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ABSTRACT

Multimodal Large Language Models (MLLMs) have made significant progress
in the medical field, yet their insufficient diagnostic reliability remains a major
barrier to clinical application. To address this issue, we propose CARE—a novel
MLLM for the medical Visual Question Answering (VQA) task, which integrates
Chain-Of-Thought (CoT) reasoning and confidence awareness into its training.
CARE achieves reliable diagnosis through the following approaches: First, it
employs CoT to simulate the diagnostic reasoning process of physicians during
Supervised Fine-Tuning (SFT). Second, it incorporates confidence estimation into
the reward function of Reinforcement Fine-Tuning (RFT), significantly enhanc-
ing both answer accuracy and reasoning trustworthiness. Experimental results
demonstrate that CARE consistently outperforms existing methods across multiple
Medical-VQA benchmarks and exhibits strong generalization capabilities in di-
verse medical scenarios, which confirm that CARE not only substantially improves
task accuracy but also enhances model reliability, while delivering answers with
superior interpretability.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) have made groundbreaking advance-
ments in the field of computer vision, demonstrating outstanding performance in tasks such as image
captioning, Visual Question Answering (VQA), and video understanding. This successful paradigm
is now extending to specialized domains, particularly in healthcare, where medical MLLMs Li et al.
(2024a), trained with expert medical knowledge, are driving the development of general-purpose
medical AI. The current mainstream approach involves Supervised Fine-Tuning (SFT) on carefully
curated multimodal medical instruction datasets, a method proven effective for handling complex
tasks in real clinical scenarios. However, the direct prediction-based learning mechanism inherent
in this paradigm has notable limitations: when used as a diagnostic aid for physicians, issues with
reliability are becoming increasingly prominent. More importantly, the “black-box” decision-making
model does not offer explainable diagnostic reasoning or inference processes, posing potential medi-
cal risks if physicians excessively rely on its diagnostic suggestions. Therefore, there is an urgent
need to develop the next generation of medical MLLMs that can handle complex clinical reasoning
tasks while providing verifiable diagnostic logic and reliable decision-making mechanisms.

Against this backdrop, the latest advancements in reinforcement learning offer new insights. Rein-
forcement Fine-Tuning (RFT) has become a hot research topic, particularly methods that combine
Verifiable Rewards Reinforcement Learning (RLVR) Lambert et al. (2025) frameworks with Group
Relative Policy Optimization (GRPO) Shao et al. (2024) algorithms, significantly enhancing the
model’s reasoning capabilities. Inspired by this, several vertical fields have launched R1 series mod-
els, with medical R1-MLLMs Lai et al. (2025) being applied in Medical-VQA scenarios. However,
practical applications have revealed issues such as shallow thinking and hallucination generation
in these models, with their reliability still requiring thorough validation. More critically, existing
methods primarily rely on multiple-choice questions for training and evaluation, lacking the ability to
handle real clinical cases, especially open-ended medical diagnosis scenarios. This raises a critical
question: how can we achieve reliable reasoning of medical MLLMs in real clinical environments
through high-quality data construction and optimization algorithms? At the same time, research on
the alignment and calibration of LLMs and MLLMs has provided important references for improving
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[Begin of CoT]

1. Identify the Anatomical Structures: The

image shows a cross-sectional view of the

abdomen ··· which appears distended and

abnormal in shape and size, suggesting a

blockage or obstruction.

2. Assess Intestinal Distension: ···

6. Conclusion: Based on ···the patient is

most likely suffering from blind loop

syndrome ···

Summary: The patient's condition ···strongly

suggests blind loop syndrome, characterized

by significant distension of the small intestine

loops, indicative of an obstruction.

[End of CoT]

<answer> Blind loop syndrome. </answer>

[Begin of CoT]

The image shows a lateral view of the

lungs ··· this is a typical manifestation of

pneumonia. Pneumonia ··· which are

consistent with these imaging features. In

addition, there are no obvious signs of pleural

effusion or pneumothorax, further supporting

the diagnosis of pneumonia. Taken together,

the patient has pneumonia.

[End of CoT]

<answer> Pneumonia. </answer>

Answer from MedVLM-R1

Answer from CARE Model (ours)
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Confidence

Confidence

· Wrong Diagnosis

Question:

Based on the visual information provided, could you 

tell me what the current condition of the patient is?

