
Adversarial representation learning for private speech generation
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Abstract
As more data is collected in various settings
across organizations, companies, and countries,
there has been an increase in the demand of user
privacy. Developing privacy preserving methods
for data analytics is thus an important area of re-
search. In this work we present a model based
on generative adversarial networks (GANs) that
learns to obfuscate specific sensitive attributes in
speech data. We train a model that learns to hide
sensitive information in the data, while preserving
the meaning in the utterance. The model is trained
in two steps: first to filter sensitive information
in the spectrogram domain, and then to generate
new and private information independent of the
filtered one. The model is based on a U-Net CNN
that takes mel-spectrograms as input. A MelGAN
is used to invert the spectrograms back to raw
audio waveforms. We show that it is possible to
hide sensitive information such as gender by gen-
erating new data, trained adversarially to maintain
utility and realism.

1. Introduction
With greater availability of computing power and large
datasets, machine learning methods are increasingly be-
ing used to gain insights and make decisions based on data.
While providing valuable insights, the methods may extract
sensitive information which the provider of the data did
not intend to disclose. An example of this is digital voice
assistants. The user provides commands by speaking, and
the speech is recorded through a microphone. A speech pro-
cessing algorithm infers the spoken contents and executes
the commands accordingly. However, it has been shown
that such state-of-the-art methods may infer other sensi-
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tive attributes as well, such as intention, gender, emotional
state, identity and many more (Srivastava et al., 2019). This
raises the question of how to learn representations of data to
such applications, which are useful for the intended purpose
while respecting the privacy of people.

Speakers’ identities can often be inferred based on features
such as timbre, pitch, and speaker style. Voice morphing
techniques focus on making it difficult to infer information
from these attributes by altering properties such as pitch
and intensity. However, this often limit the utility of the
signal, by altering intonation or variability. Voice conversion
approaches instead aim to mimic a specific speaker. In
contrast, this paper aims at modelling a distribution over
plausible speakers, given the current input signal, and while
hiding sensitive attributes.

In this paper, we approach the task of privacy-ensuring
voice transformations using an adversarial learning set-up.
Generative adversarial networks (GANs) were proposed as
tractable generative models (Goodfellow et al., 2014), but
have also been adapted to transform data and to provide pri-
vacy in the image domain (Huang et al., 2018). We build on
these findings, and propose PCMelGAN, a two-step GAN
set-up similar to from (Martinsson et al., 2020), that works
in the mel-spectrogram domain. The set-up consists of a
filter module which removes sensitive information, and a
generator module which adds synthetic information in its
place. The proposed method can successfully obfuscate sen-
sitive attributes in speech data and generates realistic speech
independent of the sensitive input attribute. Our results for
censoring the gender attribute on the AudioMNIST dataset,
demonstrate that the method can maintain a high level of
utility, i.e. retain qualities such as intonation and content,
while obtaining strong privacy.

In our experiments, the filter module makes it difficult for
an adversary to infer the gender of the speaker, and the gen-
erator module randomly assigns a synthetic value for the
gender attribute which is used when generating the output.
However, the proposed method is designed to be able to
censor any attribute of a categorical nature. The proposed
solution is agnostic to the downstream task, with the objec-
tive to make the data as private as possible given a distortion
constraint.
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2. Related work
Adversarial representation learning. Research within ad-
versarial learning aims to train two or more models simulta-
neously with conflicting objective functions. One network
which is trained on the main task, and one adversary net-
work that is trained to identify the other network’s output.
Within the image domain, adversarial learning has had a
large success in a wide variety of tasks since the introduction
of generative adversarial networks (GANs) (Goodfellow
et al., 2014). Examples of such tasks are image-to-image
transformations (Isola et al., 2017), and synthesis of facial
expressions and human pose (Song et al., 2017; Tang et al.,
2019).

Much less work with GANs has been done related to speech
and audio. (Pascual et al., 2017) introduce SEGAN (speech
enhancement GAN) and thus seem to be the first ones to
apply GANs to the task of speech generation and enhance-
ment. The authors train a model end-to-end working on
the raw-audio signal directly. (Higuchi et al., 2017; Qin
& Jiang, 2018) use adversarial learning to perform speech
enhancement for automatic speech recognition (ASR). (Don-
ahue et al., 2018) study the benefit of GAN-based speech
enhancement for ASR by extending SEGAN to operate on
a time-frequency.

