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Abstract

Generative models that maximize model likelihood have gained traction in many
practical settings. Among them, perturbation-based approaches underpin many
state-of-the-art likelihood estimation models, yet they often face slow convergence
and limited theoretical understanding. In this paper, we derive a tighter likelihood
bound for noise-driven models to improve both the accuracy and efficiency of max-
imum likelihood learning. Our key insight extends the classical Kullback–Leibler
(KL) divergence–Fisher information relationship to arbitrary noise perturbations,
going beyond the Gaussian assumption and enabling structured noise distributions.
This formulation allows flexible use of randomized noise distributions that naturally
account for sensor artifacts, quantization effects, and data distribution smoothing,
while remaining compatible with standard diffusion training. Treating the diffusion
process as a Gaussian channel, we further express the mismatched entropy between
data and model, showing that the proposed objective upper-bounds the negative
log-likelihood (NLL). In experiments, our models achieve competitive NLL on
CIFAR-10 and state-of-the-art results on ImageNet across multiple resolutions, all
without data augmentation, and the framework extends naturally to discrete data.

1 Introduction

Likelihood serves as a fundamental metric for evaluating density estimation and generative models.
A tight negative log-likelihood (NLL) bound not only indicates a model’s capacity to capture the
fine-grained structure of the data distribution but also facilitates a range of downstream applications,
including data compression [26, 29, 30, 33, 73, 75, 87], anomaly detection [7], out-of-distribution
detection [84], semi-supervised learning [15], classifier [4, 86], image generation [89], transfer
learning [57], density ratio estimation [6, 10], language models [23] and adversarial purification [71].

Rapid advancements in deep generative modelling [74] have led to various families of models
achieving strong likelihood estimation performance, including energy-based models [21], normalizing
flows [69, 90], variational autoencoders [40, 41, 55], diffusion models [28, 54, 62], cascaded models
[46], and autoregressive models [9, 32]. A common underlying structure among many state-of-the-art
models [40, 46, 62, 69, 90] is the transformation of data into noise via distinct functional mappings.
These mappings, despite their differing mathematical forms, can be viewed as variants of diffusion
models operating under the same noisy process, a Gaussian channel [14, 64, 82, 83].

Gaussian diffusion models can be broadly categorized into variance-preserving (VP) [28, 67] and
variance-exploding (VE) [43, 72] processes by the variance of injected noise. These two paradigms
differ in both the construction of the forward process and the formulation of likelihood. VP mod-
els are typically treated as Bayesian latent-variable models and trained via variational inference
using the evidence lower bound (ELBO) [28, 40, 55, 62, 90], while VE models are interpreted
as information-theoretic (IT) channels [25, 78, 82] that allow for direct likelihood estimation via
estimation-theoretic tools [24, 43, 69]. However, existing likelihood estimation methods for VE
models have not matched the performance of VP-based approaches. This raises the natural hypothesis
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that likelihood performance may be highly sensitive to noise variance. Furthermore, while previous
IT bounds [43, 44, 69, 81] may be slightly looser than ELBO, they often enjoy faster convergence and
greater interpretability [3, 16, 45, 69, 83], leaving open the question of whether IT-based bounds can
also be improved as competitive likelihood estimators with enjoying the faster speed and robustness.

Addressing this question requires extending existing theoretical frameworks. The extant Shan-
non–Fisher connections for diffusion models have largely assumed idealized isotropic Gaussian
corruption [51, 69], yet real-world data rarely align with such simplified assumptions. Imaging data
commonly feature Poisson-Gaussian sensor noise [20]; dequantization [27, 31, 74, 90] and data
smoothing [52] often modeled by uniform or symmetric noise (e.g. a Laplacian kernel) addition
to improve tail coverage, sharp transitions and robustness. Additionally, recent generative models
deliberately introduce Poisson [85], heavy-tailed α-stable perturbations [88] or structured noise with
the data distribution [62, 65], emphasizing the practical needs for more generalized frameworks.

In specific, when a continuous-density model is fitted directly to discrete data, the likelihood eval-
uation becomes singular and severely degrades performance. The conventional remedies, uniform
or variational dequantization [27, 69, 74], inject auxiliary noise but suffer two drawbacks: they
require an additional training phase, which is hard to train to the optimal, and, in general, introduce a
pronounced training-evaluation gap that inflates the NLL performance [90] via the mismatched noise.

In this work, to eliminate both sources of discrepancy and instabilities in maximum likelihood
learning with diffusion models, we propose variance-aware likelihood bounds via arbitrary isotropic
warm-up noise perturbation. Our main contributions and findings are summarized as followed:

• We first prove Theorems 1 and Proposition 2, showing that for any isotropic noise, the Fisher
information measures are asymptotically equivalent to their Shannon counterparts, thereby
establishing a maximum likelihood learning framework well beyond the Gaussian setting.

• Building on this insight, Theorem 2 and Proposition 1 provide tightened analytic bounds
on the likelihood of diffusion models with only minor architectural changes, specifically, a
logarithm signal-to-noise ratio based parameterization and an additional low-variance noise
regime, which together eliminate the train–test gap and stabilize optimization near t = 0.

• Empirically, ablation studies confirm the effectiveness of our bounds. Using an efficient
importance-sampling scheme, our method achieves 2.50 bits/dim on CIFAR-10 and new
state-of-the-art results of 3.01, 2.91, and 2.59 bits/dim on ImageNet-32, -64, and -128,
respectively, while requiring only 0.3M training iterations without any data augmentation.

2 Background

2.1 Incremental Gaussian Channel and Maximum Likelihood Estimation

Let the source dataset with N datapoints be denoted by X = {xn}Nn=1
1. Assume every datapoint x

is an i.i.d. sample drawn from an unknown distribution p(x) supported on the source space X ⊂ RD.
Diffusion models [28, 40] naturally induce what is known as an incremental signal-to-noise ratio
(SNR) channel [25, 93], which generates a sequence of progressively noisier X towards a pure noise:

Yt = αtX+ σtN, (1)

where αt, σ
2
t ∈ R+ are smooth, non-negative, scalar-valued functions with finite derivatives with

respect to time t over the fixed time horizon t ∈ [0, 1]. The noise term N consists of independent
standard Gaussian entries. Intuitively, the ratio α2

t /σ
2
t can be interpreted as the signal-to-noise ratio

(SNR) at time t, denoted as SNR(t) := α2
t /σ

2
t . By enforcing SNR(t) to be strictly monotonically

decreasing over the time interval t ∈ [0, 1], the output Yt asymptotically approaches a well-defined,
analytically tractable stationary distribution π(x) as t → 1.

To recover and estimate the underlying data distribution p(x) from noisy observations Yt, one
must solve a density estimation problem under this forward noisy channel. From an information-
theoretic perspective, the mismatched Gaussian channel [78] models the scenario where the true
input distribution p(x) is unknown, and one instead uses a hypothesis distribution q(x) for estimation.

1In this paper, random objects are denoted by uppercase letters, and their realizations by lowercase letters.
The expectation E(·) is taken over the joint distribution of the random variables inside the brackets.
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Figure 1: Toy example illustrating our method (left) and samples generated on CIFAR-10 (right). We
apply an identical warm-up channel to both the data p(x) and the model distribution q(x;θ): injecting
arbitrary noise Ψ produces smoothed data x̃ and a correspondingly perturbed model q̃θ. This results
in two variance-regime mismatched channels, a low-variance arbitrary-perturbation channel and a
high-variance Gaussian noise regime, that share identical channel dynamics but differ in their priors,
under which training aligns the Gaussian-perturbed distributions and learns the denoising map.

While classical methods for Gaussian channels remain applicable, their analytic solutions are typically
intractable because it requires sampling from the posterior distribution of the noisy channel. A
more tractable alternative involves leveraging the connection between relative entropy and Fisher
divergence. Specifically, [51, 69] demonstrated that the weighted score matching (or equivalently,
Fisher divergence) objectives could approximate maximum likelihood training of diffusion models2.

2.2 Likelihood of Diffusion Models

Average log-likelihood is widely recognized as the default metric for evaluating generative models.
Previous work has largely prioritized perceptual quality, emphasizing coarse scale patterns and global
consistency of generated images, with common metrics such as the Fréchet Inception Distance (FID)
and the Inception Score (IS). In contrast, we optimise for likelihood of the model, a criterion that is
inherently sensitive to fine-scale details and the exact values of individual pixels.

To evaluate the likelihood in diffusion models, we define a model distribution q(x̂;θ), typically
parameterized by a neural network with parameters θ ∈ Θ, which aims to approximate the true
data distribution p(x). Given a sample x ∼ p(x) and noise n ∼ N (0, I), a noisy observation yt

is generated via the forward channel described in Equation (1). Under the mismatched channel
framework, the marginal distribution over yt induced by the model sample x̂ ∼ q(x̂;θ) is given by:

q(yt;θ) =

∫
RD

q(x̂;θ) p(yt|x) dx̂. (2)

In VP diffusion modeling, the stationary distribution at t = 1 is defined to be the stationary distribution
π(x) = N (0, I), which serves as the starting point for the sampling process. Since our primary focus
is density estimation and probabilistic modeling, we defer implementation and details of sampling
process to the Appendix. A.3 and optimization algorithms to future work.

Following [68], we parameterize the model distribution using a noise prediction network. Specifically,
the model n̂(yt, ηt;θ) is trained to predict the Gaussian noise n that was added during the forward
process, where ηt := − log SNR(t) defines the noise schedule in log-SNR space. A predicted
hypothetical data x̂ is then obtained as:

x̂(yt, ηt;θ) :=
yt − σtn̂(yt, ηt;θ)

αt
. (3)

Theoretically, the training objective of likelihood-based diffusion models is to minimize the KL
divergence (see Def. 3) between the true data distribution p(x) and the continuous model distribution
q(x̂;θ), i.e., DKL(p(x)∥q(x̂;θ)). However, as the noise variance σ2

t → 0, the SNR diverges,
leading to numerical instability during both training and sampling [38]. To address this, practical

2In likelihood-based generative modeling, this formulation is equivalent to maximizing the expected log-
likelihood. In contrast, methods that prioritize sample quality typically optimize the 2-Wasserstein distance.
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Algorithm 1: Training
Pre-processing: Wart Start
for each x in X do

u ∼ Ψ; // Ψ: arbitrary noise
x̃← α0 · x + σ(0) · u; // store x̃

Training:
repeat

x̃ ∼ X , n ∼ N (0, I) ;
t ∼ U(0, 1), (α2

t , σ
2
t )← t;

yt ← αt · x̃ + σt · n;
Take gradient descent step on

∇θ∥n− n̂(yt, t; θ)∥2;
until converged;

Algorithm 2: Likelihood Evaluation
Input: Trained model fθ , test data x
Output: Estimated loss L(θ), NLL ℓ(x; θ)
for each x in X do

u ∼ Ψ; // Ψ: arbitrary noise
x̃← α0 · x + σ(0) · u; // store x̃

Evaluation:
η ∼ ρ(η), (α2

η, σ
2
η)← η;

n ∼ N (0, I), n̂← f(yt, ηt; θ);
L(σ2

η ; θ)← 0.5 · Z ∥n− n̂(yt, ηt; θ)∥2 ;
// Z is a normalizing constant

ℓ(x; θ)← H(p(y1|x), π) + L(σ2
t ; θ)

return ℓ(x; θ);

diffusion models typically start the forward process at a small positive time t = ϵ > 0 instead of
t = 0 for improved stability. Yet, this small time offset introduces additional perturbation, and the
corresponding training objective becomes DKL(p(yϵ)∥q(yϵ;θ)), which differs from the evaluation
objective DKL(p(x)∥q(x̂;θ)). This discrepancy causes a mismatch between the training expected
log-likelihood (Ep(yϵ)[log q(yϵ;θ)]) and testing expected log-likelihood (Ep(x)[log q(x̂;θ)]).

2.3 Dequantization for Density Estimation

When modeling real-world data, care must be taken to ensure that the reported likelihood values
are meaningful [74]. Since such data is typically discrete, using continuous density models directly
can lead to arbitrarily high likelihoods due to singularities. To mitigate this issue, it is now standard
practice to add real-valued noise to integer-valued inputs, a process known as dequantization [17, 69,
76]. For example, in the case of 8-bit image data, the input values in {0, 1, . . . , 255} are typically
perturbed by uniform noise, yielding v = x + u where u ∼ U [0, 1)D. With this transformation,
training a continuous density model on the uniformly dequantized data v can be interpreted as
maximizing a lower bound on the log-likelihood of a discrete model defined over the original
quantized inputs [27, 74]. However, this introduces a training–test gap in diffusion models: during
training, the model q(v;θ) is fitted to p(y0), which corresponds to a Gaussian distribution centered
at each discrete data point; during evaluation, however, q is tested on uniformly dequantized data.
Although this improves numerical stability in practice [38, 69], the mismatch between training and
evaluation degrades likelihood performance [90]. Moreover, while variational methods [27] allow
other forms of noise injection, they introduce an additional optimization stage that is computationally
expensive and often difficult to train to optimality.

3 Variance-Aware Likelihood Estimation of Diffusion models

In this section, we present an information-theoretical framework for variance-aware likelihood
estimation in diffusion models. While retaining the standard score matching objective [34, 79],
our method introduces a tighter, pointwise upper bound on the negative log-likelihood. We also
incorporate a modified forward process and an importance sampling scheme to reduce the variance of
the Monte Carlo estimator. Notations and definitions are deferred to the Appendices. A.1 and A.2.

In specific, we analyze the impact of noise variance (schedule) on likelihood estimation through the
lens of Fisher divergence via thermodynamic integration [22, 56] along the entire noise variance-
regime space, which includes a low-variance arbitrary noise regime (0 ≤ σ2

t < σ2
0) and a high-

variance Gasussian channel (σ2
0 ≤ σ2

t ≤ σ2
1), providing a formal connection between score matching

objectives to KL divergence under arbitrary isotropic noise perturbations. This analysis leads to an
exact expression of the mismatched entropy H(p(x), q(x;θ)), which improves optimization process,
numerical stability and remains compatible with probabilistic modeling under non-Gaussian noise
setting. Our method toy example pipeline is illustrated in Fig. 1 and Algorithms 1 and 2.

