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ABSTRACT

Commonly used optimization algorithms often show a trade-off between good
generalization and fast training times. For instance, stochastic gradient descent
(SGD) tends to have good generalization; however, adaptive gradient methods
have superior training times. Momentum can help accelerate training with SGD,
but so far there has been no principled way to select the momentum hyperparame-
ter. Here we study training dynamics arising from the interplay between SGD with
label noise and momentum in the training of overparametrized neural networks.
We find that scaling the momentum hyperparameter 1 − β with the learning rate
to the power of 2/3 maximally accelerates training, without sacrificing general-
ization. To analytically derive this result we develop an architecture-independent
framework, where the main assumption is the existence of a degenerate manifold
of global minimizers, as is natural in overparametrized models. Training dynam-
ics display the emergence of two characteristic timescales that are well-separated
for generic values of the hyperparameters. The maximum acceleration of training
is reached when these two timescales meet, which in turn determines the scal-
ing limit we propose. We confirm our scaling rule for synthetic regression prob-
lems (matrix sensing and teacher-student paradigm) and classification for realistic
datasets (ResNet-18 on CIFAR10, 6-layer MLP on FashionMNIST), suggesting
the robustness of our scaling rule to variations in architectures and datasets.

1 INTRODUCTION

The modern paradigm for optimization of deep neural networks has engineers working with vastly
overparametrized models and training to near perfect accuracy (Zhang et al., 2017). In this setting,
a model will typically have not just isolated minima in parameter space, but a continuous set of
minimizers, not all of which generalize well. Liu et al. (2020) demonstrate that depending on pa-
rameter initialization and hyperparameters, stochastic gradient descent (SGD) is capable of finding
minima with wildly different test accuracies. Thus, the power of a particular optimization method
lies in its ability to select a minimum that generalizes amongst this vast set. In other words, good
generalization relies on the implicit bias or regularization of an optimization algorithm.

There is a significant body of evidence that training deep nets with SGD leads to good generalization.
Intuitively, SGD appears to prefer flatter minima (Keskar et al., 2017; Wu et al., 2018; Xie et al.,
2020), and flatter minima generalize better (Hochreiter & Schmidhuber, 1997). More recently, a
variant of SGD which introduces “algorithmic” label noise has been especially amenable to rigorous
treatment. In the overparametrized setting Blanc et al. (2020) were able to rigorously determine
that SGD with label noise converges not just to any minimum, but to those minima that lead to
the smallest trace norm of the Hessian. However, Li et al. (2022) show that the dynamics of this
regularization happen on a timescale proportional to the inverse square of the learning rate η – much
slower than the time to first converge to an interpolating solution. Therefore we consider the setting
where we remain near the local minima, which is responsible for significant regularization after the
initial convergence of the train loss (Blanc et al., 2020).

With the recent explosion in size of both models and datasets, training time has become an impor-
tant consideration in addition to asymptotic generalization error. In this context, adaptive gradient
methods such as Adam (Kingma & Ba, 2015) are unilaterally preferred over variants of SGD, even
though they often yield worse generalization errors in practical settings (Keskar & Socher, 2017;

1



Under review as a conference paper at ICLR 2023

Wilson et al., 2017), though extensive hyperparameter tuning (Choi et al., 2019) or scheduling (Xie
et al., 2022) can potentially obviate this problem.

These two constraints motivate a careful analysis of how momentum accelerates SGD. Classic work
on acceleration methods, which we refer to generally as momentum, have found a provable benefit
in the deterministic setting, where gradient updates have no error. However, rigorous guarantees
have been harder to find in the stochastic setting, and remain limited by strict conditions on the
noise (Polyak, 1987; Kidambi et al., 2018) or model class and dataset structure Lee et al. (2022).

In this work, we show that there exists a scaling limit for SGD with momentum (SGDM) which
provably increases the rate of convergence.

Notation. In what follows, we denote by Cn, for n = 0, 1, . . . the set of functions with con-
tinuous nth derivatives. For any function f , ∂f [u] and ∂2f [u, v] will denote directional first and
second derivatives along directions defined by vectors u, v ∈ RD. We may occasionally also write
∂2f [Σ] =

∑D
i,j=1 ∂

2f [ei, ej ]Σij . Given a submanifold Γ ⊂ RD and w ∈ Γ, we denote by TwΓ the
tangent space to Γ in w, and by PL(w) the projector onto TwΓ (we will often omit the dependence
on w and simply write PL). Given a matrix H ∈ RD × RD, we will denote by H> the transpose,
and H† the pseudoinverse of H .

1.1 HEURISTIC EXPLANATION FOR OPTIMAL MOMENTUM-BASED SPEEDUP

Deep neural networks typically posses a manifold of parametrizations with zero training error. Be-
cause the gradients of the loss function vanish along this manifold, the dynamics of the weights is
completely frozen under gradient descent. However, as appreciated by Wei & Schwab (2019) and
Blanc et al. (2020), noise can generate an average drift of the weights along the manifold. In par-
ticular, SGD noise can drive the weights to a lower-curvature region which, heuristically, explains
the good generalization properties of SGD. Separately, it is well-known that adding momentum
typically leads to acceleration in training Sutskever et al. (2013) Below, we will see that there is a
nontrivial interplay between the drift induced by noise and momentum, and find that acceleration
along the valley is maximized by a particular hyperparameter choice in the limit of small learning
rate. In this section we will illustrate the main intuition leading to this prediction using heuristic
arguments, and defer a more complete discussion to Sec. 3.

We model momentum SGD with label noise using the following formulation

πk+1 = βπk −∇L(wk) + εσ(wk)ξk, wk+1 = wk + ηπk+1, (1)

where η is the learning rate, β is the (heavy-ball) momentum hyperparameter (as introduced by
Polyak (1964)), w ∈ RD denotes the weights and π ∈ RD denotes momentum (also called the
auxiliary variable). L : RD → R is the training loss, and σ : RD → RD×r is the noise function,
whose dependence on the weights allows to model the gradient noise due to SGD and label noise.
Specifically this admits modeling phenomena such as automatic variance reduction (Liu & Belkin,
2020), and expected smoothness, satisfying only very general assumptions such as those developed
by Khaled & Richtárik (2020). Finally, ξk ∈ Rr is sampled i.i.d. at every timestep k from a
distribution with zero mean and unit variance, and ε > 0.

We will now present a heuristic description of the drift dynamics that is induced by the noise along
a manifold of minimizers Γ = {w : L(w) = 0} ⊆ RD, in the limit ε → 0. In practice, this limit
corresponds to choosing small strength of label noise and large minibatch size. Let us assume that
the weights at initial time w0 are already close to Γ, and π0 = 0. Because of this, the gradients
of L at w0 are very small, and so only fluctuations transverse to the manifold will generate sys-
tematic drifts. Denoting by δwk = w0 − wk the displacement of the weights after k timesteps,
let us Taylor expand the first equation in (1) to get πk+1 = βπk − ∇2L(w0)[δwk] + εσ(w0)ξk.
By construction, the Hessian ∇2L(w0) vanishes along the directions tangent to Γ, while in the
transverse direction we have an Ornstein-Uhlenbeck (OU) process. The number of time steps it
takes to this process to relax to the stationary state, or mixing time, is τ1 = Θ (1/(1− β)) as
β → 1, which can be anticipated from the first equation in (1) since πk+1 − πk ∼ −(1 − β)πk
(see Sec. 3.3 for a more detailed derivation). After this time, the variance of this linearized
OU process becomes independent of the time step, and can be estimated to be (see Appendix
F): 〈(δwTk )>δwTk 〉 = Θ

(
ε2η/(1− β)

)
, where 〈· · · 〉 denotes the noise average. To keep track

of the displacements in the longitudinal directions, δwLk , we need to look at the cubic order in
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the Taylor expansion of L(w0 + δwk), i.e. ∂2(∇L)[δwk, δwk]. Let PL be the projector onto
the tangent space. The expectation value of momentum, upon applying the longitudinal projec-
tor, is PL〈πk+1〉 = −PL

∑k
j=0 β

k−j 〈∇L(wj)〉 = − 1
2

∑k
j=0 β

k−j∂2(PL∇L)[〈(δwj)>δwj〉] =

− 1
2

1
1−β∂

2(PL∇L)[〈(δwj)>δwj〉]. The variance of the transverse displacements therefore gener-
ates longitudinal motion, and the latter will then scale as PL〈πk+1〉 = Θ

(
ε2η/(1− β)2

)
. Using

the second equation in (1), we see that PL(〈δwk+1〉 − 〈δwk〉) = PL〈η πk+1〉. Define τ2 to be
the number of time steps it takes so that the displacement of wk along Γ becomes a finite number
as we take ε → 0 first, and η → 0 afterward. From the above considerations, we then find that
τ2 = Θ

(
(1− β)2/ε2η2

)
.

The key observation now is that, when the weights are initialized near the valley, the convergence
time is controlled by the largest timescale among τ1 and τ2. While τ2 decreases as β → 1, τ1
increases. Therefore, the optimal speedup of training is achieved when these two timescales intersect
τ1 = τ2, which happens for 1 − β = Cη2/3. More generally, we consider a double scaling where
β → 1 as η → 0 according to

β = 1− Cηγ . (2)
We consider this scaling limit in this paper, and we thus find that the scaling power γ = 2/3 achieves
the optimal speed-up along the zero-loss manifold.

1.2 LIMIT DRIFT-DIFFUSION

We now describe the rationale for obtaining the limiting drift-diffusion on the zero-loss manifold,
for a process of the form (1) which foreshadows the rigorous results presented in section 3. As
discussed above, the motion along the manifold is slow, as it takes Θ(ε−2) time steps to have a finite
amount of longitudinal drift. We want to extract this slow longitudinal sector of the dynamics by
projecting out the fast-moving components of the weights. For stable values of the optimization
hyperparameters, the noiseless (ε2 = 0) dynamics (1) will map a generic pair (π,w), as k → ∞,
to (0, w∞), where w∞ ∈ Γ. Define Φ : RD×D → RD to be this mapping, i.e. Φ(π,w) = w∞.
As we now show, when ε > 0, Φ can be used precisely to project onto the slow, noise-induced
longitudinal dynamics. Let us collectively denote xk = (πk, wk) and write eq. (1) as xk+1 =
xk + F (xk) + εσ̃(xt)ξt. We can perform a Taylor expansion in ε to obtain Φ(xt+1) − Φ(xt) =
∂Φ(xt)[εσ̃(xt)ξt] + ∂2Φ(xt)[εσ̃(xt)ξt, εσ̃(xt)ξt] + · · · . Therefore, denoting Y (t = ε2k) = Φ(xk),
the limit dynamics as ε→ 0 can be well-approximated by the continuous time equation

dY = ∂Φ(xt)[σ̃(xt)ξt]
√
dt+ ∂2Φ(xt)[σ̃(xt)ξt, σ̃(xt)ξt]dt , (3)

where we interpret the time increment dt = ε2, and 〈ξ2
t 〉 = 1. Note that until here we have not taken

a small learning rate limit. The learning rate can be finite, as far as the map Φ(π, x) exists. The
small noise limit is sufficient to allow a continuous-time description of the limit dynamics because
the noise-induced drift-diffusion along the valley requires Θ(ε−2) timesteps to lead to appreciable
longitudinal displacements.