·Confidence-Aware

·Well-Structured

·High-Reliability

Unconfident!

Confident!

Shallow-Thinking Reasonable-Thinking

Figure 1: Illustrates a comparative case study between MedVLM-R1 and our proposed CARE
model. The former’s low reliability, stemming from its shallow reasoning, often leads to misdiagnosis,
whereas the latter, empowered by the framework based on Confidence-aware, engages in deep
thinking to deliver more accurate, reliable, and high-interpretable results.

model reliability. Recent works based on confidence sampling have explored feasible paths to enhance
safety and reliability while maintaining high efficiency and accuracy. Although specific methods vary,
these studies are all dedicated to addressing the critical issue of AI reliability. Notably, the recently
released ultra-challenging benchmark test, “Humanity’s Last Exam,” Phan et al. (2025) revealed the
limitations of existing evaluation systems: mainstream flagship MLLMs performed poorly on this test,
exhibiting over-confidence that did not match their actual capabilities. This phenomenon underscores
the need for reliable AI systems, a challenge that is especially critical in the high-stakes medical field,
where tolerance for error is minimal. We aim for medical MLLMs to maintain a positive correlation
between task accuracy and output confidence.

To address these challenges, we propose CARE—a Confidence-Aware medical REasoning MLLM.
Specifically, our research contributions are as follows: First, based on existing Medical-VQA samples,
we construct a medical reasoning dataset with high-quality structured Chain-Of-Thought (CoT),
enabling the model not only to provide diagnostic conclusions but also to offer clear and reliable
diagnostic reasoning processes, akin to senior radiologists or pathologists. Second, inspired by the
Deepseek-R1 model, we adopt a RFT strategy based on the GRPO algorithm and innovatively design
a Confidence-Aware Rewarding (CAR) strategy to achieve collaborative optimization of answer
accuracy and reasoning reliability. Finally, we conducted comprehensive experimental evaluations on
four mainstream Medical-VQA benchmarks, covering both open-ended and closed-ended question
scenarios. As shown in Figure 1, existing medical reasoning models (e.g., MedVLM-R1) suffer
from insufficient reasoning reliability, often exhibiting shallow and less rigorous reasoning processes,
along with lower diagnostic accuracy and confidence. In contrast, the proposed CARE model not
only incorporates an anthropomorphic and structured reasoning framework with reliable diagnostic
summaries but also provides more comprehensive key information while reducing misjudgments.
Subsequent experimental results and case analyses demonstrate that the CARE model significantly
outperforms existing methods in both diagnostic accuracy and reasoning reliability, underscoring its
strong potential as a clinical decision support system.

In summary, our contributions are as follows:

• Confidence-aware medical reasoning framework: Building on the advantages of the R1
model, we innovatively combine medical diagnostic Chain-Of-Thought with Reinforcement
Fine-Tuning, proposing a confidence-aware reasoning strategy that enhances reasoning
reliability while ensuring answer accuracy.

• Collaborative reasoning data construction for medical scenarios: Based on existing
Medical-VQA datasets, we design a specialized method for constructing medical reasoning
datasets, explicitly providing diagnostic reasoning steps and case summaries to effectively
support high-reliable medical applications.

• Optimal performance across various medical scenarios: By applying different training
strategies for various medical scenarios, we achieve significant performance improvements
across multiple VQA benchmarks, proving the robustness and generalization ability of our
method.
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This research not only advances the development of medical MLLMs but also provides a new
technical pathway for building reliable and explainable clinical decision support systems, making a
significant contribution to the responsible application of AI in healthcare.

