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Abstract

In modern healthcare, radiology plays a piv-001
otal role in diagnosing and managing diseases.002
However, the complexity of medical imaging003
data and the variability in interpretation can004
lead to inconsistencies and a lack of patient-005
centered insights in radiology reports. To ad-006
dress these challenges, we propose a novel mul-007
timodal prompt-driven report generation frame-008
work Rad-Flamingo, that integrates diverse009
data modalities—such as medical images, and010
clinical notes—to produce comprehensive and011
context-aware radiology reports. Our frame-012
work leverages innovative prompt engineering013
techniques to guide vision-language models in014
synthesizing relevant information, ensuring the015
generated reports are not only accurate but also016
understandable to individual patients. A key017
feature of our framework is its ability to pro-018
vide patient-centric explanations, offering clear019
and personalized insights into diagnostic find-020
ings and their implications. Experimental re-021
sults demonstrate this framework’s effective-022
ness in enhancing report quality, improving un-023
derstandability, and could foster better patient-024
doctor communication. This approach repre-025
sents a significant step towards more intelligent,026
transparent, and human-centered medical AI027
systems.028

1 Introduction029

Radiology reports form the basis for clinical diag-030

nostics and guide medical experts in treating pa-031

tients. Despite their significance, creating radiol-032

ogy reports is a labor-intensive and expert-intensive033

process frequently plagued with human errors and034

differing details based on the radiologist’s level of035

experience. Given the very low ratio of radiolo-036

gists to patients, the laborious process of creating037

full text radiology reports ends up being one of the038

workflow’s largest obstacles (US, China, and India039

is 1:10,000, 1:14,772, and 1:100,000, respectively)040

(Arora, 2014). Given the huge number of cases and041

the shortage of radiology experts, time-efficiently 042

generating reports is a major hurdle worldwide. To- 043

wards this goal, there has been a huge attempt from 044

both industry and academia, with the landscape 045

of AI-based report generation witnessing exponen- 046

tial growth in recent times (Messina et al., 2022). 047

This growth is owed to the evolving capabilities of 048

large language models and vision language mod- 049

els (VLMs) in particular and VLMs have show- 050

cased exceptional abilities on a variety of tasks, 051

such as image captioning (Hossain et al., 2019), 052

visual question answering (Lu et al., 2023), and vi- 053

sual common sense reasoning (Zellers et al., 2018). 054

VLMs such as (Thawakar et al., 2024; Moor et al., 055

2023) show promising efficacy in aligning image 056

with text for medical use cases. 057

1.1 Motivation 058

VLMs find an excellent application in generation 059

of radiology reports. However, all generative pre- 060

trained models are opaque by design. Report gen- 061

eration systems which are able to generate reports 062

with explanations are better placed to build trust 063

and acceptability amongst patients. Such explana- 064

tions in case of radiology reports could be patient- 065

centric or expert-centric. Patient centric expla- 066

nations are lucid generated texts, that paraphrases 067

medical keywords in the report while explaining 068

the pathophysiology of the condition in easy to un- 069

derstand language. Furthermore, recent research 070

has demonstrated that large language models can 071

also rationalize their own prediction (Wiegreffe 072

et al., 2021) giving the model an ability to give nat- 073

ural language explanations for its own generated 074

responses. Combining the generation capabilities 075

of VLMs and their self-rationalization abilities, we 076

generate coherent radiology reports along-with pa- 077

tient centric explanations 1. 078

Generating radiology reports using prompting 079

1All our datasets and scripts will be publicly released.
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strategies, let alone multimodal prompting is an080

