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Abstract

Although humans engaged in face-to-face conversa-001

tion simultaneously communicate both verbally and non-002

verbally, methods for joint and unified synthesis of speech003

audio and co-speech 3D gesture motion from text are a004

new and emerging field. These technologies hold great005

promise for more human-like, efficient, expressive, and ro-006

bust synthetic communication, but are currently held back007

by the lack of suitably large datasets, as existing methods008

are trained on parallel data from all constituent modalities.009

Inspired by student-teacher methods, we propose a straight-010

forward solution to the data shortage, by simply synthesis-011

ing additional training material. Specifically, we use uni-012

modal synthesis models trained on large datasets to create013

multimodal (but synthetic) parallel training data, and then014

pre-train a joint synthesis model on that material. In ad-015

dition, we propose a new synthesis architecture that adds016

better and more controllable prosody modelling to the state-017

of-the-art method in the field. Our results confirm that pre-018

training on large amounts of synthetic data improves the019

quality of both the speech and the motion synthesised by the020

multimodal model, with the proposed architecture yielding021

further benefits when pre-trained on the synthetic data.022

1. Introduction023

Human beings are embodied, and we use a wide gamut of024

the expressions afforded by our bodies to communicate. In025

concert with the lexical and non-lexical (prosodic) compo-026

nents of speech, humans also leverage gestures realised by027

face, head, arm, finger, and body motion – all driven by a028

shared, underlying communicative intent [58] – to improve029

face-to-face communication [30, 66].030

Research into automatically recreating different kinds of031

human communicative behaviour, whether it be speech au-032

dio from text [85], or gesture motion from speech [92],033

have a long history, as these are key enabling technologies034

for, e.g., virtual agents, game characters, and social robots035
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Input
Output
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Step 2: Train a multimodal generative model 

Figure 1. MAGI: Multimodal Audio and Gesture, Integrated

[14, 41, 57, 68]. The advent of deep learning has led to an 036

explosion of research in the two fields [54, 66, 83]. Gesture 037

synthesis, in particular, has been shown to benefit from ac- 038

cess to both lexical and acoustic representations of speech 039

[3, 42, 43, 104]. That said, joint and simultaneous synthe- 040

sis of both speech and gesture communication (pioneered in 041

[78]) remains severely under-explored. This despite the fact 042

that simultaneously generating both modalities together not 043

only better emulates how humans produce communicative 044

expressions, but also offers a stepping stone towards creat- 045

ing non-redundant gestures that can complement and even 046

replace speech, like human gestures do [34]. On top of this, 047

recent research efforts towards integrating the synthesis of 048

the two modalities have demonstrated improvements in co- 049

herent [6, 62], compact [62, 94], jointly and rapidly learn- 050

able [61], convincing [61, 62], and cross-modally appropri- 051

ate [62] synthesis of speech and 3D gestures from text. 052

The current state of the art in joint multimodal speech- 053

and-gesture synthesis, Match-TTSG [62], achieves strong 054

performance via modern techniques such as conditional 055

flow matching (OT-CFM) [51] with U-Net Transformer [91] 056

encoders [77]. However, there still remains a noticeable 057

gap between synthesised model output and recordings of 058

natural human speech and gesticulation [62]. This con- 059

trasts with recent breakthroughs in “generative AI”, which 060

can synthesise text [2, 13], images [77], and speech au- 061

dio [80, 84] that all are nigh indistinguishable from those 062

created by humans. The critical difference is that whereas 063

those strong models for synthesising single modalities ben- 064

efit from training on vast amounts of data (cf. [27]), exist- 065

1



CVPR
#*****

CVPR
#*****

CVPR 2024 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ing parallel datasets of speech audio, text transcriptions, and066