3.1 Relationship between Score Matching and KL Divergence

Beyond the pathology discussed in Section 2.2, real-world scenarios rarely align with the idealized
Gaussian assumption. Sensor imperfections introduce structured noise such as Poisson, uniform
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quantization errors, or impulsive salt-and-pepper patterns. Hence, extending KL–Fisher relations
beyond Gaussian perturbations is not merely a theoretical extension, but addresses a pressing practical
need in robust generative modeling. Motivated by these practical considerations, we investigate how
training objectives that incorporate noise-perturbed distributions relate to the classical maximum like-
lihood principle. Specifically, we highlight the role of Fisher divergence (see Def. 5) in characterizing
the first-order sensitivity of KL divergence under small additive noise. By doing so, we generalize
prior results [50, 51, 69] from Gaussian to arbitrary isotropic noise distributions. Importantly, our
derived relation ensures that score-matching losses remain consistent with the first-order KL term,
thus preserving the maximum-likelihood interpretation for a broader class of models, including
Poisson-flow [85] and Lévy-based diffusion frameworks [88].
Theorem 1 (Score Matching as the Small-Noise Limit of KL Divergence). Let X ∼ p(x) be an
arbitrary distributed random vector on RD, and let q(x̂;θ) be a parametric model with X̂ ∼ q(x̂;θ).
Define the perturbed observation

X̃ := αtX+ σtΨ,

where Ψ is a random vector independent of X , satisfying E[Ψ] = 0 and Cov(Ψ) = I. Let pσ2
t

and
qσ2

t
denote the densities of X̃ under p and q with noise variance σ2

t , respectively. Suppose that the
KL divergence DKL(pσ2

t
∥qσ2

t
) is finite for sufficiently small σ2

t . Then the following limit holds:

d

dσ2
t

DKL(pσ2
t
∥qσ2

t
)

∣∣∣∣
σ2
t→0+

= −1

2

∫
RD

p(x) ∥∇ log p(x)−∇ log q(x̂;θ)∥2 dx, (4)

i.e.,
d

dσ2
t

DKL(p(x̃)∥q(x̃;θ))
∣∣∣∣
σ2
t→0+

= −1

2
I (p(x)∥q(x̂;θ)) ,

where I(·∥·) denotes the Fisher divergence (equivalently, score matching objective) between p and q.

Proof. See Appendix. A.5.1.

To further investigate the effect of additive noise on training objectives, we consider a second-order
expansion of the KL divergence in terms of the noise variance σ2

t . When both the true and model
distributions are perturbed by small additive arbitrary noise, the KL divergence between them satisfies:

DKL(p(x)∥q(x̂;θ)) = DKL(p(x̃)∥q(x̃;θ)) +
σ2
t

2
I(p∥q) + o(σ2

t ). (5)

While maximum likelihood aims to minimize the KL divergence directly, according to Theorem. 1,
score matching, defined through the Fisher divergence [34], does not directly minimize the KL
divergence explicitly. The two objectives coincide only in the limit σ2

t → 0 where score matching
captures the first-order sensitivity of KL divergence to additive noise. When σ2

t is not infinitesimal, the
Fisher term may dominate, potentially leading to biased or unstable solutions. This result significantly
generalizes the observation that score matching seeks to eliminate its derivative in the scale space at
t = 0 into arbitrary noise settings. In contrast, it is known that variational methods are known to be
highly sensitive to noisy training data (see Appendix. B.6 for more details), which may give rise to
many false extreme values, whereas score matching tends to be more robust to small perturbation in
training data, suggesting that it seeks parameters which lead to models robust to noisy setting.

Therefore, the generalized result in Theorem 1, formalizing its role as a local approximation for
likelihood-based training beyond the Gaussian setting [51]. To build upon this foundation, we next
consider the case where the forward process begins at a small but strictly positive variance, satisfying
0 < σ2

0 ≪ 1. This setting allows us to integrate from σ2
0 rather than from zero, yielding a tractable and

numerically stable lower bound while preserving consistency with the asymptotic result established
above. We formalize this construction in the next section.

3.2 Bounding the Mismatched Entropy with Thermodynamic Diffusion

Building on Section 3.1, we can now consider a practical setting where the forward diffusion process
(1) begins at a small but strictly positive noise level 0 < σ2

0 ≪ 1. In this regime, we derive the
following approximation on the mismatched entropy (see Def. 4) based on denoising score matching
objectives [79] via thermodynamic integration [22, 56] along the interval [σ2

0 , σ
2
1 ].
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Proposition 1 (Thermodynamic Decomposition of Mismatched Entropy). Consider the signal model
(1), suppose p(x̃) and q(x̃;θ) have continuous second-order derivatives and finite second moments.
Denote by p(y1) and π(x) the output signals of channel at time t = 1 when inputs are p(x) and
q(x̂;θ) respectively. Assume π(x) = N (0, I), which is independent of θ. Let p(yt|x) denote the
channel (1) for any t ∈ [0, 1], then for arbitrary datapoint x and small σ2

0 with 0 < σ2
0 ≪ 1:

H(p(x), q(x̂;θ)) = H(p(y1), π(x))+JDSM(θ;σ
2
t (·))−

1

2

∫ σ2
1

σ2
0

E∥∇yt
log p(yt|x)∥2dσ2

t + o(σ2
0).

(6)
Here, the denoising score matching objective is defined as

JDSM(θ;σ
2(·)) := 1

2

∫ σ2
1

σ2
0

E∥∇yt
log p(yt|x)− ŝ(yt;θ)∥22 dσ2

t , (7)

and ŝ(yt;θ) = ∇yt log q(yt;θ) := −n̂(yt, ηt;θ)/σt is a score network estimator.

Proof. Detailed proof defers in Appendix. A.5.2.

The Proposition 1 preserves the theoretical guarantees of the Fisher–KL expansion while yielding
a tractable and computable loss. The resulting bound remains asymptotically tight as σ2

0 → 0, up
to an additive residual term of order o(σ2

0). The resulting bound remains asymptotically tight as
Proposition 1 can be interpreted through the lens of the cost of mismatch in statistical inference [35].
In this setting, the true data distribution is p, but the decoder employs an estimator optimized for
a mismatched model qθ. The resulting mismatched entropy H(p, qθ) quantifies the average code
length incurred under this model discrepancy. It shows that this quantity decomposes into three parts:
a mismatched output distribution loss, a score approximation error arising from the use of ŝ(·;θ)
instead of the true score, and an irreducible term linked to the Fisher information of the channel.

3.3 Bounding the log-likelihood on Individual Datapoints

In many applications that benefit from likelihood optimization [29, 33], it is desirable to evaluate the
log-likelihood of individual data points, which can be highly sensitive to fine-scale variations and the
precise values of pixel intensities [40]. To account for this sensitivity, we derive a pointwize lower
bound that remains tractable and stable under finite noise injection.
Theorem 2. Let p(yt|x) = N (αtx, σ

2
t I) denote the Gaussian channel at any time t ∈ [0, 1]. With

the same notations and conditions in Proposition 1, we have

− log q(x̂;θ) ≤ H(p(y1|x), π(x)) + LDSM(σ
2
t ;θ), (8)

in which LDSM(σ
2
t ;θ) is defined as

LDSM(σ
2
t ;θ) :=

1

2

∫ σ2
1

σ2
0

Ep(yt|x)∥∇yt log p(yt|x)− ŝ(yt;θ)∥22 dσ2
t , (9)

and H(p(y1|x), π(x)) is given by

H(p(y1|x), π(x)) = DKL(p(y1|x)∥π(x)) +H(p(y1|x)). (10)

Proof. Detailed proof defers in the Appendix. A.5.3.

3.4 Variance Reduction with Importance Sampling

A key challenge in evaluating diffusion models lies in accurately and efficiently estimating the loss
integral of Equation (9), especially under a chosen noise variance schedule σ2

t . In Appendix. B.2 we
show that during training, the noise schedule acts as an importance sampling distribution for loss
estimation, and therefore plays a crucial role in efficient optimization.

Among such, popular choices include linear [28], cosine [54], and learnable parameterizations
[40, 62], with sigmoid-based schedules σ2

t = sigmoid(η(t)) remaining prevalent in state-of-the-art
models. Accordingly, we employ a Monte Carlo estimator of this loss for evaluation and optimization.
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To further improve the efficiency and reduce variance in Monte Carlo estimation, we propose two
importance sampling (IS) strategies (see Appendix. B.3 for details).

Formally, the diffusion training objective can be expressed as an integral over the noise variance. It is
shown in Appendix. B.1 that our denoising score matching loss (8) could be simplified to a noise
prediction model n̂(yt, ηt;θ) that directly infers the noise n that was used to generate yt:

LDSM(σ2
t ;θ) =

1

2

∫ σ2
1

σ2
0

En∼N (0,I)

[
σ−2t ∥n− n̂(yt, ηt;θ)∥22

]
dσ2

t . (11)

In practice, the evaluation of the integral is time-consuming, and Monte-Carlo methods are used
to unbiasedly estimate it. In particular, the variance of the estimator has a direct impact on the
optimization process, influencing both its stability and convergence speed. To mitigate this issue, it
can be beneficial to decouple the integration variable used for loss estimation from the time variable
employed during training. To this end, we introduce the negative log-SNR variable η and rewrite the
training objective (11) as an expectation over this reparameterized variable, as shown followed. By
interpreting the integral above as an expectation over the η, the Monte Carlo estimation highlights the
role of ρ(η) as an IS distribution and w(η) as a noise variance-dependent weighting function:

LDSM(σ2
t ;θ) =

1

2
En∼N (0,I),η∼ρ(η)

[
w(η)

ρ(η)
∥n− n̂(yt, ηt;θ)∥22

]
. (12)

Equivalently, optimizing ρ(η) can be viewed as learning a monotone mapping η(t) : [0, 1] → [η0, η1],
which corresponds to the inverse cumulative distribution function (CDF) of ρ(η). Thus, the Monte
Carlo estimator achieves reduced variance and admits closed-form inverse-CDF sampling, which
motivates the following intuitively designed proposals.

Here, we sample η ∼ ρ(η) with a continuous distribution ρ(η) ∝ w(η) that renders the weight in
(12) time-invariant, so that the noise prediction error remains scale-consistent across all η ∈ [η0, η1]
values without any amplification or shrinkage during the estimation. This is analogous to the
likelihood-weighted and flow matching methods which conduct uniform sampling for all η [39, 90].

Furthermore, to further minimize the variance of the Monte Carlo estimator, we can optimize the
sampling distribution ρ(η) directly [40, 90]. Specifically, we parameterize η(t) as a monotonic neural
network and adjust it to minimize the variance of the diffusion loss (see Appendix. B.3.2). While this
learned proposal can effectively reduce Monte Carlo approximation variance, it introduces additional
optimization overhead and potential instability. Empirically, we find that the hand-crafted proposal
achieves better convergence speed and comparable NLL results, without requiring additional training
objectives or neural components. As such, we adopt our designed IS as our default strategy.

3.5 Training-Free Dequantization with Warm-up Noise

Real-world datasets usually contain discrete input, such as images or texts, and must be dequantized
when training continuous-density models. As discussed in Section 2.3, and more details in Ap-
pendix. G, while dequantization makes diffusion models applicable to discrete data, the training–test
discrepancy originates from the mismatch in noise injection between training and inference/testing.
To reduce this discrepancy, we introduce an arbitrary isotropic warm-up noise u ∼ Ψ and inject it
into training, inference and testing, that fit seamlessly into continuous-density diffusion models, and
preserves the original maximum-likelihood objective without retraining.

By Theorem 1, the generalized KL–Fisher identity holds for any isotropic noise, which means that
dequantization schemes previously restricted to uniform and Gaussian noise can now be extended to,
for instance, logistic and Laplacian perturbations. However, existing average log-likelihood bounds
[27, 74] are derived under mismatched entropy, defined as the sum of the KL divergence and the
differential entropy. This motivates the generalization of the differential entropy formulation to
arbitrary noise distributions, as follows, a result known as the de Bruijn identity in information theory.
Proposition 2 (de Bruijn identity with arbitrary noise [60]). Let X̃ = αtX+σtΨ, where X,Ψ ∈ RD

are independent random vectors, with Ψ satisfying E[Ψ] = 0 and Cov(Ψ) = I. Assume the
probability density function p(x) of X is twice continuously differentiable and decays sufficiently fast
at infinity, and that the Fisher information J (X) exists and is finite. Then,

d

dσ2
t

H
(
p(x̃)

)∣∣∣∣
σ2
t→0+

=
1

2
J
(
p(x)

)
, (13)

7



where H(·) denotes the differential Shannon entropy (see Def. 1 and J (·) denotes the Fisher infor-
mation (see Def. 2).

The key implication of (13) is that the derivative is independent of the detailed statistics of the noise
distribution. This suggests that the differential entropy forms a smooth manifold σtΨ, whose local
geometry resembles an isotropic quadratic bowl. Combining Proposition 2 with the Theorem 1 gives
a characterization of the gap between the true discrete cross-entropy and its continuous surrogate.
Such dequantization noise can provide a tighter likelihood bound yet with no additional training costs.
Our detailed empirical settings of dequantization noise could be found in Appendix. 2.3.

3.6 Numerical Stability

All theoretical developments in this work assume that the forward diffusion process begins at a small
but strictly positive variance level σ2

0 > 0. This choice avoids the pathological behaviour of the
σ2
0 → 0 limit, which often leads to numerical instability in both training and evaluation [38, 40, 69].

Accordingly, we restrict the variance schedule to the interval [σ2
0 , σ

2
1 ] throughout all derivations and

implementations. Truncating the lower limit of integration to σ2
0 introduces an approximation error

of order o(σ2
0), as discussed in Section 3.1, which is negligible in both theory and practice. This

ensures that our likelihood-weighted score matching objective remains a consistent estimator of the
log-likelihood, while simultaneously improving numerical stability. Empirically, we observe that this
design remains robust across diverse noise distributions, further confirming the practical reliability.

4 Related Works

Most prior analyses of variance schedules [1, 49, 54] in diffusion models focus on their role in
reverse-time sampling [2, 40, 47, 55, 62, 68, 91, 92] (e.g., by approximating posteriors or solving
reverse-time ODEs [50, 90]). In contrast, our work examines how the forward variance schedule
influences both robustness and likelihood estimation. Proposition 2 further generalizes the classical
de Bruijn identity [12] from Gaussian to arbitrary noise perturbations. Whereas prior information-
theoretic studies [18, 80, 94] have characterized the connection of KL and Fisher divergences under
Gaussian smoothing [50, 51, 69, 93], we extend these relationships to non-Gaussian noise families.
Finally, [43] studies relative-entropy interpretations of denoising objectives and connects them to
mean-square error, but does not address mismatched estimation [35, 78] in the sense of our framework.

5 Experiments

In this section, we present our training procedure and experiment settings, and our ablation studies
to demonstrate how our techniques improve the likelihood of diffusion models. We report negative
log-likelihood (NLL, in bits/dim) and Fréchet Inception Distance (FID) scores for all experiments, and
compare convergence speed across models. Then we evaluate our model on a lossless compression
benchmark against several competitive baselines in neural compression literature. Note that we focus
here on pushing the state-of-the-art in density estimation, and while we report FID for completeness,
we defer sample quality optimization to future work. Additional results can be found in Appendix D.

Datasets and Implementation We evaluate on CIFAR-10, anti-aliased ImageNet-32 dataset,
ImageNet-64 and -128. No data augmentation is applied. We adopt the same architecture and
hyperparameters as the VDM model [40], including a U-Net consisting of convolutional ResNet
blocks without any downsampling. Unlike embeddings of diffusion time t, we embed the log-SNR
value η(t) or its reverse CDF time embedding instead. This modification better reflects the underlying
noise scale and leads to improved likelihood estimation with importance sampling trick in practice.

Selection of Noise Schedules We consider two representative choices: 1. Variance-Preserving
(VP): α2

η + σ2
η = 1, ensuring unit marginal variance throughout the forward process. 2. Straight-Path

(SP): αη + ση = 1, corresponding to linear interpolation in data space as in [1, 49]. We omit VE
schedules, since in our preliminary runs the best VE model attained only 3.27 bits/dim on CIFAR-10,
substantially worse than VP and SP. Moreover, to further illustrate the effects of the noise variance,
we consider to evaluate various variance functions σ2

t shown in Appendix. B.4.
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Table 1: Negative log-likelihood (NLL) in bits per dimension (BPD), FID, and number of training
iterations (Iter., in million) on CIFAR-10 and ImageNet-32 datasets. “/” indicates results not reported
or not applicable. *Denotes results obtained on the original ImageNet-32 release. Boldface denotes
the best performance within each column, and blue text marks the second-best.