under-explored domain. Driven by this motivation,081

we developed a two step multimodal in-context082

learning strategy to generate radiology reports083

along with patient-centric explanations. In the first084

stage we design few-shot prompts following the085

standard in-context learning template. For this086

stage we take an open source VLM model Mini-087

GPT4 (Zhu et al., 2023) fine-tuned on MIMIC-088

CXR-JPG dataset (Johnson et al., 2019). This089

stage acts as the synthetic data generator, which090

annotates each of the image-report instance with091

a patient-centric explanation. For verifying the092

explanations we rely only on medical expert evalu-093

ations. Following this, we design our multimodal094

in-context learning strategy on Med-Flamingo (a095

fine-tuned Flamingo model) (Moor et al., 2023) to096

generate a structured radiology report along with097

patient-centric explanations. We evaluate the out-098

comes by utilizing classical NLG metrics (BLEU,099

ROUGE, METEOR) as well as medical expert eval-100

uation score. Further since for medical texts seman-101

tic similarity has paramount importance compared102

to lexical similarity we utilized automated semantic103

scoring metrics.104

Our contributions are:105

1. An Augmented IUX dataset Demner-106

Fushman et al. (2015) with each of 3995107

image-report instances augmented with a108

patient-centric explanation. Our augmen-109

tation is performed across all 105 disease110

classes of IUX dataset. We achieve this via a111

synthetic data generation pipeline, evaluated112

by medical experts (Section 4.1).113

2. A multimodal prompt based VLM framework,114

Rad-Flamingo, for automated structured radi-115

ology report generation and patient-centric ex-116

planation. Our method improved quantitative117

and qualitative scores by 2.3% over existing118

methods (Section 4.2 and 6).119

3. A first-of-its-kind multimodal in-context120

learning technique for self-rationalization by121

adding explicit medical knowledge to the122

prompt. To the best of our knowledge, this123

method incorporates multimodality and pa-124

tient understandability for prompt based ra-125

diology report generation resulting in a 2.4%126

increment in performance over existing few-127

shot prompting techniques (Section 6.2).128

2 Background and Definitions 129

Patient-Centric Explanations: Pathophysiology 130

(McCance et al., 2019) is the study of the func- 131

tional changes that occur in the body as a result 132

of a disease or injury. It focuses on understanding 133

the mechanisms by which diseases disrupt normal 134

physiological processes. In heart failure, for in- 135

stance, a reduction in cardiac output leads to com- 136

pensatory mechanisms like fluid retention, which 137

can cause symptoms like edema and shortness of 138

breath. Therefore, such informations serve as a 139

form of medical explanation with the generated 140

report. We extend this idea to patient-centric expla- 141

nations, where the pathophysiological explanations 142

are provided along-with the medical reports for 143

ease of understanding from the patients’ perspec- 144

tive. 145

Self-Rationalization: Self-rationalization in large 146

language models (LLMs) (Marasovic et al., 2022; 147

Wiegreffe et al., 2021; Camburu et al., 2018) refers 148

to their ability to generate explanations or justifica- 149

tions for their own outputs. This involves creating 150

reasoning pathways that appear coherent, logical, 151

and aligned with the responses they produce, even 152

though these models do not possess true under- 153

standing or awareness. LLMs achieve this by lever- 154

aging their vast training data to mimic human rea- 155

soning patterns, constructing plausible rationales 156

based on context, prior responses, and linguistic 157

structures. However, these explanations do not 158

serve as a pointer to the internal working of the 159

model, they merely act as a justification to the out- 160

put. In sensitive domains such as healthcare, an 161

explanation, at the very least plays an important 162

role towards building trust. 163

In-Context Learning: In-context learning refers 164

to the ability of LLMs to perform tasks by under- 165

standing and extrapolating from examples provided 166

within a prompt, without requiring explicit fine- 167

tuning of the model. This technique leverages the 168

model’s parametric knowledge and allows users to 169

define the task through natural language instruc- 170

tions and a few input-output examples (often called 171

few-shot learning). The model infers the pattern 172

from the context and applies it to new instances 173

during the same interaction. In-context learning 174

demonstrates the flexibility of LLMs to adapt to 175

diverse tasks, making them highly versatile for ap- 176

plications like text generation, question answering, 177

and code synthesis (Dong et al., 2024). 178
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3 Related Work179

Report Generation: Radiology report generation180

has been receiving a lot of attention lately, and181

several models have been developed based on the182

encoder-decoder architecture that was first used for183

image captioning tasks (Vinyals et al., 2014; Xu184

et al., 2015; Pan et al., 2020). However, report gen-185

eration poses additional challenges compared to186

image captioning, as medical reports are typically187

longer and coherent with respect to captions. In188

an encoder decoder setting it becomes very diffi-189

cult to generate long-form reports coherent with190

the medical image. Furthermore, bias in medi-191

cal datasets makes it difficult to generate compre-192

hensive, long-form reports. To address these chal-193

lenges, researchers have proposed various methods.194

Wang et al. (2021), introduced an image-text match-195

ing branch to facilitate report generation, utilizing196

report features to augment image characteristics197

and consequently minimize the impact of data bias.198

They also employed a hierarchical LSTM structure199

for the generation of long-form text. Chen et al.200

(2020a) and Wang et al. (2022b) introduced addi-201

tional memory modules to store past information,202

which can be utilized during the decoding process203

to improve long-text generation performance.204

Another type of work aims to mitigate data bias205

by incorporating external knowledge information,206

with the most representative approach being the207

integration of knowledge graphs Li et al. (2019,208

2023b); Huang et al. (2023); Liu et al. (2021);209

Zhang et al. (2020); Kale et al. (2023). Zhang210

et al. (2020) and Liu et al. (2021) combined pre-211

constructed graphs representing relationships be-212

tween diseases and organs using graph neural net-213

works, enabling more effective feature learning for214

abnormalities. Li et al. (2023b) developed a dy-215

namic approach that updates the graph with new216

knowledge in real-time. Huang et al. (2023) in-217

corporated knowledge from a symptom graph into218

the decoding stage using an injected knowledge219

distiller.220

These methods are able to generate reports as cap-221

tion with very high accuracy. However, they do222

not have the ability of free-form text generation223

possesed by pretrained VLMs. Therefore, VLMs224

become very effective for free-form text genera-225

tion.226

Vision Language Models: A significant area of227

research in natural language processing (NLP) and228

computer vision is the exploration of vision lan-229

guage model (VLM) learning techniques. This 230

VLM aims to bridge the gap between visual and tex- 231

tual information, enabling machines to understand 232

and generate content that combines both modali- 233

ties. Recent studies have demonstrated the poten- 234

tial of VLM models in various tasks, such as image 235

captioning (Zhu et al., 2023), visual question an- 236

swering (Liu et al., 2023b; Maaz et al., 2024), and 237

image generation (Zhang et al., 2023). Developing 238

on these medical VLMs like (Li et al., 2023a) and 239

(Abdin et al., 2024) show impressive performance 240

on medical NLP use cases. 241

4 Methodology 242

In the first stage, as per Figure 1, we use a finetuned 243

MiniGPT4 model to synthetically generate patient- 244

centric explanations (which are subsequently hu- 245

man evaluated) for each image report pair. The 246

model is finetuned on MIMIC-CXR-JPG (Johnson 247

et al., 2019) dataset, a large-scale repository of 248

chest X-ray images and corresponding reports in 249

the form of findings and impressions. Finetuning 250

allows the model to re-parameterize its weights to 251

learn to align a chest X-ray to its corresponding re- 252

port. Given this finetuned model, we design a three- 253

shot prompt template to generate patient-centric 254

explanations for an X-ray image and its correspond- 255

ing report. Therefore, this stage appends all the ex- 256

isting dataset samples with a patient-centric expla- 257

nation. The explanations generated are evaluated 258

by medical-experts resulting in creation of a gold- 259

label dataset consisting of image-report-PCE. This 260

created and human evaluated dataset then serves as 261

a standard against which we compare the outcomes 262

of the second stage. 263

In the second stage, we use this newly aug- 264

mented dataset to perform in-context learning with 265

a vision-language model that has been pretrained 266

on a medical dataset. This approach allows the 267

model to incorporate the nuances of patient-centric 268

explanations while maintaining its ability to pro- 269

vide clinically accurate and detailed radiological 270

reports. 271

4.1 Stage I (Synthetic Data Generation) 272

To fine-tune the MiniGPT4 (Zhu et al., 2023) model 273

we follow the technique in Thawakar et al. (2024). 274

We combine textual information from a medical 275

large language model (LLM) and visual character- 276

istics from a pre-trained medical vision encoder 277

(VLM) given the X-ray. In particular, our large 278
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tokenized data