human motion are radically smaller. This is especially true067

if we require good motion quality (which at present gener-068

ally necessitates high-end 3D motion capture) and speech069

audio with a spontaneous character and quality suitable for070

speech synthesis. The state-of-the-art joint synthesis system071

demonstrated in [62] was thus trained on 4.5 hours of paral-072

lel speech and gesture data from [22]; larger parallel corpora073

exist [49, 53], but exhibit some quality issues (cf. [44]) and074

do not exceed 100 hours, a far cry from the corpora used075

to train leading generative AI systems. It stands to reason076

that multimodal synthesis systems could gain substantially077

from overcoming the limitations imposed by training only078

on presently available parallel corpora.079

In this paper, we propose two improvements to the state-080

of-the art multimodal speech-and-gesture synthesis:081

1. We pre-train a joint speech-and-gesture synthesis model082

on a large parallel corpus of synthetic training data cre-083

ated using leading text, text-to-speech, and speech-to-084

gesture systems (Fig. 1). This provides a straightforward085

way to let multimodal models benefit from advances in086

data and systems for unimodal synthesis.087

2. We extend [62] with a probabilistic duration model (sim-088

ilar to [48]) and individual models of pitch and energy089

(similar to [75]). This enables more lifelike and more090

controllable synthetic expression.091

The resulting joint synthesis system is orders of magnitude092

smaller and faster than the models used for synthesising the093

pre-training data. Our subjective evaluations show that the094

proposed pre-training on synthetic data improves the speech095

as well as the gestures created by a joint synthesis system,096

and that the architectural modifications further benefit a sys-097

tem pre-trained on large synthetic data and also enable out-098

put control. For examples of model output, please see our099

anonymous webpage at cvprhumogen24.github.io/MAGI/;100

code will be released with future versions of the paper.101

2. Background102

In this section, we review synthesis of text, speech audio,103

and 3D gesture motion, along with existing work in multi-104

modal speech-and-gesture synthesis. For each task, we state105

how the methods relate to our contributions and briefly dis-106

cuss how synthetic data can improve synthesis models.107

2.1. Text generation108

The rise of large language models (LLMs) has brought rev-109

olutionary improvements to text generation. Transformer-110

based [91] LLMs using Generative Pretrained Transformers111

(GPTs) [71] like [2, 13, 88] are capable of generating text112

virtually indistinguishable from that written by humans.113

The critical methodological advances for LLMs are pre-114

training on vast amounts of diverse data, coupled with fine-115

tuning on a small amount of high-quality, in-domain mate-116

rial, e.g., via Reinforcement Learning from Human Feed- 117

back (RLHF) [9]. This methodology of pre-training foun- 118

dation models followed by fine-tuning on the best data 119

has been validated to give excellent results across several 120

modalities [11, 111]. In this paper, we for the first time use 121

that methodology in joint speech-and-gesture synthesis. 122

Fine-tuned LLMs allow generating of diverse text sam- 123

ples for many domains through prompting the model, i.e., 124

providing a written text prompt at runtime describing the 125

output to generate. Prompting has been useful for many 126

tasks including creating synthetic dialogue datasets [1] and 127

selecting appropriate gestures based on verbal utterances 128

[28]. We use this ability to create an arbitrarily large ma- 129

terial of conversational text sentences in the style of a given 130

speaker/corpus as a basis for our synthetic-data creation. 131

2.2. Speech synthesis 132

Recent advancements in deep generative modelling have 133

significantly improved text-to-speech (TTS) [83], achieving 134

levels of naturalness that rival recorded human speech [80, 135

84]. TTS approaches are primarily divided into two broad 136

classes: autoregressive (AR) and non-autoregressive (NAR) 137

architectures. AR architectures produce acoustic outputs se- 138

quentially, using mechanisms such as neural cross-attention 139

[10, 15, 50, 79, 110] or neural transducers [59, 60, 101] to 140

connect inputs symbols to the outputs. Conversely, non- 141

autoregressive models [25, 36, 37, 48, 63, 69, 75, 112] gen- 142

erate the entire utterance in parallel. The NAR approach 143

is typically faster, especially on GPUs, but AR methods 144

(which invest more computation into synthesis) often have 145

the edge in synthesis quality. 146

Recently, there has been a trend [10, 12, 15, 46, 93] 147

to quantise audio waveforms into discrete tokens [16, 46], 148

and then adapt an LLM-like autoregressive approach (e.g., 149

with GPTs) to learn to model these audio tokens on large 150

datasets. Synthesised token sequences can subsequently be 151

converted back to audio [81]. Speaker and style adapta- 152

tion can be achieved by seeding (prompting) the model with 153

an audio snippet, something we leverage to create diverse 154

stochastic synthetic training data for our work. 155

LLM-like TTS can give exceptional results when trained 156

on large datasets, but models risk confabulating (similar to 157

well-known issues with LLMs) and getting trapped in feed- 158

back loops due to the autoregression [10, 15]. Our paper 159

therefore describes a pipeline for mitigating these problems 160

when creating synthetic training data at scale. 161

In NAR TTS, it has been found that conditioning the TTS 162

on the output of a model of prosodic properties, e.g., per- 163

phone pitch and energy, can benefit synthesis [67, 75, 112]. 164

This furthermore affords control over speech output by re- 165

placing or manipulating the prosodic features prior to syn- 166

thesis. Especially important for convincing prosody are the 167

durations of the synthesised speech sounds. It has been 168
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shown [37, 40] that probabilistic modelling of durations can169

