

yields

∇∆Bt
Γ(∆Bt ,∆At) = L

1
2
t ∆Bt

(AtR
1
2
t A

⊤
t ) +L

1
2
t Bt∆At

R
1
2
t A

⊤
t −GtA

⊤
t , (17)

and

∇∆At
Γ(∆Bt

,∆At
) = B⊤

t L
1
2
t ∆Bt

AtR
1
2
t +B⊤

t L
1
2
t Bt∆At

R
1
2
t −B⊤

t Gt. (18)

Setting ∇∆Bt
Γ(∆Bt

,∆At
) = 0 and using the invertibility of (AtR

1
2
t A

⊤
t ) and L

1
2
t gives

∆Bt = L
− 1

2
t GtA

⊤
t (AtR

1
2
t A

⊤
t )

−1 −Bt∆AtR
1
2
t A

⊤
t (AtR

1
2
t A

⊤
t )

−1. (19)

Substituting (18) into ∇∆At
Γ(∆Bt

,∆At
) = 0 and using the invertibility of B⊤

t L
1
2
t Bt and R

1
2
t

yields
∆At [I − Q̃At ] = (B⊤

t L
1
2
t Bt)

−1B⊤
t GtR

− 1
2

t [I − Q̃At ],

where Q̃At
= R

1
2
t A

⊤
t (AtR

1
2
t A

⊤
t )

−1At, which is the projection matrix onto the row space of At.
Since I − Q̃At is the residual maker matrix, then a general solution is

∆opt
At

= (B⊤
t L

1
2
t Bt)

−1B⊤
t GtR

− 1
2

t +XtAt,

with arbitrary matrix Xt ∈ Rr×r. Plugging this ∆At back into (19) gives

∆opt
Bt

= [I − P̃Bt
]L

− 1
2

t GtA
⊤
t (AtR

1
2
t A

⊤
t )

−1 −BtXt,

where P̃Bt = Bt(B
⊤
t L

1
2
t Bt)

−1B⊤
t L

1
2
t , which is the projection matrix onto the column space of Bt.

□

Proof of Theorem 3.2. Let the objective function be Ψ(Xt) = 1
2∥∆Bt

At − Bt∆At
∥2Ht

. To
minimize Ψ(Xt), we compute its gradient with respect to Xt,

∇XtΨ(Xt) = B⊤
t L

1
2
t (∆BtAt −Bt∆At)R

1
2
t A

⊤.

Substituting the expressions for At and Bt from Theorem 3.1, we have

∇Xt
Ψ(Xt) = B⊤

t L
1
2
t

(
[I −Bt(B

⊤
t L

1
2
t Bt)

−1B⊤
t L

1
2
t ]L

− 1
2

t GtA
⊤
t (AtR

1
2
t A

⊤
t )

−1At

−Bt(B
⊤
t L

1
2
t Bt)

−1B⊤
t GtR

− 1
2 − 2BtXtAt

)
R

1
2
t A

⊤

= −B⊤
t GtAt − 2(B⊤

t L
1
2
t Bt)Xt(AtR

1
2
t A

⊤
t ).

Setting ∇XtΨ(Xt) = 0, we obtain

−B⊤
t GtAt = 2(B⊤

t L
1
2
t Bt)Xt(AtR

1
2
t A

⊤
t ).

Since B⊤
t L

1
2
t Bt and AtR

1
2
t A

⊤
t are invertible, we solve for Xt as

Xopt
t = −1

2
(B⊤

t L
1
2
t Bt)

−1B⊤
t GtA

⊤
t (AtR

1
2
t A

⊤
t )

−1.

Thus, the optimal solution for Xt is derived. □

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to polish writing.
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