<img> <img> <img> <img>

Med-Flamingo
Findings:................
Impressions:...........
PCE:....................

input

output

Five-Shot
Multimodal
Prompt

tokenized data

<img>

MiniGPT4 PCE

input

output

Three-Shot Multimodal
Prompt

Stage-I Stage-II
FInetuned

Frozen

Figure 1: Stage I: Refers to the synthetic data generation stage, which annotate the existing IUX dataset with patient
centric explanations. Stage II: Refers to the report generation stage where we design multimodal in-context prompts
using the annotated data from stage I. Additionally, the fire symbol represents the finetuned model and ice symbol
represent using frozen weights of a model not finetuned by us. PCE refers to the abbreviation of patient-centric
explanation.

language model (LLM) is based on the recently279

developed Vicuna model (Zheng et al., 2024), and280

we use MedClip (Wang et al., 2022c) as a vision281

encoder.282

Given an X-ray x ∈ RH×W×C , the vision en-283

coder Eimg encodes the image as Eimg(x). Then,284

the raw embeddings are transformed to an output285

dimension of 512 using a linear projection head.286

Vp = fv(Eimg(x)) (1)287

where Eimg is the vision encoder, fv is the projec-288

tion head. We use a trainable linear transformation289

layer to close the gap between the embedding space290

of the language decoder and image-level features291

, denoted as t. This layer transforms the image-292

level features, represented by Vp, into correspond-293

ing language-decoder embedding tokens, denoted294

as Lv:295

Lv = t(Vp) (2)296

Following this we employ a few-shot prompting297

strategy to generate patient-centric explanations for298

a given image-report pair.299

We follow a standard few-shot prompting strat-300

egy with three examples in the prompt. In the301

prompt we write Explanations as a placeholder for302

patient-centric explanation. The prompt template303

goes as follows:304

Example 1: 305

Findings:......
Impressions:.......
Explanations:......

Example 2: 306

Findings:......
Impressions:.......
Explanations:......

Example 3: 307

Findings:......
Impressions:.......
Explanations:......

Your Turn: 308

Findings:......
Impressions:.......
<img>Looking at the Xray, findings
and impressions generate an explanation

For the synthetic data generation we consider the 309

IUX (Demner-Fushman et al., 2015) dataset, the 310
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generated explanations are appended to each in-311

stance of the IUX dataset. For designing the prompt312

we sample three image-report (findings and impres-313

sions) pairs from each of the disease classes. We314

take assistance of medical experts to append each315

of the samples with patient-centric explanations.316

Subsequently, we pass the prompt as per Stage I in317

Fig 1 for the fine-tuned model to learn in-context.318

Fine-tuning the model on a large corpus, such as319

MIMIC-CXR-JPG (Johnson et al., 2019), helps320

the model to condition on the context provided in321

the prompt. We provide the full prompt samples322

in Appendix A. Therefore, the model is able to323

generate good quality explanations tailoring to our324

requirement. (the details are in appendix D). An325

Augmented Dataset is now created which consists326

of Image, report (Findings and Impressions) and327

patient-centric explanation Fig. (2) that serves as a328

standard against which we compare the outcomes329

of the second stage.330

4.2 Stage II (Radiology Report Generation)331

In this stage we follow the Med-Flamingo model332

(Moor et al., 2023) which is finetuned on a med-333

ical dataset. Med-Flamingo is developed on the334

Open-Flamingo Awadalla et al. (2023) architecture335

which possesses the ability of few-shot learning336

from multimodal inputs. The language modeling337

in Med-Flamingo is represented in eq 3338

p(yℓ | x1:ℓ−1, y1:ℓ−1) =
L∏

ℓ=1

p(yℓ | y1:ℓ−1, x1:ℓ−1)

(3)339

where yℓ refers to the ℓth language token, y1:ℓ−1 to340

the set of prior language tokens, and x1:ℓ−1 to the341

set of prior visual tokens. Here the language tokens342

contain the information of reports and PCEs and343

the image tokens contain the information of chest344

X-rays. While fine-tuning, the input is annotated345

in the form of interleaved image text data, which346

makes it effective for multimodal few-shot learn-347

ing. We exploit this interleaved template to design348

our proposed prompt as per Stage II in Fig 1. The349

interleaved input prompt-design while fine-tuning350

enables the model to condition on the multi-modal351

context. We choose five examples for each disease352

class from the Augmented Dataset compiled in353

stage I. Pivoting on the idea of interleaved image354

text data prompt, we set up our framework for mul-355

timodal in-context learning for which the prompt356

template is demonstrated below:357

Example 1:358

<img>Findings:......
Impressions:.......
Explanations:......

Example 2: 359

<img>Findings:......
Impressions:.......
Explanations:......

Example 3: 360

<img>Findings:......
Impressions:.......
Explanations:......

Example 4: 361

<img>Findings:......
Impressions:.......
Explanations:......

Example 5: 362

<img>Findings:......
Impressions:.......
Explanations:......

Your Turn: 363

<img>Looking at the xray generate
findings and impressions and a explana-
tion

Prompt examples are provided in the Appendix 364

B. Med-Flamingo with our proposed multimodal 365

prompt template is referred to as Rad-Flamingo. 366

5 Experiments 367

5.1 Dataset 368

In stage I we consider the MIMIC-CXR-JPG (John- 369

son et al., 2019) dataset for fine-tuning. MIMIC- 370

CXR-JPG dataset comprises 473,057 images and 371

206,563 reports from 63,478 patients. The official 372

splits, i.e. 368,960 for training, 2,991 for validation, 373

and 5,159 for testing are used for fine-tuning our 374

model. Subsequent to this we follow our prompting 375

technique (Section 4.1) to generate patient-centric 376

explanations and append it to each instance of the 377
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Metrics Models

R2GEN R2GenCMN Joint-TraiNet M2KT Open-Flamingo XProNet Rad-Flamingo
(Chen et al., 2020b) (Chen et al., 2021) (Yang et al., 2023) (Yang et al., 2022) (Awadalla et al., 2023) (Wang et al., 2022a)

BLEU-1 0.355 0.372 0.359 0.366 0.293 0.353 0.323

BLEU-2 0.223 0.233 0.226 0.213 0.195 0.221 0.232

BLEU-3 0.152 0.153 0.155 0.146 0.155 0.150 0.183

BLEU-4 0.103 0.105 0.102 0.104 0.071 0.105 0.081

METEOR 0.141 0.150 0.142 0.152 0.165 0.141 0.170

ROUGE 0.278 0.282 0.278 0.267 0.223 0.281 0.223

Table 1: Lexical similarity performance of Rad-Flamingo compared to baselines using classical metrics (BLEU,
METEOR, ROUGE).