substantially improve deep generative TTS. This appears170

especially useful for speech uttered spontaneously in con-171

versation, as considered here, due to its highly diverse and172

non-deterministic prosodic structure [47]. Inspired by these173

advances, we introduce a probabilistic duration model cou-174

pled with explicit pitch and energy models into the mul-175

timodal synthesis architecture. Better duration modelling176

should help create speech rhythm and timings that allow177

adequate time for gesture-preparation phases, so that beat-178

gesture strokes can be distinct and synchronised with the179

speech. Improved control will not only affect the output180

speech but also the gestures we generate with it.181

2.3. Gesture synthesis182

Like TTS, deep learning has led to a boom in 3D ges-183

ture synthesis from speech text and/or audio [66]. The list184

of deep generative techniques considered includes GANs185

[95, 96], normalising flows [4, 5], VAEs [23], VQ-VAEs186

[102, 103], combinations of adversarial learning and re-187

gression losses [20, 26, 53], and combinations of flows188

and VAEs [86]. Following the impressive performance of189

text-prompted diffusion models for generating images [77]190

and human motion [38, 87, 109], diffusion models have191

seen rapid adoption for 3D gesture-motion generation . As192

diffusion models require many neural-network evaluations193

during synthesis, which is slow, flow matching [51] has194

subsequently been investigated for faster synthesis of high195

quality output, both for human motion [31, 62] and TTS196

[25, 48, 63]. Similar to LLMs and large TTS models, recent197

efforts have also wholly or partly modelled gestures autore-198

gressively as a sequence of discrete tokens [64, 99, 107].199

The most recent large-scale comparison of gesture-200

generation models, the GENEA Challenge 2023 [44], found201

that the two strongest methods [17, 100] (which are exten-202

sions of [7, 98]) were based on diffusion models. Among203

these, [17] made use of self-supervised text-and speech em-204

beddings from data2vec [8], subsequently aligned with ges-205

ture motion using CLIP [72] training, to improve the co-206

herence between gestures and the two speech-input modal-207

ities. In addition to modelling beat gestures, the approach208

recognises the need for additional input modalities to gen-209

erate representational gestures, such as iconic and deictic210

pointing [18], for more nuanced and contextually relevant211

non-verbal communication.212

Our data-synthesis pipeline leverages their approach to213

create synthetic training gestures that well match the syn-214

thetic speech text and audio input.215

2.4. Joint synthesis of speech and gestures216

Speech synthesis and gesture generation have traditionally217

been treated as separate problems, performed on different218

data by distinct research communities. TTS is mainly devel-219

oped for read-aloud speech, whereas co-speech gesturing is 220

more closely associated with conversational settings. 221

Joint synthesis of speech and motion was first consid- 222

ered by [78]. The first neural model was DurIAN [106], 223

which simultaneously generated speech audio and 3D fa- 224

cial expressions, albeit for speech read aloud. [6] trained 225

separate deep-learning TTS and speech-to-gesture systems 226

to synthesise speech and 3D motion for the same speaker 227

and the same (spontaneous) speaking style. This was fol- 228

lowed by [94], which investigated adapting and extending 229

AR [79] and NAR [36] neural TTS models to perform joint 230

multimodal synthesis. Their joint models reduced the num- 231

ber of parameters needed over [6], but the best model (the 232

one based on [79]) required complex multi-stage training to 233

speak intelligibly and did not improve quality. 234

Diff-TTSG [61] advanced joint speech-and-gesture syn- 235

thesis by employing probabilistic modelling, specifically a 236

strong denoising probabilistic model (DPMs) [82] building 237

on the TTS work in [69]. This model could be trained on 238

speech-and-gesture data from scratch in one go and pro- 239

duced improved results over [94], but internally used sepa- 240

rate pipelines for producing the two output modalities, lead- 241

ing to suboptimal coherence between them. Match-TTSG 242

[62] improved on this aspect by using a compact and uni- 243

fied decoder to jointly sample both output modalities. It 244

also used conditional flow matching [51] rather than diffu- 245

sion, for much faster output synthesis. Experiments found 246

that Match-TTSG improved on the previous best model in 247

all respects, establishing it as the current state of the art. 248

Most of the above models were trained only on small, 249

parallel multimodal datasets from a single speaker. (The 250

one exception is [94], which required pre-training part of 251

the network on a TTS corpus to produce intelligible out- 252

put at all.) The results in [62] show that, e.g., the synthetic 253

speech falls short of human-level naturalness, and the qual- 254

ity we find from systems trained on very large datasets. Ac- 255

cordingly, we propose to circumvent the data limitation by 256

using strong unimodal synthesisers to create a large syn- 257

thetic training corpus for our joint model. 258

2.5. Training on synthetic data 259

The idea of training deep neural models on the output of 260

other such models has an extensive history. This was orig- 261

inally proposed for classifiers [29], but has subsequently 262

been adapted to generative models, e.g., for TTS [89]. Syn- 263

thesis (and synthetic data) is also appealing in scenarios 264

where real data is scarce or difficult to obtain, as demon- 265

strated in applications to human poses and motion [90, 108]. 266

It also allows for the creation of diverse and controlled 267

datasets that can enable more accurate and versatile mod- 268

els [35]. We here propose to generalise such approaches by 269

chaining together multiple unimodal synthesisers, to enable 270

training multimodal speech-and-gesture models. 271
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There may be a risk that the individual unimodal synthe-272