A similar approach to what we just described was used in Li et al. (2022), although in our case
the limit drift-diffusion is obtained in the small noise limit, rather than small learning rate. The
reason for our choice is that, since we scale β according to (2), the deterministic part of eq. (1)
becomes degenerate as we take η → 0, in which case it would not possible to apply the mathematical
framework of Katzenberger (1991) on which our results below rely. To further simplify our analysis,
particularly the statement of Theorem B.4, we will further take η → 0 after taking ε→ 0, and retain
only leading order contributions in η.

The main contributions of this paper are:

1. We develop a general formalism to study SGD with (heavy-ball) momentum in Sec. 3,
extending the framework of Li et al. (2022) to study convergence rates and generalization
with momentum.

2. We find a novel scaling regime of the momentum hyperparameter 1−β ∼ ηγ , and demon-
strate a qualitative change in the noise-induced training dynamics as γ is varied.

3. We identify a special scaling limit, 1 − β ∼ η2/3, where training achieves a maximal
speedup at fixed learning rate η.
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4. In Sec. 4, we demonstrate the relevance of our theory with experiments on toy models (2-
layer neural networks, and matrix sensing) as well as realistic models and datasets (ResNet-
18 on CIFAR10).

2 RELATED WORKS

Loss Landscape in Overparametrized Networks The geometry of the loss landscape is very
hard to understand for real-world models. Choromanska et al. (2015) conjectured, based on em-
pirical observations and on an idealized model, that most local minima have similar loss function
values. Subsequent literature has shown in wider generality the existence of a manifold connecting
degenerate minima of the loss function, particularly in overparametrized models. This was sup-
ported by work on mode connectivity (Freeman & Bruna, 2017; Garipov et al., 2018; Draxler et al.,
2018; Kuditipudi et al., 2019), as well as on empirical observations that the loss Hessian possesses a
large set of (nearly) vanishing eigenvalues (Sagun et al., 2016; 2017). In particular, Nguyen (2019)
showed that for overparametrized networks with piecewise linear activations, all global minima are
connected within a unique valley.

The Implicit Regularization of SGD Wei & Schwab (2019), assuming the existence of a zero-
loss valley, observed that SGD noise leads to a decrease in the trace of the Hessian. Blanc et al.
(2020) demonstrated that SGD with label noise in the overparametrized regime induces a regularized
loss that accounts for the decrease in the trace of the Hessian. Damian et al. (2021) extend this
analysis to finite learning rate. HaoChen et al. (2021) study the effect of non-isotropic label noise
in SGD and find a theoretical advantage in a quadratic overparametrized model. Wu et al. (2022)
show that only minima with small enough Hessians (in Frobenius norm) are stable under SGD. The
specific regularization induced by SGD was found in quadratic models (Pillaud-Vivien et al., 2022),
2-layer Relu networks (Blanc et al., 2020), linear models (Li et al., 2022), diagonal networks (Pesme
et al., 2021). Additionally, Kunin et al. (2021) and Xie et al. (2021) studied the diffusive dynamics
induced by SGD both empirically and in a simple theoretical model.

Momentum in SGD and Adaptive Algorithms Momentum is a general term applied to tech-
niques introduced to speed up gradient descent. Popular implementations include Nesterov (Nes-
terov, 1983) and Heavy Ball (HB) or Polyak (Polyak, 1964). We focus on the latter in this paper,
which we refer to simply as momentum. Momentum provably improves convergence time in the
deterministic setting. Intuitively, introducing β in 1 gives the motion in parameter space an effective
“inertia” or memory, which promotes motion not strictly following the local gradient, but moving
rather along the directions which persistently decrease the loss function across iterations Polyak
(1964); Sutskever et al. (2013). Less is known rigorously when stochastic gradient updates are used.
Indeed, Polyak (1987) suggests the benefits of acceleration with momentum disappear with stochas-
tic optimization unless certain conditions are placed on the properties of the noise. See also (Jain
et al., 2018; Kidambi et al., 2018) for more discussion and background on this issue. Nevertheless,
in practice it is widely appreciated that momentum is important for convergence and generalization
(Sutskever et al., 2013), and widely used in modern adaptive gradient algorithms Kingma & Ba
(2015). Some limited results have been obtained showing speedup in the mean-field approximation
(Mannelli & Urbani, 2021) and linear regression Jain et al. (2018). Modifications to Nesterov mo-
mentum to make it more amenable to stochasticity (Liu & Belkin, 2020; Allen-Zhu, 2017), and near
saddle points (Xie et al., 2022) have also been considered.

3 THEORETICAL RESULTS

3.1 GENERAL SETUP

Following the line from section 1.2 In this and the following section, we will rigorously derive
the limiting drift-diffusion equation for the weights on the zero-loss manifold Γ, and extract the
timescale τ2 associated to this noise-induced motion. In Sec. 3.3 we will then compare τ2 to the
timescale τ1 associated to the noiseless dynamics and evaluate the optimal value of γ discussed
around Eq. (2). We will use Eq. (1) to model momentum SGD. As illustrated in Sec. 1.1, the drift is
controlled by the second moment of fluctuations, and we thus expect the drift timescale to be Θ(ε2).
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We will then rescale time k = t/ε2, so that the motion in the units of t is O(1) as ε → 0. More
explicitly, take εn to be a positive sequence such that εn → 0 as n → ∞. For each n we consider
the stochastic process that solves Eq. (1):

Xn(t) = Xn(0) +

∫ t

0

σ̃(Xn)dZn +

∫ t

0

F (Xn)dAn , (4)

with

An(t) =

⌊
t

ε2n

⌋
, Zn(t) = εn

An(t)∑
k=1

ξk (5)

and where X(t = ε2k) = (πk, wk), σ̃(X) = (σ, ησ) and F (X) = ((β − 1)π − ∇L(w), η(βπ −
∇L(w))). bxc denotes the integer part of a real number x. See Appendix B.2 for a proof of equiva-
lence between (1) and (4).
Assumption 3.1. The loss function L : RD → R is a C3 function whose first 3 derivatives are
locally Lipschitz, σ is continuous, and Γ = {w ∈ RD : L(w) = 0} is a C2-submanifold of RD of
dimension M , with 0 ≤M ≤ D. Additionally, for w ∈ Γ, rank(∇2L(w)) = D −M .

Assumption 3.2. There exists an open neighborhood U of {0} × Γ ⊆ RD × RD such that the
gradient descent starting in U converges to a point x = (π,w) ∈ {0} × Γ. More explicitly, for
x ∈ U , let ψ(x, 0) = x and ψ(x, k + 1) = ψ(x, k) + F (ψ(x, k)), i.e. ψ(x, k) is the kth iteration
of x + F (x). Then Φ(x) ≡ limk→∞ ψ(x, k) exists and is in Γ. As a consequence, Φ ∈ C2 on U
(Falconer, 1983).

3.2 LIMITING DRIFT-DIFFUSION IN MOMENTUM SGD

In this section we shall obtain the explicit expression for the limiting drift-diffusion. The general
framework is based on Katzenberger (1991) (reviewed in Appendix B). Before stating the result, we
will need to introduce a few objects.
Definition 3.3. For a symmetric matrix H ∈ RD × RD, and WH = {Σ ∈ RD × RD : Σ =

Σ> , HH†Σ = H†HΣ = σ}, we define the operator L̃H : WH → WH with L̃HS ≡ {H,S} +
1
2C
−2η1−2γ [[S,H], H], with [S,H] = SH−HS. It can be shown that the operator L̃H is invertible

(see Lemma C.3).

Consider the process in Eq. (4). Note that, while at initialization we can have Xn(0) /∈ Γ, the
solution Xn(t) → Γ as n → ∞, i.e. it becomes discontinuous. This is an effect of the speed-
up of time introduced around Eqs. (4),(5). To overcome this issue, it is convenient to introduce
Yn(t) ≡ Xn(t)− ψ(Xn(0), An(t)) + Φ(Xn(0)), so that Yn(0) ∈ Γ is initialized on the manifold.
Theorem 3.4 (Informal). Suppose the loss function L, the noise function σ, the manifold of mini-
mizers Γ and the neighborhood U satisfy assumptions (3.1) and (3.2), and thatXn(0) = X(0) ∈ U .
Then, as εn → 0, and subsequently taking η → 0, Yn(t) converges to Y (t), where the latter satisfies
the limiting drift-diffusion equation

dY =( 1
C η

1−γ + η)PLσdW − 1
2C2 η

2−2γ(∇2L)†∂2(∇L)[ΣLL]dt

− 1
C2 η

2−2γPL∂
2(∇L)[(∇2L)†ΣTL]dt− 1

2C2 η
2−2γPL∂

2(∇L)[L̃−1
∇2LΣTT ]dt ,

(6)

where W (t) is a Wiener process.

A rigorous version of this theorem is given in section B. The first term in Eq. (6) induces diffusion
in the longitudinal direction. The second term is of geometrical nature, and is necessary to guarantee
that Y (t) remains on Γ. The second line describes the drift induced by the transverse fluctuations.

Eq. (6) resembles in form that found in Li et al. (2022), although there are two crucial differences.
First, time has been rescaled using the strength of the noise ε, rather than the learning rate. The
different rescaling was necessary as the forcing term F in Eq. (4) depends non-homogeneously on
η, and thus the theory of Katzenberger (1991) would not be directly applied had we taken the small
learning rate limit. Second, and more crucially, the drift terms in Eq. (6) are proportional to η2−2γ ,
which is a key ingredient leading to the change in hierarchy of the timescales discussed in Sec. 1.1.
One final difference, is that the last term involves the operator L̃H instead of the Lyapunov operator.
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For γ < 1
2 , L̃H reduces to the Lyapunov operator LH at leading order in η, with LHS ≡ {H,S}.

For γ > 1
2 , however, we cannot neglect the η-dependent term in L̃H (see discussion at the end of

Appendix C).
Corollary 3.5. In the case of label noise, i.e. when, for w ∈ Γ, Σ = c∇2L , for some constant
c > 0, Eq. (6) reduces to

dY = −ε
2η2−2γ

4C2
PL∇Tr(c∇2L)dt , (7)

where we have rescaled time back to t = k, i.e. we performed t→ tε2.

3.3 SEPARATION OF TIMESCALES AND OPTIMAL MOMENTUM SCALING

The above results provide the estimate for the timescale τ2 of the drift along the zero-loss valley.
As discussed in Sec. 1.1, training along the zero-loss manifold Γ is maximally accelerated if this
time scale is equal to the timescales τ1 for relaxation of off-valley perturbations. As we take ε→ 0,
this relaxation is governed by the nonzero eigenvalues of the Hessian as well as by the learning rate
η and momentum β. Therefore we expect τ1 = Θ(ε0), and this will be confirmed by the analysis
below. It will be therefore sufficient to obtain the leading order expression of τ1 by focusing on the
noiseless ε = 0 dynamics. Additionally, since we are interested in local relaxation, it will suffice to
look at the linearized dynamics around Γ.