IUX dataset (Demner-Fushman et al., 2015).378

In stage II we use the Augmented dataset from379

the previous step and design our prompts as per380

Fig 1. The dataset consists of 7,470 chest X-Ray381

images and 3,955 radiology reports. The number382

of patients are equal to the number of reports how-383

ever, each patient corresponds to two xray images384

i.e. frontal and lateral. Therefore, number of im-385

ages are twice the number of reports. We append a386

patient-centric explanation to each of 3955 radiol-387

ogy reports.388

5.2 Experimental Setup389

In stage-1 training, the model is fine-tuned to gain390

alignment between X-ray image features and cor-391

responding reports by training over a large set of392

image-report pairs. The result obtained from the393

injected projection layer is considered as a gentle394

cue for our medically tuned VLM model, guid-395

ing it to generate appropriate report based on the396

finding and impression that match the given X-ray397

images. For preprocessing we follow Thawakar398

et al. (2024) where we utilize high quality interac-399

tive report summaries of MIMIC-CXR-JPG. The400

train set contains 213,514 image report pairs for401

training. During training, the model is trained for402

320k total training steps with a batch size of 16403

using 3 NVIDIA A100 (80GB) GPUs.404

In stage-II we utilize predetermined prompts as405

shown in the previous section (4.2).406

For each X-ray image instance we take the cor-407

responding finding, impression and patient centric408

explanation and put it in the following format:409

<image> Findings Impression Explana-410

tion|endofchunk|.411

Five of these aforementioned multimodal prompt412

were followed by the query prompt described be-413

low:414

<image> + You are a helpful medical assistant.415

You are provided with images, findings, impressions416

and explanation.Looking at this image generate 417

Findings, Impressions and Explanations. 418

6 Result and Analysis 419

Our evaluation emphasizes the performance of the 420

Flamingo family of models (Moor et al., 2023) 421

(Awadalla et al., 2023), as these models provide 422

the essential few-shot learning capabilities needed 423

for our prompt-based report generating framework. 424

One possible comparison of Rad-Flamingo could 425

be done with other vision-language models, such 426

as Med-Phi (Abdin et al., 2024) and Med-LLaVA 427

(Li et al., 2023a). However, these models do not 428

have the ability to accept multimodal prompt and 429

hence were deliberately excluded as baselines from 430

our analysis. Our results analyse the effective- 431

ness of our multimodal prompt in generating re- 432

ports with patient-centric explanation. Tables 1 433

and 2 compare the scores over the generated re- 434

port and patient-centric explanations. Additionally, 435

we present zero shot experiments on open-source 436

VLMs in Appendix D.4.2 437

6.1 Lexical Metrics 438

In this section, we evaluate the quality of gener- 439

ated reports by Rad-Flamingo and compare them 440

against baselines using classical lexical similarity 441

metrics such as BLEU (Papineni et al., 2002), ME- 442

TEOR (Lavie and Agarwal, 2007), and ROUGE 443

(Lin, 2004) as shown in Table 1. These metrics 444

provide a convenient means of measuring word 445

overlap and syntactic similarity between generated 446

and reference texts. Rad-Flamingo performs sim- 447

ilar to the baselines on lexical similarity metrics. 448

However, these metrics find less application in med- 449

ical domain. This arises due to their inability to 450

account for the deeper semantic relevance and con- 451

textual accuracy required in specialized content, 452

such as medical data. For example, the sentences 453

"There is focal consolidation" and "There is no 454
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Metrics Rad-Flamingo Rad-Flamingo w/oI Open-Flamingo Open-Flamingo w/oI

BertScore 0.875 0.855 0.863 0.834

BioClinicalBertScore 0.895 0.879 0.885 0.854

RadGraphF1 0.285 0.273 0.279 0.269

Table 2: Performance comparison of Rad-Flamingo and Open-Flamingo models on clinical evaluation metrics using
proposed multimodal few-shot prompting framework. The table includes ablation studies highlighting the impact of
removing image modalities (w/oI) from the few-shot prompts. We do a metric wise significance testing in Appendix
D.2

focal consolidation" are lexically very similar yet455

semantically very dissimilar. Therefore, semantic456

similarity plays a greater role in evaluating gener-457

ated medical texts.458

Our few-shot prompting technique show compa-459

rable performance in some of the lexical metrics.460

While these metrics offer a preliminary measure461

of performance, they do not fully reflect the real462

utility of generated medical texts. This analysis un-463

derscores the need for more domain-specific evalu-464

ation frameworks that can assess not only linguistic465

fluency and coherence but also the contextual align-466

ment of generated texts in medical domain.467

6.2 Semantic Metrics468

We choose semantic metrics for clinical evalu-469

ation like BioClinicalBERTScore 2 (Lee et al.,470

2019), BERTScore (Zhang et al., 2019) and Rad-471

GraphF1 (Jain et al., 2021). In table 2 column472

Rad-Flamingo represents the setting where we473

prompt the Med-Flamingo model with proposed474

multimodal few-shot prompt. The Rad-Flamingo475

w/oI column reflects a configuration where images476

are excluded from the few-shot prompt examples,477

while all other components remain identical to Rad-478

Flamingo. A similar ablation strategy is applied479

to Open-Flamingo and Open-Flamingo w/oI for480

consistency.481

Both the BERTScore and ClinicalBERTScore for482

Rad-Flamingo show a 1.4% increase compared to483

Open-Flamingo. This shows our proposed mul-484

timodal prompt template effectively generates re-485

port with better performance than existing models.486

Similar increase is found in case of RadGraphF1487

scores. This result signifies the benefit of our488

proposed multimodal prompt template of Rad-489

Flamingo, over Open-Flamingo. To show the util-490

ity of multimodality in our prompt template, we491

2BioClinicalBERT is taken from huggingface. Underlying
model is BioBERT trained on MIMIC III dataset.https://
huggingface.co/emilyalsentzer/Bio_ClinicalBERT