While these works are applying GANs to tackle the chal-
lenges within speech, they are limited to a supervised set-
ting. The two most notable works in an unsupervised setting
are (Donahue et al., 2019) and (Engel et al., 2019). (Don-
ahue et al., 2019) focus on learning representations in an
adversarial manner in order to synthesize audio data both
on waveform and spectrogram level, but still show that it
is a challenging task, concluding that most perceptually-
informed spectrograms are non-invertible.

Intermediate speech representations. It is challenging to
work on raw waveforms when modeling audio data, due
to a high temporal resolution but also a complex relation-
ship between short-term and long-term dependencies. This
leads to most work being done on a lower-dimensional rep-
resentation domain, usually a spectrogram. Two common
intermediate speech representations are aligned linguistic
features (Oord et al., 2016) and mel-spectrograms (Shen
et al., 2018; Gibiansky et al., 2017). The mel scale is a
nonlinear frequency scale that is linear in terms of human
perception. It has the benefit of emphasizing differences in
lower frequencies, which are important to humans. At the
same time, it puts less weight on high frequency details, that
typically consists of different bursts of noise which are not
needed to be as distinguishable. (Engel et al., 2019) trains a
GAN to synthesize magnitute-phase spectrograms of note
records for different musical instruments. (Kumar et al.,
2019) tackle the problem of non-invertible spectrograms by
introducing MelGAN: a fully convolutional model designed

to invert mel-spectrograms to raw waveforms.

Adversarial representation learning for privacy. Adver-
sarial representation learning has also been studied as a
method of preserving privacy. More specifically, it has been
used with the goal of hiding sensitive attributes under some
utility constraint. This work has mainly focused on images
and/or videos, and some tasks related to text data (Zhang
et al., 2018; Xie et al., 2017; Beutel et al., 2017; Raval et al.,
2017).

To our knowledge, (Srivastava et al., 2019) are the first ones
to apply privacy related adversarial representation learning
to audio data. The authors study the problem of protecting
the speaker identity of a person based on an encoded rep-
resentation of their speech. The encoder is trained for an
automatic speech recognition (ASR) task. While the authors
manage to hide the speaker identity to some extent, their
method also relies on knowing labels for the downstream
task.

In the works of (Edwards & Storkey, 2016; Huang et al.,
2018) and (Martinsson et al., 2020), the authors apply ad-
versarial representation learning to censor images, without
using any downstream task labels.

Voice conversion. Voice conversion algorithms aim to learn
a function that maps acoustic features from a source-speaker
X to a target-speaker Y . Some notable works on this in-
volving GANs are (Hsu et al., 2017; Pasini, 2019; Kameoka
et al., 2018; Kaneko et al., 2019). Similar to (Kameoka
et al., 2018), we do not require any parallel utterances, tran-
scriptions, or time alignment for the speech generation part.
(Qian et al., 2018; Aloufi et al., 2019) use voice conversion
to study privacy in speech. However, these works differ
from our by having a target speaker to which they convert
the voice of the input speakers to.

3. Problem setting
3.1. Private conditional GAN

Private conditional GAN (PCGAN) (Martinsson et al., 2020)
is a model that builds upon the generative adversarial pri-
vacy (GAP) framework described by (Huang et al., 2017;
Huang et al., 2018). Both works study adversarial represen-
tation learning for obfuscating sensitive attributes in images.
The authors of PCGAN show that by adding a generator to
the filter model in the GAP framework strengthens privacy
while maintaining utility. The filter network obfuscates the
sensitive attribute s in the image, and the objective of the
generator is to take the filtered image x′ as input and gener-
ate a new synthetic instance of the sensitive attribute s′ in it,
independent of the original s.

The filter and the generator networks are trained against
their respective discriminators DF and DG in an adversarial
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set up. The discriminator DF is trained to predict s in
the transformed image x′, while the filter F is trained to
transform images that fools the discriminator. The training
objective of the filter can be described with the following
minimax setup:

min
F

max
DF

Ex,z1

[
`F
(
DF (F(x, z1), s)

]
s.t. Ex,z1

[
d (F (x, z1) ,x)

]
≤ ε1

(1)

where ε1 ≥ 0 denotes the allowed distortion in the transfor-
mation performed by the filter.

The purpose of the generator G is to generate a synthetic
s′, independent of the original s. Its discriminator, DG ,
takes as input a real image or an image generated by G, and
is trained to predict s in the first case, and to predict the
“fake” in the second, as in the semi-supervised learning
setup in (Salimans et al., 2016).