Working in the extended phase space xk = (πk, wk), and linearizing Eq. (1) around a fixed point
x∗ = (0, w∗), with w∗ ∈ Γ, the linearized update rule is δxk+1 = J(x∗)δxk, where δxk = xk − x∗
and J(x∗) is the Jacobian evaluated at the fixed point (with the explicit form given in Eq. (133)).
Denote by qi the eigenvector and λi the corresponding eigenvalue of the Hessian. We show in
Appendix E that the Jacobian is diagonalized by the eigenvectors ki± =

(
µi±q

i, qi
)

with eigenvalues

κi± =
1

2

(
1 + β − ηλi ±

√
(1 + β − ηλi)2 − 4β

)
, (8)

and µi± = βηκi±−1−ηλi. We proceed to study the decay rate of the different modes of the Jacobian
to draw conclusions about the characteristic timescales of fluctuations around the valley.

Longitudinal motion: On the valley, the Hessian will have a number of “zero modes” with λi = 1.
These lead to two distinct modes in the present setting with momentum, which we distinguish as
pure and mixed. The first pure longitudinal mode is an exact zero mode which has κi+ = 1 with
ki+ = (0, qi), corresponding to translations of the parameters along the manifold, and keeping
π = 0 at its fixed point value. The second mode is a mixed longitudinal mode with κi− = β with
ki− = (−(1 − β)/(2βη)qi, qi). This mode has a component of π along the valley, which must
subsequently decay because the equilibrium is a single point π = 0. Therefore, this mode decays at
the characteristic rate β for π, gleaned directly from Eq. (1).

Transverse motion: When thew and π are perturbed along the transverse directions qi with positive
λi, the relaxation behavior exhibits a qualitative change depending on β. Using the scaling function
β = 1−Cηγ , for small learning rate, the spectrum is purely real for γ < 1/2, and comes in complex
conjugate pairs for γ > 1/2. This leads to two distinct scaling behaviors for the set of timescales.
Defining a positive c1 ≤ min{λi|λi > 0}, we find: 1) For γ < 1/2, transverse modes are purely
decaying as (1 − Cηγ)k ≤ |δxTk | ≤ (1 − (c1/C)η1−γ)k , with the lower bound set by the mixed
longitudinal mode. For γ > 1/2, the transverse modes are oscillatory but with an envelope that
decays like |δxT,envk | ≈ (1− Cηγ)

k/2 . We leave the derivation of these results to Appendix (E).

Collecting these results, we can describe the hierarchy of timescales τ1 in the deterministic regime
as a function of γ (excluding the pure longitudinal zero mode):

τ−1
1 γ < 1/2 γ > 1/2

Long. ηγ ηγ

Transv. η1−γ , ηγ ηγ , ηγ

These are illustrated schematically in Fig. 1(a), where the finite timescales are shown as a function
of γ. We compare these “equilibration” timescales τ1, i.e. characteristic timescales associated with
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relaxation back to the zero-loss manifold, with the timescale τ2 ∼ η2(γ−1) associated with drift-
diffusion of the noise-driven motion along the zero-loss manifold Eq. (6). For small γ, the timescale
associated with the drift-diffusion along the valley is much faster than that associated with the re-
laxation of the dynamics toward steady state. Transverse and mixed longitudinal fluctuations relax
much faster than the motion along the valley, and produce an effective drift toward the minimizer
of the implicit regularizer. However, the timescales collide at γ = 2/3, suggesting a transition to
a qualitatively different transport above this value, where the transverse and the mixed longitudi-
nal dynamics, having a long timescale, will disrupt the longitudinal drift Eq. (6). This leads us to
propose γ = 2

3 as the optimal choice for SGD training. We consistently find evidence for such a
qualitative transition in our experiments below. In addition, we see that speedup of SGD with label
noise is in fact maximal at this value where the timescales meet.

3.4 A SOLVABLE EXAMPLE

In this section we analyse a model that will allow us to determine, on top of the optimal exponent γ =
2
3 , also the prefactor C. We will specify to a 2-layer linear MLP, which is sufficient to describe the
transition in the hierarchy of timescales described above, and is simple enough to exactly compute
C. We will show in Sec. 4.1 that C depends only mildly on the activation function. We apply a
simple matching principle to determine C, by asking that the deterministic timescale τ1 is equal to
the drift-diffusion timescale τ2. In the previous section, we found the critical γ = 2/3 by requiring
these timescales have the same scaling in η. In order to determine C, we need more details of the
model architecture.

Definition 3.6 (UV model). We define the UV model as a 2-layer linear network parametrized by
f(x) = 1√

n
UV x ∈ Rm, where x ∈ Rd, V ∈ Rn×d, and U ∈ Rm×n. For d = m = 1, we refer to

this as the vector UV model (Rennie & Srebro, 2005; Saxe et al., 2014; Lewkowycz et al., 2020).

For a training dataset D = {(xa, ya)
∣∣a = 1, ..., P}, the dataset covariance matrix is Σij =

1
P

∑P
a=1 x

a
i x
a
j , and the dataset variance is µ2 = trΣ. For mean-squared error loss, it is possible

to explicitly determine the trace of the Hessian (see Appendix D). SGD with label noise introduces
ya → ya + εξt where 〈ξ2

t 〉 = 1, from which we identify σµ,ja = P−1∇µfj(xa), where µ runs over
all parameter indices, j ∈ [m], and a ∈ [P ]. With this choice, the SGD noise covariance satisfies
σσT = P−1∇2L. Equipped with this, we may use Corollary 3.5 with c = P−1 to determine the
effective drift (presented in Appendix D). For the vector UV model, the expression simplifies to
dY = −τ−1

2 Y dt, with

τ−1
2 =

η2−2γε2µ2

2nPC2
. (9)

The timescale of the fast initial phase τ−1
1 = (C/2)ηγ follows from the previous section. Then

requiring τ1 = τ2 implies not only γ = 2/3, but

C =

(
ε2µ2

Pn

)1/3

. (10)

One particular feature to note here is that C will be small for overparametrized models and/or train-
ing with large datasets.

4 EXPERIMENTAL VALIDATION

4.1 2-LAYER MLP WITH LINEAR AND NON-LINEAR ACTIVATIONS

The first experiment we consider is the vector UV model analyzed in Sec. 3.4. Our goal with
this experiment is to analyze a simple model, and show quantitative agreement with theoretical
expectations. Though simple, this model shows almost all of the important features in our analysis:
the 2(1 − γ) exponent below γ = 2

3 , the γ exponent above 2
3 , and the constant C theoretically

evaluated in Sec. 3.4.

To this end, we extract the timescales at different values of γ and show them in Fig. 1. We train
on an artificially generated dataset D = {(xa, ya)}5a=1 with x ∼ N (0, 1) and y = 0. We use the
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Figure 1: Timescale of training as a function of γ. a): theoretical prediction with blue line repre-
senting the timescale for equilibration while the black line shows the timescale of the drift along Γ.
The maximum of these two gives the overall timescale. In b), c), and d) we demonstrate this result
with the vector UV model with linear, tanh and Relu activations respectively.

full dataset to train. From Eq.(124) we know that the norm of the weights follows an approximately
exponential trajectory as it approaches the widest minimum (U = V = 0). We therefore measure
convergence timescale, Tc, by fitting an exponential ae−t/Tc to the squared distance from the origin,
|U|2 + |V|2. To extract the scaling of Tc with γ we perform SGD label noise with learning rates
η ∈ [10−3, 10−1] and corresponding momentum parameters β = 1 − Cηγ . We fit the timescale
to a power-law in the learning rate Tc(η, γ) = T0η

−α(γ) (see Fig. 1(b)). Imposing that T0 be
independent of γ, as predicted by theory, we found the numerical value C ≈ 0.2, which is consistent
with the theoretical estimate of C = 0.17 from Sec. 3.4. We find consistency with prediction across
all the values of γ we simulated. Note that, for γ > 2

3 the timescale estimate fluctuates more which
is a consequence of having a slower timescale for the transverse modes. As discussed at the end of
Sec. 3.3, such slowness disrupts the drift motion along the manifold. γ = 2

3 is clearly the optimal
scaling.

We repeated the same experiments using nonlinear activations, specifically we considered tanh and
ReLU acting on the first layer. The timescales for tanh are shown in Fig. 1(c), and we refer the
reader to Appendix A for the ReLU case. The optimal scaling value is still γ = 2

3 for both tanh and
ReLU and the optimal C remains close to 0.2.

4.2 RESNET18 ON CIFAR10

We now verify our predictions on a realistic problem, which will demonstrate the robustness of our
analysis. We focus on ResNet18 (He et al., 2016), specifically implemented by Liu (2021), classifier
trained on CIFAR10 Krizhevsky et al. (2009). We aim to extrapolate the theory by showing optimal
acceleration with our hyperparameter choice once training reaches an interpolating solution. To this
purpose, we initialize the network on the valley, obtained starting from a random weight values
and training the network using full batch gradient descent without label noise and with a fixed
value β = 0.9 until it reaches perfect training accuracy. With this initialization, we then train with
SGD and label noise for a fixed number of epochs multiple times for various values the momentum
hyperparameter β. Finally, we project the weights back onto the valley before recording the final test

8
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Figure 2: Classification of CIFAR10 using a ResNet18 model. Subfigure a) shows our training
protocol which is to first use noiseless gradient descent (black) to reach the zero-loss manifold, then
to perform SGD label noise with various (blue, red) values of η and β, before finally projecting onto
the valley (green) and measuring the test accuracy. Subfigure b) shows the scaling of the optimal
momentum, β∗, as a function of η. We perform a power-law fit whose exponent γ∗ = 0.660 matches
very closely to the value implied by the theory γ = 2

3 . Notice we also extract the constant C = 0.11.

accuracy. This last step can be viewed as noise annealing and allows us to compare the performance
of training the drift phase for the different values of β. From this procedure we extract the optimal
momentum parameter β∗(η) that maximizes the best test accuracy during training as a function of
the learning rate, which we can then compare with the theoretical prediction.

As shown in Fig. 2(b), 1−β∗ follows the power law we predicted almost exactly. The optimal choice
for speedup does not have to coincide with the optimal choice for generalization. Strikingly, this
optimal choice of scaling also leads to the best generalization in a realistic setting! This can be easily
interpreted if we assume that the more we decrease the Hessian the better our model generalizes and
by applying the fact that our scaling leads to the fastest transport along the manifold. The second
important point is the value of the constant C ≈ 0.1 found as the coefficient of the power-law fit.
If we set η = 1 this corresponds to setting β∗ = 0.9 which is the traditionally recommended value.
The result here, can therefore be viewed as a generalization of this common wisdom. For more
experiments, we refer the reader to Appendices A.2 and A.4.