remove the images from the examples and pass 492

it to the Rad-Flamingo and Open-Flamingo mod- 493

els. Rad-Flamingo w/oI and Open-Flamingo w/oI 494

represents those settings. We see the scores drop 495

significantly by 2.4% percent indicating the utility 496

of the multimodal prompt in integrating different 497

data-modalities and helps the model to generate 498

task-specific outputs. This approach effectively 499

addresses challenges in both unimodal and multi- 500

modal data modes. So domain specific metrics are 501

crucial to understand the utility of the multimodal 502

prompt strategy developed by us. Therefore, we 503

observe from the metrics that the semantic similar- 504

ity scores help us analyze the performance better 505

for task-specific output. Overall, the best perfor- 506

mance is given by Rad-Flamingo as the underly- 507

ing Med-Flamingo model is finetuned on medical 508

data. However, comparing the scores with Open- 509

Flamingo exhibits the effectiveness and utility of 510

our proposed multimodal prompt framework. We 511

provide further experiments on the role of patient- 512

centric explanations as part of the prompt Appendix 513

D. 514

6.3 Qualitative Evaluation 515

Owing to the subjective nature and the semantic 516

complexity which medical data possesses, evalua- 517

tion by medical expert becomes very important to 518

have a rigorous examination of a proposed system. 519

We consulted four expert-medical professionals to 520

evaluate our generated reports and corresponding 521

patient-centric explanations. We perform an ex- 522

tensive expert evaluation of the generated outputs. 523

The evaluation criteria is divided into two criterions 524

namely, Understandability and Medical Compre- 525

hensiveness. Whereas Understandability is Pa- 526

tient Centric, Medical Comprehensiveness mea- 527

sures the output based on its completeness from a 528

medical experts perspective. Following this we cre- 529

ated five levels of grading: 1 (very poor), 2 (poor), 530
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Models Rad-Flamingo

Understandability Medical Comprehensiveness

Cardiomegaly 3.44± 0.67 3.25± 0.43

Pulmonary Atelectasis 3.33± 1.36 3.4± 0.5

Nodules 3.21± 1.05 3.01± .70

Opacity 2.06± 0.54 2.5± 0.54

Calcified Granuloma 3.75± 0.82 3.13± 0.41

Pulmonary Fibrosis 3.0± 0.63 2.8± 0.58

Consolidation 3.2± 0.39 3.1± 0.56

Pneumothorax 3.6± 0.8 3.63± 0.6

Granuloma 3.4± 0.95 3.1± 0.7

Bronchiestasis 3.25± 0.44 3.1± 0.46

Table 3: The table presents the mean and standard devi-
ation of scores provided by four medical professionals
for each of the chosen disease class, highlighting the
effectiveness of the proposed prompting method after
stage II.

3 (good), 4 (very good), 5 (excellent) for both cri-531

terion. Subsequently, for each disease class we532

get four scores and the table shows a mean and533

standard deviation over these four scores for each534

criterion.535

The expert evaluation also shows our proposed536

prompting method, gives promising performance.537

An output sample of our system is given in Ap-538

pendix B. In Table 3 we express the results of539

expert evaluation on the aforementioned two crite-540

rion: patient-centric understandability (Understand-541

ability) and expert-centric completeness (Medical542

Comprehensiveness). The expert-evaluated scores543

indicate that understandability is in the upper half544

of the range of possible scores. Further Medical545

Comprehensiveness is also above average which in-546

dicates that the explanations generated are correct.547

However, the medical expert professionals depth548

of knowledge might not be achieved giving further549

scope in the future to explore this line of work. Fur-550

thermore, the ability to generated such explanations551

demonstrates that our multimodal prompting strat-552

egy effectively generates explanations that are both553

understandable to patients and simplify complex554

medical terminology.555

6.4 Ablation study on patient-centric556

explanation557

We analyze the impact of removing patient-centric558

explanations (PCEs) from our multimodal few-shot559

prompting framework by providing only findings560

and impressions as few-shot examples as shown561

in Appendix D.4.1. In this setting, the model562

fails to generate patient-centric explanations, high-563

lighting the necessity of explicitly incorporating 564

PCEs. As per Stage II (Section 4.2), when PCEs 565

are omitted from the prompt template, the prior 566

language tokens do not contain any information 567

about them, leading to the next predicted tokens 568

also lacking PCEs. This demonstrates that with- 569

out explicit patient-centric guidance, the model is 570

unable to produce explanations tailored for patient 571

understanding as shown in Figure 4 despite being 572

specifically instructed to do so. This ablation study 573

reinforces the importance of our synthetic annota- 574

tion stage (Section 4.1), which systematically in- 575

troduces PCEs into the prompting process. We ob- 576

serve that the presence of PCEs directly influences 577

the generation of explanations that simplify med- 578

ical terminology. The ablation study further con- 579

firms that patient-centricity in explanations does 580

not emerge naturally from findings and impressions 581

alone, necessitating an explicit prompting strategy. 582

In summary, this study highlights the crucial role of 583

PCEs in shaping the generated explanations, con- 584

firming that our synthetic annotation stage provides 585

significant context. Thus, PCEs serve as a key 586

component in our framework, reinforcing the ef- 587

fectiveness of our multimodal few-shot prompting 588

strategy. Along with this we also present a detailed 589

experiment on understanding the readability of our 590

generated explanations as presented in Appendix 591

D.3 592

7 Conclusion 593

Rad-Flamingo introduces a radiology report gener- 594

ation framework that integrates multimodal data 595

with prompt-driven methodologies and patient- 596

centric explanations, enhancing accuracy and un- 597

derstandability. By leveraging vision-language 598

models (VLMs), it automates routine reporting 599

tasks, allowing radiologists to focus on complex 600

cases and save valuable time. A key feature is 601

the patient-centric approach, ensuring that reports 602

are both medically accurate and understandable to 603

non-expert audiences. Additionally, by simplifying 604

complex medical terms, Rad-Flamingo makes ra- 605

diology reports more accessible, bridging the gap 606

between clinical findings and patient understand- 607

ing. The results highlight significant potential for 608

improving workflow efficiency and diagnostic sup- 609

port in radiology. However, future work should 610

focus on refining the alignment between vision and 611

language components in VLMs to generate more 612

coherent, reports with improved explanations. 613
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Limitations614

