Under review as a conference paper at ICLR 2026

LORA MEETS SECOND-ORDER OPTIMIZATION: TO-
WARDS OPTIMAL LOW-RANK UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank fine-tuning is widely applied for the effective adaptation of large models.
Most existing methods rely on low-rank matrix factorization, whose performance is
limited by the condition number of the associated Jacobi operator. Although these
methods are computationally efficient, their performance still falls short compared
to full fine-tuning. To address this, we propose SoLoRA, which leverages an
adaptive metric to find a low-rank approximation of the full fine-tuning gradient.
This low-rank approximation can be viewed as an approximation of Hessian,
effectively incorporating second-order information to achieve faster convergence
and higher optimization efficiency. Furthermore, the low-rank approximation in
SoLoRA is computationally simple and easy to implement, achieving a close
approximation to the performance of full fine-tuning with almost no additional
computational overhead. We conduct fine-tuning experiments on large language
models and diffusion models, and the results consistently demonstrate that SOLoRA
achieves superior performance advantages over state-of-the-art low-rank fine-tuning
methods.

1 INTRODUCTION

Large language models (LLMs) (Liu et al. 2024a}; [Yang et al., [2024)) and vision-language mod-
els (Achiam et al.,|2023)) have demonstrated outstanding performance in various applications, such
as chatbot, image generation, and editing. With their strong generalization capabilities and ver-
satility, they have been widely adopted for a range of downstream tasks.To better adapt LLMs to
specific downstream tasks, it is often necessary to fine-tune their parameters. However, full fine-
tuning is evidently expensive, incurring significant computational and storage costs. To address this,
parameter-efficient fine-tuning (PEFT) has emerged to reduce the overhead of fine-tuning.

Low-Rank Adaptation (LoRA) (Hu et al.,|2022) is a representative PEFT method. It assumes that
weight updates during fine-tuning exhibit a low “intrinsic rank”. By freezing the pretrained weights
and introducing two low-rank matrices, B € R™*" and A € R"*", for updates, LoRA reduces the
number of trainable parameters. Compared to full fine-tuning, the number of trainable parameters in
LoRA is O((m+n)r), where r < {m, n}, significantly lowering the number of trainable parameters,
memory consumption, and fine-tuning costs. Owing to these advantages, LoRA and its numerous
variants (Hu et al., 2022} |Hayou et al.| 2024} |[Zhang and Pilanci, [2024; Wang et al.| 2024} [Zhao et al.}
2024; Zhu et al.| 2024} |Wang et al., [2025; Mo et al.,|2025; [Zhang et al.| 2025b) have been widely
applied in practical applications.

Although LoRA offers significant advantages, most existing fine-tuning algorithms are based on
a factorization framework that updates the two low-rank factors separately. Such factorization-
based methods are sensitive to the condition number of the low-rank factors, which can result in
slow convergence. ScaledGD (Tong et al.| 2021} |Zhang and Pilancil, |2024) addresses this issue by
introducing two preconditioners, effectively eliminating the dependency on the condition number and
making its convergence rate condition-number-independent. However, ScaledGD still suffers from
parameter redundancy, and its fine-tuning efficiency falls short of matching that of full-parameter
fine-tuning.

LoRA-Pro (Wang et al.| 2025) demonstrates that applying gradients G 4 and G g to the low-rank
factors A and B is equivalent to performing full fine-tuning on the weight matrix W with a low-rank

gradient G. Building on this insight, LORA-Pro reduces the discrepancy between G and the full

Under review as a conference paper at ICLR 2026

fine-tuning gradient G by solving the optimization problem min |G — G/|%, thereby bridging the
performance gap between LoRA and full fine-tuning. LoRA-Pro employs the standard metric inherited
from the Euclidean space of the weight matrices to approximate GG. However, approximation is often
more effective under a weighted metric rather than the standard metric. For example, AdaGrad (Duchi
et al.,|2011) and SOAP (Vyas et al.,[2025)) leverage historical gradient information to adaptively adjust
the step size of each gradient component, effectively utilizing weighted metrics in the Euclidean
space of the weight matrix. K-FAC (Martens and Grossel 2015 [Eschenhagen et al., 2023) uses a
weighted metric based on the Kronecker product to approximate the Hessian, thereby constructing an
efficient preconditioner.

Inspired by this, we propose a novel algorithm called Second-Order Low-Rank Adaption (SoLoRA),
which aims to further narrow the performance gap between low-rank fine-tuning and full fine-tuning.
SoLoRA leverages an adaptive metric derived from AdaGrad (Duchi et al.|[2011)) and SOAP (Vyas
et al.l 2025) to identify a low-rank approximation of the full fine-tuning gradient. Notably, this
low-rank approximation can also serves as an approximation of the Hessian, enabling SoLoRA
to effectively incorporate second-order information from the loss function for faster convergence.
Moreover, the optimal low-rank approximation identified by SoLoRA does not directly depend on
the full fine-tuning gradient, making SoLoRA simple and easy to implement. Experiments on GPT-2
and diffusion models demonstrate that SOLoRA, by adopting a weighted metric-based approximation,
outperforms both standard metric-based approximations and existing low-rank fine-tuning methods,
achieving superior performance.

2 Low-RANK FINE-TUNING OF LARGE LANGUAGE MODELS

In this section, we revisit existing low-rank fine-tuning methods from a fresh theoretical perspective,
highlighting their gaps compared to full fine-tuning. Based on this analysis, we discuss the limitations
of these low-rank fine-tuning algorithms and elucidate their fundamental distinctions.

2.1 RETHINKING LOW-RANK FINE-TUNING: CONNECTIONS AND LIMITATIONS

As a representative parameter-efficient fine-tuning method, low-rank fine-tuning works by freezing
the pretrained weights W, € R™*"™ and assuming that the weight update W exhibits a low-rank
structure during downstream task adaptation. Consequently, the adaptation process is formulated as a
low-rank constrained optimization problem:
min L(Wy+ W), subject to rank(W) = r,
WeRmxn
where L(-) denotes the training loss function and r < min{m,n}. Proximal gradient descent is a
widely adopted method for solving the above low-rank optimization problem by updating the weight
matrix via
Wt+1 = Hr(Wt — OétVth:(Wo + Wt)),
where H, represents the r-truncated singular value decomposition (SVD) applied to each weight ma-
trix, oy is the learning rate of W;. This requires performing SVD on every layer at each optimization
step, which has a computational complexity O(m?), leading to high-computation cost.

LoRA and its variants (Hu et al.}[2022; [Wang et al., {2024} Hayou et al.} 2024} |Liu et al.| [2024b}; [Wang
et al., 2025} Zhang et al., 2025b; |Yen et al.; [Zhang et al., |2025a) train the network directly via a
low-rank factorization, thereby avoiding the expensive SVD computation at each training step. These
methods aim to solve the following non-convex optimization problem based on the factorization:
min L(Wy+ W), subjectto W = BA,
WeRan
where B € R™*", A € R"*". Here, we define G([B, A]) = W as a generator that constructs
weight matrices from the low-rank factors. Under this definition, the optimization problem can be

reformulated as:

i L(W, B, A))).
sean B e £Wo +G((B, A])

For factorization-based gradient algorithms, the updates can be expressed as follows, leveraging the
chain rule:

[Biy1, Avi1] = [Bi, Ad] — 10 JG([Bi, Ad]) Vi, L(Wo + G([Bt, Ad))), €]

Under review as a conference paper at ICLR 2026

where J; is the adjoint of the Jacobian operator of G and 7; is the learning rate of B; and A;. To
further analyze the gap between low-rank fine-tuning and full fine-tuning, we return to the update of
the weight matrix W. By applying the generator operator G to both sides of (T)), we get

G((Brsr, Avia]) = G([Br, Ar) = miJ5 (1Br, Al)Vw, £ (Wo + G((B1, A1)).

To facilitate comparison with the gradient descent algorithm based on the weight matrix W, we
perform a Taylor expansion around [B;, A;],

Wi = Wy — ayJg([By, Ay))JG([By, A)Vw, L(Wo + Wy), ()

where Jg ([Bt, Ai])[-, -] : [R™*7,R™*"] — R™*" is the Jacobian operator. From this update form,
it becomes clear that, compared with full fine-tuning, a key limitation of low-rank fine-tuning lies in
the explicit dependence of the factor gradients on JgJg, whose condition number is determined by
the condition numbers of the low-rank factors B and A (Chen et al.l 2019} [Chi et al.l[2019)). This
dependency introduces potential instability during training, particularly when fine-tuning complex
neural networks or large language models, which often results in performance degradation (Hayou
et al.,[2024; |[Zhang and Pilanci, [2024).

2.2 PRECONDITIONED LOW-RANK ADAPTION FINE-TUNING

Under the widely adopted generator form G([B, A]) = B A, the Jacobian operator Jg ([Bt, A¢])[,]
[RM>T R™™"] — R™*" and its adjoint operator J§([By, A¢])(-) : R™*™ — [R™*" R""] are
given by

Jg([Bt,At])[PaQ} = PAt + BtQ7

for any factor pairs [P, Q] € [R™*",R"*"], and
J5([Br, Ad])(C) = [CA/, B/ O],

for any matrices C' € R™*". For detailed derivations and additional information regarding the
Jacobian, please refer to Appendix [D.1} Substituting Jg and J§ into (2), we can rewrite () as

Wi ~# Wy — Gy - Al Ay — v BB/ - G,
~ (B; — 1 Gy - A:)(At — T]tBtT - Gy)
= (Bt - ntGBt)(At - UtGAt)7

where Gy = Vw, LWy + W;), G, = VB, LWy + W;) and Ga, = V a,L(Wy + W) are the
gradient of the loss function £ with respect to Wy, B; and A;. This formulation aligns with the
update rule of standard LoRA (Vanilla LoRA) (Hu et al.,[2022), in which the factors B and A are
updated with the same learning rate. Consequently, the convergence rate of standard LoRA depends
on the condition number of Jg.