5 CONCLUSION

We studied the implicit regularization of SGD with label noise and momentum in the limit of small
noise and learning rate. We found that there is an interplay between the speedup of momentum
and the limiting diffusion generated by SGD noise. This gives rise to two characteristic timescales
associated to the training dynamics, and the longest timescale essentially governs the training time.
Maximum acceleration is thus reached when these two timescales coincide, which lead us to iden-
tifying an optimal scaling of the hyperparameters. This optimal scaling corresponds not only to
faster training but also to superior generalization. More generally, we have shown how momentum
can significantly enrich the dynamics of learning with SGD, modulating between qualitatively dif-
ferent phases of learning characaterized by different timescales and dynamical behavior. It would
be interesting to explore our scaling limit in statistical mechanical theories of learning to uncover
further nontrivial effects on feature extraction and generalization in the phases of learning (Jacot
et al., 2018; Roberts et al., 2021; Yang et al., 2022). For future work, it will be very interesting to
generalize this result to adaptive optimization algorithms such as Adam and its variants, to use this
principle to design new adaptive algorithms, and to study the interplay between the scaling we found
and the hyperparameter schedule.

9
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A EXPERIMENTAL DESIGN

A.1 UV MODEL

In our experiments with the vector UV model we aim to extract how the timescale of motion scales
with η for each γ, therefore we train the model over a sweep of both of these parameters. As a
reminder, the loss of the UV model is

L =
1

2P

P∑
i=1

(
yi −

1√
n
u · vxi

)2

(11)

where P is the dataset size and u,v are n-dimensional vectors. We set yi = 0 for simplicity, and
with label noise this becomes yi(t) = ε ·ξi(t) for i.i.d standard Gaussian distributed ξi. We initialize
xi once (not online) as i.i.d. random standard Gaussian variables. For all experiments we choose
ε = 1

2 . We initialize with ui, vi i.i.d. standard Gaussian distributed and keep this initialization
constant over all our experiments to reduce noise associated with the specific initialization.

For each value of η, β we train with label noise SGD and momentum until |u|2 + |v|2 < εn with
ε = 0.1, thereby obtaining a time series for each of u(t) and v(t). We extract the timescale by
fitting log

(
|u|2 + |v|2

)
to a linear function and taking the slope.

A.2 MATRIX SENSING

We also explore speedup for a well understood problem: matrix sensing. The goal is to find a
low-rank matrix X∗ given the measurements along random matrices Ai: yi = TrAiX

∗. Here
X∗ ∈ Rd×d is a matrix of rank r (Soudry et al., 2017; Li et al., 2018).

Blanc et al. (2020) analyze the problem of matrix sensing using SGD with label noise and show that
if X∗ is symmetric with the hypothesis X = UU> for some matrix U , then gradient descent with
label noise corresponds not only to satisfying the constraints yi = TrAiX , but also to minimizing
an implicit regularizer, the Frobenius norm of U , which eventually leads to the ground truth.

In the analogous UV matrix model (with X∗ is an asymmetric matrix of low rank r), we demon-
strate a considerable learning speedup by adding momentum, and show that this speedup is not
monotonic with increasing β; there is a value β∗ at which the acceleration appears optimal. This
non-monotonicity with an optimal β∗ is observed for both the Hessian trace and the expected test
error. Assuming that in this setting we also have γ = 2/3, we can extract C∗ = (1 − β∗)/η2/3 ≈
0.24P−1/3, which compares favorably to the upper bound we may extract from Appendix D of
≈ 0.12P−1/3.

In the experiments with matrix sensing we aim to demonstrate the benefit of momentum in a popular
setting. Matrix sensing corresponds to the following problem: Given a target matrix X∗ ∈ Rd×d of
low rank r � d and measurements {yi = TrAiX

∗}Pi=1 how can we reconstruct X∗? One way to
solve this problem is to write our guessX = UV the product of two other matrices, and do stochastic
gradient descent on them, hoping that the implicit regularization induced by this parametrization and
the learning algorithm will converge to a good low rank X .

A.2.1 EXPERIMENTAL DETAILS

In our experiments we study the d = 100, r = 5, P = 5rd = 2500 case. We draw (Ai)ij ∼ N (0, 1)
as standard Gaussians and choose X∗ by drawing first (X0)ij ∼ N (0, 1) and then performing
SVD and projecting onto the top r singular values by zeroing out the smaller singular values in
the diagonal matrix. We intitalize U = V = Id. We perform SGD with momentum on the time
dependent loss (with label noise depending on time)

L(t) =
1

dP

P∑
i=1

(ε · ξi(t) + yi − Tr(AiUV ))
2 (12)

where ε2 = 0.1, ξi(t) ∼ N (0, 1). We choose η = 0.1 for all of our experiments.
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Figure 3: The expected test error, a), and Hessian of the training loss, b), in matrix sensing (with
d = 100, r = 5, and 5rd = 2500 samples) as a function of training epoch plotted for different
values of β at η = 0.1. The label noise variance is 0.1. Each curve represents a different value of
β. The inset shows that the orange curve crosses below the blue curve before convergence of the
Hessian. Therefore, the same value of β is optimal for both the Hessian and the expected test error
— increasing or decreasing β from this value slows down generalization.

The hessian of the loss is defined to be the Hessian averaged over the noise. Equivalently we may
just set ξi(t) = 0 when we calculate the Hessian because averaging over the noise decouples the
noise. Similarly when we define the expected test loss we define it as an average over all Ai setting
ξi(t) = 0 in order to decouple the noise. Averaging over ξi(t) and Ai would simply lead to an
additional term 〈ξi(t)2〉 which would simply contribute a constant. We remove this constant for
clarity. As a result, the expected test that we plot is proportional to the squared Frobenius norm of
the difference between the model UV and the target X∗,

〈L〉 =
1

d
||UV −X∗||2F . (13)

It is also interesting to note that we observe epoch-wise double descent Nakkiran et al. (2020) in this
problem. In particular, we observe that the peak in the test error can be controlled by the momentum
hyperparameter, and becomes especially pronounced for β → 1.

A.3 RESNET18 ON CIFAR10

We train our model in three steps: full batch without label noise until 100% test accuracy, SGD with
label noise and momentum, and then a final projection onto the interpolating manifold. The model
we use is the ResNet18 and we train on the CIFAR10 training set.

The first step is full batch gradient descent on the full CIFAR10 training set of 50,000 samples. We
train with a learning rate η = 0.1 and momentum β = 0.9 and a learning rate schedule with linearly
increases from 0 to η over 600 epochs, after which it undergoes a cosine learning rate schedule for
1400 more epochs stopping the first time the network reaches 100% test accuracy which happened
on epoch 1119 in our run. This model is saved and the same one is used for all future runs.

The loss function we use is cross cross entropy loss. Because we will choose a label noise level of
p = 0.2 which corresponds to a uniformly wrong label 20% of the time, during this phase of training
we train with the expected loss over this randomness. Notice that this loss is actually linear in the
labels so taking the expectation is easy.

The second step involves starting from the initialization in step 1 and training with a different learn-
ing rate and momentum parameter. In this step we choose the same level of label noise p = 0.2
but take it to be stochastic. Additionally we use SGD instead of gradient descent with a batch size
of 512. This necessitates decreasing the learning rate because noise is greatly increased as demon-
strated in the main text. In this step we train for a fixed 200 epochs for any learning rate momentum
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Figure 4: A sample of the curves with different momentum hyperparameters β with η = 0.001 with
Resnet on CIRAR10. The speed of increase in accuracy is non-monotonic in β: the best performance
is obtained by an intermediate value of β, consistent with our predictions.

combination. We only compare runs with the same learning rate value. We show an example of the
test accuracy as we train in phase 2 for η = 0.001 in figure 4.

Notice that for both too-small and too-large momentum values that the convergence to a good test
accuracy value is slower. The initial transient with the decreased test accuracy happens as we start
on the valley and adding noise coupled with momentum causes the weights to approach their equi-
librium distribution about the valley. For wider distributions the network is farther from the optimal
point on the valley. As training proceeds we see that the test accuracy actually increases over the
baseline as the hessian decreases and the generalization capacity of the network increases. This
happens most quickly for the momentum which matches our scaling law.

The final step is a projection onto the zero loss manifold. This step is necessary because the total
width of the distribution around the zero loss manifold scales with 1

1−β , and this will distort the
results systematically at larger momentum, making them look worse than they are. We perform this
projection to correct for this effect and put all momenta on an equal footing. This projection is done
by training on the full batch with Adam and a learning rate of η = 0.0001 in order to accelerate
training. We do not expect any significant systematic distortion by using Adam for the projection
instead of gradient descent.

To determine the optimal value of β we sweep several values of β and observe the test accuracy after
the previously described procedure. To get a more precise value of β instead of simply selecting the
one with the highest test accuracy we fit the accuracy A(β) to

A(β) = amax +

{
a1(β − β∗) if β ≤ β∗
a2(β − β∗) if β ≥ β∗

(14)

to the parameters amax, a1, a2, and β∗, thereby extracting β∗ for each η.

A.4 MLP ON FASHIONMNIST

We perform a similar experiment as in section A.3 but with different model and dataset: a 6-layer
MLP trained on FashionMNIST (Xiao et al., 2017) as our dataset. We perform the experiment with
a 6 layer MLP with Relu activation after the first 4 layers, tanh activation after the fifth layer, and a

15



Under review as a conference paper at ICLR 2023

Figure 5: Scaling analysis for a 6-layer MLP on the Fashion MNIST dataset. We see that the
exponent, though not very well determined, is consistant with our theoretical prediction of 2

3 .

linear mapping to logits. We use cross entropy loss with label noise p = 0.2 as before, and always
start training from a reference point initialized on the zero loss manifold. This point was obtained by
gradient descent on the expected loss from a random initialized point with learning rate η = 0.002
and without momentum.

After this we sweep η ∈ [10−5, 10−4] and β ∈ [.95, 1 − 2η] and train for 600 epochs with label
noise and 400 without label noise. This allows us to obtain a test accuracy as a function of η and β
and therefore we can obtain the best momentum hyperparameter, β∗, as a function of η as in A.3.
We extract the scaling exponent by doing a linear fit between log(1 − β∗) and log η. The scaling
analysis is shown in Fig. 5, and shows that the exponent is consistent with our theory.

B REVIEW OF RELEVANT RESULTS FROM KATZENBERGER (1991)

In this Appendix we summarize the relevant conditions and theorems from Katzenberger (1991) that
we use to prove our result on the limiting drift-diffusion. We refer to Katzenberger (1991) for part of
the definitions and conditions cited throughout the below. In what follows, (Ωn,Fn, {Fnt }t≥0, P )
will denote a filtered probability space, Zn an Rr-valued cadlag {Fnt }-semimartingale with
Zn(0) = 0, An a real-valued cadlag {Fnt }-adapted nondecreasing process with An(0) = 0, and
σ̃ : U → RD×r a continuous function, where U is a neighborhood of {0}×Γ as defined in the main
text. Also, Xn is an RD valued cadlag {Fnt }-semimartingale satisfying

Xn(t) = Xn(0) +

∫ t

0

σn(Xn)dZn +

∫ t

0

F (Xn)dAn (15)

for all t ≤ λn(K) and all compact K ⊂ U , where

λn(K) = inf{t ≥ 0|Xn(t−) 6= K̊orXn(t) 6= K̊} (16)

be the stopping time ofXn(t) to leave K̊, the interior ofK. For cadlag real-valued seimimartingales
X,Y let [X,Y ](t) be defined as the limit of sums

n−1∑
i=0

(X(ti+1)−X(ti))(Y (ti+1 − Y (ti)) (17)
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where 0 = t0 < t1 < · · · < tn = t and the limit is in probability as the mesh size goes to zero. If
X is an RD-valued semimartingale, we write

[X] =

D∑
i=1

[Xi, Xi]. (18)

Condition B.1. For every T > ε > 0 and compact K ⊂ U

inf
0≤t≤T∧λn(K)−ε)

(An(t+ ε)−An(t))→∞ (19)

as n→∞ where the infimum of the empty set is taken to be∞.