In this section we discuss the main limitations of615

our proposed framework. A notable limitation in616

our study is the absence of a number of VLMs617

which possess the same few-shot learning capabil-618

ity as the Flamingo family of models. This restricts619

us from evaluating the generalizability of our ap-620

proach. While our method shows promise, validat-621

ing its performance against a diverse set of few-622

shot models would provide deeper insights into its623

strengths and weaknesses. The inclusion of these624

models would also allow us to better understand625

how our approach fares in broader scenarios and626

under varying conditions, such as domain shifts or627

noisy inputs.628

Class imbalance in machine learning occurs629

when certain classes dominate the training data,630

causing the model to be biased toward these over-631

represented classes and perform poorly on minor-632

ity classes. This is particularly problematic in ap-633

plications like medical diagnosis, where minority634

classes are crucial, and can be addressed using tech-635

niques like re-sampling, loss adjustment, or robust636

algorithms.637

Another constraint in our evaluation is the lack638

of a direct comparison with ChatGPT, a widely639

recognized benchmark in conversational AI. The640

prompt template we use would require high com-641

putational and financial cost to perform a rigorous642

analysis. These constraints underscore the need643

for collaborative efforts and accessible research644

resources to enable comprehensive benchmarking.645

Ethical Considerations646

The Rad-Flamingo framework enables multimodal,647

prompt-driven radiology report generation with648

patient-centric explanations, adhering to strict eth-649

ical standards. All medical data is anonymized,650

and our data augmentation process ensures no risk651

of identity leakage. Designed to support, not re-652

place, clinicians, it enhances diagnostic accuracy653

and promotes transparent patient-provider commu-654

nication. We mitigate bias through diverse training655

data representing various demographics and med-656

ical conditions. Patient explanations are clear, re-657

spectful, and free from misleading content. Human658

oversight ensures outputs align with clinical stan-659

dards and ethical guidelines, maintaining patient660

safety, data security, and fairness in medical AI661

applications.662
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A Appendix1153

A.1 Prompt sample from Stage I1154

Example 1: Findings:Borderline cardiomegaly. Midline sternotomy. Enlarged pulmonary arteries.
Clear lungs. Inferior.
Impression: No acute pulmonary findings.
Explanation: The borderline cardiomegaly suggests slight enlargement of the heart, which could
be due to chronic pressure overload (possibly from hypertension) or cardiomyopathy. The midline
sternotomy indicates a previous cardiac surgery, which could relate to coronary artery disease or
valve replacements, considering the context of other findings. Enlarged pulmonary arteries might
suggest pulmonary hypertension, which could be secondary to left heart disease or chronic lung
conditions, though the lungs are reported as clear. The absence of acute pulmonary findings despite
these chronic alterations indicates that there are no new or worsening issues in the pulmonary
system at this time.

1155

Example 2: Findings: The cardiac contours are normal. basilar atelectasis. The lungs are clear.
Thoracic spondylosis. Lower cervical arthritis.
Impression: Basilar atelectasis. No confluent lobar consolidation or pleural effusion.
Explanation: The chest X-ray shows basilar atelectasis, a partial collapse or incomplete expansion
of the lower lung segments, likely due to shallow breathing or reduced lung volume. The lungs are
otherwise clear, without any signs of confluent lobar consolidation or pleural effusion, suggesting
no infection or fluid accumulation. The cardiac contours are normal, ruling out cardiomegaly
or abnormal heart positioning. Degenerative changes, including thoracic spondylosis and lower
cervical arthritis, are noted, indicating age-related or chronic wear-and-tear changes in the spine.
The overall impression is of minor pulmonary findings with no acute cardiopulmonary disease.

1156

Example3: Findings: The cardiomediastinal silhouette is within normal limits for size and contour.
The lungs are normally inflated without evidence of focal airspace disease, pleural effusion, or
pneumothorax. Stable calcified granuloma within the right upper lung. No acute bone abnormality.
Impression: No acute cardiopulmonary process.
Explanation: The chest X-ray reveals a normal cardiomediastinal silhouette, indicating no en-
largement or abnormality in heart or mediastinal contours. The lungs are well inflated, with no
signs of focal airspace disease such as infection, fluid, or collapse. A stable, calcified granuloma
in the right upper lung suggests a past, healed infection (e.g., tuberculosis or histoplasmosis)
with no current active disease. The absence of pleural effusion, pneumothorax, or acute bone
abnormalities supports the lack of any acute thoracic issues. Overall, there is no evidence of an
acute cardiopulmonary process, and the findings are consistent with a stable, chronic condition.

1157

Your Turn: Findings: Heart size within normal limits. No focal alveolar consolidation, no definite
pleural effusion seen. No typical findings of pulmonary edema. No pneumothorax.
Impression: No acute cardiopulmonary findings.
<img>Looking at the Xray, findings and impressions generate a patient- centric explanation

1158

B Appendix1159

B.1 Prompt sample from Stage II1160

The images in figure 1 are placeholders to exhibit the multimodal prompt design. While experiments we1161

took examples per disease class mentioned in the results section.1162
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Example 1: <image> Findings: Heart size mildly enlarged, stable mediastinal and hilar contours.
No focal alveolar consolidation, no definite pleural effusion seen. No typical findings of pulmonary
edema. No pneumothorax.
Impressions: Mild cardiomegaly, no acute pulmonary findings.
Explanation: It is clear the patient is in an enlarged heart condition (mild cardiomegaly) and
has been for some time. The pulmonary system is clear and no evidence of acute lung changes.
The overall pathophysiology suggests that the patient is in a chronic, stable state with ongoing
changes.The findings are normal and do not suggest any acute or severe events.<|endofchunk|>