This setup is defined with the following minimax game:

min
G

max
DG

Ex,s′,z1,z2

[
`G (DG (G (F (x, z1) , s

′, z2)) , fake)
]

+ Ex

[
`G (DG(x;DG), s)

]
(2)

s.t. Ex,s′,z1,z2

[
d (G (F (x, z1) , s

′, z2) ,x)
]
≤ ε2

where ε2 ≥ 0 is the allowed distortion in the transformation
performed by the generator.

3.2. MelGAN

MelGAN is a non-autoregressive feed-forward convolu-
tional model which is trained to learn to invert mel-
spectrograms to raw waveforms (Kumar et al., 2019). The
MelGAN generator consists of a stack of transposed convo-
lutional layers, and the model uses three different discrim-
inators which each operate at different resolutions on the
raw audio. The discriminators are trained using a hinge loss
version (Lim & Ye, 2017) of the original GAN objective.
The generator is trained using the original GAN objective,
combined with a feature matching loss (Larsen et al., 2015),
which minimizes the L1 distance between the discriminator
feature maps of real and synthetic audio.

For each layer i, let D(i)
k (·) denote the out-

put from the kth discriminator. The feature
matching loss is computed as LFM (G,Dk) =

Ex,m

[∑
i

1
Ni

∥∥∥D(i)
k (x)−D(i)

k (G(m))
∥∥∥
1

]
where Ni

is the number of output units in layer i, x is the raw
audio signal and m is its corresponding mel-spectrogram.
The training objectives for the discriminators are then
formulated as:

min
Dk

(
Ex

[
min (0, 1−Dk(x))

]
+ Em,z

[
min (0, 1 +Dk(G(m, z)))

])
.

(3)

The generator objective is:

min
G

Em,z

[ 3∑
k=1

−Dk(G(m, z))
]
+ γ

3∑
k=1

LFM (G,Dk) ,

(4)
where γ is a hyperparameter controlling the balance between
the feature matching and fooling the discriminators.

3.3. Our contribution

Notation. Let s ∈ {0, 1} be a binary sensitive attribute, and
s′ ∼ U{0, 1}. Let z ∈ Z be a noise vector, x ∈ X a raw
waveform and m ∈ M a mel-spectrogram representation
of x. Let D be a discriminator, F :M×Z1 →M′ a filter
network and G :M′ ×Z2 →M′′ a generator. Let X ′ and
X ′′ denote the MelGAN inverted sets ofM′ andM′′. Each
x is paired with a sensitive attribute: (xi, si). Each sample
(xi, si) has a corresponding utility attribute ui, only used
for evaluation. In our case this is the spoken digit in the
recording, i.e. ui ∈ {0, . . . , 9}.

In this work we combine PCGAN and MelGAN to adversar-
ially learn private representations of speech data, and name
our model PCMelGAN. The whole pipeline is shown in
Figure 1. The speech recording x is mapped to a mel-
spectrogram m. PCGAN, with its filter and generator
modules F and G, is trained to ensure privacy in the mel-
spectrogram. We use a pre-trained MelGAN to invert the
mel-spectrogram output of our modelm′′ ∈M′′ to a raw
waveform x ∈ X ′′.

We implement F and G using a U-Net architecture similar
to (Martinsson et al., 2020). For DF and DG we use the
AlexNet architecture (Krizhevsky et al., 2012) as used in
(Becker et al., 2018) for gender classification in the spec-
trogram domain. We use categorical cross entropy as loss
functions denoted by `F and `G . The L1-norm is used as the
distortion measure d. The constrained optimization problem
is reformulated as an unconstrained one by relaxing it using
the quadratic penalty method (Nocedal & Wright, 2006).
The distortion constraint is denoted by ε and the penalty
parameter by λ. The parameters are updated using Adam
(Kingma & Ba, 2014).

As a baseline comparison, we use PCMelGAN where the
generator module is excluded. Thus we can directly see how
much the generator module adds to the privacy task.

F m′ G

DF

m′′

DG

s′

m

m

z1 z2

ST FTx M x′′

Figure 1. Schematic diagram of our model: PCMelGAN.
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4. Experiments
4.1. Data

We use the AudioMNIST dataset to conduct our experiments
(Becker et al., 2018). AudioMNIST consists of 30,000 au-
dio recordings of approximately 9.5 hours of spoken digits
(0-9) in English. Each digit it repeated 50 times for each of
the 60 different speakers. The audio files have a sampling
frequency of 48kHz and are saved in a 16 bit integer for-
mat. The audio recordings are also labeled with information
such as age, gender, origin and accent of all speakers were
collected.