sisers in the proposed approach could fail to capture mutual273

information that connects the modalities, since the differ-274

ent synthesisers are likely to be trained on non-overlapping275

data. This could in turn lead to synthesis artefacts and276

failure to recreate correlations and dependencies between277

modalities in systems trained on the final synthetic mul-278

timodal corpus. However, recent theoretical and practical279

results demonstrate that little [55] or no [52, 65] parallel280

data may suffice for learning joint distributions of multi-281

ple random variables (modalities). This suggests that train-282

ing on corpora generated by synthesisers built from non-283

overlapping material might not be as risky as it might seem.284

3. Method285

In this section we first describe our method for creating286

wholly synthetic multimodal datasets for pre-training syn-287

thesis models, followed by a description of our modifica-288

tions to the Match-TTSG architecture to improve durations,289

prosody control, and multi-speaker data.290

3.1. Creating synthetic training data291

Our pipeline for creating synthetic training data had the fol-292

lowing main steps:293

1. Generating written sentences in the style of conversa-294

tional speech transcriptions.295

2. Synthesising diverse speech audio from the text.296

3. Validating/filtering the synthetic speech audio using au-297

tomatic speech recognition, and aligning the input text298

with the synthesised audio.299

4. Synthesising gestures from the generated speech audio300

files and their corresponding time-aligned text.301

We provide more detail in the following subsections.302

3.1.1 Text generation303

The first step was to create text sentences that can form the304

basis of synthesising multimodal data in a conversational305

style. For this we utilised GPT-4 [2] and deliberate prompt-306

ing. Specifically, we prompted the model with a list of 50307

text transcriptions sentences from the training split [61] of308

the Trinity Speech-Gesture Dataset II (TSGD2) [19, 21],309

each enclosed in triple quotes, followed by a prompt re-310

questing the model to produce 50 additional phrases in the311

same style (including hesitations and disfluencies as seen in312

the transcriptions) but ignoring the content. Further prompt-313

ing then followed, to make the model generate additional314

output based around different emotions and scenarios, so as315

to obtain a more diverse material. The emotional categories316

we provided were: disgust, sadness, fear, frustration, sur-317

prise, excitement, happiness, confusion, and denial. Our318

prompting often gave similar instructions multiple times,319

since we found that such redundancy led to more realistic320

output. The main instruction prompt and a number of ex- 321

ample continuations can be found in Appendix A. 322

We utilised the above procedure to generate a total of 600 323

phrases, each approximately 250 characters in length. We 324

found that limiting the length of the prompt helps prevent 325

issues with the subsequent speech synthesis, which shows 326

a tendency to produce unintelligible or confabulated output 327

when processing overly long utterances. The 600 generated 328

phrases will be shared in future revisions of the paper. 329

3.1.2 Speech generation 330

The next step was to synthesise speech audio from the 600 331

LLM-generated phrases. For this, we considered multi- 332

ple TTS systems capable of multi-speaker and spontaneous 333

speech synthesis, including Bark1, XTTS [15], and Eleven- 334

Labs 2. However, Bark exhibited frequent confabulations 335

and unexpected changes in speaker identity within a sin- 336

gle utterance, which seemed problematic for learning to 337

maintain a consistent vocal identity. Although ElevenLabs 338

demonstrated high-quality output, its status as a non-open 339

source and proprietary solution led us to exclude it. Ul- 340

timately, we selected XTTS for generating our synthetic 341

speech dataset, due to it combining more consistent syn- 342

thesis with a research-permissible license. We limited each 343

synthesised utterance to at most 400 XTTS speech tokens, 344

since anything longer than that is virtually certain too long 345

for our prompts, and thus must contain confabulation or 346

gibberish speech. For everything else, default XTTS syn- 347

thesis hyperparameters were used. In the end, each syn- 348

thesised audio utterance was around 20–23 seconds long, 349

taking about half that time to synthesise. 350

In order to obtain more diverse data containing multiple 351

speakers, each of the 600 phrases was synthesised 16 times, 352

once in each of 16 different voices. These voices were se- 353

lected as a gender-balanced set (8 male and 8 female speak- 354

ers) from the VCTK corpus [97], and elicited from XTTS 355

by seeding the synthesis of each individual utterance with 356

the audio of longest VCTK utterance spoken by the rele- 357

vant speaker as an acoustic prompt. These prompting utter- 358

ances tended to be around 9 seconds long. In total, we thus 359

synthesised 16 ⇥ 600 = 9600 audio utterances. 360

Interestingly, despite the spontaneous nature of the in- 361

put phrases, we found that false starts and fillers explicitly 362

present in the input were sometimes omitted in the XTTS 363

output. This could be partly due to the choice of tempera- 364

ture parameter at synthesis time (the default, 0.65), which 365

favours more consistent and likely output, and partly due 366

to the public English-language training datasets cover read 367

rather than spontaneous speech. Since XTTS furthermore 368

was prompted using a snippet of read-aloud speech audio 369

1https://github.com/suno-ai/bark
2https://elevenlabs.io/
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from VCTK, the output audio tended to sound more like370