1163

Example 2: <image> Findings: The heart is top normal in size. The mediastinum is stable. The
lungs are clear.
Impressions: Borderline cardiomegaly without acute disease.
Explanation: It is a case of borderline cardiomegaly, but it is difficult to correlate the finding of
enlarged heart with pathophysiology. Borderline cardiomegaly is a radiological finding. It could
mean that the heart size is in between normal and big (normal is 55 mm) but in this case it comes
to 57 mm.<|endofchunk|>

1164

Example 3: <image> Findings: Stable borderline cardiomegaly, stable mediastinal and hilar
contours. No alveolar consolidation, no findings of pleural effusion or pulmonary edema. No
pneumothorax.
Impressions: No acute cardiopulmonary findings.
Explanation: There are no acute cardiopulmonary findings, no pulmonary edema, no focal alveolar
consolidation, no definite pleural effusion, no large pleural effusions, no pneumothorax, no left
apical or basal consolidation, no pulmonary vascular congestion, and no pulmonary infarction;
however, bilateral patchy pulmonary opacities and multifocal scattered bibasilar patchy opacities
are noted.<|endofchunk|>

1165

Example 4: <image> Findings: Persistent cardiomegaly. No abnormal airspace consolidation.
Resolved interstitial edema. No pneumothorax or pleural effusion.
Impressions: Stable cardiomegaly without acute abnormality.
Explanation: No pneumothorax, no effusion, no infiltrate, no pulmonary congestion, no pleural
erythema all point towards non-infectious etiology. Mild cardiomegaly without acute abnormality is
also non-specific and without clinical significance. The unremarkable spine suggests degenerative
changes and nothing else.<|endofchunk|>

1166

Example 5: <image> Findings: The outside is normal except for slight cardiomegaly.
Impressions: Heart size upper limits normal. Lungs are clear. No evidence of active tuberculosis.
No change from prior exam.
Explanation: Slight cardiomegaly. Clear lungs indicate no pulmonary congestion or active dis-
ease.<|endofchunk|>

1167

Your Turn: <image> You are a helpful medical assistant. You are provided with images, find-
ings, impressions and explanation.Looking at this image generate Findings, Impressions and
Explanations

1168
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C Appendix1169

C.1 Augmented IUX dataset instance1170

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Figure 2: Augmented dataset instance showcasing input modalities (e.g., medical images, clinical text) and
corresponding annotated outputs, illustrating the report (findings and impression) and patient-centric explanation

C.2 Radiology Report with patient-centric explanation generated by Rad-Flamingo1171

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Image Generated Ground Truth

Findings: Stable cardiomegaly. No abnormal 
airspace consolidation. Resolved interstitial 
edema. No pneumothorax or pleural effusion.

Impressions: Stable cardiomegaly without acute 
abnormality.

Explanation: No pneumothorax, no effusion, no 
infiltrate, no pulmonary congestion, no pleural 
erythema all point towards non-infectious 
etiology. Mild cardiomegaly without acute 
abnormality is also non-specific and without 
clinical significance. The unremarkable spine 
suggests degenerative

Figure 3: Example of output given by Rad-Flamingo. Image and ground truth are from the proposed augmented
dataset.
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D Appendix 1172

D.1 Medical Expert Evaluation for Stage I outputs 1173

Models Finetuned MiniGPT-4

Understandability Medical Comprehensiveness

Cardiomegaly 3.56± 0.76 3.43± 0.52

Pulmonary Atelectasis 3.31± 1.26 3.41± 0.51

Nodules 3.22± 1.46 3.09± .71

Opacity 2.07± 0.57 2.5± 0.54

Calcified Granuloma 3.78± 0.82 3.23± 0.41

Pulmonary Fibrosis 3.0± 0.68 2.7± 0.78

Consolidation 3.22± 0.69 3.1± 0.66

Pneumothorax 3.61± 0.81 3.63± 0.67

Granuloma 3.44± 0.85 3.12± 0.71

Bronchiestasis 3.25± 0.54 3.11± 0.56

Table 4: The table presents the mean and standard deviation of scores provided by four medical professionals for
each of the chosen disease class. Highlighting the effectiveness of the proposed finetuning+prompting method in
stage I for synthetic annotation with patient-centric explanations. Follows the same trend as Table 3

D.2 Significance testing for Semantic Metrics 1174

Metrics F-statistic p-value

BioClinicalBertScore 30.00 0.0001

BertScore 30.01 0.0001

RadGraphF1 30.00 0.0001

Table 5: Statistical significance analysis using one-way ANOVA for BERTScore, BioClinicalBERTScore, and
RadGraphF1 scores across four evaluation settings: Rad-Flamingo, Rad-Flamingo w/oI, Open-Flamingo, and
Open-Flamingo w/oI. The results indicate significant differences in scores, as determined by F -statistics and
p-values (p < 0.05).

Extending our analysis in the results section, we further provide significance testing for the BERTScore, 1175

BioClinicalBERTScore, and RadGraphF1 scores of Rad-Flamingo, Rad-Flamingo w/oI, Open-Flamingo, 1176

and Open-Flamingo w/oI. 1177

1178

Null Hypothesis (H0): There is no significant difference between the <score-name>. Alternative 1179

Hypothesis (H1): There is significant difference between the <score-name>. As each of the output 1180

from the models are mean of generated reports over the chosen disease classes, we take them as the 1181

group mean for the one-way ANOVA test (Ross and Willson, 2017). Therefore, we consider the four 1182

evaluation setting as four groups of data, We get F -statistic = 30.00 and p-value ≈ 0.0001 respectively. 1183

Consequently, F -statistic > Fcritical and p-value < 0.05, satisfying these conditions we can reject 1184

the Null Hypothesis thereby establishing the values are significantly different. Similarly, we get F - 1185

statistic = 30.01 and p-value ≈ 0.0001 respectively. As the BioClinicalBERTScores are similar to 1186

the BERTScore we get similar F -statistic and p-value. Consequently, F -statistic > Fcritical and 1187
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p-value < 0.05, satisfying these conditions we can reject the Null Hypothesis thereby establishing the1188

values are significantly different. Lastly, we get F -statistic = 30.00 and p-value ≈ 0.0001 respectively.1189