Models CIFAR-10 ImageNet-32

NLL ↓ FID ↓ Iter. NLL ↓ FID ↓ Iter.

(The models with IT methods)
ScoreODE (second order) [50] 3.44 2.37 1.3 4.06* / 1.3
ScoreODE (third order) [50] 3.38 2.95 1.3 4.04* / 1.3
ScoreFlow [69] 2.80 5.34 1.6 3.79* 11.20* 1.6
Flow Matching [49] 2.99 6.35 0.391 3.53 5.02 0.25
Stoch. Interp. [1] 2.99 10.27 0.5 3.48* 8.49 0.6
i-DODE (SP with IS) [90] 2.56 11.20 6.2 3.44 / 3.69* 10.31 2.25 / 2.5*

(The models with variational methods)
VDM [40] 2.65 7.60 10 3.72* / 2
DiffEnc [55] 2.62 11.20 8 3.46 / 8
MuLAN [62] 2.55 17.62 8 3.67* 13.19 2
BSI [48] 2.64 / 10 3.44 / 10
W-PCDM [46] (VDM [40] weight) 2.35 6.23 2 3.32 / 10
W-PCDM [46] (EDM [37] weight) 10.31 2.42 2 / / /

Ours (SP with IS) 2.49 / 0.3 3.02 / 0.3
Ours (VP with IS) 2.50 10.18 0.3 3.01 14.76 0.3

Table 2: Comparison between our proposed model and other competitive models in the literature
in terms of expected negative log likelihood on the test set computed as bits per dimension (BPD).
Results from existing models are taken from the literature. “/” indicates results not reported or not
applicable. Boldface denotes the best performance within each column, and blue text marks the
second-best.

Model Type ImageNet-32 ImageNet-64 ImageNet-128

PixelCNN [77] Autoregressive 3.83 3.57 /
Glow [42] Flow 4.02 3.81 /
FLOW++ [27] Flow 3.86 3.69 /
Sparse Transformer [9] Autoregressive / 3.44 /
Very deep VAE [8] Autoencoder 3.80 3.52 /
Improved DDPM [54] Diffusion / 3.54 /
Routing Transformer [61] Autoregressive / 3.43 /
Flow Matching [49] Flow 3.53 3.31 2.90
VDM [40] Autoencoder 3.72 3.40 /
LP-PCDM [46] Diffusion 3.52 3.12 2.91
W-PCDM [46] Diffusion 3.32 2.95 2.64
Ours Diffusion 3.01 2.91 2.59

5.1 Likelihood and Samples

Table 1 summarizes experimental results on CIFAR-10 and ImageNet-32 (more details in Ap-
pendix. B.5). At the request of one of the reviewers we also ran our model on additional data sets of
higher resolution images baseline (Table. 2). On four V100 GPUs with CIFAR-10, our model trains
slightly faster (2.34 vs. 2.04 iterations/sec) compared to VDM, due to the removal of the additional
networks. Typically, achieving benchmark likelihood estimation performance requires several million
training iterations, and the training process usually takes a week, or even a month or longer. Table 2
shows that we obtain state-of-the-art NLL on ImageNet-32/64/128 under directly comparable settings,
while reducing training cost from millions of iterations in prior work to about 300 thousand.

Ablation Analysis and Additional Experiments Due to the high training cost, we conduct ablation
studies only on CIFAR-10. In Table 7, we report both NLL and FID under different noise variance
endpoints. We ablate the effect of the different IS weightings and reverse CDF embedding by
comparing it to standard sinusoidal time encoding in Appendix. B.5. All models are trained for 300K
steps with identical settings, except for the variance schedule. For fair comparison, we follow the
VDM protocol [40] and evaluate models using the ELBO-based lower bound (see Appendix. B.6).

Our proposed bounds achieve state-of-the-art density estimation on ImageNet datasets and match the
best reported results on CIFAR-10. We find that increasing the warm-up noise improves NLL but
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Table 3: Comparison of NLL on CIFAR-10 and ImageNet-32 with different warm-up noise.
Likelihood Estimation Bound CIFAR-10 ImageNet-32

Gaussian Laplace Logistic Uniform Gaussian Laplace Logistic Uniform

ELBO 2.69 2.70 2.71 2.71 3.53 3.53 3.54 3.55
Our (SP + IS) 2.49 2.49 2.50 2.52 3.01 3.00 3.02 3.09
Our (VP + IS) 2.50 2.51 2.51 2.53 3.00 3.01 3.03 3.08

slightly degrades FID. This trade-off arises because larger noise suppresses pixel-level fluctuations
and stabilizes training, while too little noise sufficiently regularize the likelihood objective, leading to
worse likelihood estimates, despite improved sample quality. We provide details in the Appendix. C.

We also observe that the gap between ELBO and our IT-based bound enlarges with increasing noise
levels. This discrepancy arises from the reconstruction loss used in ELBO [40, 55], which assumes
conditional independence of pixels given the latent variable y0. As noise increases, the conditional
distribution p(y0|x) becomes more diffuse around its mode, thereby amplifying the approximation
error. These findings highlight a fundamental intuition between likelihood accuracy and perceptual
quality under different noise configurations. We leave the further study of this direction in the future.

5.2 Examining the Warm-up Noise Injection

We further examine the effect of different noise distributions, Gaussian, Laplace, logistic, and
Uniform, each scaled to equal variance. As shown in Table 3, Gaussian noise performs best, followed
by Laplace and logistic, while Uniform lags notably behind. This supports our intuition that heavier-
tailed, exponential-family noises yield more stable training and improved likelihood estimation.
Detailed theoretical discussion and additional analyses, including the connection to differential
entropy, Fisher information and manifold hypothesis, are provided in Appendix G.

5.3 Lossless Progressive Coding Table 4: Lossless compression per-
formance on CIFAR-10 in bits/dim.

Model Compression Rate (bits/dim)

FLIF [66] 4.14
LBB [27] 3.12
IDF [33] 3.26
VDM [40] 2.72
ARDM [32] 2.71
W-PCDM [46] 2.37
Ours 2.57

As shown in prior work [28, 40], likelihood-based generative
models can be viewed as latent-variable models for neural loss-
less compression. We adopt this perspective and implement
a Bits-Back Coding scheme [27] using our proposed model
as the latent component. On CIFAR-10, our method achieves
shorter average code lengths, measured in bits per dimension,
compared to several strong baselines (see Table 4). We leave
this avenue of research for further work.

6 Conclusion

Our generalized KL–Fisher relationship transforms noise injection from a theoretical consideration
into a widely applicable practical strategy. This principled framework validates existing approaches
employing non-Gaussian perturbations and offers new theoretical tools for tackling real-world
generative modeling challenges. Our analysis shows that, in the small-noise regime, the score
matching objective asymptotically approximates maximum likelihood. Minimizing this objective
yields consistent improvements in likelihood across diverse noise schedules, variance settings,
and datasets. When critically combined with importance sampling, our approach achieves on-par
likelihood on CIFAR-10 and state-of-the-art likelihood on ImageNet datasets. Our results also
motivate future exploration of information-theoretic objectives in generative modeling.

Limitations Our method improves likelihood estimation but does not construct a generative diffu-
sion process under alternative noise. As a result, our method is limited to likelihood evaluation and
cannot be directly used for sampling or generation. Dequantization bound, diffusion/drift coefficient
and variance configurations are not fully explored. Due to resource limitations, we didn’t explore
tuning of hyperparameters and network architectures, which are left for future work. We leave full
discussion and future extensions to the Appendix.
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A Preliminaries and Reviews

We summarize the key notations and assumptions used in our theorems. The data distribution is p(x),
and the model is q(x̂;θ), where θ is restricted to a parameter space Θ. The vector Gaussian channel
follows Yt = αtX + σtN, where σt : R → R controls the time-dependent coefficient, t ∈ [0, 1]
represents the time horizon, and N ∼ N (n; 0, I) is Gaussian noise. The input x ∼ p(x), and the
output yt ∼ p(yt), with both as column vectors of appropriate dimensions.

A.1 Notations

In this paper, we are working on the Euclidean space RD for some D ≥ 1. We denote the ℓ2-inner
product between vectors u = (u1, . . . , ud),v = (v1, . . . , vd) ∈ RD as u⊤v = ⟨u,v⟩ =

∑D
i=1 uivi.

For a symmetric matrix A ∈ RD×D, the notation A ⪰ 0 means A is positive semidefinite, i.e.,
u⊤Au ≥ 0 for all u ∈ RR. For symmetric matrices A,B ∈ RD×D, the notation A ⪰ B means
A−B ⪰ 0 is positive semidefinite. Throughout, let I ∈ RD×D denote the identity matrix.

For a differentiable function f : RD → R, let ∇f(x) ∈ RD denote the gradient vector at x ∈ RD of
the partial derivatives: (∇f(x))i =

∂f(x)
∂xi

. Let ∇2f(x) ∈ RD×D be the Hessian matrix of second

partial derivatives: (∇2f(x))i,j =
∂2f(x)
∂xi∂xj

. Let ∆f(x) = Tr(∇2f(x)) be the Laplacian. We use C
to denote all continuous functions, and let Ck denote the family of functions with continuous k-th
order derivatives.

For a vector field v : RD → RD with v(x) = (v1(x), . . . ,vd(x)) ∈ RD, let ∇v : RD → RD×D

be the Jacobian matrix of mixed partial derivatives: (∇v(x))i,j =
∂vi(x)
∂xj

. Let ∇ · v : RD → R be
the divergence of v, defined by

(∇ · v)(x) =
D∑
i=1

∂vi(x)

∂xi
= Tr(∇v(x)).

Let Vr ⊂ RD be the region (an D-dimensional ball) bounded by the closed, piecewise-smooth,
oriented surface Sr, which is the D-sphere of radius r centered at the origin. At any point y ∈ Sr,
the symbol eSr

(y) denotes the outward-pointing unit normal vector to Sr. Under the notation
dsr = ∥dsr∥eSr

(y).

A.2 Definitions

Let P(RD) denote the space of probability distributions ρ over RD which are absolutely continuous
with respect to the Lebesgue measure and have a finite second moment Eρ[∥X∥2] < ∞. We identify a
probability distribution ρ ∈ P(RD) with its probability density function with respect to the Lebesgue
measure, which we also denote by ρ: RD → R, so ρ(x) > 0 and

∫
RD ρ(x)dx = 1.

We say ρ is absolutely continuous with respect to another distribution ν, denoted by ρ ≪ ν, if
ν(A) = 0 implies ρ(A) = 0 for any A ⊆ RD; if ρ and ν both have density functions, then ρ ≪ ν
means ν(x) = 0 implies ρ(x) = 0 for all x ∈ RD.
Definition 1. Let H(·) : P(RD) → R be the differential Shannon entropy:

H(ρ) = −Eρ[log ρ] = −
∫
RD

ρ(x) log ρ(x) dx. (14)

Definition 2. Let J (·) : P(RD) → R be the Fisher information:

J (ρ) = Eρ

[
∥∇ log ρ∥2

]
= −Eρ[∆ log ρ], (15)

and we define J (ρ) = +∞ if ρ does not have a differentiable density. The second equality in the
definition of J (ρ) above follows by integration by parts.

Note that the expression in (15) is a special case (with respect to a translation parameter) which does
not involve an explicit parameter as in its most general definition.3

3The parameterized Fisher information matrix is defined with respect to a parameter θ ∈ Θ by J (ρ) ≡
Eρ[∇θ log ρ(x;θ)∇⊤

θ log ρ(x;θ)].
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Definition 3. For probability distributions ρ ≪ ν on RD, the Kullback-Leibler (KL) divergence or
the relative entropy of ρ with respect to ν is defined by:

DKL(ρ∥ν) = Eρ

[
log

ρ

ν

]
=

∫
RD

ρ(x) log
ρ(x)

ν(x)
dx. (16)

Definition 4. For probability distributions ρ ≪ ν on RD, the mismatched entropy or the cross
entropy of ρ with respect to ν is defined by:

H(ρ, ν) = −Eρ [log ν] =

∫
RD

ρ(x)
1

log ν(x)
dx. (17)

Definition 5. If ρ and ν have differentiable density functions, then the relative Fisher information of
ρ with respect to ν is defined by:

I(ρ∥ν) = Eρ

[∥∥∥∇ log
ρ

ν

∥∥∥2] = ∫
RD

ρ(x)

∥∥∥∥∇ log
ρ(x)

ν(x)

∥∥∥∥2 dx. (18)

We recall that the KL divergence, DKL(·∥·), corresponds to the Bregman divergence of the negative
entropy. Similarly, the relative Fisher information (RFI), I(·∥·), can be viewed as the Bregman
divergence of the Fisher information. Moreover, half of the RFI is equivalent to score matching, as
defined in [34].

A.3 Standard Diffusion Models

Consider a Gaussian diffusion process [28], which starts from clean data x and defines a sequence of
progressively noisier versions, denoted by channel outputs yt, where t runs from 0 (least noisy) to
1 (most noisy). In the sampling process, given T , we uniformly discretise the time interval into T
timesteps, each of width 1/T . Let t(i) = i/T denote the current timestep and s(i) = (i− 1)/T the
preceding one [40].

Forward Process. The forward process is defined by a conditional Gaussian distribution:

p(yt|x) = N (αtx, σ
2
t I),

and, by the Markov property,
p(yt|ys) = N (αt|sys, σ

2
t|sI),

where

αt|s =
αt

αs
, σ2

t|s = σ2
t −

α2
t|s

σ2
s

.

Reverse Process. As established in prior work [28, 40, 68], the conditional distribution p(ys|yt,x)
is also Gaussian:

p(ys|yt,x) = N

(
αt|sσ

2
s

σ2
t

yt +
σ2
t|sαs

σ2
t

x,
σ2
sσ

2
t|s

σ2
t

I

)
.

As the ground truth x is not available during the reverse process, it is approximated by a neural
network x̂(yt, t;θ), parameterised by θ. The learned reverse kernel becomes:

p(ys|yt;θ) = N

(
αt|sσ

2
s

σ2
t

yt +
σ2
t|sαs

σ2
t

x̂(yt, t;θ),
σ2
sσ

2
t|s

σ2
t

I

)
.

A.4 Lemmas

In this section, we introduce all Lemmas in order to prove the Theorems in the next section.
Lemma 1. Let X ∈ RD be a random vector with density p(x). Suppose Ψ ∈ RD is an arbitrary
independent random vector with zero mean and identity matrix I. Define X̃ = αtX+ σt Ψ, and let
p(x̃) denote the density of X̃. Then for every x̃ ∈ RD, as σ2

t → 0+, we have:

d

dσ2
t

p(x̃)

∣∣∣∣
σ2
t=0+

=
1

2
∆p(x), (19)
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where ∆x =

D∑
j=1

∂2

∂(xj)2
is the usual Laplacian in RD.

Formula (19) allows the derivative w.r.t. the energy of the perturbation σ2
t to be transformed to the

second derivative of the original pdf. In what followed we provide the proof for Lemma 1 which
is slightly different than that in [53]. Note that Lemma 1 does not require the distribution of the
perturbation to be symmetric as is required in [53].