reading than speaking spontaneously.371

3.1.3 Data filtering and forced alignment372

Following speech synthesis, a number of data-processing373

steps were performed to obtain a suitable dataset for train-374

ing a strong gesture-generation system. To begin with, all375

synthesised audio utterances longer than 25 seconds were376

immediately and permanently discarded, since these over-377

whelmingly tended to contain issues related to confabula-378

tion and the like. The output from XTTS did not have ex-379

act fidelity to the text it was prompted with, so automatic380

speech recognition (ASR) was used to get more accurate in-381

put to the gesture-generation system. ASR was performed382

using Whisper [73], using the medium.en model, which383

has in previous uses proven to be less prone to confabula-384

tion than the large variants, whilst providing sufficient accu-385

racy. Interestingly, Whisper tended to prefer British English386

spelling, possibly since VCTK was recorded in the UK. The387

ASR derived transcripts then replaced the original TTS in-388

put text for each utterance in all subsequent processing.389

The gesture-generation system we chose for the final390

synthesis ([17]) requires word-level timestamps for the text391

transcriptions. Although we considered several tools that392

attempt to obtain word timings from Whisper directly, none393

were sufficiently accurate for our needs. Instead, we ob-394

tained the requisite timings using the Montreal Forced395

Aligner (MFA) [56]. Text input to MFA was processed396

word-by-word to remove leading and trailing punctuation397

and to perform case folding to lower case. Utterances that398

MFA failed to align were also excluded from consideration.399

Following the filtering and alignment process, we were400

left with 8173 audio utterances for our final synthetic401

dataset, meaning that 1427 utterances (about 15%) were402

discarded during the filtering step. The remaining data had403

a total duration of 37.6 hours, which also ended up being404

the size of the final synthetic training corpus.405

3.1.4 Gesture generation406

We used a recent diffusion-based gesture-generation407

method [17] that performed well in a large comparative408

evaluation [44] to generate synthetic gesture data. That sys-409

tem leveraged data2vec [8] embeddings to represent audio410

input, which help achieve a more speaker-independent rep-411

resentation. On top of that, [44] introduced a Contrastive412

Speech and Motion Pretraining (CSMP) module, to learn413

joint embeddings of speech and gesture that can strengthen414

the semantic coupling between these modalities. By utilis-415

ing the output of the CSMP module as a conditioning sig-416

nal within the diffusion-based gesture-synthesis model, the417

system can generate co-speech gestures that are human-like418

and semantically aware, thereby improving the quality and419

appropriateness of the generated gestures to the spoken con- 420

tent. The CSMP module requires word-level timestamps, 421

which is why forced-alignment was performed in Sec. 3.1.3. 422

Since this paper is focused on multimodal synthesis from 423

data where no interlocutor is present or recorded (i.e., not 424

back-and-forth conversations), interlocutor-related inputs 425

were removed from the architecture. The input is thus an 426

audio track with time-aligned text transcripts. We used the 427

pre-trained weights from [17] for the CSMP module and re- 428

trained the diffusion-based gesture model to comply with 429

the change of input, using the same architecture and learn- 430

ing rate as in the paper. The training was done using two 431

NVIDIA RTX3090 GPUs (194k updates, each with batch 432

size 60) on the subset of the Talking With Hands (TWH) 433

dataset [49] provided in the GENEA 2023 Challenge [44]. 434

We used the trained system to generate text-and-audio- 435

driven gestures for the 8173 previously transcribed syn- 436

thetic speech utterances, and used Autodesk MotionBuilder 437

after synthesis to retarget the output motion to the skele- 438

ton of the TSGD2 data and visualiser in Sec. 4.1. While 439

the synthesised motion encompasses the full body (without 440

fingers), we only consider upper-body motion in this work. 441

Compared to conventional conditioning approaches where 442

audio is represented using mel-spectrograms, the speaker- 443

independent data2vec embeddings in the CSMP module are 444

expected to better handle the differences between natural 445

and synthetic voices during synthesis, thus making it fea- 446

sible to generate large amounts of gesture data based on 447

synthetic speech without undue degradations due to domain 448

mismatch. This data was used to train the different multi- 449

modal synthesis systems considered in our experiments. 450

3.2. Proposed multimodal synthesis system 451

The current state of the art in joint speech-and-gesture syn- 452

thesis is Match-TTSG [62], a non-autoregressive model 453

which uses conditional flow matching (OT-CFM) [51] to 454

learn Ordinary Differential Equations (ODEs) with more 455

linear vector fields than continuous-time diffusion models 456

[82] create. Such simpler vector fields offer advantages for 457

easier learning and faster synthesis. 458

We extend the Match-TTSG framework in three ways: 459

1. Probabilistic instead of deterministic duration mod- 460

elling, which can benefit deep generative NAR TTS [37]. 461

2. Additional prosody-prediction modules, which are 462

widely used in NAR TTS [75, 112]. 463

3. A speaker-identity input, as necessary for pre-training on 464

the multispeaker data in the large synthetic training set. 465

We call the resulting system MAGI for Multimodal Audio 466

and Gesture, Integrated; see Fig. 2 for a diagram. 467

For (1), we augment the original Match-TTSG architec- 468

ture with a probabilistic duration predictor based on OT- 469

CFM, as introduced in [48], to learn distributions over 470

speech and gesture durations. This is trained jointly with 471
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Figure 2. Schematic overview of the proposed MAGI architecture and its prosody predictor.