To mitigate this dependence on the condition number of .Jg, several improvements have been proposed.
LoRA+ (Hayou et al.||2024) enhances feature learning efficiency by scaling the update 1, G g, with
a factor of 2* when training Roberta (Liu et al., [2019) with LeCun initialization (LeCun et al.,
2002). This adjustment can be regarded as applying a constant preconditioner on G g,. However,
LoRA+ does not completely eliminate the dependence on the condition number of .Jg. Imbalance-
Regularized LoRA (Zhu et al.| [2024) further alleviates the impact of .Jg by introducing regularization
terms on the low-rank factors B; and A, which effectively reduce parameter redundancy. Going
further, Riemannian preconditioned LoRA (Zhang and Pilanci, [2024) applies r X r preconditioners
(A;A])~"and (B B;)~! to Gp, and G 4, respectively, making the update of W; equivalent to
projecting the gradient onto the row space of A; and the column space of B;. Specifically,

By 1Ay = (B, — G, - (AA])) (A — (B By) ™" - Ga,)
~ Wt — Oéth . A;F(AtA;r)_lAt — thBt(BtTBt)_lBtT . Gt
= Wi — aiProjigy(a,) (Gt) — atProjeg g, (G1).

Although Riemannian preconditioned LoRA alleviates the influence of condition number of Jg to
some extent via two preconditioners, it still has an important limitation: it ignores the projection
onto the intersection of the row space of A; and the column space of B;. Specifically, the term

Under review as a conference paper at ICLR 2026

BB/ B, 'B] -G, - A] (A;A])~ A, is omitted, which causes the update direction to deviate
from the steepest descent direction. To compensate for the missing information in this cross subspace,
LoRA-Pro (Wang et al.,|2025) proposes solving
: _ 2
N |G — (BtAa, + Ap,Ad)llF
to more accurately approximate the full fine-tuning gradient and obtain an equivalent low-rank
gradient for the factors B; and A;. Optimizing this objective yields the factor updates

Ap, =[I-B,B/B,) 'B]|G.A,"(A,A])"! - B, X,,
A4, = (B! B,) 'B/ G + XA,

for some X; € R"*". The corresponding update of the weight matrix is

BiAs, + A, A

= B,(B/B,)'B/G, + B, XA, + I - BB, B,)"'B]1G:A," (A,A])"'A, — B, X, A,

= (BB B,)'B/)G; + G/(A, " (A,A])'A)) — (B«(B/ B,) 'B])G (A, (A A]) Ay)

= Projg(g,)(Gt) + Projioy(a,) (Gt) — ProjeoB,)nwow(a,) (Gt) = Pr, (G).
3

where M, is the Riemannian manifold of all rank r matrices, and T, denotes the tangent space of
M, at the point W;. By Proposition Pr, (Gh) is the orthogonal projection of G; onto T;.

Although LoRA-Pro is capable of finding a low-rank approximation of the full fine-tuning gradient
under a standard metric, it incurs higher computational overhead due to solving a Sylvester equation
at each step. (Lu, (1971} |Dmytryshyn et al., 2025). In comparison, gradient approximations based
on weighted metrics are often more effective, as they better utilize the second-order information of
the loss function. For instance, classical methods such as the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm (Fletcher, 2000) and the Gauss—Newton method (Nocedal and Wright, [2006)
both benefit from weighted metrics. Previous research has demonstrated that weighted metrics can
significantly enhance algorithmic efficiency across a variety of problems (Duchi et al., 2011} [Bian
et al., |2024). Motivated by this, we propose designing a novel weighted metric to further improve
the approximation of full fine-tuning gradients and to fully exploit the second-order information
embedded in the loss function, enabling a more effective low-rank approximation.

3 THE PROPOSED ALGORITHMS

Empirical evidence suggests that the weighted metric are often more effective than the standard
metric in deep learning. For instance, AdaGrad(Duchi et al.| 2011} Shazeer and Stern, 2018 and
SOAP (Gupta et al., 2018 Morwani et al.|, 2024} |Vyas et al.,[2025) adaptively adjust the step size
of each gradient component based on historical gradient information, which is equivalent to using a
weighted metric for the weight matrix. Similarly, K-FAC (Martens and Grosse, |2015; [Eschenhagen
et al.| |2023) employs a Kronecker product-based weighted metric to approximate the Hessian, thereby
constructing an efficient preconditioner. In this section, we introduce a novel weighted metric and
derive a low-rank approximation of the full fine-tuning gradient G based on this metric. This low-
rank approximation can be viewed as an approximation of the Hessian, allowing our algorithm to
effectively exploit the second-order information of the loss function, thereby narrowing the gap
between the performance of low-rank fine-tuning and full fine-tuning.

3.1 CONSTRUCTION OF THE ADAPTIVE METRIC

The core idea of AdaGrad (Duchi et al.,|2011) and Adam (Kingma and Ba, 2014) is to construct a
weighted operator h; through the outer product of gradients, followed by a diagonalization operation.
Specifically, by vectorizing the gradient matrix G; € R™*" into g; € R™"*!, the linearized

1
weighted operator hy is denoted as by, = (h?_, +diag(gtg,), where diag(-) extracts the diagonal
elements of the matrix. This operator h; is then used to define a new weighted inner product, under
which the gradient descent update to linearized weight w; is derived w;1 = w; — g¢/h;. AdaGrad
employs the elements of h; to rescale the gradient element-wise. However, when applied to gradient

Under review as a conference paper at ICLR 2026

updates in matrix form, this element-wise rescaling approach ignores the structural information of
the matrix, i.e., the relationships between rows and columns. To better utilize matrix structures,
Shampoo (Gupta et al., [2018)) adopts the Kronecker product to approximate the construction of
the weighted matrix. Specifically, Shampoo constructs two matrices, Ly = L; | + GG, and
R, =R, 1+ G G, and defines a weighted inner product based on these matrices. Under this

1 1

inner product, the matrix update is performed by W; 1 = W, — L, *G R, *. SOAP (Morwani
et al.} |2024; Vyas et al., [2025) further improves upon Shampoo by noting that the square root
operation in Shampoo is equivalent to running Adafactor (Shazeer and Sternl 2018) in the eigenbasis
of the Shampoo preconditioner. To enhance the computational efficiency of Shampoo, SOAP runs
Adam in the eigenbasis of the Shampoo preconditioner. However, frequent eigen-decomposition
computations result in high computational costs. To balance leveraging matrix structural information
and maintaining computational efficiency, we proposes a hybrid weighted inner product that is easier
to implement, better aligns with matrix structures, and fully utilizes the relationships between matrix
rows and columns.

Specifically, we define the weighted factors L; and R; as follows:

n

= diag(le//|[lill1) with Iy = Bily1 + (1= 1) Y (G+ © Gy)ij,
= @)

Ms

R, = diag(rt/\/ ||T‘t||1) with r; = ﬁzrt 1+ (1 — ,82) (Gt ® Gt)i,j;

=1

- ||1 denotes the [1-norm, 31, B2 are decay
factors in the range [0, 1]. The term }°7_, (G ® G\);,; forms a vector of the diagonal elements

of the matrix G, G/, and similarly, Y7 | (G ® G); ; forms a vector of the diagonal elements

of the matrix G;'—Gt. As stated in (Shazeer and Stern, 2018), lLrLT is a rank-1 approximation of
G © G, which is optimal with respect to the generalized Kullback-Leibler divergence. In this way,
the memory requirement is reduced from O(mn) to O(m + n). At the same time, compared to
Shampoo, the computational complexity of L; and R; is reduced to O(mn).

Based on L; and R;, we define an adaptive weighted inner product in R™*™. Forany Y, Z € R™*",
the adaptive weighted inner product is given by:

(Y, Z)n, = (HY,Z) = (LYR}, Z). s)

For any matrix K € R™*"™, the inverse operation of the operator H is defined as
1 _1 _1
H "K=L,’KR,*
3.2 SECOND-ORDER LOW-RANK ADAPTION FOR FINE-TUNING

Based on the adaptive weighted inner product, we aim to incorporate second-order information into
the update of the weight matrix W. To achieve this, we consider the update of the weight matrix W
in step ¢. Let the update to W at step ¢ be denoted as A;. In this step, we solve the problem:

HAII’Iﬁ((WO + Wt) - At)

We then expand the loss function £(W) around the point W, + W; using its second-order Taylor
expansion. By utilizing the weighted inner product as an approximation of Hessian, the optimization
problem can be formulated as:

argniin L(Wo+ W) —Ay)
1
= arg Ir&in LWy + W) — (A, Gy) + §<HtAt7 Ay),
. 1 1, _
= aI‘g H&ln l:(WQ —|— Wt) <At, th>Ht §<At, At>Ht + §<Ht th7Ht 1Gt>H

1
= argrr&in LWy +W,) + §||At - Hfth”%Jt'

Under review as a conference paper at ICLR 2026

From this expression, it is evident that the optimization problem is equivalent to finding the optimal
A, for the following objective:
min || A, - H;'G|%, (©)

Let the optimal update be denoted as Ay™. From the form of (G), it becomes clear that AJ™ serves as
an approximation of the Newton direction

— AP ~ —V2L(Wy + W,) - VL(W, + W,).
Thus, the weight matrix is updated as W, = W; — A‘t’pt. The advantages of this update are evident:

* It completely eliminates the adverse effects of the condition number of the Jacobian operator
Jg, thereby improving the stability of the algorithm.

* It effectively incorporates the second-order information of the loss function, enhancing
optimization efficiency.

To further reduce memory consumption, we adopt the low-rank factorization strategy of LoRA,
representing the update A, in terms of updates to the low-rank factors A, and B, denoted as A 4,
and A p,, respectively. As noted in (Wang et al.| [2025)), the changes in the factors A; and B; are
intrinsically related to the updates in the weight matrix W7, which can be expressed as

A = ABtAt =+ BtAAt-
Therefore, the minimization problem (6) can be equivalently transformed into:

min [|Ap, A + ByAa, — H; 'G||3,. @)
ABt’AAt

To make the optimization process more explicit, we first rewrite (7)) as:

arg min |[Pr,(Ap,Ar + BiAa, — H'G)) + Pr, (Ap,Ar+ B,As, — H Gy |3,

By

=arg min ||Ap, A+ BiAa, — Pr,(H;'Gy)l|%, + IPF (H'GY) |4,

Ap,,Aa,

®)

where ﬁﬁ (+) denotes the projection onto the space orthogonal to the tangent space. This equivalence
holds because A g, A; + B A 4, lies in the tangent space T, (see Proposition[D.4)). This implies that,
to find the optimal A g, and A 4,, we ultimately need to solve the following equivalent problem:

min ||ABtAt + BtAAt - ﬁTt (Ht_th)H%It' (9)

Ap,,Aa,
Here, ﬁ']rt (H, 'G) represents the projection of H, ' G onto T}, with its explicit form given as
Pr,(L; 2GyR; ?) = Pp,L; *GyR; * + L; *GyR, *Qa, — Py, L, *GyR, ?Q4,, (10)
where Pp, = Bt(BtTLt% Bt)’lBtTLt% and Q 4, = Rt% A:(Ath% A])"A;. The detailed deriva-
tion is provided in Appendix [D.3]

For problem (9), we provide its explicit solution in the following Theorem For the proof of
Theorem [3.1] please refer to Appendix [D.3]

Theorem 3.1 (Optimal updates for low-rank factors). Let Wy = By A, be a rank-r factorization at t-

~ _1 _1 1 _1
th step, and let Py, (L, 2GR, ?) denote the projection of the preconditioned gradient L, > G R, *
onto the tangent space Ty at W,. Consider the following optimization problem:

. 1 ~ _1 1
min - S[|Ap, Ay + BiAg, = Pr, (L, *GiR, *)|lz,, (11)

Ap,,Aa,

where || - || i, is the norm induced by the operator Hy. Then the optimal solutions for A g, and A 4,
are given by

opt T3 1pTrs1r—3s 3 AT\—1
A% = [I-B,(B/L;B,) ‘B L}|L, *Gp,(A,R} A])"! — B,X,,
A% = (B/L}B,)"'Ga,R; * + X, A,

where X; € R"™" is an arbitrary matrix.