Consequently, F -statistic > Fcritical and p-value < 0.05, satisfying these conditions we can reject the1190

Null Hypothesis thereby establishing the values are significantly different.1191

D.3 Readability measure1192

We perform an additional evaluation to increase experimental validity of our proposed multimodal few-1193

shot prompting strategy. To evaluate the human understandability of the generated explanations we1194

evaluate them with reading measure technique like Lexile Reading Measure (Stenner, 2023). A Lexile1195

measure is a standardized score that assesses both the reading ability of individuals and the complexity of1196

written texts, represented on a scale typically ranging from below 200L to above 1600L. This measure1197

helps educators, parents, and students identify reading materials that align with a reader’s current ability1198

level, ensuring an appropriate level of challenge to support comprehension and skill development. We1199

also evaluate on CharBLEU metric (Denoual and Lepage, 2004) since in medical text spelling plays a1200

crucial role.

Models Rad-Flamingo

Generated Ground Truth

Lexile Measure 69.28 63.6

CharBLEU 0.298 0.283

Table 6: The table highlights the readability and spelling accuracy of the generated explanations, demonstrating
their alignment with patient comprehension needs and medical domain standards.

1201

Table 6 represents two columns where the ground truth corresponds to the synthetically annotated1202

instances in stage-I and generated corresponds to the output explanations generated by our proposed1203

prompting technique in stage-II. The scores show a 8.9% increase in the readability of the generated1204

explanations. The score provided is an average over all the ten selected diseases as per Table 3. Averaging1205

across all values indicates an overall increase in readability; however, for certain disease classes, no1206

improvement is observed. The readability scores confirm that the generated explanations become more1207

comprehensible. Notably, explanations from Stage II exhibit enhanced readability compared to those from1208

Stage I, demonstrating the effectiveness of our proposed prompt design in improving clarity.1209

D.4 Further Experiments1210

D.4.1 Ablation study on patient-centric explanation as part of the prompt template1211

We ablate our prompt in the following manner:1212

Example 1: <image> Findings: Heart size mildly enlarged, stable mediastinal and hilar contours.
No focal alveolar consolidation, no definite pleural effusion seen. No typical findings of pulmonary
edema. No pneumothorax.
Impressions: Mild cardiomegaly, no acute pulmonary findings. <|endofchunk|>

1213

Example 2: <image> Findings: The heart is top normal in size. The mediastinum is stable. The
lungs are clear.
Impressions: Borderline cardiomegaly without acute disease.<|endofchunk|>

1214
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Example 3: <image> Findings: Stable borderline cardiomegaly, stable mediastinal and hilar
contours. No alveolar consolidation, no findings of pleural effusion or pulmonary edema. No
pneumothorax.
Impressions: No acute cardiopulmonary findings.<|endofchunk|>

1215

Example 4: <image> Findings: Persistent cardiomegaly. No abnormal airspace consolidation.
Resolved interstitial edema. No pneumothorax or pleural effusion.
Impressions: Stable cardiomegaly without acute abnormality.<|endofchunk|>

1216

Example 5: <image> Findings: The outside is normal except for slight cardiomegaly.
Impressions: Heart size upper limits normal. Lungs are clear. No evidence of active tuberculosis.
No change from prior exam.<|endofchunk|>

1217

Your Turn: <image> You are a helpful medical assistant. You are provided with images, find-
ings, impressions and explanation.Looking at this image generate Findings, Impressions and
Explanations

1218

Findings: Heart size mildly enlarged, stable 
mediastinal and hilar contours. No focal alveolar 
consolidation, no definite pleural effusion seen. 
No typical findings of pulmonary edema. No 
pneumothorax.

Impressions: Mild cardiomegaly, no acute 
pulmonary findings

Explanation: It is clear the patient is in an 
enlarged heart condition (mild cardiomegaly) 
and has been for some time. The pulmonary 
system is clear and no evidence of acute lung 
changes. The overall pathophysiology suggests 
that the patient is in a chronic, stable state with 
ongoing changes.The findings are normal and do 
not suggest any acute or severe events.

Image Generated Ground Truth

Findings: Stable cardiomegaly. No abnormal 
airspace consolidation. Resolved interstitial 
edema. No pneumothorax or pleural effusion.

Impressions: Stable cardiomegaly without acute 
abnormality.

Figure 4: Example of output given by Rad-Flamingo after ablating patient-centric explanation

D.4.2 Zero-Shot experiments on open-source VLMs 1219

Table 7 presents the zero-shot evaluation of two open-source vision-language models (VLMs), Llava Liu 1220

et al. (2023a) and Llama3.2-vision (Grattafiori et al., 2024). Unlike the Flamingo family, which supports 1221

few-shot learning, these models lack such capabilities, necessitating zero-shot experiments where images 1222

and instructions are provided to generate findings, impressions, and patient-centric explanations. The 1223

results show a significant performance decline, highlighting their limitations in medical report generation 1224

without few-shot adaptation. This reinforces the effectiveness of our multimodal few-shot prompting 1225

strategy in improving diagnostic accuracy, interpretability, and bias reduction. Additionally, the results 1226

validate the importance of our two-stage framework, which first generates findings and impressions before 1227

integrating patient-centric explanations, ensuring more structured and reliable outputs. These findings 1228

emphasize the necessity of few-shot prompting in AI-driven diagnostic radiology and demonstrate the 1229

advantages of a structured generation pipeline for maintaining accuracy and contextual relevance in 1230
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medical imaging applications.1231

Metrics Llava (Zero-Shot) Llama 3.2-Vision (Zero-Shot)

BertScore 0.70 0.55

BioClinicalBertScore 0.81 0.57

RadGraphF1 0.225 0.172

Table 7: Table 7:Zero-shot evaluation results for open-source vision-language models (VLMs), Llava Liu et al.
(2023a) and Llama3.2-vision (Grattafiori et al., 2024). The significant performance drop highlights the limitations of
these models in generating high-quality medical reports without few-shot adaptation, reinforcing the effectiveness
of our multimodal few-shot prompting strategy and the necessity of a two-stage framework for structured report
generation.
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