Condition B.2. For every compact K ⊂ U {Zλn(K)
n } satisfies the following: For n ≥ 1 let Zn be

a {Fnt }−semimartingale with sample paths in DRd [0,∞). Assume that for some δ > 0 allowing
δ = ∞ and every n ≥ 1, there exist stopping times {τkn |k ≥ 1} and a decomposition of Zn −
Jδ(Zn) into a local martingale Mn plus a finite variation process Fn such that P [τkn ≤ k] ≤ 1/k,
{[Mn](t ∧ τkn) + Tt∧τk

n
(Fn)|n ≥ 1} is uniformly integrable for every t ≥ 0 and k ≥ 1 and

lim
γ→0

lim sup
n→∞

P

[
sup

0≤t≤T
(Tt+γ(Fn)− Tt(Fn)) > ε

]
= 0 (20)

for every ε > 0 and T > 0. Also as n→∞ and for any T > 0

sup
0<t≤T∧λn(K)

|∆Zn(t)| → 0 (21)

Condition B.3. The process

Z̄n(t) =
∑

0<s≤t

∆Zn(s)∆An(s) (22)

exists, is an {Fnt }−semimartingale, and for every compact K ⊂ U , the sequence {Z̄λn(K)
n } is

relatively compact and satisfies Condition 4.1 in Katzenberger (1991).
Theorem B.4 (Theorem 7.3 in Katzenberger (1991)). Assume that Γ is C2 and for every y ∈ Γ, the
matrix ∂F (y) has D −M eigenvalues in D(1). Assume (B.1),(B.2) and (B.3) hold, Φ is C2 (or F
is LC2) and Xn(0)⇒ X(0) ∈ U . Let

Yn(t) = Xn(t)− ψ(X(0), A(t)) + Φ(X(0)) (23)

and, for a compact K ⊂ U , let

µn(K) = inf{t ≥ 0|Yn(t−) /∈ K̊ or Yn(t) /∈ K̊} . (24)

Then for every compact K ⊂ U , the sequence {(Y µn(K)
n , Z

µn(K)
n , µn(K))} is relatively compact

in DR2D×r [0,∞) × [0,∞] (see Katzenberger (1991) for details about the topology). If (Y,Z, µ) is
a limit of this sequence then (Y,Z) is a continuous semimartingale, Y (t) ∈ Γ for every t almost
surely, µ ≥ inf{t ≥ 0|Y (t) /∈ K̊} almost surely, and

Y (t) = Y (0) +

∫ t∧µ

0

∂Φ(Y )σ̃(Y )dZ +
1

2

∑
ijkl

∫ t∧µ

0

∂ijΦ(Y )σ̃ik(Y )σ̃jl(Y )d[Zk, Zl] . (25)

B.1 APPLYING THEOREM B.4

Recall the equations of motion of stochastic gradient descent

π
(n)
k+1 = βπ

(n)
k −∇L(w

(n)
k ) + εnσ(w

(n)
k )ξk, w

(n)
k+1 = w

(n)
k + ηπ

(n)
k+1, (26)

where σ(w) ∈ RD×r is the noise function evaluated at w ∈ RD, and ξk ∈ Rr is a noise vector
drawn i.i.d. at every timestep k with zero mean and unit variance. We now show that this equation
satisfies all the properties required by Theorem B.4.

The manifold Γ is the fixed point manifold of (non-stochastic) gradient descent. {0} × Γ is
a C2 manifold because Γ is C2, which follows from assumption 3.1. The flow F (w, π) =

17
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(η(βπ −∇L(w)), βπ −∇L(w)). As shown in Appendix E, dF has exactlyM zero eigenvalues on
Γ∩K. F inherits the differentiable and locally Lipschitz properties from∇L, and therefore satisfies
the conditions of B.4.

Next, notice that the noise function σ̃ : R2D → R2D×r is continuous because σ is.

Now we define An and Zn (as in the main text) so that Xn reproduces the dynamics in equation
(26), except with a new time parameter t = kε2n.

An(t) =

⌊
t

ε2n

⌋
, Zn(t) = εn

An(t)∑
k=1

ξk (27)

So that, with these choices, Eq. (15) precisely corresponds to (26), up to the rescaling t = kε2n.

Now we show thatAn, Zn satisfy the conditions of B.4. ClearlyAn(0) = Zn(0) by definition. Then

An(t+ ε)−An(t) =

⌊
t+ ε

ε2n

⌋
−
⌊
t

ε2n

⌋
≥ t+ ε− t

ε2n
− 2 =

ε

ε2n
− 2→∞ (28)

when we take εn → 0, thus recoverying condition B.1.

By definition Zn is a martingale. Notice also by the definition of Zn, because ξk is i.i.d. with
variance 1, that Zn(t) has variance An(t)ε2n ≤ t which is uniformly bounded and hence Zn(t) is
uniformly integrable for stopping times τkn = 2k > k. Also note that

∣∣∆Zn(kε2n)
∣∣ = |εnξk| which

goes to zero in probability as ε becomes small because ξk has bounded variance, and ∆Zn(t) is zero
otherwise. This shows that Zn satisfies condition B.2. Because Zn and An are discontinuous at the
same time we automatically satisfy condition B.3 as pointed out by Katzenberger.

This shows that we satisfy the conditions of Theorem B.4, therefore we have the following
Lemma B.5. The SGD equations formulated as in (26) satisfy all the conditions of Theorem B.4.

B.2 EQUIVALENCE BETWEEN EQ. (1) AND EQ. (4)

Eq. (4) is the rewriting of eq. (1) in the form presented in Katzenberger (1991), on which our theory
is based. We show the equivalence below, and include the definitions ofA and Z to keep this section
self-contained. The statement is that Eq. (1), i.e.

πk+1 = βπk −∇L(wk) + εσ(wk)ξk, wk+1 = wk + ηπk+1, (29)

can be rewritten in the form of eq. (4)

Xn(t) = Xn(0) +

∫ t

0

σ̃(Xn)dZn +

∫ t

0

F (Xn)dAn , (30)

An(t) =

⌊
t

ε2n

⌋
, Zn(t) = εn

An(t)∑
k=1

ξk (31)

where Xn (t) = (πk, wk), with the correspondence t = kε2n, where k denotes the SGD time step.
Also, σ̃(X) = (σ, ησ) and F (X) = ((β − 1)π −∇L(w), η(βπ −∇L(w))).

Before we begin the proof, we will need the following fact (see Sec. 2 of Katzenberger (1991)):∫ t

s

fdg =

∫ t

s

fdgc +
∑
s<r≤t

f(r−)∆g(r) , (32)

where f and g are càdlàg functions, in particular they are right-continuous and have left limits
everywhere. The integral above is done with respect to the measure dg, the differential of a function
g. The sum is taken over all r ∈ (s, t] where g is discontinuous and the notation ∆g(r) = g(r) −
g(r−) indicates the discontinuity of g at r, where g(r−) = limu→r− g(u) indicates the left limit of
g at r. Finally gc denotes the continuous part of g

gc(t) = g(t)−
∑

0<s≤t

∆g(s), t ≥ 0. (33)

18
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We now show by induction that Xn(t = kε2n) solves the first equation above. Note that

dAn(t) =

∞∑
k=−∞

δ(t− ε2nk), dZn(t) = εn

∞∑
k=∞

ξkδ(t− ε2nk) . (34)

For brevity we will drop the subscript n and let kε2 = t. Consider

X(t+ ε2) =

∫ t+ε2

0

σ̃(X(s))dZ(s) +

∫ t+ε2

0

F (X(s))dA(s) (35)

= X(t) +

∫ t+ε2

t

σ̃(X(s))dZ(s) +

∫ t+ε2

t

F (X(s))dA(s) (36)

= X(t) +
∑

t<s≤t+ε2
σ̃(X(s−))∆Z(s) +

∑
t<s≤t+ε2

F (X(s−))∆A(s) (37)

where in the last step we use eq. (32) as A,Z, σ̃ and F are càdlàg, and that dAc = dZc = 0. The
sums are taken over all s ∈ (kε2, (k+ 1)ε2] where Z(s) and A(s) are discontinuous. The only point
of discontinuity of A and Z in this interval is at s = t+ ε2, so

X(t+ ε2) = X(t) + εσ̃(X((t+ ε2)−))ξk+1 + F (X((t+ ε2)−)) (38)

because the jumps of Z and A at s = t+ ε2 are εξk+1 and 1, respectively. Now we must determine
the left limit of X at t+ ε2. Notice that for 0 < δ < ε

X(t+ δ2) = X(t) +
∑

t<s≤t+δ2
σ̃(X(s−))∆Z(s) +

∑
t<s≤t+δ2

F (X(s−))∆A(s) (39)

= X(t) (40)

becauseA and Z are continuous on (t, t+δ2]. Hence the left limit ofX((t+ε2)−) = X(t). Putting
these equations together we find that

X((k + 1)ε2) = X(t+ ε2) = X(kε2) + εσ̃(X(kε2))ξk+1 + F (X(kε2)) (41)

which, using the definition of X(kε2) = (πk, wk), is eq. (29), thus proving equivalence.

C EXPLICIT EXPRESSION OF LIMITING DIFFUSION IN MOMENTUM SGD

In this section we provide the proof of Theorem 3.4. Recall that Φ satisfies

Φ(x+ F (x)) = Φ(x) , (42)

where x = (π,w), and F given in (132). To obtain the explicit expression of the limiting drift-
diffusion, according to Theorem (B.4), and keeping into account Assumption (3.2), we need to
determine Φ up to its second derivatives. To this aim, we shall expand Eq. (42) up to second order
in the series expansion in F . In components, this reads:

η∂wiΦ
j(πi − gi) + ∂πiΦ

j(−Cηγπi − gi) +
1

2
η2∂wi∂wk

Φj(πi − gi)(πk − gk)

+
1

2
η∂wi∂πk

Φj(πi − gi)(−Cηγπk − gk) +
1

2
η∂πi∂wk

Φj(−Cηγπi − gi)(πk − gk)

+
1

2
∂πi

∂πk
Φj(−Cηγπi − gi)(−Cηγπk − gk) = 0

(43)

subject to the boundary condition

Φ(π,w)|w∈Γ,π=0 = w . (44)

Here, gi = ∂iL. In Eq. (43), we already substituted β = 1− Cηγ . In what follows, we shall find Φ
to leading order in η as η → 0. We will solve the above problem by performing a series expansion
in Φ around a point w̄ ∈ Γ and π = 0 up to second order:

Φ(π, w̄+ δw) = Φ00 + Φi01δw
i + Φi10π

i +
1

2
Φij02δw

iδwj + Φij11π
iδwj +

1

2
Φij20π

iπj + · · · . (45)
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For example, we have

Φi01 =
∂Φ

∂wi
, Φij11 =

∂2Φ

∂πi∂wj
, Φij20 =

∂2Φ

∂πi∂πj
. (46)

More precisely, we regard this as an expansion in powers of δw and π: Φ00 is zeroth order, Φ10,Φ01

are first order, and the remaining terms are second order. We will occasionally write explicitly the
index of Φ, e.g. Φk,ij02 = ∂Φk

∂wi∂wj . It will be useful to introduce the longitudinal projector onto Γ,
PL(w) : RD → TwΓ, defined such that for any vector v ∈ TwΓ: PLv = v. The transverse projector
is then PT = Id− PL. We will also decompose various tensors using these projectors, e.g.