Under review as a conference paper at ICLR 2026

From Theorem 3.1} we observe that although G appears in the solution, it does not directly appear in
the closed-form expression. Instead, the solution depends on the low-rank gradients G 4, and Gp,,
ensuring low memory overhead. This efficient representation allows for straightforward gradient
updates: first, compute the gradients using standard backpropagation, and then adjust A, and A 4,
according to the closed-form solution. While A g, and A 4, depend on X, the choice of X is
critical for balancing the updates. Next, we minimize the weighted norm of the difference between
the two update components, Ap, A; and B; A 4,. This yields the optimal X; in Theorem [3.2](proof
provided in Appendix [D.3).

Once the matrix X; is computed, Apg, and A 4, can be derived. Using the updates A g, and
A 4,, we propose Second-order Low-Rank Adaption (SoLoRA), summarized in Algorithm[I} The
computational complexity is analyzed in Appendix

Theorem 3.2 (Optimal Solution for Balancing Matrix X;). Let X; € R"*". Consider the following
optimization problem with respect to X3,

1
in —||Ap,A; — BiAy4, |2 12
min SllAs A= Bida, [y, (12)

where Ap, and A 4, are functions of X, given in Theorem[3.1| Then the optimal solution for X is
given by

X" =~ (B L{B) "Bl G,A] (AR A]) "

1
2

Algorithm 1 Second-order Low-Rank Adaption (SoLoRA) with SGD for Fine-tuning.

loZOm,Tozon,éil(i*G.

1: Initialize B; = 0,,x,, A; = Kaiming uniform
2: fort=1,---,7T do

3 L=l + (1= B1) 2521 (G © Gi)iygs Ly = diag(le/V/[[L]]1)-

4 = Pori g+ (1= B2) 3oL (G © Gy)i g, Ry = diag(re/+/||74]]1)-
1 1 1 1

5. Ap, = |I-1B/(BJL{B) B/ L} |L,*Gp (AR} A]) "

XN’

1 —1 1 1
6. Aa, =(BJL?B,) 'Ga,R,’ [I ~ LR? AT (AR Aj)—lAt]
7. By = B, — AR, A1 = Ay — A,
8: end for ;
9: Note: Add eI to matrix B, L? B, if it is not invertible.

3.3 SECOND-ORDER LOW-RANK ADAPTION WITH MOMENTUM FOR FINE-TUNING.

First-order momentum methods, such as Adam and AdamW (Kingma and Ba, 2014; |[Loshchilov and
Hutter, [2017), have been shown to be highly effective in stochastic optimization. By maintaining
an exponential moving average of both the per-coordinate gradient statistics and the raw gradients,
Adam stabilizes updates, reduces gradient variance, and minimizes sensitivity to manual learning
rate tuning. To incorporate these advantages into our second-order low-rank adaptation framework,
we integrate the exponential moving average of the gradients into SOLoRA. The enhanced method
preserves the curvature-aware geometric properties of SOLoRA while inheriting the stability and
adaptivity of Adam, resulting in more reliable and efficient fine-tuning. The pseudocode is present in
Algorithm 2]

4 EXPERIMENTAL RESULTS

To evaluate the performance of our SoOLoRA algorithm, we apply it to fine-tuning tasks for the large
language model GPT-2 (see Sectionf.T]and Appendix [A) and diffusion models (see Appendix [B).
In the experiments, we compare two kinds of optimization algorithms: SGD-based algorithms and
AdamW-based algorithms. The SGD-based algorithms include: LoRA with SGD optimizer (referred
to as SGD) (Hu et al.,[2022)), Scaled GD (Zhang and Pilancil, 2024; Tong et al.,|2021)), LoORA-Pro
with SGD optimizer (Wang et al.l 2025)), and our SoLoRA with SGD optimizer (Algorithm E]) The
AdamW-based algorithms include: LoRA with AdamW optimizer (referred to as AdamW) (Hu et al.}

Under review as a conference paper at ICLR 2026

Algorithm 2 Second-order Low-Rank Adaption (SoLoRA) with Momentum for Fine-tuning.

1: Initialize moment My = 0,,,x,, B1 = 0%, A1 = Kaiming uniform
weight decay A, coefficients 81 = (32, and (3, € = le — 6.
fort=1,---,Tdo

2:

3 =Bl + (1= 81) X1 (G © Gr)iyg, Le = diag(le//I|Le]1).
4 v =Pori 1+ (1= P2) I8 | (Gr © Gy)ij, Ry = diag(re/+/||7¢]]1)
5:

6

rxn> lO = Om,'f‘o = On’

M; = B3M;_1 + (1 — 33)Gy.
1 -1 1 _1 1 -1
Ap — [I— 1B, (BtTLth) B:Lf}Lt M, AT (AtRfAtT> .

-1 -1
7. Aga, = (BJLEBt) B] M,R; * [I— 1R7 AT (AtRfAj) At}.

\/1-pt /1—pBt
8: Byt =(1—-Anp)B; — ntTBglABt’ A =1 - mp)A — UtlfiﬁglAAt-
9: end for)
10: Note: Add eI to matrix B,' L? By if it is not invertible.

2022), Scaled AdamW (Zhang and Pilancil 2024)), LoRA-Pro with AdamW optimizer (Wang et al.|
2025), and our SoLoRA with AdamW optimizer (Algorithm[2). All experiments are implemented
using PyTorch (Paszke et al.,[2019) and conducted on NVIDIA GeForce RTX 4090 or 3090 GPUs.

4.1 GPT-2 FINE-TUNING

In this section, we conduct fine-tuning experiments on the GPT-2 model (Radford et al.l|2019) using
SoLoRA. First, we perform fine-tuning on the GPT-2 small model with ranks 16 and 64, evaluated
on the E2E natural language generation challenge (Novikova et al.l [2017). The results are shown
in Table[I] The experimental setup follows (Zhang and Pilanci, 2024), but we independently tune
the learning rate for each optimizer using grid search. As shown in Table|l] the model trained with
SoLoRA outperforms all other methods across all evaluation metrics, regardless of whether the SGD
or AdamW optimizer is used. To further validate the efficiency of SoLoRA, we compare the loss
reduction trends when employing different optimizers under the same runtime and the same number
of iterations. These results are illustrated in Figures|[|and 2] The findings demonstrate that SOLoRA
achieves significantly faster loss reduction than other algorithms within the same runtime, thanks to
its effective utilization of second-order information of the loss function.

Training Loss Curves for SGD Based Optimizers ; 50Training Loss Curves for SGD Based Optimizers
3.50 .
Training Loss (avg) Training Loss (avg)
SGD SGD
3257 Scaled GD 3257 Scaled GD
LoRA-Pro SGD LoRA-Pro SGD
., 3.00 SoLoRA SGD . 3.00 SoLoRA SGD
2 2
3 S
275 1 275 1
2.50 1 2.50 1
T T T T T T T T T
0 5000 10000 15000 20000 0 1000 2000 3000 4000 5000
Training Steps Training Time (s)

(a) Training loss curve over training step when fine- (b) Training loss curve over training time when fine-
tuning using SGD-based methods. tuning using SGD-based methods.

Figure 1: Training loss GPT-2 small model (r = 64) fine-tuned using different SGD-based optimizers.
Evaluation is conducted on E2E Natural Language Generation Challenge.

Optimizing low-rank factorization matrices presents inherent challenges, particularly when the weight
matrix contains small singular values — a scenario that often arises with larger ranks, such as ranks
16 and 64 in this experiment. Under these conditions, the curvature of Hessian becomes very large,
resulting in a high condition number and making the optimization problem ill-conditioned. Despite

Under review as a conference paper at ICLR 2026

these challenges, SOLoRA demonstrates superior performance in both computational efficiency and
final evaluation metrics. This highlights the ability of SoLoRA to effectively mitigate the impact
of Jg’s condition number while leveraging the second-order information from the loss function.
To further evaluate SoLoRA, we conducted additional experiments on GPT-2 models of varying
sizes with rank 4. The results are presented in Table 2] (see Appendix [A]), reaffirm the advantages
of SoLoRA. Finally, we test the stability of SOLoRA under different learning rates, with the results
shown in Figure [3] (see Appendix [A). The experiments reveal that, compared to other algorithms,
SoLoRA exhibits greater stability across varying ranks and learning rates.

Table 1: Scores of GPT-2 small model fine-tuned using different optimizers. Evaluation is conducted
on E2E Natural Language Generation challenge.