Proof. Let p(x̃) denote the probability density function of the random vector X̃, and define its
characteristic function as follows:

ϕ(k, σ2
t ) = E

[
exp

(
ik⊤X̃

)]
, k ∈ RD. (20)

Given that X̃ is defined by
X̃ = αtX+ σtΨ, (21)

where X and Ψ are independent, the characteristic function factorises as follows:

ϕ(k, σ2
t ) = E

[
eik

⊤(αtX+σtΨ)
]

(22)

= E
[
eik

⊤αtX
]
E
[
eik

⊤σtΨ
]

(23)

= ϕ(αtk, 0)︸ ︷︷ ︸
characteristic function of X

× E
[
eik

⊤σtΨ
]

︸ ︷︷ ︸
characteristic function of σtΨ

. (24)

Expanding the exponential function via Taylor’s theorem gives

eik
⊤σtΨ = 1 + iσt(k

⊤Ψ)− (σtk
⊤Ψ)2

2!
+O(σ3

t ). (25)

Since E[Ψ] = 0 and Cov[Ψ] = I, it follows that

E[k⊤Ψ] = 0, (26)

E[(k⊤Ψ)2] = k⊤E[ΨΨ⊤]k = ∥k∥2. (27)

Taking expectations, we obtain

E
[
eik

⊤σtΨ
]
= 1− σ2

t

2
∥k∥2 + o(σ2

t ). (28)

Thus, the characteristic function satisfies

ϕ(k, σ2
t ) = ϕ(αtk, 0)

(
1− σ2

t

2
∥k∥2 + o(σ2

t )

)
. (29)

Recalling the inverse Fourier transform, the probability density function is given by

pσ2
t
(x̃) =

1

(2π)D

∫
RD

e−ik
⊤x̃ϕ(k, σ2

t )dk. (30)

Substituting the expansion of ϕ(k, σ2
t ), we obtain

pσ2
t
(x̃) =

1

(2π)D

∫
RD

e−ik
⊤x̃ϕ(αtk, 0)

(
1− σ2

t

2
∥k∥2 + o(σ2

t )

)
dk. (31)

Since
p0(x̃) =

1

(2π)D

∫
RD

e−ik
⊤x̃ϕ(αtk, 0)dk, (32)

it follows that the difference pσ2
t
(x̃)− p0(x̃) corresponds to multiplying ϕ(αtk, 0) by

−σ2
t

2
∥k∥2 + o(σ2

t ).
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A standard result from Fourier analysis states that multiplication by −∥k∥2 in the Fourier domain
corresponds to the application of the Laplacian ∆ in the spatial domain, defined as

∆x =

D∑
j=1

∂2

∂x2
j

.

Thus, for small σ2
t , we obtain

pσ2
t
(x̃) = p0(x̃) +

σ2
t

2
∆x̃p0(x̃) + o(σ2

t ). (33)

Since p0(x̃) corresponds to p(x) in the absence of noise, this completes the proof of Lemma 1.

Lemma 2 (Vanishing boundary flux). For an arbitrary input distribution p(x), an assumed input
distribution q(x̂;θ) and a vector Gaussian channel p(yt|x) = N (αtx, σ

2
t I) in (1), denote the

corresponding output densities by p(yt) and q(yt;θ) at time t ∈ [0, 1]. For r > 0, let Br := {y ∈
RD : ∥y∥ ≤ r} be the closed D-ball and let Sr := ∂Br be the (D−1)-sphere with outward unit
normal eSr (y) = y/∥y∥. Assume p(yt) and q(yt;θ) are C1 with well-defined ∇y and ∆y, and that
Ep

[
log q(yt;θ)

]
< ∞. Then the boundary integrals

L1 := lim
r→∞

∫
Sr

log q(yt;θ)∇yt
p(yt) · eSr

(yt) dS = 0, (34)

L2 := lim
r→∞

∫
Sr

1

2

p(yt)

q(yt;θ)
∇yt

q(yt;θ) · eSr
(yt) dS = 0. (35)

Proof. First, note that the limits L1 and L2 obviously exist, as each of these limits can be expressed
as the sum of two converging integrals. We prove (34); the argument for (35) is analogous. For
brevity, omit the subscript t and write y for yt. Let eSr (y) to be unit vector normal to Sr at the point
y. Under this notation dsr = ||dsr||eSr (y). We integrate over r ≥ 0 the surface integral in (34) and
apply Green’s identity to find the relations. Set

f(r) :=

∫
Sr

log q(y)∇p(y) · dsr.

By the coarea formula (spherical coordinates),∫ ∞
0

f(r) dr =

∫
RD

∇p(y) · (log q(y) eSr
(y)) dy. (36)

Using the product rule and the divergence theorem on Br,∫
Br

∇p(y) ·
(
log q(y) eSr

(y)
)
dy

= lim
r→∞

∫
Sr

p(y) log q(y) eSr
(y) · dsr −

∫
Br

p(y)∇·
(
log q(y) eSr

(y)
)
dy. (37)

Letting r → ∞ we bound the two terms on the right-hand side.

First term. By the coarea formula,∫ ∞
r

∫
Sr

∣∣p(y) log q(y)∣∣dS dr =

∫
∥y∥>r

∣∣p(y) log q(y)∣∣dy −−−→
r→∞

0,

because Ep[| log q(y)|] < ∞. Hence
∫
Sr

p(y) log q(y) dS → 0 along the full sequence r → ∞ (e.g.,
via a Cesàro argument).
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Second term. Now we note that the absolute value of the divergence in the second term satisfies
the relation

|∇ · (log q(y)eSr
(y))| = |∇q(y) · eSr

(y)|
q(y)

≤ ∥∇q(y)∥
q(y)

(38)

Hence, we have

∥∇q(y)∥
q(y)

=

(
n∑

i=1

[∫
RD

q(x)

q(y)
(2πσ2

t )
−D

2

(∥yi − αtxi∥
σ2
t

)
exp

(
−∥yt − αtx∥2

2σ2
t

)
dx.

]2) 1
2

=

(
n∑

i=1

[
E
(
Yi − αtXi

σ2
t

∣∣∣Y = y

)]2) 1
2

≤

(
n∑

i=1

(
E

((
Yi − αtXi

σ2
t

)2 ∣∣∣Y = y

))) 1
2

=

(
E

((
∥Y − αtX∥

σ2
t

)2 ∣∣∣Y = y

)) 1
2

. (39)

Integrating w.r.t. p(y) dy and applying Jensen, we can write the chain of inequalities∫
Rn

p(y)
∥∇q(y)∥
q(y)

dy ≤ Ep


(
E

((
∥Y − αtX∥

σ2
t

)2 ∣∣∣Y = y

)) 1
2


≤

{
Ep

(
E

((
∥Y − αtX∥

σ2
t

)2 ∣∣∣Y = y

))} 1
2

=

[
Ep

((
∥N∥
σ2
t

)2
)] 1

2

< ∞, (40)
which means that

Ep

[
∥∇ log q(y)∥

]
≤
(
Ep

[
∥N∥2/σ4

t

])1/2
< ∞.

Therefore the right-hand side of (37) is finite, so∫ ∞
0

f(r) dr < ∞.

Finally, f is locally absolutely continuous in r (by the smoothness of p and q and the coarea formula),
hence limr→∞ f(r) exists. Since

∫∞
0

f(r) dr < ∞, this limit must equal 0. Thus L1 = 0. The proof
of L2 = 0 follows by the same steps with 1

2
p
q∇q in place of log q∇p.

Lemma 3. Fix t ∈ [0, 1] and consider the Gaussian channel in (1). Let p(yt) and q(yt;θ) be
the output densities induced by inputs p(x) and q(x;θ), respectively. Assume p(·) and q(·;θ) are
sufficiently smooth and integrable so that differentiation under the integral sign is justified and the
boundary terms in Lemma 2 vanish. Then the derivative of the mismatched output cross-entropy

H
(
p(yt), q(yt;θ)

)
:= −

∫
RD

p(yt) log q(yt;θ) dyt

with respect to the noise variance σ2
t is

d

dσ2
t

H
(
p(yt), q(yt;θ)

)
=

1

2

∫
RD

(
∇q(yt;θ) · ∇p(yt)

q(yt;θ)
+ ∇

(
p(yt)

q(yt;θ)

)
· ∇q(yt;θ)

)
dyt,

(41)
where a · b = ⟨a,b⟩ denotes the Euclidean inner product.
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Proof. By definition of cross-entropy in Def. 4,

H
(
p(yt), q(yt;θ)

)
= −

∫
RD

p(yt) log q(yt;θ) dyt.

Differentiating w.r.t. σ2
t (justified by the assumed regularity) yields

d

dσ2
t

(
−
∫

p log q
)
= −

∫
log q

∂p

∂σ2
t

dyt −
∫

p
∂

∂σ2
t

log q dyt, (42)

where we abbreviate p = p(yt) and q = q(yt;θ).

Under Gaussian smoothing (heat equation),

∂p

∂σ2
t

=
1

2
∆yt

p,
∂q

∂σ2
t

=
1

2
∆yt

q,
∂

∂σ2
t

log q =
1

q

∂q

∂σ2
t

=
1

2

∆yt
q

q
.

We now recall Green’s identity: If ϕ(x) and ψ(x) are twice continuously differentiable functions in
RD and V is any set bounded by a piecewise smooth, closed, oriented surface S in RD, then∫

V

ϕ∇2ψ dV =

∫
S

ϕ∇ψ · ds−
∫
V

∇ϕ · ∇ψ dV, (43)

where ∇ϕ denotes the gradient of ϕ, ds denotes the elementary area vector, and ∇ϕ · ds is the inner
product of these two vectors. This identity plays the role of integration by parts in RD.

To apply Green’s identity to (42), we let Vr be the D-sphere of radius r centered at the origin
and having surface Sr. Then we use Green’s identity on Vr and Sr with ϕ(yt) = log p(yt) and
ψ(yt) = p(yt) and take the limit as r → ∞. In Lemma 2 the surface integral over Sr is shown to
vanish in the limit. Hence, by applying heat equation [12] and Green’s identity for the first term on
right hide side, we obtain:

−
∫

log q(yt;θ)
d

dσ2
t

p(yt) dyt = −1

2

∫
log q(yt;θ)∆yt

p(yt) dyt (44)

=
1

2

∫
∇yt

log q(yt;θ) · ∇yt
p(yt) dyt (45)

=
1

2

∫
RD

∇q(yt;θ) · ∇p(yt)

q(yt;θ)
dyt, (46)

where we used integration by parts in high dimension and the vanishing boundary terms from
Lemma 2. For the second term,

−
∫

p(yt)
d

dσ2
t

log q(yt;θ) dyt = −
∫

p(yt)
∇σ2

t
q(yt;θ)

q(yt;θ)
dyt (47)

= −1

2

∫ (
p(yt)

q(yt;θ)

)
∆ytq(yt;θ) dyt (48)

=
1

2

∫
RD

∇
(
p(yt)

q(yt)

)
· ∇q(yt) dyt, (49)

where we again applied Green’s identity and used the vanishing of the boundary flux.

Summing the two contributions yields (41).

Lemma 4. Let (X,S, µi) be probability spaces, and let T : X → Y be a measurable transformation
inducing probability measures νi on (Y, T ) such that

νi(G) = µi(T
−1(G)), ∀G ∈ T , i = 1, 2.

Denote the Radon-Nikodym derivatives of νi with respect to a common reference measure γ as

gi(y) =
dνi
dγ

.
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Then, the KL divergence remains invariant under the transformation T , i.e.,

DKL(ν1||ν2) = DKL(µ1||µ2),

where

DKL(ν1||ν2) =
∫
Y

g1(y) log
g1(y)

g2(y)
dγ(y).

Proof. Let λ be a reference measure on X such that µi has densities fi with respect to λ, i.e.,

fi(x) =
dµi

dλ
(x).

By the change of variables under T , the density functions transform as

gi(y) =
dνi
dγ

(y) =
dµi

dλ
(T−1(y))J−1T (y),

where JT (y) =
∣∣det dT

dx

∣∣ is the Jacobian determinant of T .

Substituting into the definition of KL divergence:

DKL(ν1||ν2) =
∫
Y

g1(y) log
g1(y)

g2(y)
dγ(y),

we expand:

=

∫
Y

(
f1(T

−1(y))J−1T

)
log

f1(T
−1(y))J−1T

f2(T−1(y))J
−1
T

dγ(y).

Since the Jacobian terms cancel, we obtain:

=

∫
Y

f1(T
−1(y)) log

f1(T
−1(y))

f2(T−1(y))
dγ(y).

By the change of variables z = T−1(y), we rewrite this as:

=

∫
X

f1(z) log
f1(z)

f2(z)
dλ(z) = DKL(µ1||µ2).

Thus, the KL divergence is invariant under the transformation T , completing the proof.

A.5 Proof and Remark of Theorems

A.5.1 Proof of Theorem. 1

Theorem 1. Let X ∼ p(x) be an arbitrary distributed random vector on RD, and let q(x̂;θ) be a
parametric model with X̂ ∼ q(x̂;θ). Define the perturbed observation

X̃ := αtX+ σtΨ,

where Ψ is a random vector independent of X , satisfying E[Ψ] = 0 and Cov(Ψ) = I. Let pσ2
t

and
qσ2

t
denote the densities of X̃ under p and q with noise variance σ2

t , respectively. Suppose that the
KL divergence DKL(pσ2

t
∥qσ2

t
) is finite for sufficiently small σ2

t . Then the following limit holds:

d

dσ2
t

DKL(pσ2
t
∥qσ2

t
)

∣∣∣∣
σ2
t→0+

= −1

2

∫
RD

p(x) ∥∇ log p(x)−∇ log q(x̂;θ)∥2 dx, (50)

i.e.,
d

dσ2
t

DKL(p(x̃)∥q(x̃;θ))
∣∣∣∣
σ2
t→0+

= −1

2
I (p(x)∥q(x̂;θ)) ,

where I(·∥·) denotes the Fisher divergence (equivalently, score matching objective) between p and q.
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Proof. According to the definition of relative entropy (See Def. 3), we have
d

dσ2
t

DKL(p(x̃)∥q(x̃;θ)) =
d

dσ2
t

∫
RD

p(x̃) log(
p(x̃)

q(x̃;θ)
) dx̃ (51)

=

∫
∂p(x̃)

∂σ2
t

log(
p(x̃)

q(x̃;θ)
) + p(x̃)

∂

∂σ2
t

log(
p(x̃)

q(x̃;θ)
) dx̃ (52)

=

∫
∂p(x̃)

∂σ2
t

log(
p(x̃)

q(x̃;θ)
) + p(x̃)

(
∂p(x̃)

∂σ2
t

/p(x̃)− ∂q(x̃;θ)

∂σ2
t

/q(x̃;θ)

)
dx̃. (53)

Invoking Lemma 1 on (53) yields
d

dσ2
t

DKL(p(x̃)∥q(x̃;θ))
∣∣∣∣
σ2
t=0+

=
1

2

∫ (
p′′(x̃) log(

p(x̃)

q(x̃;θ)
) + p′′(x̃)− q′′(x̃;θ)p(x̃)

q(x̃;θ)

)
dx̃.