Φij11 = Φij11LL + Φij11LT + Φij11TL + Φij11TT , (47)

with Φij11LT = Φkl11P
ik
L P

jl
T . Note that the Hessian H = ∇g ∈ RD×D satisfies HH† = PT , where

H† denotes the pseudoinverse.

At zeroth order, we obviously have Φ00(w) = w.
Lemma C.1. The first order terms in the series expansion (45) are given by

Φ01T = Φ10T = 0, Φ01L = PL, Φ10L = C−1η1−γPL . (48)

Proof. Suppose ŵ(s) ∈ RD is a curve lying on Γ. Then due to the boundary condition (44),
∂sΦ(π = 0, ŵ) = Φi01∂sŵ

i = ∂sŵ
i. This means that Φ01L = PL. Now from (43),

ηΦi01(πi − ∂jgiδwj) + Φi10(−Cηγπi − ∂jgiδwj) = 0 . (49)

This condition should hold for any π and δw, therefore we arrive at

Φ10 = C−1η1−γΦ01 (50)

and
(ηΦi01 + Φi10)∂kg

i = 0 . (51)

Decomposing into longitudinal and transverse components, and noting that the Hessian satisfies
PLH = 0, the above equation becomes

ηΦi01T + Φi10T = 0 , (52)

which together with (50) and the above discussion gives

Φ01T = Φ10T = 0, Φ01L = PL, Φ10L = C−1η1−γPL , (53)

which concludes the first order analysis.

We now need a Lemma, which requires Definition (3.3) in the main text. We report it here for
convenience:
Definition C.2. For a symmetric matrix H ∈ RD × RD, and WH = {Σ ∈ RD × RD : Σ =

Σ> , HH†Σ = H†HΣ = σ}, we define the operator L̃H : WH → WH with L̃HS ≡ {H,S} +
1
2C
−2η1−2γ [[S,H], H], with [S,H] = SH −HS.

Lemma C.3. The inverse of the operator L̃H is unique.

Proof. Let us go to a basis where H is diagonal, with eigenvalues λi. In components, the equation
L̃HS = M reads

(λi + λj)Sij +
1

2
C−2η1−2γ(λi − λj)2Sij + C−1η1−γMij = 0 (54)

which has a unique solution, with

Sij = −C−1η1−γ
(
λi + λj +

1

2
C−2η1−2γ(λi − λj)2

)−1

Mij . (55)
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Lemma C.4. The second order terms in the series expansion (45) are given by

Φj,ik02LL = −(H†)jl∂Li H
lnPnkL , Φj,ik02LT = −P jlL ∂

L
i H

ln(H†)nk, Φj,ik02TT = O
(
ηmin{0,1−2γ}

)
(56)

Φj,ik11LL = −C−1η1−γ(H†)jl∂Li H
lnPnkL , Φj,ik11TL = −C−1η1−γP jlL ∂

L
kH

ln(H†)ni (57)

Φj,ik11TT = −C−1η1−γL̃−1
H (M (j))ik −

1

2
C−3η2−3γ [H, L̃−1

H M (j)]ik (58)

Φj,ik20LL = −1

2
C−2η2−2γ

(
(H†)jl∂Li H

lnPnkL + (H†)jl∂LkH
lnPniL

)
(59)

Φj,ik20TL = −1

2
C−2η2−2γ

(
P jlL ∂

L
kH

ln(H†)ni + P jlL ∂
L
i H

ln(H†)nk
)

(60)

Φj,ik20TT = −C−2η2−2γL̃−1
H (PT∂

L
j HPT )ik (61)

where
(M (j))kl = P kiT ∂

L
j HniP

nl
T (62)

Proof. Consider a path ŵ(s) lying on Γ. From PTH = H we have

dPT
ds

H = (Id− PT )
dH

ds
= PL

dH

ds
, (63)

and thus, using HH† = PT , we find

dPT
ds

PT = PL
dH

ds
H†, PT

dPT
ds

= H†
dH

ds
PL , (64)

where the second equation is obtained from the first by taking the transpose. Putting the last two
relations together, we find

dPL
ds

= −dPT
ds

= −PT
dPT
ds
− dPT

ds
PT = −H† dH

ds
PL − PL

dH

ds
H† . (65)

From (48) we can then write

∂Li Φj,k01 = −(H†)jl∂Li H
lnPnkL − P

jl
L ∂

L
i H

ln(H†)nk , (66)

where ∂Li = P ijL ∂j . This leads to

Φj,ik02LL = P klL ∂
L
i Φj,l01 = −(H†)jl∂Li H

lnPnkL (67)

Φj,ik02LT = P klT ∂
L
i Φj,l01 = −P jlL ∂

L
i H

ln(H†)nk . (68)

Also note that Φj,ik02LT = Φj,ki02TL, so the only component still to be determined in Φ02 is Φ02TT .

The next step is to expand Eq. (43) to second order:

πiπk
(
η(1 + Cηγ)Φki11 − Cηγ(1− 1

2Cη
γ)Φik20 + 1

2η
2Φik02

)
+δwkπi

(
ηΦik02 − η2HkjΦ

ji
02 − ηΦil11Hkl − CηγΦik11 − η(1−Cηγ)Φ

(ij)
11 Hkj − (1−Cηγ)Φli20Hkl

)
−δwkδwl

(
ηΦik02Hli + 1

2η
2Φji02HljHki + Φik11Hli + ηΦji11HkjHli

+ 1
2 (ηΦi01 + Φi10)∂kHli + 1

2Φji20HljHki

)
= 0 ,

(69)

where A(ij) = 1
2 (Aij +Aji) denotes the symmetric part. Neglecting various terms that are sublead-

ing at small η, gives

πiπk
(
ηΦki11 − CηγΦik20 + 1

2η
2Φik02

)
+δwkπi

(
ηΦik02 − CηγΦik11 − Φli20Hkl

)
−δwkδwl

(
ηΦik02Hli + Φik11Hli + 1

2 (ηΦi01 + Φi10)∂kHli + 1
2Φji20HljHki

)
= 0 ,

(70)
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The first line immediately gives

Φij20 = C−1η1−γΦ
(ij)
11 +

1

2
C−1η2−γΦij02 . (71)

Taking the second line of (70) and projecting onto the longitudinal part the index k gives

ηβΦik02LL − CηγΦik11LL = 0 (72)

ηβΦik02TL − CηγΦik11TL = 0 (73)

and using (67),(68),

Φj,ik11LL = C−1η1−γΦj,ik02LL = −C−1η1−γ(H†)jl∂Li H
lnPnkL (74)

Φj,ik11TL = C−1η1−γΦj,ik02TL = −C−1η1−γP jlL ∂
L
kH

ln(H†)ni (75)

Projecting the second line of (70) on the transverse part of the index k we have

ηΦj,ik02LT − Cη
γΦj,ik11LT − Φj,li20TLHkl = 0 (76)

ηΦj,ik02TT − Cη
γΦj,ik11TT − Φj,li20TTHkl = 0 (77)

Using (71) and keeping (68) into account, Eq. (76) becomes, neglecting subleading terms in η,

−ηP jlL ∂
L
i H

ln(H†)nk − CηγΦik11LT −
1

2
C−1η1−γΦli11TLHkl −

1

2
C−1η1−γΦil11LTHkl = 0 .

(78)

Using (75) in (78),

−ηP jlL ∂
L
i H

ln(H†)nk − CηγΦik11LT

+
1

2
C−2η2−2γP jpL ∂Li H

pn(H†)nlHkl −
1

2
C−1η1−γΦil11LTHkl = 0 ,

(79)

and simplifying,

−ηP jlL ∂
L
i H

ln(H†)nk − CηγΦik11LT

+
1

2
C−2η2−2γP jlL ∂

L
i H

lnPnkT −
1

2
C−1η1−γΦil11LTHkl = 0 .

(80)

which determines Φ11LT in close form. Indeed, the above has the form, in matrix notation

− 1

2
C−1η1−γΦ11LTH − CηγΦ11LT = M , (81)

and can be immediately inverted to solve for Φ11LT . The only two undetermined components now
are Φ11TT and Φ02TT . One condition is obtained from (77) which gives, keeping (71) into account,

ηΦj,ik02TT − Cη
γΦj,ik11TT − C

−1η1−γΦ
j,(li)
11TTHkl = 0 , (82)

and thus
Φj,ik02TT = Cηγ−1Φj,ik11TT + C−1η−γΦ

j,(ni)
11TTHkn . (83)

Further taking symmetric and antisymmetric part in ik of the above gives

Φj,ik02TT =Cηγ−1Φ
j,(ik)
11TT +

1

2
C−1η−γΦ

j,(ni)
11TTHkn +

1

2
C−1η−γΦ

j,(nk)
11TT Hin (84)

0 =Cηγ−1Φ
j,[ik]
11TT +

1

2
C−1η−γΦ

j,(ni)
11TTHkn −

1

2
C−1η−γΦ

j,(nk)
11TT Hin . (85)

The other condition comes from the third line of (70) which, using (48) and (71), and neglecting
subleading terms in η, gives

ηΦj,ik02 Hli + ηΦj,il02 Hki + Φj,ik11 Hli + Φj,il11 Hki + C−1η1−γP jiL ∂kHli = 0 (86)

Projecting the k and l indices on the longitudinal part, gives P jiL ∂
L
kHliP

ln
L = 0, which is an identity

that can be checked from (63). Projecting k on the longitudinal part and l on the transverse part
gives

ηΦj,ik02TLHli + Φj,ik11TLHli + C−1η1−γP jiL ∂
L
kHniP

nl
T = 0 , (87)
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which is implied by (75), indeed

(ηΦj,ik02TL + Φj,ik11TL)Hli = C−1η1−γΦj,ik02TLHli

= −C−1η1−γP jlL ∂
L
kH

ln(H†)niHli = −C−1η1−γP jlL ∂
L
kH

lnPnlT ,
(88)

therefore (87) does not give a new condition. The only new condition comes from projecting the k
and l indices of (86) on the transverse direction, giving

ηΦj,ik02TTHli + ηΦj,il02TTHki + Φj,ik11TTHli + Φj,il11TTHki + C−1η1−γP jiL ∂
T
k HniP

nl
T = 0 . (89)

Plugging in (83),

CηγΦj,ik11TTHli + C−1η1−γΦ
j,(in)
11TTHknHli + CηγΦj,il11TTHki + C−1η1−γΦ

j,(in)
11TTHlnHki

+Φj,ik11TTHli + Φj,il11TTHki + C−1η1−γP jiL ∂
T
k HniP

nl
T = 0 .