E2E

rank Method BLEU NIST MET ROUGE-L CIDEr
SGD 65.4 8.07 40.7 67.0 2.07
Scaled GD 68.8 8.75 45.0 69.2 2.39
LoRA-Pro SGD 68.3 8.67 45.1 69.3 2.37
16 SoLoRA SGD (ours) 70.0 8.82 46.6 71.6 2.53
AdamW 69.5 8.77 46.4 71.2 2.48
Scaled AdamW 69.8 8.79 46.5 71.7 2.51
LoRA-Pro AdamW 69.7 8.73 46.8 71.7 2.51
SoLoRA AdamW (ours) 70.2 8.85 46.6 71.9 2.52
SGD 64.7 8.08 40.8 66.7 2.04
Scaled GD 68.5 8.68 45.0 69.4 2.38
LoRA-Pro SGD 68.6 8.71 454 69.7 2.38
64 SoLoRA SGD (ours) 70.1 8.85 46.7 71.8 2.53
AdamW 69.6 8.76 46.7 71.5 2.50
Scaled AdamW 70.0 8.83 46.4 71.5 2.50
LoRA-Pro AdamW 70.0 8.82 46.6 71.5 2.51
SoLoRA AdamW (ours) 70.2 8.84 46.8 72.1 2.52

5 CONCLUSION

This paper addresses the performance limitations of low-rank fine-tuning in efficiently adapting large
models by proposing the second-order low-rank adaptation algorithm, SOLoRA. SoLoRA leverages an
adaptive metric inspired by AdaGrad (Duchi et al.||2011)) and SOAP (Vyas et al.,[2025) to efficiently
compute a low-rank approximation of the full fine-tuning gradient. This approximation, which
can be viewed as an approximation of Hessian, effectively incorporates second-order information,
accelerating convergence and improving optimization efficiency. Compared to existing low-rank fine-
tuning methods, SoLoRA not only exploits second-order information but also completely eliminates
the impact of the condition number of Jacobian operator. Moreover, as its low-rank approximation
does not directly depend on the full gradient, SOLoRA is simpler and more efficient to implement.
Experiments on GPT-2 and diffusion models consistently demonstrate that SOLoRA outperforms
state-of-the-art low-rank fine-tuning methods. It achieves performance close to full fine-tuning while
incurring almost no additional computational cost. This strongly demonstrates that second-order
low-rank approximations based on our adaptive weighted metric provide a practical path to bridging
the gap between parameter efficiency and optimal performance, paving the way for efficient and
robust task transfer and personalized customization in large models.

Ethics statement This paper conforms with the ICLR Code of Ethics.

Reproducibility statement We are committed to the reproducibility of our research. To this end,
we have made all source code, environmental configurations, and data access instructions available in
the supplementary material. Furthermore, the key parameters for our experiments are provided in
Table 3] Tabled], and Table[§to facilitate the replication of our findings.

Under review as a conference paper at ICLR 2026

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. In
Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Fengmiao Bian, Jian-Feng Cai, and Rui Zhang. A preconditioned riemannian gradient descent algorithm for
low-rank matrix recovery. SIAM Journal on Matrix Analysis and Applications, 45(4):2075-2103, 2024.

Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random initialization: Fast global
convergence for nonconvex phase retrieval. Mathematical Programming, 176(1):5-37, 2019.

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization: An
overview. IEEE Transactions on Signal Processing, 67(20):5239-5269, 2019.

Andrii Dmytryshyn, Massimiliano Fasi, Nicholas J Higham, and Xiaobo Liu. Mixed-precision algorithms for
solving the sylvester matrix equation. arXiv preprint arXiv:2503.03456, 2025.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(7), 2011.

Runa Eschenhagen, Alexander Immer, Richard Turner, Frank Schneider, and Philipp Hennig. Kronecker-
factored approximate curvature for modern neural network architectures. In Advances in Neural Information
Processing Systems (NIPS), volume 36, pages 33624-33655, 2023.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao, Rui Zhao,
Shuning Chang, Weijia Wu, et al. Mix-of-show: Decentralized low-rank adaptation for multi-concept
customization of diffusion models. In Advances in Neural Information Processing Systems (NIPS), volume 36,
pages 15890-15902, 2023.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization. In
International Conference on Machine Learning (ICML), pages 1842-1850. PMLR, 2018.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models. In
International Conference on Machine Learning (ICML), pages 17783-17806. PMLR, 2024.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free
evaluation metric for image captioning. In EMNLP (1), 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural information
processing systems (NIPS), volume 30, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference on Learning
Representations (ICLR), volume 1, page 3, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In Neural networks:
Tricks of the trade, pages 9-50. Springer, 2002.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In International Conference on
Machine Learning (ICML), 2024b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke

Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

10

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

CS Lu. Solution of the matrix equation ax+ xb= c. Electronics Letters, 7(8):185-186, 1971.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In International conference on machine learning (ICML), pages 2408-2417. PMLR, 2015.

Zhanfeng Mo, Long-Kai Huang, and Sinno Jialin Pan. Parameter and memory efficient pretraining via low-rank
riemannian optimization. In International Conference on Learning Representations (ICLR), 2025.

Depen Morwani, Itai Shapira, Nikhil Vyas, Sham M Kakade, Lucas Janson, et al. A new perspective on
shampoo’s preconditioner. In International Conference on Learning Representations (ICLR), 2024.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru Tang,
Aadit Vyas, Neha Verma, Pranav Krishna, et al. Dart: Open-domain structured data record to text generation.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 432-447, 2021.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

Jekaterina Novikova, Ondiej Dusek, and Verena Rieser. The e2e dataset: New challenges for end-to-end
generation. arXiv preprint arXiv:1706.09254, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information processing systems (NIPS), volume 32, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning (ICML), pages 8748-8763. PMLR, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning (ICML), pages 4596-4604. PMLR, 2018.

Tian Tong, Cong Ma, and Yuejie Chi. Accelerating ill-conditioned low-rank matrix estimation via scaled gradient
descent. Journal of Machine Learning Research, 22(150):1-63, 2021.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and Sham M
Kakade. Soap: Improving and stabilizing shampoo using adam for language modeling. In International
Conference on Learning Representations (ICLR), 2025.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation. In Advances
in Neural Information Processing Systems (NIPS), volume 37, pages 54905-54931, 2024.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters properly
optimized? In International Conference on Learning Representations(ICLR), 2025.

Ke Wei, Jian-Feng Cai, Tony F Chan, and Shingyu Leung. Guarantees of riemannian optimization for low rank
matrix recovery. SIAM Journal on Matrix Analysis and Applications, 37(3):1198-1222, 2016.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Jui-Nan Yen, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri, Inderjit S Dhillon, Cho-Jui Hsieh, and Sanjiv
Kumar. Lora done rite: Robust invariant transformation equilibration for lora optimization. In The Thirteenth
International Conference on Learning Representations.

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation models. In
International Conference on Machine Learning (ICML), 2024.

Yilang Zhang, Bingcong Li, and Georgios B Giannakis. Reflora: Refactored low-rank adaptation for efficient
fine-tuning of large models. arXiv preprint arXiv:2505.18877, 2025a.

Yuanhe Zhang, Fanghui Liu, and Yudong Chen. Lora-one: One-step full gradient could suffice for fine-tuning
large language models, provably and efficiently. In International Conference on Machine Learning (ICML),
2025b.

11

Under review as a conference paper at ICLR 2026

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong Tian. Galore

Memory-efficient llm training by gradient low-rank projection. In International Conference on Machine
Learning (ICML), pages 61121-61143. PMLR, 2024.

Zhenyu Zhu, Yongtao Wu, Quanquan Gu, and Volkan Cevher. Imbalance-regularized lora: A plug-and-play

method for improving fine-tuning of foundation models. In Adaptive Foundation Models: Evolving Al for
Personalized and Efficient Learning, 2024.

12

Under review as a conference paper at ICLR 2026

CONTENTS
A" Supplementary Experiments of GPT-2 Fine-tuning| 13
IA.1 Experimental Results For Different Datasets| 13
|IA.2 Experimental Results For Different Model Size| 13
|IA.3 Training Loss Curve Using Different Optimizers|. 14
|A.4 Training Efficiency Comparison| oL, 14
|[A.5S Parameter Settings| 15
[B—Supplementary Experiments of Diffusion Model Fine-tuning| 17
B.1 Evaluation Metrics of Diffusion Models| 13
|B.2 Experimental Results for Different LoRA Scaling Factors|. 18
IB.3 Experimental Results for Different Learning Rates| 19
|C Computational and Memory Complexity Analysis of SoLLoRA| 24
[D_Proof of Theorefical Resulfs| 24
ID.1 Computation of Jacobian| L 24
ID.2 Orthogonal Projection to Tangent Space| 25
ID.3 Proofs of Theorem|3.1land Theorem3.21 27
ID.4 " Proof of the loss function exhibits a decreasing trend| 28
[EAdditional Experiments| 30
[The Use of Large Language Models (LLMs)| 30

A SUPPLEMENTARY EXPERIMENTS OF GPT-2 FINE-TUNING

A.1 EXPERIMENTAL RESULTS FOR DIFFERENT DATASETS

To further validate the effectiveness of SoLoRA, we also conducted the experiments of GPT-2
fine-tuning on the DART (Nan et al.,2021) dataset. with the results provided in the following table.

Scores of GPT-2 small model (rank=4) fine-tuned using different optimizers. Evaluation is conducted
on DART dataset.

Methods BLEUT METEOR?T chrF++7 TER| BLEURTY
SGD 41.2 0.63 0.59 0.52 0.33
Scaled GD 43.8 0.66 0.61 0.50 0.38
LoRA-Pro SGD 44.1 0.66 0.61 0.50 0.38
SoLoRA SGD (ours) 44.6 0.66 0.62 0.49 0.39
AdamW 439 0.66 0.60 0.50 0.38
Scaled AdamW 44.8 0.67 0.62 0.49 0.40
LoRA-Pro AdamW 44.9 0.66 0.62 0.50 0.39
SoLoRA AdamW (ours) 45.4 0.67 0.60 0.49 0.40

A.2 EXPERIMENTAL RESULTS FOR DIFFERENT MODEL SI1ZE

To more comprehensively validate the advantages of SOLoRA, we conduct experiments not only on
the small GPT-2 model but also on GPT-2 models of varying sizes for broader evaluation. All models
are fine-tuned with rank 4, and the evaluation results are presented in Table 2] The specific parameter
settings can be found in Table[3|and Table[d] By testing on models of different sizes, the experimental

13

Under review as a conference paper at ICLR 2026

results clearly demonstrate that SoOLoRA significantly outperforms other algorithms, regardless of
whether the SGD optimizer or the AdamW optimizer is used. This further confirms the effectiveness
and stability of the SoLoRA algorithm, enabling it to maintain excellent performance across models
of different sizes and under different optimizers.

'I(;raining Loss Curves for AdamW Based Optimizers 3'[(;raining Loss Curves for AdamW Based Optimizers
Training Loss (avg) Training Loss (avg)
AdamW AdamW
Scaled AdamW Scaled AdamW
2.8 1 LoRA-Pro AdamW 2.8 1 LoRA-Pro AdamW
SoLoRA AdamW SoLoRA AdamW

Loss
Loss

2.6 2.6

2.4 4 2.4 4

0 5000 10000 15000 20000 0 1000 2000 3000 4000 5000
Training Steps Training Time (s)

(a) Training loss curve over training steps when fine- (b) Training loss curve over training time when fine-
tuning using AdamW-based method. tuning using AdamW-based method.