(54)
For convenience, define:

υ(x̃) = log
p(x̃)

q(x̃;θ)
= log p(x̃)− log q(x̃;θ)

Recall the Green’s identity:∫
RD

ν∇2µ dx̃ =

∫
∂RD

ν
∂µ

∂n
dS −

∫
RD

(∇ν · ∇µ) dx̃. (55)

Setting ν = p and µ = υ = log p
q , we obtain:∫

RD

p′′υ dx̃ =

∫
∂RD

p
∂υ

∂n
dS −

∫
RD

(∇υ · ∇p) dx̃. (56)

Since p(x̃) has finite differential Shannon entropy, the boundary integral vanishes, leaving∫
RD

p′′υ dx̃ = −
∫
RD

(∇υ · ∇p) dx̃. (57)

For the term q′′p/q, we apply the same identity:∫
RD

q′′p

q
dx̃ = −

∫
RD

(p∇ log q · ∇ log q) dx̃. (58)

Since
∫
RD p′′(x̃)dx̃ = 0 under appropriate boundary conditions, it does not contribute. Similar

technique was used in [5, 58, 59]. Using υ = log p− log q, we compute:
∇υ = ∇ log p−∇ log q. (59)

Thus,
∇p · ∇υ = ∇p · (∇ log p−∇ log q). (60)

Since ∇p = p∇ log p, we substitute:
∇p · ∇υ = p∇ log p · (∇ log p−∇ log q). (61)

Expanding,
∇ log p · (∇ log p−∇ log q) = ∥∇ log p∥2 −∇ log p · ∇ log q. (62)

Thus, ∫
RD

p′′υ dx̃ = −
∫
RD

p
(
∥∇ log p∥2 −∇ log p · ∇ log q

)
dx̃. (63)

Using the result for q′′p/q:∫
RD

q′′p

q
dx̃ = −

∫
RD

(p∇ log q · ∇ log q ) dx̃. (64)

Summing both contributions,
1

2

∫
RD

(
−p
(
∥∇ log p∥2 −∇ log p · ∇ log q

)
− p∥∇ log q∥2 + p∇ log p · ∇ log q

)
dx̃. (65)

Rearranging, we conclude:
d

dσ2
t

DKL(p(x̃)∥q(x̃;θ))
∣∣∣∣
σ2
t=0+

= −1

2

∫
RD

p(x)∥∇ log p(x)−∇ log q(x;θ)∥22 dx, (66)

which completes the proof.
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Similar to the classical result in [51, 78], the relation in Theorem 1 holds because both sides quantify
the error induced by a mismatch between the true distribution p and the prior q provided to the
estimator. Naturally, when p = q, both sides vanish; otherwise, the derivative is strictly negative,
indicating that perturbations reduce the relative entropy. This observation also yields the relative
entropy version of the data processing inequality:

DKL(ρ∥ν) ≥ DKL(ρ̄∥ν̄), (67)

where

ρ̄ =

∫
W (y|x) dρ(x), ν̄ =

∫
W (y|x) dν(x).

Here, W denotes a noisy channel. This inequality asserts that the KL divergence between two
distributions decreases under the action of a common channel, which is consistent with the data
processing argument used in [69], where, the channel W corresponds to time-reversed Brownian
motion, which can be viewed as a continuous analogue of the Gaussian channel [82]. Under the
assumption that ρ̄(x) = ν̄(x) = π(x), the result further implies that the diffusion process smooths
the discrepancy between inputs. Moreover, the neural network acts as a channel simulator, enabling
efficient sampling by integrating its output into the neural ODE solvers [37].

A.5.2 Proof of Proposition. 1

Proposition 1. Consider the signal model (1), suppose p(x̃) and q(x̃;θ) have continuous second-
order derivatives and finite second moments. Denote by p(y1) and π(x) the output signals of channel
at time t = 1 when inputs are p(x) and q(x̂;θ) respectively. Assume π(x) = N (0, I), which is
independent of θ. Let p(yt|x) denote the channel (1) for any t ∈ [0, 1], then for arbitrary datapoint
x and small σ2

0 with 0 < σ2
0 ≪ 1:

H(p(x), q(x̂;θ)) = H(p(y1), π(x))+JDSM(θ;σ2
t (·))−

1

2

∫ σ2
1

σ2
0

E∥∇yt log p(yt|x)∥2dσ2
t + o(σ2

0).

(68)
Here, the denoising score matching objective is defined as

JDSM(θ;σ
2(·)) := 1

2

∫ σ2
1

σ2
0

E∥∇yt log p(yt|x)− ŝ(yt;θ)∥22 dσ2
t , (69)

and ŝ(yt;θ) = ∇yt log q(yt;θ) := −n̂(yt, ηt;θ)/σt is a score network estimator.

Proof. Recall the thermodynamic integration commonly used in statistical physics:∫ Ξ

0

d

dξ
f(ξ)dξ = f(Ξ)− f(0). (70)

Let f(σ2
t ) := DKL

(
p(y)∥q(y;θ)

)
, where Yt = αtX+ σtN, i.e.,

∫ Ξ

0

d

dξ
f(ξ)dξ = f(Ξ)− f(0), (71)

becomes equivalent to ∫ σ2
1

0

d

dσ2
t

f(σ2
t )dσ

2
t = f(σ2

1)− f(0), (72)

which yields the following expression,∫ σ2
1

0

d

dσ2
t

DKL(p(y)∥q(y;θ)) = DKL(p(y1)∥q(y1;θ))−DKL(p(x)∥q(x̂;θ)). (73)

This occurs because the KL divergence remains invariant under measurable transformations shown
in Lemma 4. In particular, probability density transformation serves as an illustrative example. Let
X ∼ ρ be a random vector on the measure space with a probability density function p(x). We define
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the transformation X′ = T (X). Consequently, the probability density function of X′, denoted as
p(x′), can be determined using:

p(x′) = p(T−1(x′))

∣∣∣∣ d

dx′
T−1(x′)

∣∣∣∣ . (74)

Furthermore, the KL divergence satisfies the following property:
DKL(ρ(αx)∥ν(αx)) = DKL(ρ(x)∥ν(x)) ∀α > 0, (75)

which implies that the KL divergence depends solely on the relative shape of the two distributions
rather than their absolute scale. Invoke the Lemma 3 and results in [51] on (73) yields

DKL(p(x)∥q(x̂;θ)) = DKL(p(y1)∥q(y1;θ)) +
1

2

∫ σ2
1

0

I(p(yt)∥q(yt;θ))dσ
2
t . (76)

With the fact that q(y1;θ) := π(x), which is independent of θ, we have

DKL(p(x)∥q(x̂;θ)) = DKL(p(y1)∥π(x)) +
1

2

∫ σ2
1

0

I(p(yt)∥q(yt;θ)) dσ
2
t . (77)

The mismatched entropy between data and model becomes equivalent to
H(p(x), q(x̂;θ)) = DKL(p(x)∥q(x̂;θ)) +H(p(x)). (78)

Invoking (77) on (78) yields

H(p(x), q(x̂;θ)) = DKL(p(y1)∥π(x)) +
1

2

∫ σ2
1

0

I(p(yt)∥q(yt;θ)) dσ
2
t +H(p(x)). (79)

Recall de Bruijin’s identity [12]:
d

dσ2
t

H(p(yt)) =
1

2
J (p(yt)). (80)

Using thermodynamic integration again, we have∫ σ2
1

0

d

dσ2
t

H(p(yt))dσ
2
t = H(p(y1))−H(p(α0x)), (81)

which is equivalent to

H(p(α0x)) = H(p(y1))−
1

2

∫ σ2
1

0

J (p(yt))dσ
2
t . (82)

Recall the property of differential entropy (see Theorem 8.6.4 (8.71) in [14])
H(aX) = H(X) + log |det(a)|, (83)

and the connection with denoising score matching (see (11) in [79])
I(p(yt)∥q(yt;θ)) = E

[
∥∇ log p(yt|x)− s(yt;θ)∥2

]
+J (p(yt))−E

[
∥∇ log p(yt|x)∥2

]
. (84)

Finally, we have

H(p(x), q(x̂;θ)) =

(
DKL(p(y1)∥π(x)) +H(p(y1))−

1

2

∫ σ2
1

0

J (p(yt)) dσ
2
t −D log |α0|

+
1

2

(∫ σ2
1

0

E
[
∥∇ log p(yt|x)− ŝ(yt;θ)∥2

]
+ J (p(yt))− E

[
∥∇ log p(yt|x)∥2

]
dσ2

t

))
(85)

= H(p(y1), π(x)) + JDSM(θ;σ2
t (·))−

1

2

∫ σ2
1

0

E∥∇yt
log p(yt|x)∥2dσ2

t −D log |α0|. (86)

Since the identity σ2
t + α2

t = 1 holds for all t, setting the lower limit of integration such that σ2
0 = 0

implies α2
0 = 1. Consequently, |α0| = 1, and thus: log |α0| = log 1 = 0. And invoking Theorem 1,

we finally get

H(p(x), q(x̂;θ)) = H(p(y1), π(x))+JDSM(θ;σ2
t (·))−

1

2

∫ σ2
1

σ2
0

E∥∇yt
log p(yt|x)∥2dσ2

t + o(σ2
0).

(87)
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A.5.3 Proof of Theorem 2

Theorem 2. Let p(yt|x) = N (αtx, σ
2
t I) denote the Gaussian channel at any time t ∈ [0, 1]. With

the same notations and conditions in Proposition 1, we have

− log q(x̂;θ) ≤ H(p(y1|x), π(x)) + LDSM(σ2
t ;θ), (88)

in which LDSM(σ
2
t ;θ) is defined as

LDSM(σ2
t ;θ) :=

1

2

∫ σ2
1

σ2
0

Ep(yt|x)∥∇yt log p(yt|x)− s(yt;θ)∥2dσ2
t ,

and H(p(y1|x), π(x)) is given by

H(p(y1|x), π(x)) = DKL(p(y1|x)∥q(y1)) +H(p(y1|x)).

Proof. From Proposition 1 we have

−Ep(x)[log q(x̂;θ)] = −Ep(y1)[log π(x)] +
1

2

∫ σ2
1

σ2
0

Ep(yt|x)p(x)∥∇yt log p(yt|x)− s(yt;θ)∥2dσ2
t

− 1

2

∫ σ2
1

σ2
0

Ep(yt|x)p(x)∥∇yt
log p(yt|x)∥2dσ2

t (89)

= −
∫
RD

∫
RD

p(y1|x)p(x)dx log π(x)dy1

− 1

2

∫ σ2
1

σ2
0

∫∫
RD

p(yt|x)p(x)∥∇yt
log p(yt|x)∥2dxdytdσ

2
t

+
1

2

∫ σ2
1

σ2
0

∫∫
RD

p(yt|x)p(x)∥∇yt
log p(yt|x)− s(yt;θ)∥2dxdytdσ

2
t (90)

Given a fixed channel p(yt|x), we can easily see that
∫
RD p(x)dx in both sides of (90) can be

canceled to get

− log q(x̂;θ) = −
∫
RD

p(y1|x) log π(x)dy1 −
1

2

∫ σ2
1

σ2
0

∫
RD

p(yt|x)∥∇yt
log p(yt|x)∥2dytdσ

2
t

+
1

2

∫ σ2
1

σ2
0

∫
RD

p(yt|x)∥∇yt log p(yt|x)− s(yt,θ)∥2dytdσ
2
t . (91)

The second term in (91) corresponds to one-half of the integrated Fisher information of the Gaussian
distribution, which is strictly non-negative [19], we obtain:

− log q(x̂;θ) ≤ H(p(y1|x), π(x)) +
1

2

∫ σ2
1

σ2
0

∫
RD

p(yt|x)∥∇yt
log p(yt|x)− s(yt,θ)∥2dytdσ

2
t ,

(92)
which finishes the proof.

A.5.4 Proof of Proposition 2

Proposition 2. Let X̃ = αtX+ σtΨ, where X,Ψ ∈ RD are independent random vectors, with Ψ
satisfying E[Ψ] = 0 and Cov(Ψ) = I. Assume the probability density function p(x) of X is twice
continuously differentiable and decays sufficiently fast at infinity, and that the Fisher information
J (X) exists and is finite. Then,

d

dσ2
t

H
(
p(x̃)

)∣∣∣∣
σ2
t→0+

=
1

2
J
(
p(x)

)
, (93)

where H(·) denotes the differential Shannon entropy and J (·) denotes the Fisher information.
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Proof. By the smoothing properties established in Lemma 1, the distribution p(x̃) is differentiable
with respect to σ2

t . Since the integrand in equation (13) is both continuous and differentiable in σ2
t ,

we may interchange the order of differentiation and integration to obtain:
d

dσ2
t

H
(
p(x̃)

)
= −

∫
RD

d

dσ2
t

p(x̃) · (1 + log p(x̃)) dx̃ (94)

= −1

2

∫
RD

(∆x̃p(x̃)) log p(x̃) dx̃. (95)

Following the same argument as in Theorem 1, this establishes the desired expression, which recovers
the special case of isotropic additive noise discussed in [60].

B Improve the Likelihood Estimation Bounds

Our theoretical analysis suggests that different variance functions can lead to varying performance in
likelihood estimation. To validate this empirically, we evaluate the effect of different noise schedules,
variance functions and datasets on likelihood estimation performance.

However, in practice, exact numerical evaluation of the integral is generally intractable. A common
approach is to use Monte Carlo method to estimate the variance integral in LDSM(σ2

t ;θ) during
both training and evaluation. Moreover, reducing the variance of the Monte Carlo estimator for the
continuous loss objective generally improves the efficiency of optimization. We next summarise our
empirical observations on likelihood estimation across different settings.

B.1 Variance-Aware Likelihood Bounds

As mentioned in Section 3.3, denoising score matching [79] is typically used as the training
objective for diffusion models, serving as a surrogate for approximating the likelihood function
q(x̂;θ). Specifically, recall that out channel (1) is defined as p(yt|x) = N (αtx, σ

2
t I), such that

∇yt
log p(yt|x) = −n/σt. In the sense that with the score model ŝ(yt;θ) := −n̂(yt, ηt;θ)/σt, the

objective takes the following integral form, where the loss is evaluated under varying noise levels:

LDSM(σ2
t ;θ) =

1

2

∫ σ2
1

σ2
0

Ep(yt|x)
[
σ−2t ∥n− n̂(yt, ηt;θ)∥22

]
dσ2

t . (96)

We begin by approximating the expectation in LDSM(σ2
t ;θ) via Monte Carlo estimation. This involves

drawing samples yt ∼ p(yt|x) from a tractable Gaussian kernel, which enables efficient estimation of
the denoising objective. To estimate the integral over the variance schedule, we apply a second Monte
Carlo approximation by uniformly sampling σ2

t from the interval [σ2
0 , σ

2
1 ]. However, we empirically

observe that such an estimator can significantly degrade the optimization process, potentially due to
increased variance or poor convergence behaviour. To address this, we reparameterize the objective
in terms of a smoother coordinate, namely, the negative log signal-to-noise ratio (log-SNR), which
facilitates both numerical stability and analytical tractability.