In this paper, we use 10,000 samples as a training set and
2,000 samples as a test set. For the training set, we randomly
sample speakers such that it consists of 10 female and 10
male speakers. Similarly, the test set consists of 2 female
and 2 male speakers. We downsample the recordings to 8
kHz and use zero padding to get an equal length of 8192 for
each recording.

4.2. Data-driven implementation

To encourage reproducibility, we make our code publicly
available 1. The model is trained end-to-end, with the hy-
perparameters ηDF , ηDG = 0.0004, ηF , ηG = 0.0004, λ =
102, ε ∈ {0.005, 0.01, 0.05, 0.1} and (β1, β2) = (0.5, 0.9).
During training,m is computed using the short-time Fourier
transform with a window size of 1024, a hop length of 256
and 80 mel bins. We normalize and clip the spectrograms to
[−1, 1] as in (Donahue et al., 2019), with the exception that
the normalization is performed on the whole spectrogram
as opposed to for each frequency bin.

4.3. Evaluation

For each configuration of hyperparameters, we train the
model using five different random seeds for 1000 epochs on
a NVIDIA V100 GPU. We evaluate the experiments both
in the spectrogram and in the raw waveform domain. In
each domain, we train digit and gender classifiers on the
corresponding training sets, Xtrain andMtrain. The classi-
fiers that predict gender are used as a privacy measure, and
the classifiers that predict spoken digits are used as a utility
measure. We evaluate the fixed classifiers on M′test and
M′′test, to directly compare the added benefit by a generator
module on-top of the filter.

We also measure the quality of the generated audio using
Fréchet Inception Distance (FID) (Heusel et al., 2017). FID
is frequently used to measure the quality of GAN-generated
images. Since we are interested in measuring generated
audio quality, we replace the commonly used Inception
v3 network with an AudioNet (Becker et al., 2018) digit

1https://github.com/daverics/pcmelgan

classifier using the features from the last convolutional layer.

5. Results
Quantitative results. In Table 1 the mean accuracy and
standard deviation of the fixed classifiers on the test set is
shown over five runs in the spectrogram and audio domain,
respectively. Privacy is measured by the accuracy of the
fixed classifier predicting the original gender si, where an
accuracy close to 50% corresponds to more privacy. Utility
is measured by the accuracy of the fixed classifier predicting
the digit ui, where a higher accuracy corresponds to greater
utility.

Table 1. The spectrogram classifiers’ mean accuracy and standard
deviation on the test sets M′

test and M′′
test (top) and on X ′

test

and X ′′
test (bottom) for varying values of ε. For privacy (gender)

an accuracy close to 50% is better. For utility (digit), a higher
accuracy is better.
Dist. Privacy Utility

ε Baseline PCMelGAN Baseline PCMelGAN
0.005 49.9± 2.2 48.7± 2.4 84.1± 2.8 81.1± 3.7

0.01 55.0± 4.7 50.9± 1.4 79.9± 4.3 78.8± 7.8
0.05 61.3± 10.2 51.0± 0.7 80.9± 8.2 54.7± 23.8

0.1 48.9± 1.0 49.8± 0.5 29.1± 7.5 15.1± 5.4
0.005 52.2± 3.6 49.1± 1.6 36.8± 4.0 49.4± 9.8

0.01 53.2± 3.2 51.3± 1.6 34.3± 8.5 49.2± 8.6
0.05 61.5± 8.1 51.2± 0.7 28.0± 15.8 31.3± 10.3

0.1 51.0± 1.3 49.6± 0.4 11.4± 1.7 15.8± 2.3

In Table 2, FID scores are shown for our model working in
the audio domain. In figure 3, a recording of a woman say-
ing ”zero” is shown, together with the baseline (filter) and
PCMelGAN generating a male and a female spectrogram.

Table 2. The mean FID-score and standard deviation of the test
sets X ′

test and X ′′
test for different ε. A lower value corresponds to

more realistic audio.
Dist. FID Audio

ε Baseline PCMelgan
0.005 20.17± 4.04 10.12 ± 3.15

0.01 27.27± 4.50 10.02 ± 2.27
0.05 29.59± 5.77 20.22 ± 4.87

0.1 41.50± 3.49 22.32 ± 5.20

Qualitative results. We provide samples from the AudioM-
NIST test set that were transformed by our model 2. The
shared folder contains original sound clips and their corre-
sponding transformed versions.