the rest of the system. It replaces the deterministic duration472

predictor in Match-TTSG, inherited from [25, 36, 63, 69,473

75, 112], and uses the same network architecture.474

To learn better prosody correlations and enable control475

over the output, we drew inspiration from [75, 112] and476

incorporated two prosody-predictor modules into our sys-477

tem: one for pitch prediction and one for energy prediction,478

both using the same architecture and hyperparameters as the479

variance adaptor in [75]. Such prosody predictors improve480

the synthesis as they enable the model to learn a less over-481

smoothed representation, thereby enhancing the variability482

of the generated output by conditioning the synthesis pro-483

cess on additional prosodic features [76]. The pitch of the484

training data utterances was extracted using the PyWorld485

wrapper for the WORLD vocoder3 with linear interpolation486

applied in unvoiced segments to achieve continuous pitch487

contours for the entire utterances. We employed a bucket-488

ing approach similar to [75], separately for pitch and energy,489

to turn predicted continuous values into embedding vectors490

to be summed with the text-encoder output vectors. How-491

ever, in contrast to [75], we performed token-level predic-492

tion instead of frame-level prediction for the two prosodic493

properties, since it has been stated4 that this improves the494

synthesis whilst reducing memory consumption.495

Like in [69], Match-TTSG includes a projection layer496

that maps the text-encoder output vectors onto a predicted497

average output vector per token (sub-phone). These aver-498

ages are used for the so-called prior loss in the monotonic499

alignment search. The process of sampling the output fea-500

tures (i.e., the flow-matching decoder) is also conditioned501

on these predicted average vectors. However, the latter can502

introduce an information bottleneck, since averages do not503

include information about variance, correlations, or higher504

moments of the output distribution. To improve information505

flow we instead condition the MAGI decoder directly on the506

3https://pypi.org/project/pyworld/
4https://github.com/ming024/FastSpeech2?tab=

readme-ov-file#implementation-issues

last layer of the text-encoder, prior to the projection layer. 507

Finally, we added a speaker embedding for multispeaker 508

synthesis. Specifically, we used a one-hot speaker vector 509

to represent the 16 different speakers in the synthetic train- 510

ing data. This vector was concatenated to other inputs at 511

multiple stages of the synthesis process, including the text 512

encoder, prosody predictors and decoder. The idea with this 513

was to minimise information loss and ensure coherent out- 514

put across different speaker identities. Since the concate- 515

nated vectors only have 16 elements, the impact on model 516

parameter count is small (an increase of a few thousand). 517

4. Experiments 518

This section experimentally compares our proposed training 519

method and architecture with the previous state-of-the-art 520

method Match-TTSG [62]. Since this is a synthesis work, 521

the gold standard approach to evaluation – and thus the fo- 522

cus of our experimental validation – is subjective user stud- 523

ies. The experiments closely follows those in previous joint 524

synthesis works [61, 62], which in turn follows established 525

practices in speech [32] and gesture evaluation [44]. 526

4.1. Data and systems 527

To test the effectiveness of our method we carried out 3 dif- 528

ferent subjective evaluations with systems trained on Trinity 529

Speech-Gesture Dataset II (TSGD2) [22], a dataset contain- 530

ing 6 hours of multimodal data: recordings of time-aligned 531

44.1 kHz audio coupled with 120 FPS marker-based 3D mo- 532

tion capture, in which a male native speaker of Hiberno- 533

English discusses a variety of topics whilst gesturing freely. 534

The same train-test split of the data was used as in [61], 535

with around 4.5 hours of training data – much less than the 536

38 hours of synthetic multimodal data we created. 537

We trained Match-TTSG (MAT) containing 30.2M pa- 538

rameters, and MAGI (MAGI) containing 31.6M parameters 539

for 300k steps on only the TSGD2 data, we refer to these 540

conditions MAT-T and MAGI-T respectively. We also took 541

6
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the same two architectures (albeit with one-hot speaker vec-542