Even under constrained noise schedules, such as the Variance Preserving (VP) formulation [28], which
enforces α2

t +σ2
t = 1, there remains freedom in how αt, σt evolve over time t. To abstract away from

specific parameterizations such as VP or VE schedules, we adopt a log-SNR parameterization as the
default: ηt := − log SNR(t) = − log

α2
t

σ2
t

. This reparameterization simplifies the analysis and unifies
various diffusion formulations under a single coordinate system. Under this reparameterization, the
change of variable from time t to negative log-SNR η follows:

dηt
dt

=
1

σ2
t

dσ2
t

dt
− 1

α2
t

dα2
t

dt
. (97)

For the VP schedule, this simplifies to:

dηt
dt

=
1

α2
tσ

2
t

dσ2
t

dt
. (98)

By setting the noisy process to follow an EDM-like variance-exploding (VE) schedule [37], we let
α2
t ≡ 1 and parameterize the variance as σ2

t := exp(ηt). This configuration is equivalent to that
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of NCSNv2 [70] when σt follows a geometric sequence interpolating between 0.01 and 50, i.e.,
η(t) = 2 log(0.01) + 2 log(5000) t. Under this specification, the objective in (96) reduces to the
continuous-time loss proposed in [40]:

L∞(x) :=
1

2
En∼N (0,I),t∼U(0,1)[η

′(t)∥n− n̂θ(yt; t)∥22], (99)

where η′(t) = dηt/dt acts as a natural weighting function. In the above case, this means that
η′(t) = 2 log[5000] and thus that weighted function is a constant. We leave the VE schedule
optimization for future works.

Similarly, in the information-theoretic VE formulation [43], i.e., zγ =
√
γ x+n, our bound recovers

the loss integrates over the signal-to-noise ratio γ:

L :=
1

2

∫ SNRmax

SNRmin

Ep(zγ ,x)

[
∥x− x̂θ(zγ , γ)∥22

]
dγ, (100)

where instead of integrating w.r.t. time t, now integrate w.r.t. the signal-to-noise ratio γ, and where
SNRmax = γ(1), SNRmin = γ(0).

In a more general form, the objective in (96) recovers the weighted continuous-time formulation of
Eq.(66) [40], where the weighting function is defined as w(t) := α2

t ; equivalently, this corresponds
to scaling the signal coefficient by αt across time:

Lw
∞(x) :=

1

2
En∼N (0,I),t∼U(0,1)[η

′(t)α2
t ∥n− n̂θ(yt; t)∥22], (101)

Moreover, (96) can be further unified under the stochastic differential equation (SDE) framework [72]:

dx = f(x, t) dt+ g(t) dw, (102)

where f(x, t) : RD → RD, g(t) ∈ R are manually designed noise schedules and w ∈ RD is a
standard Wiener process. When the variance function satisfies dσ2

t /dt = g2(t), the corresponding
loss aligns with the likelihood-weighted score-matching objective [69]:

JSM(θ) :=

∫ T

0

g2(t)

2σ2
t

Ex∼p(x),n∼N (0,I)

[
∥σtŝ(yt;θ) + n∥22

]
dt. (103)

The same principle extends to deterministic flow-based formulations, including continuous-time
ODEs and higher-order probability flows [50, 69, 90] with specific design of the g2(t). In this case,
the training objective becomes:

J η
SM(θ) :=

1

2

∫ η1

η0

Ex∼p(x),n∼N (0,I)

[
∥σtŝ(yη;θ) + n∥22

]
dη. (104)

This reformulation highlights that the loss landscape is intimately linked to the choice of noise
schedule, particularly the functional form of σ2

t as a function of log-SNR η. Since both the weighting
in the integrand and the resulting likelihood bounds depend explicitly on σ2

t , different scheduling
strategies can lead to substantial differences in training dynamics, gradient variance, and overall
model performance. In the following, we provide both theoretical and empirical analyses to quantify
how the design of σ2

t influences estimation accuracy, stability, and convergence behaviour.

B.2 The Noise Schedule Matters

Many practical objectives, including the ones above, are special cases of the likelihood–weighting
loss [39, 40, 69]. Let η = g(t) be a differentiable, monotone noise parameterization of time t ∈ [0, 1]
with fixed endpoints ηmin = g(0) and ηmax = g(1). For a per-example loss, define

Lw(x) :=
1

2

∫ ηmax

ηmin

w(η) En∼N (0,I)

[∥∥n− n̂
(
yη, η;θ

)∥∥2
2

]
dη, (105)

where yη denotes the noisy input at noise level η (e.g., via a log-SNR parameterization). As shown
in [40], the integral in (105) is invariant to smooth reparameterizations of η (i.e., to the choice of
schedule) so long as the endpoints ηmin, ηmax are kept fixed. This invariance extends to the weighted
diffusion loss family [39] because the integrand is measured per unit η.
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However, this invariance does not carry over to the Monte Carlo (MC) estimator used in evaluation.
If we sample t ∼ U(0, 1) and n ∼ N (0, I), then by change of variables,

Lw(x) =
1

2
Et∼U(0,1),n∼N (0,I)

[
w
(
η(t)

) ∣∣∣dηdt (t)∣∣∣ ∥∥n− n̂
(
yη(t), η(t);θ

)∥∥2
2

]
. (106)

More generally, if we sample directly η ∼ ρ(η) over [ηmin, ηmax] (with ρ > 0 a.e.), then

Lw(x) =
1

2
Eη∼ρ, n

[
w(η)

ρ(η)

∥∥n− n̂
(
yη, η;θ

)∥∥2
2

]
, (107)

revealing that the noise schedule induces an importance-sampling distribution ρ(η) over η and a
corresponding weighting function w(η) related to σ2

t (η), simultaneously. Consequently, while the
population loss is invariant to reparameterization, the variance of the MC estimator (and of its
gradients) depends on ρ. Choosing ρ to better match the integrand can substantially reduce estimator
variance and thus accelerate optimization. In particular, the variance-minimizing density satisfies the
heuristic proportionality ρ⋆(η) ∝ Ex∼X ,n∼N (0,I)

[
w(η) ∥n− n̂(yη, η;θ)∥22

]
.

B.3 Variance Reduction with Importance Sampling

Monte Carlo approximation offers a computationally efficient alternative to exact integration, but
typically introduces variance into the training objective. To mitigate this, we adopt both designed and
learned importance sampling (IS) strategies, as outlined in Section 3.4. As mentioned in Section. B.2,
the diffusion model is conducted for all η in [η0, η1] through an integral. In practice, the evaluation
of the integral is time-consuming, and Monte-Carlo methods are used to unbiasedly estimate the
objective by uniformly sampling η. Thus, a continuous importance distribution ρ(η) can be proposed
for variance reduction. Denote

L(x,n, η;θ) := α2
t ∥n− n̂(yη, η;θ)∥22

2
,

then

Lw(x;θ) = Eη∼ρ(η)Ex,n

[
L(x,n, η;θ)

ρ(η)

]
. (108)

We propose to use two types of importance sampling (IS), and empirically compare them for faster
convergence.

B.3.1 Designed IS

In particular, we propose a continuous proposal distributions ρ(η) over η, which is proportional α2
η.

Since we have explicit expressions for the density, we utilize inverse transform sampling to design
a sampling procedure. Concretely, we take uniform samples of a number t ∈ [0, 1], and solve the
following equation about ηt:

1

Z

∫ η1

η0

α2
η dη = t, Z =

∫ η1

η0

α2
η dη, (109)

where we have defined maximum time t = 1, and Z is a normalizing constant.

Uniform Weighting in η-Space. As a canonical example, we consider uniform weighting in the
log-SNR domain. In this case, the proposal distribution becomes ρ(η) ∝ α2

η , yielding:

Z =

∫ η1

η0

sigmoid(−η) dη = log

(
1 + e−η0

1 + e−η1

)
.

Also, for squashed hyperbolic tangent, we have:

Z =

∫ η1

η0

sigmoid(−2η) dη =
1

2
log

(
1 + e−2η0

1 + e−2η1

)
.

To enable inverse transform sampling, we define the antiderivative g(η) := log(1 + e−η), and set
l0 = g(η0), l1 = g(η1). The corresponding cumulative distribution function (CDF) is then:

F (η) =
l0 − g(η)

Z
, η ∈ [η0, η1].
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Sampling is performed by drawing u ∼ U(0, 1) and solving for η such that F (η) = u. Since F (η)
is smooth and strictly monotonic, this inverse can be computed via root-finding or a precomputed
lookup table. The method is similar to the implementation in [69, 90].

Uniform weighting in t-space. As discussed in Section B.1, drawing t uniformly from the interval
[0, 1] amounts to using the proposal density ρ(η) = 1/α2

η(t). With this baseline choice the objective
in Eq. (99) can be optimized in its native form: each Monte-Carlo sample is simply re-weighted
by the factor w(η) = α2

t η
′(t), which bundles the forward-process weight α2

t and the Jacobian
η′(t). Although the resulting estimator exhibits higher variance than the importance-sampling
schemes introduced earlier, it provides a clear reference point for measuring the effectiveness of less
sophisticated designs.

B.3.2 Learned IS

The variance of the Monte-Carlo estimator depends on the learned network n̂(·;θ). To minimize
the variance, we can parameterize the IS with another network and treat the variance as an objective
[40, 90]. Actually, learning ρ(η) is equivalent to learning a monotone mapping. Thus, we can
uniformly sample t, and regard the IS as change-of-variable from η to t:

Lw(x;ψ,θ) = Et∼U(0,1)Ex,n [η′(t;ψ)L(x,n, η;θ)] , (110)

where η′(t;ψ) = dη(t;ψ)/dt and η(t;ψ) is a monotonic neural network with parameters
ψ. Since the variance Varx,n,t[η′(t;ψ)L(x,n, η;θ)] = Ex,n,t[

(
η′(t;ψ)L(x,n, η;θ)

)2
] −(

Lw(x;ψ,θ)
)2

, where Lw(x;ψ,θ) is proved [40] invariant to η(t;ψ), we can minimize
Ex,n,t[

(
η′(t;ψ)L(x,n, η;θ)

)2
] for variance reduction. At this point, we parameterize η(t;ψ)

similar to [40]. where the network consists of 3 linear layers with weights that are restricted to
be positive l1, l2, l3, which are composed as η̃(t;ψ) = l1(t) + l3(sigmoid(l2(l1(t)))). The l2 layer
has 1024 outputs, where l1 and l3 have a single output.

We therefore postprocess the monotonic neural network as

η(t;ψ) = η0 + (η1 − η0)
η̃(t;ψ)− η̃(0;ψ)

η̃(1;ψ)− η̃(0;ψ)
(111)

where the constants η0 = − log(SNRMAX), η1 = − log(SNRMIN) define the target SNR range.
This construction ensures that η(t;ψ) remains monotonic and bounded. By adjusting the network
parameters ψ we adapt the time-to-noise mapping t 7→ η(t) to match regions with higher loss
variance, thereby allocating more samples to informative regions of the diffusion trajectory.

Overhead. While this approach seeks the optimal IS, learning η adds a lightweight auxiliary
network training steps and complex gradient operation through η(t;ψ), but no extra score-network
passes. Hence, we use it mainly to benchmark the optimality of hand-designed IS; more aggressive
adaptive schemes following [39, 90] are compatible.

B.4 Log-SNR-Timed Channel with Different Variance Functions

Given the central role of σ2
t in shaping both the weighting of the loss and the structure of the forward

process, it is natural to ask how different functional forms of σ2
t (η) affect the overall behaviour

of the model. In particular, we investigate how alternative variance functions under the log-SNR
parameterization influence the resulting likelihood bound, optimization dynamics, and numerical
stability. This section provides both analytical insights and empirical comparisons across several
representative schedules. As state in Section B.1, using η timing and denoising score matching
estimator, the variance weighted objectives are reformulated as:

LDSM(σ2
t ;θ) =

1

2

∫ σ2
1

σ2
0

En

[
σ−2t ∥n− n̂(yt, ηt;θ)∥22

]
dσ2

t . (112)

Due to the η-timed schedule properties, we replace the time subscript with η, αη and ση are deter-
ministic functions of η without any hyperparameters.
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Table 5: Specification of related values and objectives under VP schedule. With s(η) = sigmoid(η),
s− = sigmoid(−η), κ = sa/2.

Formula Generalized Logistic Sigmoid Squashed Hyperbolic tangent

αη

√
1−

(
1 + tanh(η/2)

2

)a
√

1

1 + exp(2η)

ση κ(η)

√
1

1 + exp(−2η)

LDSM
a

2

∫ η1

η0

s−(η)En[∥n− n̂(yt, η;θ)∥22] dη
∫ η1

η0

s−(2η)En [∥n− n̂(yt, η;θ)∥22] dη

Table 6: Specification of related values and objectives under SP schedule. With s(η) = sigmoid(η),
s− = sigmoid(−η).

Formula Generalized Logistic Sigmoid Squashed Hyperbolic tangent

αη 1−
√

sigmoid(η)a 1−
√

1
1+exp(−2η)

ση

√
sigmoid(η)a

√
1

1+exp(−2η)

LDSM
a

2

∫ η1

η0

s−(η)En[∥n− n̂(yt, η;θ)∥22] dη
∫ η1

η0

s−(2η)En [∥n− n̂(yt, η;θ)∥22] dη

Logistic Sigmoid. We begin with the benchmark variance function σ2
η = sigmoid(η) := 1

1+e−η ,
which is widely adopted in VP-based diffusion models [40]. This schedule maps variance smoothly
into the unit interval, with most of the variation concentrated around σ2

η = 0 [90]. Its symmetry
and boundedness make it a natural default choice, but also raise questions about its flexibility
in capturing tail behaviour and class imbalance. We have the analytic form of the derivative of
dσ2

η = (1− σ2
η)σ

2
ηdη:

LDSM(σ2
t ;θ) =

1

2

∫ η1

η0

En

[
(1− σ2

η)∥n− n̂(yt, ηt;θ)∥22
]
dη. (113)

Generalized Logistic Sigmoid. Then we consider the type I generalized logistic sigmoid function
[36] σ2

η = sigmoida(η) = ( 1
1+e−η )

a with a is strict positive coefficient. We have dσ2
η = a(1 −

sigmoid(η))σ2
ηdη:

LDSM(σ2
t ;θ) =

a

2

∫ η1

η0

En

[
sigmoid(−η)∥n− n̂(yt, ηt;θ)∥22

]
dη. (114)

Squashed Hyperbolic tangent. Then we consider the Tanh squash function σ2
η = 1

2 (tanh(η) + 1),
we have the analytic form of the derivative of dσ2

η = 2(1− σ2
η)σ

2
ηdη:

LDSM(σ2
t ;θ) =

∫ η1

η0

En

[
(1− σ2

η)∥n− n̂(yt, ηt;θ)∥22
]
dη. (115)

Thus, we can derive their specific objectives and equivalent predictors using the formula for general
noise schedules. We summarize them in Table 5 and Table 6.

B.5 Empirical Results

Tables 8 and 9 report various configurations of the noise variance function and its endpoints in the VP
setting. Empirically, increasing the noise variance at the initial stage of the diffusion process yields
consistently improved likelihood bounds.
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Table 7: Comparison of NLLs and FID on CIFAR-10 under different noise variance settings.