Figure 2: Training loss of GPT-2 small model (» = 64) fine-tuned using different AdamW-based
optimizers. Evaluation is conducted on E2E Natural Language Generation Challenge.

A.3 TRAINING LOSS CURVE USING DIFFERENT OPTIMIZERS

To further explore the performance advantages of SOLoRA, we compare the runtime of different
optimizers when fine-tuning large language models, with the results shown in Figures [T] and 2]
These results strongly demonstrate the significant efficiency improvements achieved by the SoLoRA
method in fine-tuning tasks. Additionally, Figure[3]illustrates the stability of SOLoRA under different
learning rates. The experimental results show that SOLoRA maintains stable performance across
a wide range of learning rates, which is crucial for parameter tuning in practical applications. To
more comprehensively evaluate the stability of SOLoRA, we also compare it with Scaled AdamW
and LoRA-Pro AdamW, under varying learning rates. The results are presented in Figure[3] The
comparison reveals that SOLoRA exhibits superior stability across different ranks and learning rates.
This indicates that SOLoRA is not only insensitive to changes in learning rates but also robust across
varying LoRA ranks. As a result, it reduces the difficulty of hyperparameter tuning and enhances its
practicality in fine-tuning.

A.4 TRAINING EFFICIENCY COMPARISON

To validate the training and inference efficiency of SOLoRA, we report in the table below the total
training time required for all algorithms on the GPT-2 small model (rank 64). In addition, we recorded
the relationship between training time and the number of steps in Figure [

Training and Inference Time of GPT-2 small model (rank=64) fine-tuned using different optimizers.
Evaluation is conducted on E2E dataset.

Methods SGD Scaled GD LoRA-Pro SGD SoLoRA SGD
Total Training Time (Hours) 1.79 1.92 2.78 2.04

Total Inference Time (Hours) 1.86 1.87 1.58 1.89
Methods AdamW Scaled AdamW LoRA-Pro AdamW SoLoRA AdamW
Total Training Time (Hours) 1.79 1.94 2.93 2.04

Total Inference Time (Hours) 1.87 1.88 1.89 1.86

14

Under review as a conference paper at ICLR 2026

To further validate this, we record GPU memory consumption when the optimizer is called and after
the backward is called (fine-tune GPT-2 small model with rank as 4). The results are summarized
below.

GPU Memory occupied of GPT-2 small model (rank=4) fine-tuned using different optimizers. Evalu-
ation is conducted on E2E dataset.

Methods SGD Scaled GD LoRA-Pro SGD SoLoRA SGD
During optimizer computation (MB) 1395.48 1395.57 1395.62 1401.01
After backward (MB) 1395.48 1395.48 1395.48 1395.62
Memory Complexity 0 0 0 m+n
Methods AdamW Scaled AdamW LoRA-Pro AdamW SoLoRA AdamW
During optimizer computation (MB) 1396.63 1396.72 1529.97 1462.51
After backward (MB) 1396.60 1396.60 1510.98 1457.12
Memory Complexity (m+n)r (m+n)r 2mn mn+m-+n

The results confirm that the memory usage of Algorithm 1 is comparable to other algorithms. Specif-
ically, SoLoRA SGD (Algorithm 1) increases memory usage by only (1401.01-1395.62)/1395.62
= 0.386% compared to LoORA-SGD. However, with this slight increase in memory, Algorithm 1
demonstrates an effective improvement, as shown in Table |Z[

Table 2: Scores of GPT-2 small and medium models (r = 4) fine-tuned using different optimizers.
Evaluation is conducted on E2E Natural Language Generation challenge. See Appendix [A.2] for
experimental details.

E2E
Model Method BLEU NIST MET ROUGE-L CIDEr

SGD 548 456 340 63.3 1.29

Scaled GD 68.5 872 455 69.4 2.40

GPT2 small LoRA-Pro SGD 68.4 872 455 69.6 2.43

SoLoRA SGD (ours) 69.5 8.77 46.5 71.5 2.50

AdamW 69.1 875 46.0 70.5 2.47

Scaled AdamW 69.5 880 462 70.9 2.48

LoRA-Pro AdamW 69.2 873 459 70.8 2.47

SoLORA AdamW (ours) 70.0 8.84 463 713 2.50

SGD 66.6 854 442 68.2 2.32

Scaled GD 69.2 871 463 70.9 2.48

GPT2 medium LoRA-Pro SGD 69.7 877 465 70.9 2.50

SoLoRA SGD (ours) 70.3 8.84 469 71.7 2.54

AdamW 68.9 8.69 465 71.3 2.51

Scaled AdamW 69.6 877 466 71.8 2.52

LoRA-Pro AdamW 69.8 878 465 71.7 2.52

SoLoRA AdamW (ours) 70.3 8.84 46.7 71.8 2.53

A.5 PARAMETER SETTINGS

To ensure the reproducibility of the experiments described in Section] and to facilitate verification
and comparison by others, we provide the complete details of the experimental parameter settings.
Tables 3] and 4] list the parameters used during the fine-tuning of GPT-2 models and the learning rates
corresponding to different optimizers, respectively. Specifically, we conduct experiments with GPT-2
models of various sizes. “Rank 4 (M)” represents a medium-sized model using LoRA with rank 4,
while “Rank 47, “Rank 16, and “Rank 64" represent small models using LoRA with ranks 4, 16, and
64, respectively. To ensure the fairness of the experimental setup, we follow the parameter settings in
LoRA (Hu et al, 2022) and Riemannian Preconditioned LoRA (Zhang and Pilanci} 2024). However,

15

Under review as a conference paper at ICLR 2026

Training Loss Curves for SoLoRA Training Loss Curves for SoLoRA

Training Loss (avg) Training Loss (avg)
3.0 A SoLoRA AdamW, Ir=1e-4 3.0 SoLoRA AdamW, Ir=5¢-5
SoLoRA AdamW, Ir=1e-3 SoLoRA AdamW, Ir=1e-3
—— SoLoRA AdamW, Ir=8e¢-4 —— SoLoRA AdamW, Ir=3e-4

Loss

2.4 - T T T T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000

Training Steps Training Steps

(a) Training loss curve over training step when fine- (b) Training loss curve over training step when fine-
tuning using SOLORA AdamW with different learning ~ tuning using SOLoRA AdamW with different learning
rates. LoRA rank is 16, with 8e-4 being the optimal rates. LoRA rank is 64, with 3e-4 being the best

learning rate. learning rate.
Training Loss Curves for LoORA-Pro AdamW Training Loss Curves for Scaled AdamW
Training Loss (avg) Training Loss (avg)
3.01 LoRA-Pro AdamW, Ir=5e-5 3.01 Scaled AdamW, Ir=4e-3
LoRA-Pro AdamW, Ir=8e-4 Scaled AdamW, Ir=5¢-4
—— LoRA-Pro AdamW, Ir=4e-4 Scaled AdamW, Ir=2e-3

Loss
Loss

T T T T T T
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Training Steps Training Steps

(c) Training loss curve over training step when fine- (d) Training loss curve over training step when fine-
tuning using LoRA-Pro AdamW with different learn- tuning using Scaled AdamW with different learning
ing rates. LoRA rank is 64, with 4e-4 being the best ~ rates. LoRA rank is 64, with 2e-3 being the best
learning rate. learning rate.

Figure 3: Training loss curve over training step of GPT-2 small model (r = 16 and 64) fine-
tuned using different learning rates. Evaluation is conducted on E2E Natural Language Generation
Challenge. Our optimizer is stable across different learning rates under varying ranks.

Training Time Curves for SGD Based Optimizers Training Time Curves for AdamW Based Optimizers

10000 A
;\/([}e]tjhods 10000 Methods
AdamW

8000 1 Scaled GD 8000 Scaled AdamW
»n @ T
g —— LoRA-Pro SGD % LoRA-Pro AdamW

6000 - SoLoRA SGD
& E 6000 - SoLoRA AdamW
2 2
g 4000 ‘S 4000
[‘_&]

2000 & 5000 4

0 1 04
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Training Steps Training Steps

(a) Training Time curve over training steps when fine- (b) Training Time curve over training steps when fine-
tuning using SGD-based method. tuning using AdamW-based method.

Figure 4: Training Time of GPT-2 small model (r = 64) fine-tuned using different optimizers.
Evaluation is conducted on E2E Natural Language Generation Challenge.

16

Under review as a conference paper at ICLR 2026

considering the sensitivity of different optimizers to learning rates, we use a grid search strategy to
independently tune the optimal learning rate for each optimizer. This ensures that each optimizer
operates under its best-performing configuration, providing more objective and reliable experimental
results.

Table 3: Training and Inference Configuration for GPT-2 Fine-tuning.

Training LoRA « Inference
Parameter Value Parameter Value Parameter Value
Dropout Probability 0.1
Batch Size 8
Number of Epochs 5 « (for Rank 4) 32 Beam Size 10
Warm-up Steps 500 « (for Rank 16) 32 Length Penalty 0.8
Learning Rate Scheduler Linear « (for Rank 64) 128 No Repeat Ngram Size 4
Label Smoothing 0.1
Weight Decay 0.01

Table 4: Core Optimizer Parameters for GPT-2 fine-tuning.

Learning Rate (x1073)
Methods Rank 4 Rank 4 (g1v1) Rank 16 Rank64 P8 F1=102
SGD 90 90 200 90 / /
Scaled GD 20 20 40 10 / /
LoRA-Pro SGD 40 40 40 40 / /
SoLoRA SGD 0.05 0.05 0.5 0.8 /098
AdamW 0.2 0.2 0.2 02 09 0999
Scaled AdamW 0.8 0.8 2 4 07 08
LoRA-Pro AdamW 0.1 0.1 0.2 04 09 0999
SoLoRA AdamW 0.5 0.1 0.8 03 09 098

B SUPPLEMENTARY EXPERIMENTS OF DIFFUSION MODEL FINE-TUNING

As diffusion models increasingly become the mainstream method in image generation, LoRA plays an
indispensable role in personalization and style transfer for specific characters. It demonstrates unique
advantages, particularly in terms of parameter efficiency, training stability, and rapid convergence. To
systematically evaluate the effectiveness of our optimizer SoLoRA in such personalized generation
scenarios, we conduct experiments using the Mix-of-Show framework (Gu et al., |2023). This
framework integrates Embedding Decomposed LoRA (EDLoRA) into the model, which further
reduces the number of trainable parameters while maintaining expressive power. This design better
aligns with the dual demands of computational efficiency and generalization stability in real-world
applications. To ensure reproducibility and fair comparison, we follow the training and inference
settings from (Zhang and Pilanci, 2024} |Gu et al., 2023). Specifically, we disable fine-tuning of
all embedding vectors and only fine-tune LoRA-related components of the text encoder and U-Net
submodules.