tors for Match-TTSG) and first pre-trained them for 200k543

updates on the synthetic multispeaker data, followed by544

fine-tuning for 100k updates on TSGD2. We refer to these545

as MAT-FT and MAGI-FT. Output samples for held-out546

sentences were synthesised using 100 neural function eval-547

uations (NFEs; equivalent to number of Euler-forward steps548

used by the ODE solver) for audio-and-motion synthesis,549

whilst 10 NFEs were used for the preceding stochastic dura-550

tion modelling, since it is lower-dimensional and converged551

more rapidly. Training and synthesis were performed on552

NVIDIA RTX 3090 GPUs with a batch size of 32.553

15 utterances from the held-out set were used to evalu-554

ate each modality individually. We used pretrained Univer-555

sal HiFi-GAN [39] to generate vocoded but otherwise nat-556

ural speech referred to as NAT. We used the same vocoder557

to generate waveforms from the output mel spectrograms558

synthesised by the trained multimodal-synthesis systems,559

while Blender was used to render the motion representa-560

tions into 3D avatar video, using exactly the same upper-561

body avatar and visualiser as in [61, 63]. The motion data562

was represented as rotational representation using exponen-563

tial maps [24] of 45-dim pose vectors and were downsam-564

pled to 86.13 FPS using cubic interpolation to match the565

frame rate of the mel-spectrograms.566

4.2. Evaluation setup567

To gain an objective insight into the intelligibility of the568

synthetic speed, we synthesised the test set sentences from569

TSGD2, which we then passed to Whisper ASR, to use the570

Word Error Rate (WER) results as an indicator of their in-571

telligibility. For subjective evaluation, user studies are the572

gold standard when evaluating synthesis methods. Follow-573

ing [61], we used comprehensive evaluation, conducting in-574

dividual studies of each generated modality. We addition-575

ally evaluate the appropriateness of the modalities in terms576

of each other, to determine how well they fit together.577

In our studies, participants had an interface with five578

unique response choices, with the exact details varying579

slightly across different investigations. All participants580

were native English speakers recruited through the Pro-581

lific5 crowdsourcing platform. Each test was designed to582

last around 20 minutes and participants were compensated583

4 GBP (12 GBP/hr) for participation. For the purpose of584

statistical examination, we converted responses into numer-585

ical values. These values were then analysed for statistical586

significance at the 0.05 threshold using pairwise t-tests.587

4.2.1 Speech-quality evaluation588

To assess perceived naturalness of the synthesized speech,589

we employed the Mean Opinion Score (MOS) testing ap-590

5https://www.prolific.com/

proach, drawing inspiration from the Blizzard Challenge 591

for text-to-speech systems [70]. Participants were asked, 592

“How natural does the synthesized speech sound?”, rating 593

their responses on a scale from 1 to 5, where 1 represented 594

“Completely unnatural” and 5 indicated “Completely natu- 595

ral.” The intermediary values of 2 to 4 were provided with- 596

out textual descriptions. Each participant evaluated 15 stim- 597

uli per system and 4 attention checks resulting in a total of 598

525 responses per condition by 35 participants. Fine-tuning 599

with synthetic data led to performance enhancements for 600

both MAGI and MAT, reducing the WER from 13.28% in 601

MAGI-T to 9.29% in MAGI-FT, and from 12.26% in MAT- 602

T to 8.35% in MAT-FT. 603

4.2.2 Motion-quality evaluation 604

We evaluate motion quality using video stimuli that only vi- 605

sualised motion, without any audio, in order to have an in- 606

dependent assessment of motion quality. This ensures that 607

ratings are not affected by speech and follows the practice 608

of recent evaluations of gesture quality [33, 74]. Similarly 609

to the speech evaluation, participants were asked “How nat- 610

ural and humanlike the gesture motion appear?”, and gave 611

responses on a scale of 1 (“Completely unnatural”) to 5 612

(“Completely natural”). The number of stimuli and atten- 613

tion checks were identical to the speech-only evaluation. 614

4.2.3 Speech-and-motion appropriateness evaluation 615

We finally evaluated how appropriate the generated speech 616

and motion were for each other, whilst controlling for the 617

effect of their individual quality following [33, 45, 62, 74, 618

105]. For each speech segment and condition, we created 619

two video stimuli: one with the original video and sound, 620

and the other combining the original speech audio with mo- 621

tion from a different video clip, adjusting the motion speed 622

to align with the audio duration. Both videos feature com- 623

parable motion quality and characteristics from the same 624

condition, but only one video’s motion is synchronised with 625

the audio track, without indicating which video is which. 626

The test inquired which character’s motion most accu- 627

rately matched the speech in rhythm, intonation, and mean- 628

ing. Participant ability to identify the correctly synchro- 629

nised video indicates a strong rhythmic and/or semantic link 630

between generated motion and speech. Following [61] we 631

opted for five response choices instead of the typical three 632

for better resolution. Options were “Left is much better”, 633

“Left is slightly better”,“Both are equal”, “Right is slightly 634

better”, “Right is much better”. For the purposes of anal- 635

ysis, codes in the range of �2 to 2 were assigned to each 636

response, as in [61], with �2 representing the participant’s 637

preference for the mismatched stimulus and 2 the matched 638

stimulus. Participants reviewed motions from 14 of the 15 639

segments, displayed as 7 screens of pairs of videos, plus 640

7
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Table 1. Result of three evaluations showing Mean Opinion Scores
(MOS) and 95% confidence intervals.