(a) NLL bounds with different noise variances

Likelihood Bounds η0 = −8.7 η0 = −13.3

ELBO 3.99 2.75
Ours (SP with IS) 2.49 2.79
Ours (VP with IS) 2.50 2.78

(b) FID of CIFAR-10 with different losses

Loss η0 = −8.7 η0 = −13.3

ELBO 14.60 11.9
Ours (VP) 10.18 9.42

Table 8: Performance comparison across generalized sigmoid schedules with varying exponent a,
initial log-SNR η0, and importance sampling strategies on CIFAR-10. Bold denotes the best NLL
and FID within each group.

Schedule a η0 Sampling Strategy NLL (↓) FID (↓)

a = 1 −13.3 Uniform in t 2.81 9.79
IS: Learned Importance 2.75 9.12
IS: Uniform in η 2.78 9.42

a = 1 −8.7 Uniform in t 2.62 14.9
IS: Learned Importance 2.50 10.05
IS: Uniform in η 2.50 10.18

a = 2 −13.3 Uniform in t 3.62 /
IS: Learned Importance 3.47 /
IS: Uniform in η 3.51 /

a = 2 −8.7 Uniform in t 3.16 /
IS: Learned Importance 3.05 /
IS: Uniform in η 3.04 /

a = 0.5 −13.3 Uniform in t 2.54 /
IS: Learned Importance 2.45 /
IS: Uniform in η 2.47 /

a = 0.5 −8.7 Uniform in t 2.61 /
IS: Learned Importance 2.31 /
IS: Uniform in η 2.32 /

We begin with the benchmark configuration adopted in [40], where σ2
t = sigmoid(η(t)) and the

initial negative log-SNR value is set to η0 = −13.3. Under this setting, the model achieves an NLL
of 2.81 bits/dim after 300K iterations, which is comparable to the ELBO result of 2.75 reported on
CIFAR-10 with the same number of iterations.

When using a = 0.5, i.e., σ2
t = sigmoid(η)1/2, the results remain promising. However, for

η0 = −8.7, we note that sigmoid(−8.7)1/2 ≈ 1.29 × 10−2, which falls outside the regime where
the assumption σ2

0≪1 holds strictly, thus violating the theoretical conditions underlying our analysis.
Nevertheless, this configuration can be regarded as a practical compromise, yielding strong empirical
performance despite the theoretical violation.

We further observe that increasing the warm-up noise variance generally leads to degraded FID scores.
This motivates a more systematic investigation of such extreme configurations, as summarized in
Tables 9, 10, and 11. Empirically, the likelihood performance appears insensitive to the detailed shape
of the variance schedule, but depends primarily on the endpoint values σ2

0 and σ2
1 . These findings

suggest that careful tuning of the endpoint variances can have a larger effect than modifying the
overall schedule shape, particularly for likelihood-oriented objectives, an observation consistent with
prior analyses in [28, 38, 40].
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Table 9: Performance comparison across squashed Hyperbolic tangent schedules with log-SNR
endpoints η0, η1, and importance sampling strategies on CIFAR-10 with VP. Bold denotes the best
NLL within each group.

η0 η1 Sampling Strategy NLL (↓)

−13.3 5 Uniform in t 3.83
IS: Learned Importance 3.77
IS: Uniform in η 3.79

−8.7 5 Uniform in t 3.35
IS: Learned Importance 3.15
IS: Uniform in η 3.18

−4.33 2.5 Uniform in t 2.61
IS: Learned Importance 2.51
IS: Uniform in η 2.53

Table 10: Performance comparison across generalized sigmoid schedules with varying exponent a,
initial log-SNR η0, and importance sampling strategies on CIFAR-10 with SP. Bold denotes the best
NLL and FID within each group.

a η0 Sampling Strategy NLL (↓)

a = 1 −13.3 Uniform in t 2.82
IS: Learned Importance 2.77
IS: Uniform in η 2.79

a = 1 −8.7 Uniform in t 2.62
IS: Learned Importance 2.49
IS: Uniform in η 2.50

a = 0.5 −13.3 Uniform in t 2.53
IS: Learned Importance 2.47
IS: Uniform in η 2.45

a = 0.5 −8.7 Uniform in t 2.61
IS: Learned Importance 2.31
IS: Uniform in η 2.33

B.6 Likelihood Estimation Comparison for IT-bound and ELBO on CIFAR-10

Tables 12 and 13 report the average loss components of models trained on CIFAR-10. We observe that
all IT-based models employing a standard sigmoid variance schedule achieve likelihood estimates that
match or surpass those of the ELBO baseline. Notably, when combined with importance sampling,
the IT bound consistently outperforms the ELBO across all configurations. However, when using
uniform sampling in t-space, the IT-bound appears to trade off a small amount of likelihood for faster
convergence, likely due to reduced variance in gradient estimation. We further observe that increasing
the warm-up noise variance leads to a notable rise in the total ELBO. This increase is largely driven
by the reconstruction term,

−Ep(y0|x)[log q(x̂|y0)], (116)

which becomes more pronounced as p(y0|x) flattens under higher noise levels, making accurate
reconstruction more challenging.

Intuitively, the loss structure is grounded in the auto-encoder paradigm [41], where one commonly
assumes a factorised posterior q(x̂|y0), implying conditional independence across the elements
of x̂. In the context of image data, this assumption translates into the belief that pixel values are
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Table 11: Performance comparison across squashed Hyperbolic tangent schedules with log-SNR
endpoints η0, η1, and importance sampling strategies on CIFAR-10 with SP. Bold denotes the best
NLL within each group.

η0 η1 Sampling Strategy NLL (↓)

−13.3 5 Uniform in t 3.82
IS: Learned Importance 3.76
IS: Uniform in η 3.73

−8.7 5 Uniform in t 3.32
IS: Learned Importance 3.14
IS: Uniform in η 3.18

−4.33 2.5 Uniform in t 2.60
IS: Learned Importance 2.51
IS: Uniform in η 2.51

Table 12: Decomposition of ELBO and Information-Theoretic Bound (IT) with initial endpoint
η0 = −13.3. Values reported on CIFAR-10 in 310K iterations (↓ lower is better).

Term Description Value (bits/dim)

Evidence Lower Bound (ELBO) Total = 2.794

Term 1 KL divergence between p(y1|x) and prior π(x) 0.0012358
Term 2 Reconstruction loss (−Ep(y0|x)[log q(x|y0)]) 0.0103869
Term 3 Diffusion loss (

∑
Ep(yt(i)|x)DKL[p(ys(i)|yt(i),x)∥q(ys(i)|yt(i);θ)]) 2.7836967

Information-Theoretic Bound (IT) Total = 2.805

Term 1 Integrated denoising score matching term 0.7622061
Term 2 Mismatched entropy between p(y1|x) and prior π(x)) 2.0434874

conditionally independent given the latent code y0, and each pixel depends only on its corresponding
latent component. It follows the form:

q(x̂i|y0,i) ∝ p(y0,i|xi) = N (y0,i;α0xi, σ
2
0), (117)

where we normalize over all possible values of xi. However, we argue that this assumption is overly
restrictive and does not hold in practice. Within the auto-encoding framework, q(x̂|y0) can be
interpreted as a decoder tasked with reconstructing the data. The approximation may hold when
the SNR at t = 0 is sufficiently high. In this case, the conditional distribution p(y0|x) becomes
sharply peaked around y0 = α0x, effectively imposing strong constraints on the reconstruction loss.
Specifically, it induces high sensitivity to noise: small deviations in the warm-up noise level can
significantly affect the fidelity of reconstructions. Moreover, since likelihood estimation is inherently
sensitive to the probability of individual pixel values and fine-grained image details, this modelling
choice represents a practical compromise rather than a principled solution. In effect, the assumption
simplifies computation at the expense of capturing complex dependencies among pixels, which can
be critical for accurate reconstruction and reliable likelihood evaluation.

Increasing the warm-up noise smooths the sharp concentration of p(y0|x), easing reconstruction by
reducing the signal-to-noise ratio. In the VP setting, this implies α0 deviates more from 1, yielding
more stable behaviour. Crucially, Theorem 1 ensures robustness under arbitrary noise, allowing
principled tuning of the starting noise to balance stability and accuracy. See Appendix. G for more
related discussions.

Furthermore, we observe that small perturbations may fail to regularise extreme pixel values in-
troduced during dequantisation, preventing effective mapping into a smooth continuous domain.
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Table 13: Decomposition of ELBO and Information-Theoretic Bound (IT) with initial endpoint
η0 = −8.7. Values reported on CIFAR-10 in 310K iterations (↓ lower is better).

Term Description Value (bits/dim)

Evidence Lower Bound (ELBO) Total = 3.99

Term 1 KL divergence between p(y1|x) and prior π(x) 0.0012358
Term 2 Reconstruction loss (−Ep(y0|x)[log q(x|y0)]) 2.7219771
Term 3 Diffusion loss (

∑
Ep(yt(i)|x)DKL[p(ys(i)|yt(i),x)∥q(ys(i)|yt(i);θ)]) 1.2691765

Information-Theoretic Bound (IT) Total = 2.51

Term 1 Integrated denoising score matching term 0.4663643
Term 2 Mismatched entropy between p(y1|x) and prior π(x)) 2.0435017

Table 14: Likelihood in bits per dimension (BPD) and sample quality (FID scores) on CIFAR-10 and
ImageNet-32, for vanilla VDM, MuLAN and ours. "†" indicates the result from [62] for 10K samples
generated using an adaptive-step ODE solver.

Model CIFAR-10 ImageNet-32

Steps VLB (↓) FID (↓) Steps VLB (↓) FID (↓)

VDM [40] 10M 2.65 7.6 2M 3.72 14.26†

+ MuLAN [62] 2M 2.65 18.54 2M 3.71 13.19
Ours (η0 = −13.3) 0.3M 2.78 9.42 0.3M 3.28 13.80
Ours (η0 = −8.7) 0.3M 2.50 10.18 0.3M 3.01 14.76

Slightly increasing the initial noise helps suppress such outliers, resulting in improved likelihood
behaviour and more stable training. Moreover, in score-based models with noise prediction, a very
small starting noise can impair residual estimation near t = 0, degrading likelihood due to poor
signal-noise separation. We conjecture that adopting a velocity-based parameterisation [55, 90]
(v-network) may alleviate this issue.

C Samples Quality and FID

Just as selecting appropriate training and optimization strategies is necessary to achieve strong
performance in a given application, so too is the choice of evaluation metric pivotal for drawing valid
conclusions. We must stress that the primary focus of this paper is on maximizing the likelihood
learning metric, specifically, negative log-likelihood measured in bits-per-dimension (BPD; lower is
better), rather than on optimizing Fréchet Inception Distance (FID) or Inception Score (IS), for the
following reasons.

Model samples undoubtedly serve as a valuable diagnostic tool, often enabling us to form an intuition
about why a model may underperform and how it might be improved. From this standpoint, a
generative model ought to produce samples that are indistinguishable from those in the training set,
whilst encompassing its full variability. To quantify these properties, a variety of metrics, such as the
IS and the FID, have been proposed. However, both qualitative and quantitative assessments based
on model samples can be misleading with respect to a model’s density-estimation capabilities, as
well as its effectiveness in probabilistic modelling tasks beyond image synthesis [74]. Consequently,
average log-likelihood remains the de facto standard for quantifying generative image-modeling
performance. For many sophisticated models, the average log-likelihood is challenging to compute
or even approximate. Indeed, it is possible for a model with sub-optimal log-likelihood to generate
visually impressive samples, or conversely, for a model with excellent log-likelihood to produce poor
samples, an observation that underlines the lack of a direct relationship between FID and negative
log-likelihood (NLL).
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Table 15: Comparison of the mean FID scores with standard error for our model on CIFAR-10 with
sigmoid noise schedule after 0.3M steps. We provide both FID scores on 10K and 50K samples and
with respect to both train and test set.

Model FID 10K train FID 10K test FID 50K train FID 50K test

Ours (η0 = −8.7) 11.85± 0.2 12.91± 0.2 10.18± 0.2 10.90± 0.2
Ours (η0 = −13.3) 10.16± 0.2 11.53± 0.3 9.41± 0.2 9.50± 0.2
DiffEnc [55] 14.6± 0.8 18.5± 0.7 11.1± 0.8 15.0± 0.7

Table 16: Comparison of the mean FID scores with standard error for our model on ImageNet-32
with sigmoid noise schedule after 0.3M steps. We provide both FID scores on 10K and 50K samples
and with respect to both train and test set.

Model FID 10K train FID 10K test FID 50K train FID 50K test

Ours (η0 = −8.7) 16.90± 0.2 17.91± 0.2 14.72± 0.2 14.76± 0.2
Ours (η0 = −13.3) 15.76± 0.2 16.15± 0.3 13.21± 0.2 13.80± 0.2

From an information-theoretic standpoint, it is well known that maximizing the log-likelihood of
a probabilistic model is equivalent to minimizing the KL divergence from the data distribution to
the model distribution. By contrast, FID operates by fitting multivariate Gaussian distributions to
the embeddings of real and generated images and then measuring their discrepancy via the Fréchet
distance (equivalently, the 2-Wasserstein or Earth Mover’s distance). Clearly, the mathematical
formulations of these two metrics diverge fundamentally: one corresponds to a mismatched estimation
problem under a KL-based criterion, while the other embodies an optimal-transport task.

Moreover, FID conflates both fidelity to the real data distribution and the diversity of generated
samples into a single score, and its absolute value is highly sensitive to myriad factors, ranging from
the number of samples and the particular checkpoint of the feature extractor network to low-level
image-processing choices. Consequently, the visual appeal of generated images, as quantified
by FID, correlates only imperfectly with a model’s log-likelihood performance. In our work, we
concentrate on advancing the state of the art in likelihood estimation; although we report FID scores
for completeness, we leave the optimization of sample quality to future research.

Although our model was not explicitly optimized for perceptual sample quality, we report FID scores,
a standard metric for visual realism, for both our model and VDM on CIFAR-10 and ImageNet-32
(Tables 14, 15, and 16). From these results, we observe that both models achieve comparable FID
scores across datasets. Importantly, the reported values vary substantially depending on the number
of generated samples and whether FID is computed against the training or test set. As expected, using
more samples improves FID, and evaluation against the training set consistently yields better scores,
likely due to closer distributional alignment.

Furthermore, among models with similar likelihood performance, such as i-DODE [90], MuLAN
[62] and DiffEnc [55], our method not only achieves the best negative log-likelihood but also retains
the lowest FID despite requiring substantially fewer training iterations. Conversely, methods like
W-PCDM [46] that explicitly optimize for FID exhibit a marked reduction in likelihood performance.

Consistent with prior observations [69, 28, 54], we find that models achieving better log-likelihood
often exhibit slightly worse FID scores. Nevertheless, we emphasize that this degradation in FID is
minor, and qualitatively, the generated samples from both models are visually indistinguishable (see
Figs. 2, 3, 4 and 5).