Our evaluation encompasses two main aspects: quantitative assessment of the generated images
based on objective metrics, as detailed in Section[B.T] and qualitative demonstrations of the generated
images to visually showcase the effectiveness of the optimizer. For qualitative evaluation, we use
examples of Harry Potter and Hermione Granger to visually compare the performance of different
optimizers in terms of identity preservation, scene conformity with prompt, and style diversity. As
shown in Section and Section we conduct image generation under different LoRA scaling
factors and compare the performance of various optimizers across multiple learning rates. This design
not only evaluates the robustness of the optimizers under multi-scale hyperparameters but also reflects
their overall impact on generation quality and consistency in real-world scenarios.

17

Under review as a conference paper at ICLR 2026

All experimental results consistently demonstrate the advantages of the SoLoRA algorithm. Both
the quantitative evaluation metrics and the qualitative image demonstrations highlight the superior
performance of SoLoRA. This success can be attributed to the ability of SoLoRA to effectively
leverage the second-order information of the loss function, enabling more precise updates to model
parameters. Furthermore, the low-rank approximations of gradients derived from our proposed
adaptive weighted gradient strategy bring the performance of low-rank fine-tuning closer to that of
full-parameter fine-tuning. This allows SoLoRA to achieve comparable performance to full-parameter
fine-tuning while significantly reducing computational costs.

B.1 EVALUATION METRICS OF DIFFUSION MODELS

For quantitative evaluation, we employ two metrics: CLIP score (Hessel et all 2021) and FID
(Heusel et al., 2017). The CLIP score, based on the ViT-B/32 variant of the CLIP model (Radford
et al.,|2021)), measures the consistency between the generated images and the input text prompts. The
score ranges from 0 to 100, with higher scores indicating better alignment between the generated
image and the text prompt. On the other hand, FID assesses the similarity between the distribution of
generated images and the reference images. Lower FID values indicate higher similarity and better
overall image quality. The experimental results are shown in Table [5]

In terms of FID, regardless of whether the SGD or AdamW optimizer is used, or whether the scaling
factor is 0.7 or 1, our algorithm consistently achieve significantly lower FID values compared to all
other methods. This strongly indicates that the distribution of images generated by our algorithm
closely matches the distribution of the reference images. For the CLIP score, our algorithm achieve
the best performance when the scaling factor is set to 1, outperforming all other methods. However,
when the scaling factor is 0.7, the CLIP score of our algorithm is comparable to those of LoRA-Pro
and AdamW algorithm. It is important to note that this does not imply that the quality of the images
generated by our algorithm is inferior to others. On the contrary, this highlights one of the key
strengths of our algorithm: by effectively leveraging second-order information from the loss function,
the images generated by our method SoLoRA, not only maintain strong relevance to the text prompt
but also exhibit richer details and greater diversity. For instance, in Figure|7} the clothing worn by
the generated Harry Potter characters is more diverse, incorporating features that go beyond the
simple text prompt. Similarly, in Figure[9] in addition to generating Harry Potter wearing a brown
hat, our algorithm introduces more varied gestures for Harry Potter. These richer and more diverse
features, while potentially causing a slight decrease in the CLIP score (as CLIP tends to prioritize
strict prompt-image alignment and might not fully reward additional details beyond the prompt),
actually enhance the overall quality and creativity of the generated images.

Table 5: CLIP and FID scores of different optimizers with different scaling factors for Mix-of-Show.

Methods scaling=0.7 scaling=1
CLIPT FIDJ, CLIPt FIDJ}
SGD 27.79 6990 3140 4095
Scaled GD 31.23 3586 30.60 29.62
LoRA-Pro SGD 3147 3430 3048 29.19
SoLoRA SGD (ours) 3147 30.17 31.58 28.18
AdamW 3147 34.15 30.68 27.80
Scaled AdamW 2421 48.23 2451 34.18
LoRA-Pro AdamW 31.04 29.18 30.60 28.18

SoLoRA AdamW (ours) 31.47 29.01 30.73 27.13

B.2 EXPERIMENTAL RESULTS FOR DIFFERENT LORA SCALING FACTORS
To validate the effectiveness of the proposed optimizer, we compared the generated images of models

trained using each optimizer under different LoRA scaling factors s. For the sake of fairness, we
employed the optimal parameters for each optimizer, detailed in Table[6]for ease of replication.

18

Under review as a conference paper at ICLR 2026

Figure 5] and [f] show the generated results for Harry Potter and Hermione Granger when fine-tuning
the model using different AdamW-based optimizers, with the scaling factor set to 1.0. Figure[7]and
[B]show the model’s generated results when fine-tuned using different SGD-based optimizers, with
scaling factors uniformly set to 1.0. Figure [9]and [T0|present the generated results by using different
AdamW-based optimizers, employing the scaling factor of 0.7. Experimental results demonstrate
that the models trained with our optimizer generate high-quality images, accurately reproducing the
identity of Harry Potter and Hermione Granger while demonstrating diverse scene layouts adhering
to the input prompts.

' AdamW with s=1.0

h s=1.0

Séaleél AdamW wit

Figure 5: Generated results based on the prompt “Harry Potter is walking near Mount Fuji” when
fine-tuned using AdamW-based optimizers. All optimizers employed a LoRA scaling factor of 1.0,
with the best learning rate. The results indicate that the output of the model trained with our optimizer
incorporates the character “Harry Potter”, the action*“walking”, and the scene “Mount Fuji”, yielding
superior image quality compared to alternative approaches.

B.3 EXPERIMENTAL RESULTS FOR DIFFERENT LEARNING RATES

To illustrate the stability of the proposed optimizer, we fix the scaling factor to 1.0 and conduct
experiments for each optimizer when using different learning rates. For AdamW-based optimizers,
we set AdamW to employ the “Small LR” learning rate combination of 5e-6 and 5e-5 for text-encoder
and U-Net, and the “Large LR” learning rate combination of le-5 and le-4. For Scaled AdamW,
LoRA-Pro AdamW, and SoLoRA AdamW, we employed the same learning rate combinations, the
“Small LR” of 5e-6 and 5e-6, and the “Large LR” combination of le-5 and le-5. For SGD-based
optimizers, SGD, Scaled GD, and LoRA-Pro SGD, we employ the “Small LR” combination of le-2
and le-2, and the “Large LR” combination of le-1 and le-1, whereas SoLoRA SGD utilized the
“Small LR” combination of 5e-6 and 5e-6, and the “Large LR” combination of le-5 and 1e-5.

The experimental results, presented in Figures[IT]and[I2} illustrate the effectiveness of our proposed
optimizer across both small and large learning rates. This consistent performance signifies a higher
degree of stability compared to the alternatives. Such stability is paramount when fine-tuning
diffusion models, as their training is characterized by a non-stationary loss landscape. Therefore, the
optimizer’s ability to remain effective under varying learning rates makes it a robust and advantageous
choice for this application.

19

Under review as a conference paper at ICLR 2026

AdamW with s=1.0

Figure 6: Generation results from the prompt “A photo of Hermione Granger on the beach, small
waves, detailed symmetric face, beautiful composition” using AdamW-based optimizers. All the
optimizers apply LoRA scaling factor as 1.0, with the best learning rate. Results demonstrate that the
model trained with our optimizer generates higher-quality images than others, especially the face of
Hermione Granger and the scene.

SGD with s=1.0

Figure 7: Generated results based on the prompt “Harry Potter standing near the lake” when fine-tuned
using SGD-based optimizers. All optimizers employed a LoRA scaling scaling factor of 1.0, with the
best learning rate. Results demonstrate that the output images of the model trained with our optimizer
have higher-quality than others, especially the face of Harry Potter.

20

Under review as a conference paper at ICLR 2026

SGD with s=1.0

Figure 8: Generated results based on the prompt “Hermione Granger wearing a brown shirt” when
fine-tuned using SGD-based optimizers. All optimizers employed a LoRA scaling factor of 1.0,
with the best learning rate. Results demonstrate that the model trained with SOLoRA generates
higher-quality images than others, especially the face of Hermione Granger.

AdamW with s= 0 7

A o

Scaled AdamW w1th s=0.7

LoRA-Pro AdamW with s=0.7

Sedih

SoLoRA AdamW with s=0.7 (ours)

3

Figure 9: Generated results based on the prompt “Harry Potter wearing a brown hat” when fine-tuned
using AdamW-based optimizers. All optimizers employed a LoRA scaling factor of 0.7, with the best
learning rate. The results indicate that the output of the model trained with SoLoRA incorporates
the character “Harry Potter”, and the “hat”, yielding superior image quality compared to alternative
approaches.

21

Under review as a conference paper at ICLR 2026

AdamW wth s=0.7

Figure 10: Generation results from the prompt “A photo of Hermione Granger on the beach, small
waves, detailed symmetric face, beautiful composition” using AdamW-based optimizers. All the
optimizers apply LoRA scaling factor as 0.7. According to the author’s recommendation, the
optimizer AdamW and Scaled AdamW utilized a learning rate of 1e-5 for text-encoder and 1e-4 for
U-Net, whereas LoORA-Pro AdamW and our SoLoRA optimizer adopted le-5 for text-encoder and
U-Net. Results demonstrate that SOLoRA generates higher-quality images for both scaling factors
than others, including the face of Hermione Granger and the scene.

Scaled AdamW

LoRA-Pro AdamW

SoLoRA AdamW (Ours)

Figure 11: Generated results based on the prompt “ Hermione Granger in front of Eiffel Tower” using
AdamW-based optimizers. All the optimizers apply LoRA scaling factor as 1.0. “Small LR” and
“Large LR” represents using different learning rate, please refer to Appendix@for more details.