(90)

Neglecting subleading terms in η this can be rewritten as

2C−1η1−γΦ
j,(in)
11TTHknHli + Φj,ik11TTHli + Φj,il11TTHki + C−1η1−γ∂Lj HniP

ki
T P

nl
T = 0 . (91)

where we recall that the last term is symmetric in k and l. In matrix notation this reads

C−1η1−γH(Φj11TT + Φjt11TT )H +HΦj11TT + Φjt11TTH + C−1η1−γM (j) = 0 , (92)
where

(M (j))kl = P kiT ∂
L
j HniP

nl
T (93)

is the longitudinal derivative of the Hessian, projected on the transverse directions. Decomposing
Φj11TT into symmetric and antisymmetric parts Φj11TT = S(j) + A(j), Eq. (92) reads (suppressing
the index j)

2C−1η1−γHSH +HS + SH +HA−AH + C−1η1−γM = 0 . (94)
The first term is subleading in η, therefore we have

HS + SH +HA−AH + C−1η1−γM = 0 . (95)
This equation together with (85), which in matrix form reads

C−1η−γ(SH −HS) + 2Cηγ−1A = 0 , (96)
determine S and A, and thus Φ11TT . Note that M j has only a longitudinal component in the index
j, therefore the transverse parts of S and A vanish, i.e.

P pjT Φj,ik11TT = 0 . (97)
Eq. (97) is natural as the slow degrees of freedom are the longitudinal coordinates.

Note that these two equations admit a unique solution. Indeed, solving (96) for A gives

A =
1

2
C−2η1−2γ [H,S] (98)

Plugging in (95), we find
L̃HS = −C−1η1−γM , (99)

where L̃HS ≡ {H,S} + 1
2C
−2η1−2γ [[S,H], H] is introduced in definition C.2. By Lemma C.3,

(99) admits a unique solution.

Then
Φj11TT = −C−1η1−γL̃−1

H M (j) − 1

2
C−3η2−3γ [H, L̃−1

H M (j)] . (100)

The other components are (see eqs. (67),(68),(74),(75),(83),(71))

Φj,ik02LL = −(H†)jl∂Li H
lnPnkL (101)

Φj,ik02LT = −P jlL ∂
L
i H

ln(H†)nk (102)

Φj,ik11LL = −C−1η1−γ(H†)jl∂Li H
lnPnkL (103)

Φj,ik11TL = −C−1η1−γP jlL ∂
L
kH

ln(H†)ni (104)

Φj,ik02TT = Cηγ−1Φj,ik11TT + C−1η−γΦ
j,(ni)
11TTHkn = O

(
ηmin{0,1−2γ}

)
(105)

Φij20 = C−1η1−γΦ
(ij)
11 +

1

2
C−1η2−γΦij02 = C−1η1−γΦ

(ij)
11 . (106)
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The only contributing term at leading order in η to the limiting diffusion equation is (106). Splitting
it into longitudinal and transverse components, we find:

Φj,ik20LL = C−1η1−γΦ
j,(ik)
11LL = −1

2
C−2η2−2γ

(
(H†)jl∂Li H

lnPnkL + (H†)jl∂LkH
lnPniL

)
(107)

Φj,ik20TL = C−1η1−γΦ
j,(ik)
11TL = −1

2
C−2η2−2γ

(
P jlL ∂

L
kH

ln(H†)ni + P jlL ∂
L
i H

ln(H†)nk
)

(108)

and, using (100) and (93) we have, in matrix notation,

Φj20TT =
1

2
C−1η1−γ(Φj11TT + (Φj11TT )T ) = −C−2η2−2γL̃−1

H (PT∂
L
j HPT ) . (109)

To write things more compactly, the following Lemma will be useful:

Lemma C.5. For any transverse symmetric matrix T :

Φj20TT [T ] = −1

2
C−2η2−2γM (j)[L̃−1

H T ] , (110)

Proof. From (61), Φ20TT is proportional to the symmetric part of Φ11TT which was denoted by S
below Eq. (93) and satisfies Eq. (99). Therefore Φ20TT also satisfies Eq. (99), up to an overall
factor:

L̃HΦj20TT = −1

2
C−2η2−2γM (j) . (111)

Then, for any T :

(L̃HΦj20TT )[T ] = −1

2
C−2η2−2γM (j)[T ] . (112)

Moreover,
(L̃HΦj20TT )[T ] = Φj20TT [L̃HT ] . (113)

Since the two above equations hold for any T and L̃H is invertible, this implies

Φj20TT [T ] = −1

2
C−2η2−2γM (j)[L̃−1

H T ] , (114)

which is the statement of the lemma.

To leading order in η we then have, for a symmetric matrix V , ∂2Φ[V ] =
∑D
i,j=1 ∂̃i∂̃jΦVij , and

thus

∂2Φ[V ] =− 1

2C2
η2−2γ(∇2L)†∂2(∇L)[VLL]dt− 1

C2
η2−2γPL∂

2(∇L)[(H†)VTL]dt

− 1

2C2
η2−2γPL∂

2(∇L)[L̃−1
H VTT ] ,

(115)

where VLL = PLV PL, VTL = PTV PL, and VTT = PTV PT are transverse and longitudinal
projections of V .

We also have, using (48), and to leading order in η,

∂Φσ̃dZ = Φ10σdZ + ηΦ01σdZ = (C−1η1−γ + η)PLσdW , (116)

where dW is a Wiener process. Applying Theorem B.4, and keeping into account that, to leading
order in dt, d[Zi, Zj ] = δijdt, we find

dY =(C−1η1−γ + η)PLσdZ −
1

2C2
η2−2γ(∇2L)†∂2(∇L)[ΣLL]dt

− 1

C2
η2−2γPL∂

2(∇L)[(H†)ΣTL]dt− 1

2C2
η2−2γPL∂

2(∇L)[L̃−1
H ΣTT ]dt ,

(117)

where Σ = σσT .
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For γ < 1
2 , L̃H reduces to the Lyapunov operator at leading order in η, i.e. L̃HS = {H,S}. For

γ > 1
2 , from (55), it is easy to see that the role of the divergent term proportional to η1−2γ , when

acting L̃−1
H on S, is to set to zero the off-diagonal entries of Sij at O(η1−γ), i.e.

Sii = −2C−1η1−γλiMii, Si 6=j = 0, . (118)

Using Lemma B.5, we finally conclude the following Corollary, which is the formal version of
Theorem 3.4 in the main text:

Corollary C.6. Consider the stochastic process defined in Eq. (26) parametrized by εn, with ini-
tial conditions (π0, w0) ∈ U , under assumptions 3.1 and 3.2. Fix a compact K ⊂ U . Then the
conclusions of Theorem B.4 apply, and Y (t) satisfies the limiting diffusion equation

dY =( 1
C η

1−γ + η)PLσdW − 1
2C2 η

2−2γ(∇2L)†∂2(∇L)[ΣLL]dt

− 1
C2 η

2−2γPL∂
2(∇L)[(∇2L)†ΣTL]dt− 1

2C2 η
2−2γPL∂

2(∇L)[L̃−1
∇2LΣTT ]dt ,

(119)

where W (t) is a Wiener process.

Let us now see the special case of label noise. In this case Σ = cH , so that Σ is only transverse.
Moreover, using (55),

L̃−1
H H =

1

2
PT , (120)

and

dY =− 1

4C2
η2−2γPL∂

2(∇L)[cPT ]dt = − 1

4C2
η2−2γPL∇Tr(c∂2L)dt . (121)

This proves Corollary 3.5 in the main text.

D EFFECTIVE DRIFT IN UV MODEL

We start with mean-square loss

L =
1

2P

P∑
a=1

||f(xa)− ya||2, (122)

with the data covariance matrix Σ as defined in the text. The trace of the Hessian on the zero loss
manifold (L(w∗) = 0) is given explicitly by

trH =
1

n

(
mTr (ΣV >V ) + Tr Σ Tr (UU>)

)
. (123)

Taking gradients of this and plugging into Corollary 3.5, repeated in Eq. (121) leads to an explicit
expression for the drift-diffusion along the manifold

dY = −ε
2η2−2γ

4PC2

2

n
ŜLY dt, Ŝ =

(
TrΣ1n 0

0 mΣ

)
, ŜL = PLŜPL, (124)

The simplification we cite in the main text in Sec. 3.4 is due to the fact that for input and output
dimension d = m = 1, we have that Σ = TrΣ = µ2, and Ŝ is proportional to the identity.

For matrix sensing, in order to compute the trace of the Hessian, we use (12) with ξt = 0 and with
slightly different notation (V > instead of V ). The loss is then

L =
1

Pd

P∑
i=1

(
yi − Tr(AiUV >)

)2
, (125)
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and define the data covariance matrices

Σ̂1 =
1

P

P∑
i=1

AiA
>
i ∈ Rd×d, Σ̂2 =

1

P

P∑
i=1

A>i Ai ∈ Rd×d. (126)

Then the trace of the Hessian is

TrH =
2

d
Tr
(

Σ̂2UU> + Σ̂1V V >
)
. (127)

We find the noise function is

σµi =
2

Pd
∇µf(Ai) ∈ Rd

4×P (128)

where f(A) = Tr(UV >A). Since the Hessian on the zero loss manifold is Hµν =
2
Pd

∑
i∇µf(Ai)∇νf(Ai), we see that σσT = (2/Pd)H . Therefore, we get

dY = −η
2−2γ

4C2

4ε2

Pd2
ŜLY dt, Ŝ =

(
Σ̂2 0

0 Σ̂1

)
, ŜL = PLŜPL (129)

To get a crude estimate of the coefficient C in the main text, we approximate the top eigenvalue of
Ŝ with 1

dTrΣ̂1. With this, we get for

η−2+2γτ−1
2 =

ε2

C2Pd2

1

dP

P∑
i=1

TrAiA>i ≈
ε2

C2Pd2
d〈a2

ij〉 =
ε2

C2dP
〈a2
ij〉. (130)

Here we have denoted by aij an arbitrary element of the data matrices A, with brackets signifying
an average over the distribution of these elements. Assuming the fast initial fast remains the same,
and τ−1

1 ≈ (C/2)ηγ , we get

C3 =
2ε2

dP
〈a2
ij〉 (131)

For the values used in our experiments, this gives C ≈ 0.12× P−1/3.