Condition Speech Gesture Speech & Gesture

NAT 4.30±0.06 4.10±0.08 1.10±0.10

MAT-T 3.43±0.10 3.28±0.11 0.52±0.10
MAT-FT 3.56±0.10 3.39±0.09 0.56±0.09

MAGI-T 3.44±0.09 3.11±0.10 0.51±0.09
MAGI-FT 3.62±0.08 3.52±0.11 0.60±0.09

two audio and two video attention checks, covering all con-641

ditions for these segments. 70 people completed the test,642

yielding 490 responses per system.643

5. Results and discussion644

Our investigation revealed several key insights into the ef-645

fect of pre-training and architectural modifications. Pre-646

training on synthetic data markedly enhanced the quality647

of synthesised speech, though adjustments to the architec-648

ture did not significantly alter its naturalness. Despite this,649

both MAGI-FT and MAT-FT yielded higher Mean Opinion650

Scores (MOS), albeit without statistical significance. No-651

tably, the MAGI facilitated greater control over pitch and652

energy–a feature absent in the original MAT framework.653

However, despite improvements, the synthesised speech did654

not achieve the level of naturalness present in the human-655

recorded speech from the held-out set, see Table 1.656

In terms of synthesised gestures, MAGI outperformed657

other conditions in human-likeness. However, they re-658

mained inferior to human-motion reference data. The influ-659

ence of synthetic data pre-training and the proposed model’s660

architecture on gesture synthesis presented a more nuanced661

picture. Specifically, pre-training on synthetic data only sig-662

nificantly benefited the proposed model, and, intriguingly,663

the MAGI enhanced gestures in a larger dataset but had664

the opposite effect on a smaller dataset. This discrepancy665

might stem from the prosody predictors in our model be-666

ing trained on per-phone rather than per-frame data, lead-667

ing to a scarcity of training data for these predictors in668

smaller datasets. However, with adequate pre-training on669

expansive datasets, these models demonstrated better con-670

vergence. These findings align with prior speech evalua-671

tions, where the novel architecture’s advantages were more672

pronounced following pre-training on a larger dataset.673

Further, no model matched the cross-modal appropriate-674

ness found in multimodal human recordings, echoing the675

challenges observed in unimodal gesture synthesis where676

recent evaluations did not approach the appropriateness of677

human data [45, 105]. Although MAGI, pre-trained on678

synthetic data, showcased superior performance, it did not679

significantly exceed the existing benchmarks in synthesis680

systems. This observation may be attributed to the inher-681

ent difficulty in discerning significant differences in appro- 682

priateness, as opposed to naturalness or human-likeness, 683

and the comparison against a robust baseline without alter- 684

ations that directly influence cross-modal synthesis aspects. 685

Lastly, the accuracy of capturing cross-modal aspects might 686

be least represented in synthetic datasets created from uni- 687

modal synthesizers trained on non-cohesive data. 688

5.1. Pitch and energy control 689

As stated, the proposed multi-stage architecture with sep- 690

arate prosody predictors allows for modifying or substitut- 691

ing the pitch and energy contours before synthesis. This 692

enables direct control of prosodic properties of the speech, 693

with the synthesis process having the option to adjust the 694

gestures to match. On our anonymous webpage cvprhumo- 695

gen24.github.io/MAGI we provide example videos show- 696

ing the effect that modifying (scaling) the pitch and energy 697

contours returned by the predictors has on the synthesised 698

output. One can observe that reducing the pitch seems to 699

promote creaky voice, which makes sense from a speech- 700

production perspective and fits earlier findings from autore- 701

gressive TTS on spontaneous-speech data [47]. 702

6. Conclusion and future work 703

We have described improvements to the joint and simulta- 704

neous multimodal synthesis of speech audio and 3D ges- 705

ture motion from text. Specifically, we propose pre-training 706

on data synthesised by a chain of strong unimodal synthe- 707

sis systems to address the shortage of multimodal train- 708

ing data. We also augment the state-of-the-art architec- 709

ture for speech-and-gesture synthesis, Match-TTSG, with 710

a stochastic duration model, TTS-inspired prosody predic- 711

tors for controllability, and the ability to perform multi- 712

speaker synthesis. The final model, called Multimodal Au- 713

dio and Gesture, Integrated (MAGI), is radically smaller 714

than those that generated the synthetic data. Experiments 715

confirm that pre-training on synthetic data significantly im- 716

proved unimodal speech and gesture quality. The architec- 717

tural improvements reaped benefits when pre-training on 718

large amounts of synthetic data, with the added prosody 719

control having a clear effect on the audio output. 720

Relevant future work includes investigating alternative 721

options for mitigating the shortage of multimodal training 722

data, such as pre-training on data lacking one or more of the 723

modalities, incorporating RL-based approaches, particu- 724

larly effective for generation of situated gestures as in [18], 725

or (following the CSMP methodology [17]) leveraging 726

various self-supervised representations trained on large 727

amounts of data. Possible architectural extensions including 728

flow matching for pitch and energy, and similar control over 729

motion properties such as gesture radius and symmetry [5]. 730

731
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