22

Under review as a conference paper at ICLR 2026

Scaled GD

LoRA-Pro SGD

SoLoRA SGD (Ours)

Figure 12: Generated results based on the prompt “ Photo of Harry Potter” using SGD-based
optimizers. All the optimizers apply LoRA scaling factor as 1.0. “Small LR” and “Large LR”
represent using different learning rate, please refer to Appendix Elfor more details.

Table 6: Optimizer Parameters for fine-tuning the Mix-of-Show Model.

Learning Rate

Methods Text-Encoder U-Net Bs P1=p
SGD le-1 le-1 / /
Scaled GD le-1 le-1 / /
LoRA-Pro SGD le-1 le-1 / /
SoLoRA SGD le-5 le-5 / 0.98
AdamW le-5 le-4 0.9 0.999
Scaled AdamW le-5 le-4 0.7 0.8
LoRA-Pro AdamW le-5 le-5 0.9 0.999
SoLoRA AdamW le-5 le-5 0.9 0.98

23

Under review as a conference paper at ICLR 2026

C COMPUTATIONAL AND MEMORY COMPLEXITY ANALYSIS OF SOLORA

The update rule of SoLoRA is given by
1 _1 1.1 1
A4, =(B/L:B) ' B/G/R,* [I - SRIA(ARF AN A,
——

Ga,
1 1 i1 1
Ap, = |I - -B(B, L} Bt)leTLf} L,> G:A] (AR?A]).
, B i p g i e
Gg,
We now analyze the computational complexity of computing the updates A 4, and Ap,. For

simplicity, we focus on A 4,, as the complexity for A g, is symmetric.

* Compute gradient G;. The stochastic gradient G; of W, is obtained during the backpropa-
gation process.

* Row and column sums for I; and r;. Compute l; and r; by summing the square of the
element of G, along rows or columns, which is in the computation O(mn). Lt% and L, 5
can computed in O(m), Rt% and R, * can computed in O(n).

* Compute (B, Lt% By)"'Ga,R, %. First to compute the inverse matrices (B, Lt% By)lin
O((m + 7)r?). Then multiply the inverse (BtTLt% B;)~! by G 4, in O(nr?), and multiply
the diagonal matrix R, % in O(nr).

 Compute (B, Lt% B,)"1Ga, A/ (Ath% A])"1A,. First to compute the inverse ma-
trices (Ath% A7t in O((n + 7)r?). Use the result from the last step, multiply
(B Lt% B;) G a, by A/ in computation O(nr?), then multiply (Ath% A/)~!in com-
putation O(r3), and multiply A; in O(nr?).

The computation complexity of A 4, is O(mn + (m+n)r® 4 r?). The computation of Ap, follows
a similar structure, with symmetric terms. Its complexity is also O(mn + (m + n)r? + r3). Then
we have

* Per Iteration Computational Complexity. Combining the computations of A 4, and
Ap,, the total computation complexity per iteration is O(mn + (m + n)r? + r3).

* Memory Complexity. The algorithm requires storing the vectors I; and 7, in each iteration,
hence the memory complexity is O(m + n).

D PROOF OF THEORETICAL RESULTS

D.1 COMPUTATION OF JACOBIAN

Proposition D.1 (Computation of Jg and J§). Let [B, A] be a pair of low-rank factors with
B € R™*" A € R"™*". Define the generator G : [R™*" R"™*"] — R™*" py G(|B, A]) = BA.
Denote the Jacobian of G by Jg and its adjoint by J§. Then, for any [P,Q] € [R™*" R"*"| and
any C 6 RTTLX’VL’

* Jg([B,A])[P,Q] = PA+ BQ,

* J5([B.A])(C)=[CAT,B'C],

« Jg([B, A])J5([B,A])(C)=CATA+BB'C.
Proof. The Jacobian operator Jg ([B, A])[P, Q] : [R™*",R"*"] — R™*" represents the derivative
of G at [B, A] along the direction [P, Q]. Similarly, J;([B, A])(C) : R™*" — [R™*" R"™"]

is the adjoint of Jg at [B, A] along the direction C. For more details, see (Absil et al.l 2009,
Section 6.1).

24

Under review as a conference paper at ICLR 2026

(i) The computation of Jg. Let B(t) : R — R™*" and A(t) : R — R™*" be differentiable
curves with B(0) = B and A(0) = A. By the chain rule, the Jacobian of G at [B, A]

along these curves is

. . dG(|B, A))] .- dg([B, A])] ;
LA LA = | == —aa |4

Jo((B(O), AONBEO, AW]| A B t:(ﬁ[) Aw

+ B(t)A(t)
t=0

= B(0)A + BA(0),
where B(t) and A(t) denote the derivatives of B(t) and A(t) with respect to t. The second
line follows because G([B, A]) = BA, hence dg(g%A]) and dg(ﬁl’A)] are both linear
operators.
Since B(0) and A(0) are arbitrary, for any [P, Q] € [R"*", R"*"], we obtain
Jg([B, A])[P,Q] = PA+ BQ.

= B(t)A(t)

t=0

(ii) The computation of J. For brevity, write Jg[P, Q] for Jg([B, A])[P, Q] and J;(C) for
J&([B, A])(C). By definition of the adjoint (with respect to the Frobenius inner product),

for any [P, Q] € (R™*",R"*") and C' € R™*",
(Jg[P,Q],C) = ([P,Q], J5(C)).
For the left-hand side,
(JglP,Q],C) = (PA+ BQ,C)

(PA,C) +(BQ,C)
(P,CA")+(Q,B'C).
For the right-hand side, writing J&(C) = [C1, Cs], then

(IP.QL, J(C)) = (IP.QL.[Cy, Cal)

=(P,C1) +(Q,Cy).

Hence C; = CAT and C; = B C, and therefore J([B, A])(C) = [CA", BT C].

(i) Finally, Jg([B, A])J5(|B, A])(C) = Jg([B, A])[CA",B'C] = CATA+ BB'C
as claimed.

O

D.2 ORTHOGONAL PROJECTION TO TANGENT SPACE

In this subsection, we derive the orthogonal projection onto the tangent space under both the standard
metric and the weighted metric. The specific forms of L; and R; are presented here and will not be
repeated in subsequent propositions and proofs. For the sake of simplicity, the subscript ¢ will be
omitted in this subsection.

n

Ly = diag(le/\/[[L][1) with L = Boli—1 + (1= B2) D (Gt © Gy g,
j=1

13)

m

R, = diag(rt/\/ ||Tt||1) with r; = ﬁg’l"t_l =+ (1 — 53) Z(Gt ® Gt)i,j;

i=1
where ® denotes the Hadamard (elementwise) product and Gy = VL(Wy + Wy).

Proposition D.2 (Orthogonal Projection to Tangent Space Under the Standard Metric). Let W € M.,
be a rank-r matrix with a low-rank decomposition W = B A, where B € R™*" A € R"*"™. Denote
by Tw the tangent space of the smooth manifold M. at the point W . Then, the orthogonal projection
of any matrix Z € R™*™ onto Ty is given by

Pry(Z)=B(B'B)"'B'Z+ZAT(AAT)"'A-B(B'B)"'B"ZAT(AA")'A.

25

Under review as a conference paper at ICLR 2026

Proof. Suppose W has a compact singular value decomposition, given by W = USV T, where
U e R™ " ¥ e R™ .V € R"". Then the tangent space Ty at W is characterized as

Tw ={UM" + NV for M € R™*" N € R"*"}.
Therefore, the orthogonal projection of Z onto Ty is known to be (Wei et al., [2016)
Pro(Z)=UU"Z+2ZV'V -UU'ZV'V. (14)

Since the columns of B and U span the same column space (i.e., the column space of W), then there
exists an invertible matrix S € R"*" such that B = US and U = BS~!. Using this relation, we
have

U'U=(BS)'BS'=5"T"(B"B)S™ .
Since U U = I, it follows that
S~ "(B"B)S'=1, —= B'"B=S'S.
Using this, we compute UU "
UU"=BS 'S "B=B(S"S)"'B"=B(B"B)"'B' (15)

Similarly, since the rows of A and the columns of V' span the same row space (i.e., the row space of
W), there exists an invertible matrix Q € R"*" such that A = QV' " and V' = Q' A. Further,
using VTV = I,., we obtain

Viv=Q 1(4AHQ " =1,
hence AAT = QQT and
VVI=ATQ TQ 'A=AT(QQR")'A=AT(AA") A (16)
Substituting (15) and (I6)) into (T4) yields
Pry(Z)=B(B'B)"'B'Z+ZAT(AAT)"'A-B(B'B)"'B"ZAT(AA")'A.
O

Proposition D.3 (Orthogonal Projection onto the Tangent Space Under the Weighted Metric). Let
W € M., has a low-rank decomposition W = BA, where B € R™*" A € R"*"™. Denote the
tangent space of the Riemannian manifold M, at the point W as Tyy. The weighted metric is

defined as (Y ,Z)pr = <L%YR%, Z) foranyY , Z € R™*", Then, the orthogonal projection of
any matrix Z € R™*" onto Ty under the weighed metric is given by

Pr,(Z)=BBTL*B)"'B'L?Z+ ZR*AT(AR>*AT)"'A
—-B(B'B)'B'L:ZR>AT(AAT)'A.

Proof. This proof is inspired by (Bian et al.| 2024)). Here, we briefly provide a sketch of the proof.

(i) The new orthonormal basis under the weighted metric. Let W = UXV T be a be a compact
SVD with U = [u1,us, -+ ,u,] € R™*" V = [v1,v9, -+ ,v,] € R"*". Normalize the
singular vectors under the weighted vector

(@,y),3 = (L?z,y) in R and (z,y)) = (R?x,y) in R

s
to obtain
U=UUTLU) % =[Gy, @2, ,iy] € R™",
V=V(VIRV) % = [0y,0, - ,] € R™.

ri) e

Next, we extend U and V to full orthonormal basis of (R™, (-, -)L%) and (R™, (-,)
spectively. Then, an orthonormal basis of Ty, with respect to (-, -) gz, is {ﬁiﬁ;}min{i, Jy<r

26

Under review as a conference paper at ICLR 2026

(ii) Orthogonal projection represented by the new orthonormal basis. Using the orthonormal
bases U and V/, the projection of Z onto Ty is expressed as:

Pr,, (Z) = > (Zub) Vg, wid] = S (LPZREaw]) am)
(i,5):min{s,j}<r (i,7):min{s,j}<r
= Y @ L7ZR%; -]
(i,5):min{é,j}<r

—UU'L:Z+ ZR>*VV' —UU'L*ZR:VV'.