2https://www.dropbox.com/sh/
oangx84ibhzodhs/AAAfG-PBW4Ne8KwdipAmKFy1a?
dl=0

https://github.com/daverics/pcmelgan
https://www.dropbox.com/sh/oangx84ibhzodhs/AAAfG-PBW4Ne8KwdipAmKFy1a?dl=0
https://www.dropbox.com/sh/oangx84ibhzodhs/AAAfG-PBW4Ne8KwdipAmKFy1a?dl=0
https://www.dropbox.com/sh/oangx84ibhzodhs/AAAfG-PBW4Ne8KwdipAmKFy1a?dl=0
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Figure 2. Privacy vs utility trade-off for the baseline and PCMelGAN for varying ε. Orange and blue points correspond to evaluating the
fixed classifiers for digits and gender on the spectrogram datasets M′

test and M′′
test (left), and raw waveform datasets X ′

test and X ′′
test

(right). Lower right corner is better.

Figure 3. Spectrograms of saying ”zero”. The original recording of
a female (top left), transformed ones from the baseline (top right),
and our model of a sampled male (bottom left) and a sampled
female (bottom right).

6. Discussion
Table 1 (top) and Figure 2 (left) demonstrate that the pro-
posed method achieves strong privacy while working on the
mel-spectrogram domain, and retains a strong utility preser-
vation. We notice in Table 1 (bottom left) and in Figure 2
(right) that the proposed method is able to provide privacy
in the audio domain, but to a loss of utility. However, when
comparing to the baseline, we see that generating a synthetic

s both increases utility and ensures privacy. In the spectro-
gram domain, the filter model seems to be enough to obtain
both privacy and utility. In both the spectrogram domain
and the audio domain, the proposed approach achieves high
privacy. We assume that the privacy will suffer from having
a stricter distortion budget ε, but this was not observed in
the experiments. While a quick sanity check with ε = 10−5

resulted in the model learning the identity map (with no
additional privacy), more experiments need to be carried
out to detect when privacy starts to deteriorate with lower ε.
It is worth noting that for some ε we have a large standard
deviation. We hypothesize that this could be improved by
using more diverse data, and future work should include
evaluating the proposed method on longer sentences.

In Table 2 we noticed that our model obtains substantially
better FID scores than the baseline in the audio domain. We
conclude that adding the synthetic sample of the sensitive
attribute improves the realism and fidelity of the speech
signal. We observe this also from listening to the generated
sounds (see qualitative results above).

7. Conclusions
In this work we have proposed an adversarially trained
model that learns to make speech data private. We do this by
first filtering a sensitive attribute, and then generating a new,
independent sensitive attribute. We formulate this as an un-
constrained optimization problem with a distortion budget.
This is done in the spectrogram domain, and we use a pre-
trained MelGAN to invert the generated mel-spectrogram
back to a raw waveform. We compare our model with the
baseline of just censoring the attribute, and show that we
gain both privacy and utility by generating a new sensitive
attribute in the audio domain.
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Supplementary

Algorithm 1 PCMelGAN
Input: dataset Xtrain, learning rate η, penalty λ, distor-
tion constant ε
repeat

Draw n samples uniformly at random from the dataset
(x1, s1), . . . , (xn, sn) ∼ Xtrain

Compute mel-spectrogram and normalize
mi = ST FT (xi) ∀i = 1, . . . , n
Draw n samples from the noise distribution
z
(1)
1 , . . . ,z

(1)
n ∼ N (0, 1)

z
(2)
1 , . . . ,z

(2)
n ∼ N (0, 1)

Draw n samples from the synthetic distribution
s′1, . . . , s

′
n ∼ U{0, 1}

Compute the censored and synthetic data
m′i = F(mi, z

(1)
i ;θF ) ∀i = 1, . . . , n

m′′i = G(m′i, s′i, z
(2)
i ;θG) ∀i = 1, . . . , n

Compute filter and generator loss

LF (θF ) = −
1

n

n∑
i=1

`(DF (m′i;θDF ), si)

+ λmax(
1

n

n∑
i=1

d(m′i,mi)− ε, 0)2

LG(θG) =
1

n

n∑
i=1

`(DG(m′′i ;θDG ), si)

+ λmax(
1

n

n∑
i=1

d(m′′i ,mi)− ε, 0)2

Update filter and generator parameters
θF ←− Adam(θF ; ηF , β1, β2)
θG ←− Adam(θG ; ηG , β1, β2)
Compute discriminator losses
LDF (θDF ) =

1
n

∑n
i=1 `(DF (m′i;θDF ), si)

LDG (θDG ) =
1

n

n∑
i=1

`(DG(m′′i ;θDG ), fake)

+
1

n

n∑
i=1

`(DG(mi;θDG ), si)

Update discriminator parameters
θD ←− Adam(θD; ηD, β1, β2)

until termination criterion is met