D Experimental Settings

Datasets We perform all experiments on CIFAR-10 and ImageNet datasets. CIFAR-10 contains
50,000 training and 10,000 test images. The ImageNet variant includes 1,281,149 training and
49,999 test images. Among the two known versions of ImageNet32, we adopt the newer, anti-aliased
version [49], which facilitates likelihood training and remains publicly available. The older version
used in [69, 40] is no longer accessible. Furthermore, it is notable that ImageNet contains some
personal sensitive information and may cause privacy concern [69].
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Model Architectures Our model architecture closely follows the design of Variational Diffusion
Models (VDMs) [40]. Specifically, we adopt the original U-Net backbone from VDM for pixel-
space diffusion without modification. Our diffusion model is parameterized in terms of the η-timed
normalized noise predictor. This architecture is optimized for likelihood-based training and includes
key design choices such as the removal of internal downsampling and upsampling, and the use of
Fourier feature embeddings to improve fine-scale detail prediction. Consistent with VDM’s dataset-
dependent configurations, we use a U-Net of depth 32 with 128 channels for CIFAR-10, and 256
channels for ImageNet-32. Our model for ImageNet-64 and -128 uses double the depth at 64 ResNet
layers in both the forward and backward direction in the U-Net. It also uses a constant number of
channels of 256. All models apply a dropout rate of 0.1 in intermediate layers.

Hardware For the ImageNet-64 and -128 experiments, we used a single GPU node with 8 A800s
or 8 H20-NVLink. For the CIFAR-10 and ImageNet-32 experiments, the models were trained and
evaluated on 4 GPUs spanning several GPUs types like V100, L20s, A40s, and 3090s with float32
precision.

Training We follow the same default training settings as [40]. For all our experiments, we use the
Adam optimizer with learning rate 2× 10−4, exponential decay rates of β1 = 0.9, β2 = 0.99 and
decoupled weight decay coefficient of 0.01. We also maintain an exponential moving average (EMA)
of model parameters with an EMA rate of 0.9999 for evaluation.

For CIFAR-10, the training processes are conducted on a cluster of 4 GPU cards of NVIDIA V100s.
We pretrain the model for 0.3 million iterations using a batch size of 128, which takes around 38
hours. Then we finetune the model for 1K iterations using a batch size of 256 and accumulate the
gradient for every 4 batches. Note that in related works [49], experiments on ImageNet-32 (new
version) are conducted at a larger batch size (512 or 1024), which may improve the results. For
ImageNet-32, the training processes are conducted on 4 GPU cards of NVIDIA A800 (80GB). We
pretrain the model for 0.3 million iterations using a batch size of 512, which takes around 3 days.
Then we finetune the model for 1K iterations using a batch size of 1024 and accumulate the gradient
for every 4 batches.

FID We report Fréchet Inception Distance (FID) scores computed on 50,000 generated samples,
unless otherwise noted. This follows the standard setup used in [40], with ancestral sampling over
1,000 sampling timesteps. FID is evaluated against both the training and test sets for CIFAR-10 and
ImageNet-32. While increasing the warm-up noise level may slightly increase FID scores, we find
that the visual quality of generated samples remains comparable (see Figs. 2, 3, 4 and 5).

E Consistency Across Predictors and Corresponding Objectives

As discussed in [40], the diffusion model can be interpreted from three distinct perspectives: as a
denoising process, a noise prediction model, and a score-based model. Similarly, our model admits
four equivalent parameterizations, with the velocity-based vt-prediction [63, 90] included in addition
to the three canonical forms, which is summarized in Table 17.

Remark Let vt = αtn−σtx and define the instantaneous velocity as ṽ = α̇tx+ σ̇tn. We consider
four types of predictors, each parameterized by θ, along with their corresponding matching objectives.
Each loss is weighted by a positive time-dependent function w(t):

• Score predictor ŝ(yt;θ) with likelihood-weighted score matching loss [69, 72]:

JSM(w(t);θ) := Et

[
w(t)Ex,n

[
∥∇ log p(yt)− ŝ(yt;θ)∥22

]]
.

• Noise predictor n̂(yt;θ) with standard noise-matching loss [40, 28, 54]:

JNL(w(t);θ) := Et

[
w(t)Ex,n

[
∥n− n̂(yt;θ)∥22

]]
.

• Data predictor x̂(yt;θ) with reconstruction-based data-matching loss [68]:

JDL(w(t);θ) := Et

[
w(t)Ex,n

[
∥x− x̂(yt;θ)∥22

]]
.
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Table 17: Analytical relationships between optimal predictors under the Gaussian forward process.

Predictor Type Symbol Optimal Expression Expressed via

Score s∗(yt) ∇yt log p(yt) Score matching

Noise n̂∗(yt) −σt s
∗(yt) Noise prediction

Data x̂∗(yt)
yt − σtn̂

∗(yt)

αt
Denoising reconstruction

Velocity ˆ̃v∗(yt) f(t)yt − 1
2g

2(t)s∗(yt, t) Flow parameterisation

Velocity (alt.) ˆ̃v∗(yt)
α̇t

αt
yt −

(
σ̇t −

α̇tσt

αt

)
σt s

∗(yt) Score-based ODE

• Velocity predictor ṽ(yt;θ) with flow-matching loss [50, 90]:

JFM(w(t);θ) := Et

[
w(t)Ex,n

[
∥ṽ − ṽ(yt;θ)∥22

]]
.

Under the Gaussian forward process, the optimal solutions to these objectives are analytically related,
and yield equivalent predictors when appropriately reparameterized. Specifically, they are equivalent
by the following relations:

n̂∗(yt;θ) = −σts
∗(yt;θ) = −σt∇yt

log p(yt) (118)

x̂∗(yt;θ) =
yt − σtn̂

∗(yt;θ)

αt
(119)

v̂∗t (yt,θ) =
α2
t + σ2

t

αt
n̂∗(yt;θ)−

σt

αt
yt (120)

ˆ̃v∗(yt;θ) =
α̇t

αt
yt +

(
σ̇t −

α̇tσt

αt

)
n̂∗(yt;θ). (121)

The predictor v̂∗t (yt,θ) defined as a linear combination of noise and data components, represents a
static velocity target in the latent space. In contrast, the instantaneous flow ˆ̃v∗(yt;θ) = dyt/dt arises
from differentiating the forward process with respect to time. The two are related via the temporal
dynamics of αt and σt, and coincide when the process is linear and velocity is time-invariant.

F Numerical Stability

Finite-precision arithmetic is fragile for terms of the form 1−ε. In our discrete-time objective, several
intermediates are extremely close to one (e.g., cumulative coefficients and survival factors). With a
naïve float32 implementation, these values can round to exactly 1, corrupting the computation and
yielding incorrect losses/gradients. Prior discrete-time diffusion implementations [28] used float64
to sidestep such issues. In contrast, our formulation is numerically stable enough that float64 is
unnecessary; standard float32 suffices.

A numerically problematic term, for example, is the sampling variance σ2
t|s. It is straightforward [40]

to verify that
σ2
t|s = − expm1

(
softplus(γ(s))− softplus(γ(t))

)
, (122)

where expm1(x) ≡ ex − 1 and softplus(x) ≡ log(1 + ex) are numerically stable primitives in
common numerical computing packages. Evaluating σ2

t|s via (122) avoids catastrophic cancellation
near 1 and keeps computations stable in float32.

G Randomized Distribution Smoothing and Dequantization

Modern generative models often lean on the manifold hypothesis [3, 52]: real-world high-dimensional
data concentrate near a low-dimensional manifold. When the hypothesis holds exactly, the data
distribution is singular with respect to the ambient Lebesgue measure and its density is not well
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Table 18: Comparison of the NLL for ELBO and our bound on CIFAR-10 in training and testing
with 0.3 million iterations.

Model train test

ELBO 2.75± 0.002 2.79± 0.002
Ours (η0 = −13.3) 2.79± 0.002 2.80± 0.003
Ours (η0 = −8.7) 2.49± 0.002 2.50± 0.003

defined. When it holds approximately, only points in a thin neighborhood of the manifold carry
non-negligible mass; elsewhere the density is near zero. Consequently, any ambient-space density that
tries to fit such data must exhibit sharp transitions (large first-order derivatives, i.e., a large, possibly
unbounded, Lipschitz constant), which is notoriously challenging for likelihood-based models.

Furthermore, while natural images are typically stored using 8-bit integers, they are often modeled
using densities, i.e., an image is treated as an instance of a continuous random variable. Since the
discrete data distribution has differential entropy of negative infinity, this can lead to arbitrary high
likelihoods even on test data. To avoid this case, it is becoming best practice to add real-valued noise
to the integer pixel values to dequantize the data.

To this end, we propose to address such issues in the density estimation problem via a warm-
start process. Inspired by the recent success of randomized smoothing techniques in adversarial
defense and distribution smoothing [11, 52], we propose to apply randomized smoothing to diffusion
generative modeling.

Randomized Distribution Smoothing Unlike [11] where randomized smoothing is applied to
a model, and [52] where symmetric random noise is applied to the data distribution, we inject the
arbitrary randomized smoothing into both data p(x) and model q(x̂;θ). Specifically, we convolve an
arbitrary isotropic noise distribution with the data distribution and model to obtain the new “smoother”
distributions. By choosing an appropriate smoothing distribution, we aim to make warm start process
easier than the original learning problem: smoothing facilitates learning in the first stage by making
the input distribution fully supported without sharp transitions in the density function; generating a
sample given a noisy one is easier than generating a sample from scratch.

Dequantization Mismatch Another representative issue in dequantization [69] method with diffu-
sion models is training-evaluation mismatch. During training, each datapoint is treated as a narrow
Gaussian (or logit-normal) [40, 55] centred on the original value, while evaluation typically occurs on
data perturbed with uniform noise [74]. This inconsistency introduces a distributional shift between
training and test likelihood evaluation. Variational dequantization [27], conditional autoregressive
model [52] and soft truncation [38] alleviate this issue by learning the dequantization noise and
finding the optimal ϵ, but incur substantial computational cost and convergence instability.

Remarks Our Theorem 1 and Proposition 2 offer a theoretical perspective on these issues without
adding extra network structures. From an information-theoretic standpoint, adding small noise to
discrete data corresponds to smoothing data, increasing entropy at a rate controlled by the Fisher
information of the data distribution. For highly peaked distributions [40, 55], this smoothing is
especially effective, substantially increasing entropy and reducing irregularities, thereby providing a
better-conditioned target for model fitting. Proposition 2 formally characterizes this entropy increase,
while preserving the original KL divergence in the small-noise limit. Table 18 shows the training and
evaluation mismatch of ELBO and our methods.

Beyond smoothing effects, Theorem 1 provides a first-order expansion of the KL divergence with
respect to small additive noise. Specifically, when training begins from a nonzero noise level σ2

0 ,
the initial KL objective is reduced by a factor proportional to σ2

0

2 I(p∥q). Since this term is always
non-negative and strictly positive when p ̸= q, introducing initial noise simplifies the optimization
landscape by suppressing fine-scale discrepancies that are otherwise difficult to capture at the outset.
Intuitively, the model first learns to match broader statistical structure before refining finer details,
stabilizing gradient flow and avoiding early overfitting to discrete artefacts.
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Taken together, Theorem 1 and Proposition 2 clarify why choosing a small but nonzero initial noise
level is beneficial. From a signal processing perspective, σ2

0 trades off approximation accuracy against
numerical tractability. If σ2

0 is too large, the training target becomes overly blurred, requiring extra
effort to recover fine details. If it is too small, the model must approximate a distribution with sharp
discontinuities or high-frequency details from the outset, which can hinder learning and lead to poor
convergence.

Truncated Normal Dequantization We present a training-free dequantization strategy example,
recently adopted by [90], that naturally fits the diffusion framework and exemplifies our theoretical
results. Let X0 ∈ {0, ..., 255}D denote 8-bit discrete data scaled to [−1, 1]. To define a discrete
density, we use a continuous model q(·;θ) evaluated on dequantized inputs:

Q(x0;θ) =

∫
u∈[− 1

256 ,
1

256 ]
D

q(x0 + u;θ) du. (123)

This matches the diffusion-based formulation if we write yϵ = αϵx0 + σϵϵ̃ and choose ϵ̃ ∼
T N (0, I,−τ, τ) with τ = αϵ

256σϵ
. Then u = σϵ

αϵ
ϵ̃ ∈ [− 1

256 ,
1

256 ]
D by construction.

Applying a change of variables and accounting for Jacobian terms, the variational lower bound
becomes:

logP0(x0) ≥ Eϵ̃∼T N (0,I,−τ,τ)

[
log q

(
x+

σϵ

αϵ
ϵ̃
)
− log p(ϵ̃)

]
+D log σϵ. (124)

Using the known entropy of the truncated Gaussian [90], the bound further simplifies to:

logP0(x0) ≥ Eϵ̂∼T N (0,I,−3,3) [log q(x̂ϵ)] +
D

2
log(2πeσ2

ϵ )− 0.01522×D. (125)

Choosing the Warm-up Noise We further investigate the influence of different warm-up noise
distributions, Gaussian, Laplace, logistic and Uniform, each scaled to have equal variance. As shown
in Table 3, Gaussian noise yields the best performance, closely followed by Laplace and logistic,
whereas Uniform significantly underperforms. This result aligns with our theoretical intuition that
exponential-family noise distributions, characterized by heavier tails, stabilize training and enhance
likelihood estimation. Introducing Laplace noise, previously unexplored in this context, allows us to
explicitly examine the impact of heavier-tailed perturbations.

This observation is consistent with the fact that the Gaussian distribution minimizes Fisher information
among all distributions with fixed differential entropy [13], and simultaneously maximizes differential
entropy among all distributions with the same variance. We attribute the performance gap to tail
behavior: Uniform noise has compact support and weakly perturbs extreme values, whereas Laplace
and Gaussian assign higher probability mass to large deviations. This results in stronger regularization
and more stable gradients. In particular, Laplace noise promotes robustness and sparsity, making it
effective for high-dimensional or heavy-tailed data.

We consider a baseline that models the data with a mixture of logistic components. Although this
parameterization is, in principle, expressive enough to represent a multimodal distribution, in practice
the baseline fails to recover all modes. We attribute this gap to optimization/initialization difficulties
that arise when the target density exhibits sharp transitions (i.e., a large Lipschitz constant). By
contrast, our method is more robust: it captures the distinct modes even with as few as two mixture
components. In this sense, we further generalize the framework of [52] by smoothing both data and
model with a shared isotropic kernel and training via the score matching to stabilize optimization on
high-Lipschitz targets.
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Figure 2: Random samples from our model trained on CIFAR-10 for 300000 parameter updates with
EMA. The model was trained in VDM [40] endpoints, and sampled using 1000 sampling timestep.

Figure 3: Random samples from our model trained on CIFAR-10 for 300000 parameter updates with
EMA. The model was trained with our endpoints, and sampled using 1000 sampling timestep.
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Figure 4: Random samples from our model trained on ImageNet32 for 300000 parameter updates.
The model was trained in VDM [40] endpoints, and sampled using 1000 sampling timestep.

Figure 5: Random samples from our model trained on ImageNet32 for 300000 parameter updates.
The model was trained with our endpoints, and sampled using 1000 sampling timestep.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See our introduction for a list of claims including connection with relative
entropy with score matching with arbitrary noise.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, our method improves likelihood estimation but does not construct a
generative diffusion process under alternative noise. See the paper for more details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please see our detailed proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Not only we do show all equations and train on standard datasets, we will open
source the code.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will open source after paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we include all hyperparameters in the paper and will open source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [TODO]
Justification: We will report the deviatations for NLL in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper is just a diffusion model useful for density estimation with standard
datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not believe our method will have a high risk of abuse as our models are
not perceptually SOTA, they only provide for density estimation.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We are using standard benchmark datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the new official source of ImageNet32.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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