(iii) Express the basis projectors via factors B and A. Since B and A span the same spaces as
U and V, we derive

UUT = B(BTL%B)ABT, VT =AT (AR%AT)AA.
Substituting these expressions into the formula for ﬁqrw, we obtain
Pr, (Z)=BBTL*B)"'B'L?Z+ ZR*AT(AR* A7) 'A
~B(B'L:B)'B'L?ZR*AT (AR:AT)'A.
O

Proposition D.4. Suppose W € M,. has a low-rank decomposition W = B A, where B € R™*"
and A € R™*", For any matrix M € R™*" N € R"*", the matrix M A+ BN lies in the tangent
space Ty at W of M, at the point W.

Proof. Let W € M, has a compact singular value decomposition W = UXV T, where U €
R™*7 3 € R"™*" and V € R"™*". By definition, the tangent space Ty at W is given by

Tw = {UK] + K,V |K; € R Ky € R™*"}

Since B and A are low-rank factors of W, there exist invertible matrices S € R™" and Q € R"*"
such that
B=US, A=QV'.

Substituting these expressions, the matrix M A + BN can be rewritten as
MA+ BN =MQV'™ +USN.

The first term, M QV T, lies in span(VT), and the second term, U SN, lies in span(U). Thus, the
sum MQV T +USN lies in the tangent space Tyy by the definition of the tangent space. Then, it
follows that M A + BN is on the tangent space Ty, . This completes the proof. O

D.3 PROOFS OF THEOREM B.T]AND THEOREM [3.2]
Proof of Theorem 3.1l Define

T(Ap,, Aa,) = %HABtAt +B,A4, — Pr,(L; *GiR; ?)|%,.
Differentiating I'(A g,, A 4,) with respect to Ap, and A 4, yields

Vas T(Ap,Ax,)=LiAp (AR?A]) + L:BiAs R A] — G,A], (17)

and
T 1 1 T 1 1 T
VAAtF(ABt’ Aa,)=B, L} Ap,AiR? + B, L} BiA4s,R? — B, G;. (18)
Setting Va, I'(Ap,, Aa,) = 0 and using the invertibility of (Ath% A/) and Lt% gives

Ap, = L, *GiA] (AR} A])"' — B,A s, R’ AT (AR} A])\. (19)

27

Under review as a conference paper at ICLR 2026

1 1
Substituting (T8) into VA, I'(Ap,,Aa,) = 0 and using the invertibility of B, L? B, and R}
yields

AAt [I - éAt] = (BfTLtéBt)ileTGthiE[I - éAt]a

~ 1 1
where Qa, = R} A/ (A;R} A])~! A, which is the projection matrix onto the row space of A;.

Since I — Q) 4, is the residual maker matrix, then a general solution is
1 _1
A} =(B/L}B,) 'B/G\R, * + X, A,
with arbitrary matrix X, € R"*". Plugging this A 4, back into (I9) gives
~ _1 1
AR =[I - PpL, G A/ (A/R; Al)" — B Xy,

where f’Bt = By(B/ L} B;)"'B, L}, which is the projection matrix onto the column space of B;.
O

Proof of Theorem Let the objective function be ¥(X;) = 1|Ap, A, — BiAy,|%,. To
minimize ¥(X;), we compute its gradient with respect to X,

1 1
Vx,U(X;) =B,/ L} (Ap,A; — BiA4,)RF AT,

Substituting the expressions for A, and B, from Theorem [3.1] we have

Vx,¥(X,) = B/ L} ([I - BB/ L}B) B/ L}IL GA] (AR A]) ' A,

_B.B/L:B,)"'B/G.R"* — QBtXtAt> R:AT
1 1
=-B/G;A; —2(B/ L} B,)X(A:R} A}).
Setting Vx, ¥(X;) = 0, we obtain
~B]G,A, = 2(B] L} B,) X,(AR} A]
ttt_(ttt)t(ttt)'

Since B, Lt% B; and Ath% A are invertible, we solve for X as

X® = —(B/L;B,)"'B/ G,A] (A,RZA])".

1
2

Thus, the optimal solution for X is derived. |

D.4 PROOF OF THE LOSS FUNCTION EXHIBITS A DECREASING TREND

Under the framework of LoRA, the infinitesimal change in loss is
dL = (Gp,dB)g + (Ga,dA)u
=-n((Gg,AB)H +(Ga,AA)H)
= —17((GB, [I-B(B'L*B) 'BTL?]L *Gp(AR*AT)"' - BX)y
+(Ga,(BTL*B)"'GAR? +XA>H)
= —n(<GB, [I-B(B'L*B) 'B"L:|L *Gp(AR*A"))y + (Ga,(B'L*B) 'GAR *)g
+ (Gp,—BX)uy +{(Ga,XA)m)
= —1((Gp.l1 - B(BTLB) 'BTL}|L 1 Gp(AR}AT))y + (Ga, (BTLYB) 'GaR),
(20)

28

Under review as a conference paper at ICLR 2026

Where the third line is derived from Theorem [3.1] the forth line is because of the additivity of the
inner product, and the last line is because
(Gp,~BX)n +(Ga,XA)g = (-B'Gp+GaA", X)n
=(-B'"GA" + B'"GA", X)n
= 0.
Therefore, to prove dL < 0, it suffices to prove that
(Gp,[I-BB'L*B) 'B"L*L *Gp(AR>*A"))y >0,
(Ga,(BTL?B) 'GAR ?)y > 0.

1. First to prove (Gp,[I — B(BTL:B) 'BTLz]L :Gp(ARzAT))y > 0.
« Prove [I — B(BTL2B)~'B" L] is symmetric and positive semi-definite.
From Equation (T0)), we have Pp = B(BTL%B)_lBTL%. Pgis symmetric in the

weighted space if it is self-adjoint with respect to the weighted inner product. That
means we need to prove for all vectors ¢,y € R™

(ﬁB$,y>H = <w7ﬁBy>H
For the left-hand side,
(Ppx,y)u = (L* Ppx,y) = (L B(B'L*B)'B' Lz, y).
For the right-hand side,
(x, Ppy)r = (L¥z, Ppy) = (P Liz,y) = (L’ B(BTL*B) "B Liz,y).

Thus, the left-hand side equals to the right-hand side, Pgis symmetric.

By Proposition Pg is the orthogonal projection under the inner product (-, -) gr.
As a projection matrix, the eigenvalues of 153 are zeros and ones. Thus, 15; and
I— 15]; are both positive semi-definite matrices.

There exists a Cholesky decomposition of I — 15]—3'— , denote as I — 15; = KK,
where K € R™*™ is a lower triangular matrix.

« Prove (AR2z AT)~! is symmetric and positive definite.
Since R is a diagonal matrix, then symmetric, and therefore AR2 AT is also symmet-
ric.
For any non-zero vector & € R, 2 TAR* ATz = (ATx, ATx)y = [|A |2 > 0.
Thus, AR? AT isa positive definite matrix.
Therefore, ARz A7 is invertible and (ARz AT)~1 is symmetric and positive definite.

There exists a Cholesky decomposition of (ARz AT)~!, denote as (ARz AT) ™1 =
CC'T , where C € R™*" is a lower triangular matrix.

Since [I—B(BTLzB) " 'BT Lz]and (AR AT)~! both have a Cholesky decomposition.
The inner product can be rewritten as

(Gg,[I-BB"L*B) 'B"L?|L *Gp(AR*AT) ')y

= (G, KK L :GgCC")y

= (L *KK'Gp,GgCC)y

= (KK'Gg,GgCC)

= (K'GpC,K"GgC)

= |K'GsC|%

>0

29

Under review as a conference paper at ICLR 2026

2. Then prove (Ga,(BTL2B) 'GoAR)y > 0.
Similar to (AR2 AT)~! is symmetric and positive definite, (BT L2 B)~! is symmetric
positive definite, and there exists a Cholesky decomposition of (B TL: B)~!, denote as
(BTLzB)~! = DD , where D € R™*" is a lower triangular matrix.
Thus, the inner product can be rewritten as
(Ga,(BTL:B) 'GaR *)u
= (Gao, DD "GAR %)y
= (GAR?*,DDTGAR?)
= (Ga,DD'"G4)
=(D"Ga,D"GaA)
IDTGal%
0

Y

In the conclusion, we have completed the proof of d£ < 0. This ensures that the SOLoRA model
maintains a decreasing trend in the loss.

E ADDITIONAL EXPERIMENTS

Trainzirag Loss Curves for SGD Based Optimizers (Dart Dataset)

Training6 Loss Curves for AdamW Based Optimizers (Dart Dataset)
1.

Training Loss (avg)
SGD Training Loss (avg)
181 Scaled GD AdamW
LoRA-Pro SGD Scaled AdamW
1.6 SoLoRA SGD 1.4 LoRA-Pro AdamW
’ SoLoRA AdamW

0 10000 20000 30000 40000 0 10(')00 20(’)00 30(’)00 40000

Training Steps Training Steps
(a) Training loss curve over training steps when fine- (b) Training loss curve over training time when fine-
tuning using SGD-based method. tuning using AdamW-based method.

Figure 13: Training loss of GPT-2 small model (r = 4) fine-tuned using different optimizers.
Evaluation is conducted on the DART Dataset.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to polish writing.

30

	Introduction
	Low-Rank Fine-Tuning of Large Language Models
	Rethinking Low-Rank Fine-Tuning: Connections and Limitations
	Preconditioned Low-Rank Adaption Fine-Tuning

	The Proposed Algorithms
	Construction of the Adaptive metric
	Second-order Low-Rank Adaption for Fine-tuning
	Second-order Low-Rank Adaption with Momentum for Fine-tuning.

	Experimental Results
	GPT-2 Fine-tuning

	Conclusion
	Supplementary Experiments of GPT-2 Fine-tuning
	Experimental Results For Different Datasets
	Experimental Results For Different Model Size
	Training Loss Curve Using Different Optimizers
	Training Efficiency Comparison
	Parameter Settings

	Supplementary Experiments of Diffusion Model Fine-tuning
	Evaluation Metrics of Diffusion Models
	Experimental Results for Different LoRA Scaling Factors
	Experimental Results for Different Learning Rates

	Computational and Memory Complexity Analysis of SoLoRA
	Proof of Theoretical Results
	Computation of Jacobian
	Orthogonal Projection to Tangent Space
	Proofs of Theorem 3.1 and Theorem 3.2
	Proof of the loss function exhibits a decreasing trend

	Additional Experiments
	The Use of Large Language Models (LLMs)