E LINEARIZATION ANALYSIS OF MOMENTUM GRADIENT DESCENT IN THE
SCALING LIMIT

Here we elaborate on the discussion in Sec. 3.3, providing derivations of various results. We take
a straightforward linearization of the deterministic (noise-free) gradient descent with momentum.
Working in the extended phase space x = (π,w), the dynamical updates are of the form

xt+1 = xt + F (xt), F (xt) =

(
(β − 1)πt −∇L(wt)

η(βπt −∇L(wt))

)
. (132)

The fixed point of the evolution x∗ = (0, w∗) will have the momentum variable π = 0, and the
coordinate satisfying∇L(w∗) = 0. Linearizing the update (132) around this point

δxt+1 = J(x∗)δxt, J(x∗) =

(
β −∇2L(w∗)
ηβ 1− η∇2L(w∗)

)
. (133)
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Note ∇2L(w∗) is the Hessian of the loss function at the fixed point. The spectrum of the Jacobian
can be written in terms of the eigenvalues of the Hessian λi. This is accomplished by using a
straightforward ansatz for the (unnormalized) eigenvectors of the Jacobian ki = (µiqi, qi), where
qi are eigenvectors of the Hessian with eigenvalue λi. Solving the resulting coupled eigenvalue
equations for eigenvalue κi:

1− ηλi + ηβµi = κi, −λi + µiβ = µiκi. (134)

For a fixed λi, there will be two solutions given by

κi± =
1

2

(
1 + β − ηλi ±

√
(1 + β − ηλi)2 − 4β

)
, i = 1, ..., D (135)

µi± =
1

2βη

(
β − 1 + ηλi ±

√
(1 + β − ηλi)2 − 4β

)
. (136)

For the set of zero modes λi = 0, we get the following modes: κ+ = 1, corresponding to motion
only along w, with eigenvector ki = (0, qi). In addition, there is a mixed longitudinal mode which
includes a component of π along the zero manifold ki = (µ−q

i, qi), and has an eigenvalue κ− = β.

On the zero loss manifold, we can assume the Hessian is positive semi-definite, and that the positive
eigenvalues satisfy

0 < c1 ≤ λi ≤ c2. (137)

for constants c1, c2 independent of η, β.

We now analyze the spectrum of the Jacobian one eigenvalue at a time, and then use these results to
informally control the relaxation rate of off-manifold perturbations. It is useful first to consider the
conditions for stability, i.e. |κi| < 1, which are stated in (138,139) below:

Case 1 : If ηλi < (1−
√
β)2, then κi± ∈ R and |κi±| < 1 iff 0 < ηλi < 2(1 + β). (138)

Case 2 : If ηλi > (1−
√
β)2, then κi± ∈ C and |κi±| =

√
β < 1. (139)

Proof of Case 1: The condition ηλi < (1−
√
β)2 implies A2 > 4β, where A = 1 + β − ηλi. The

condition for stability then requires −1 < κi < +1. We satisfy both sides of this inequality:

If 1 + β − ηλi = A > 0, then |κi−| < 1,and κi+ > 0, so we simply require κi+ < 1, i.e.

κi < +1 (140)
1

2
(A+

√
A2 − 4β) < 1 (141)

+
√
A2 − 4β < 2−A (142)

A2 − 4β < 4− 4A+A2 (143)
A = 1 + β − ηλi < 1 + β ⇒ ηλi > 0 (144)

If 1 + β − ηλi < 0, then |κi+| < 1, and κi− < 1, so we only require κi− > −1

− 1 < κi− (145)

− 1 <
1

2
(−|A| −

√
A2 − 4β) (146)

|A| − 2 < −
√
A2 − 4β (147)

2− |A| >
√
A2 − 4β (148)

A2 − 4|A|+ 4 > A2 − 4β (149)
|A| = −1− β + ηλi < 1 + β ⇒ ηλi < 2(1 + β) (150)
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Proof of Case 2: the condition ηλi > (1 −
√
β)2 implies A2 < 4β, where A = (1 + β − ηλi).

The corresponding eigenvalues of the Jacobian can be written κ±i = (1/2)(A ±
√
A2 − 4β) =

(1/2)(A± i
√

4β −A2). Computing the absolute value then gives |κ±i |2 = (1/4)(A2 +4β−A2) =
β

These results show us when the GD+momentum is stable. Next, assuming stability, we want to
estimate the rate of convergence to the fixed point. More precisely, we would like to determine the
fastest mode as well as the slowest mode. To this end, we define two quantities

ρ1 = max{|κi±|
∣∣ i = 1, ..., D, |κi±| < 1}. (151)

ρ2 = min{|κi±|
∣∣ i = 1, ..., D, |κi±| < 1}. (152)

Using the explicit scaling for momentum, and in the limit of small learning rate, we prove the
following for ρ1:
Lemma E.1. Let β = 1− Cηγ , and η sufficiently small:

For γ < 1/2, the condition for Case 1 (138) holds,

ρ1 ≈ 1− (c1/C)η1−γ , (153)
ρ2 ≈ 1− Cηγ . (154)

.

For γ > 1/2, the condition for Case 2 (139), and

ρ1 =
√
β ≈ 1− (C/2)ηγ , (155)

ρ2 = β = 1− Cηγ . (156)

.

Proof: For small η, we find that

η−1(1−
√
β)2 =

(
1−

√
1− Cηγ

)2

≈ C2η2γ−1/4. (157)

When γ > 1/2, this expression tends to zero as η → 0. Therefore, for sufficiently small η, the
condition for Case 2 (139) will be satisfied and |κi| =

√
β for all λi > 0. Since β <

√
β, this

implies ρ1 =
√
β and ρ2 = β. The scaling behavior in the Lemma follows by substitution.

For γ < 1/2, (157) diverges as η → 0, which means Case 1 (138) will obtain for all λi. Next, since
for small η, 1 + β − ηλi > 1 + β − ηc2 = 2 − Cηγ − ηc2 > 0, since C and c2 are order one
constants, and η → 0. In this case, the largest contribution from the nonzero eigenvalues λi will
come from κi+. In particular, we find

|κi+| ≤
1

2

(
1 + β − ηc1 +

√
(1 + β − ηc1)2 − 4β

)
, (158)

=
1

2

(
2− Cηγ − ηc1 +

√
C2η2γ − 2(2− Cηγ)ηc1 + η2c21

)
. (159)

For γ < 1/2, we have the hierarchy ηγ > η2γ > η > ηγ+1 > η2. This allows us to simplify the
upper bound

ρ1 = max|κi+| ≤ 1− c1
C
η1−γ +O(η). (160)

Next, we find a lower bound for ρ2. This will be controlled by κi−. We may use then that

ρ2 = min{|κi−|} ≥
1

2

(
1 + β − ηc2 −

√
(1 + β − ηc1)2 − 4β

)
, (161)

=
1

2

(
2− Cηγ − ηc2 −

√
C2η2γ − 2(2− Cηγ)ηc1 + η2c21

)
≈ 1− Cηγ +O(η1−γ)

(162)
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Finally, note that since η1−γ < ηγ , we have that 1− c1
C η

1−γ > 1− Cηγ = β, so indeed ρ2 < ρ1.

Equipped with the upper and lower bounds on the spectrum leads naturally to bounds on the relax-
ation rate. For the purely decaying modes at γ < 1/2, we use ρt2 ≤ |δxTt | ≤ ρt1, δxTt represents the
projection of the fluctuations δxt onto the transverse and mixed longitudinal modes. After applying
Eqs. (153) and (154), we arrive at the result quoted in the main text in Sec. 3.3. For γ > 1/2, the
modes are oscillatory. However, the eigenvalues within the unit circle have norm either

√
β, β, as

reflected in Eqs. (155) and (156). This implies that we can estimate the decay rate of the envelope
of the transverse and mixed longitudinal modes in this regime, thereby arriving at second expression
quoted in the main text in Sec. 3.3.

F LINEARIZED SGD AND ORNSTEIN-UHLENBECK PROCESS ON THE VALLEY

In this appendix, we provide a derivation of some of the statements quoted in Sec. 1.1. To get
there, we start with the basic model for momentum SGD (1) but linearize around a point on the
valley w0 ∈ Γ where L(w0) = ∇L(w0) = 0. Let wk = w0 + δwk, and define the Hessian
H(w0) = ∇2L(w0). Then

πk+1 = βπk −H(w0)δwk + εσ(w0)ξk, δwk+1 = δwk + ηπk+1, (163)

Consider the projector along transverse nonzero eigemode λ of H(w0), PTλ , and define PTλ x = X ,
and PTλ π = Π. Let σ̄ = PTλ σ, and PTλ H = λPTλ . Let σ̄σ̄> = Λ. Then

Πk+1 = βΠk − λXk + εσ̄(w0)ξk, (164)
Xk+1 = Xk + ηΠk+1, (165)

= Xk + ηβΠk − ηλXk + ηεσ̄(w0)ξk (166)

This is a simple OU process, and we can easily compute the second moments. Define the second
moments

C12(k) = 〈XkΠk〉, C11(k) = 〈XkXk〉, C22(k) = 〈ΠkΠk〉. (167)

We find by taking the equations above, squaring them, then averaging over the noise,

C22(k + 1) = β2C22(k)− 2βλC12(k) + λ2C11(k) + ε2Λ, (168)

C12(k + 1) = ηβ2C22(k) + β(1− 2ηλ)C12(k)− λ(1− ηλ)C11(k) + ηε2Λ, (169)

C11(k + 1) = η2β2C22 + 2ηβ(1− ηλ)C12(k) + .(1− ηλ)2C11(k) + η2ε2Λ. (170)

Next, assuming a stationary distribution implies C(k+1) = C(k), which then allows us to solve for
equilibrium variance, and extract the main quantity of interest, which is the variance of the weights.
We find then

C11(k) =
η2ε2Λ

(1− β)ηλ(2(1 + β)− ηλ)
. (171)

In the limit of small η we extract the scaling behavior quoted in Sec.(1.1).

We can see how the mixing timescale τ1, discussed in Sec. 1.1, arises from this linearized analysis.
By taking the expectation value of the OU process, the noise will vanish and we find that the average
values follow the linearized GD dynamics analyzed in E. Thus, from this linearized GD analysis we
can extract the characteristic timescale for the OU process to approach its mean value.

29


	Introduction
	Heuristic Explanation for Optimal Momentum-Based Speedup
	Limit Drift-Diffusion

	Related Works
	Theoretical Results
	General setup
	Limiting drift-diffusion in momentum SGD
	Separation of timescales and optimal momentum scaling
	A solvable example

	Experimental Validation
	2-layer MLP with Linear and Non-Linear Activations
	ResNet18 on CIFAR10

	Conclusion
	Experimental Design
	UV Model
	Matrix Sensing
	Experimental Details

	ResNet18 on CIFAR10
	MLP on FashionMNIST

	Review of relevant results from katzenberger1990solutions
	Applying Theorem B.4
	Equivalence between eq. (1) and eq. (4)

	Explicit expression of limiting diffusion in momentum SGD
	Effective Drift in UV model
	Linearization Analysis of Momentum Gradient Descent in the scaling limit
	Linearized SGD and Ornstein-Uhlenbeck process on the valley