2 RELATED WORKS

2.1 MEDICAL MLLMS

With the tremendous success of Large Vision-Language Models (LVLMs) in general domains Li et al.
(2024b); Alayrac et al. (2022); Zhu et al. (2023), a series of medical MLLMs Li et al. (2024a); Moor
et al. (2023); Alkhaldi et al. (2024) have been developed based on them to address various clinical
challenges, such as medical visual question answering, report generation, and diagnostic assistance
Ye & Tang (2025). Historically, medical MLLMs can be categorized into two types: non-VLM-based
Zhang et al. (2023); Li et al. (2022) and VLM-based Li et al. (2024a); Moor et al. (2023). Traditional
non-VLM architectures often separate visual and language models or combine them only superficially,
lacking end-to-end joint training and thus resulting in limited cross-modal fusion. In contrast, VLM
architectures, with a powerful language model at their core, are adapted to directly parse raw images,
achieving deep and unified visual-language reasoning. Although these models have shown impressive
results, they often lack complex reasoning capabilities, which limits their generalization and clinical
applicability. Consequently, a new generation of VLM-based Medical MLLMs has emerged Sun et al.
(2025); Lai et al. (2025); Pan et al. (2025). These models leverage more realistic, reasoning-focused
clinical data and more advanced training paradigms, pushing medical AI to a new frontier. However,
a persistent challenge is the inability to judge the validity and reliability of the model’s reasoning
paths and final answers based solely on external metrics.

2.2 REINFORCEMENT FINE-TUNING (RFT)

Previously, Supervised Fine-Tuning (SFT) using Chain-Of-Thought (CoT) data was the mainstream
method for enhancing the reasoning abilities of LLMs and MLLMs. However, the rise of Reinforce-
ment Fine-Tuning (RFT) has gradually established it as a new paradigm for improving the reasoning
capabilities of large models Li et al. (2025); Xu et al. (2025). This shift is attributed to the inherent
advantage of RL methods in achieving a better balance between “exploration and exploitation.” Unlike
SFT models that passively fit existing knowledge, RFT enables models to receive direct feedback
from verifiable results, thereby dynamically updating their reasoning paths and achieving superior
performance with less training data Chu et al. (2025). Early research on RFT Trung et al. (2024);
Zhang et al. (2024) primarily focused on its application in solving mathematical problems Shao et al.
(2024) and code generation tasks Hui et al. (2024) within LLMs, with its generated high-quality
reasoning steps gaining significant attention. With major breakthroughs like OpenAI’s o1 OpenAI
et al. (2024) and DeepSeek’s R1 DeepSeek-AI et al. (2025), a large number of reasoning models
aimed at solving a wide range of tasks have emerged. Recently, RFT has been extended to MLLMs
Liu et al. (2025); Tan et al. (2025); Zheng et al. (2025), enabling powerful reasoning capabilities that
integrate the visual modality, including applications in the medical field. As related work continues to
emerge, the research community is also continuously exploring the trade-off between the performance
and computational cost of RFT models Wang et al. (2025); Zhu et al. (2025); Sui et al. (2025).
Furthermore, the reliability and ethical issues of AI, especially in high-risk domains like healthcare,
remain critical topics. To address these challenges, we propose a medical reasoning model based on a
confidence-aware RFT framework, taking a significant step toward creating robust and trustworthy
medical AI.

2.3 CONFIDENCE CALIBRATION

Confidence, as a key metric for evaluating model outputs, is often used to enhance model alignment
and calibration Geng et al. (2023); Wen et al. (2024); Liu et al. (2023). The “overconfidence”
phenomenon in large models is a well-known concern, which has led to numerous methods that
leverage confidence scores to constrain models, making them safer and more “honest.” Kang et al.
(2025) In these methods, the acquisition of confidence scores can be categorized into white-box
Savage et al. (2024); Wang et al. (2024) and black-box approaches Xiong et al. (2023); Tian et al.
(2023); Ni et al. (2024); Tao et al. (2024); Wada et al. (2024). White-box methods are applicable
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Medical-CoT Data Construction Overall Architecture of CARE 

Visual Question Selection

MLLM Generation

Quality Curation

We carefully selected 4 types of 
visual questions for this dataset.

• X-ray
• CT
• MRI
• Pathology

Image types

Question:
What is the condition of the patient?

Answer:
Anatomical Analysis: The image shows a cross-sectional
view of the abdomen, likely from a CT scan ...
Summary of Findings: The patient's condition ... strongly
suggests blind loop syndrome ...
Final Answer: Blind Loop Syndrome

Question 
+

Images

Reasoning Process
Final Answer

VLMs

A1

A2

An

…

STAGE 1: Structured Reasoning SFT

GRPO

… …

STAGE 2: Confidence-Aware RFT

Accuracy/Recall Format CAR

Reward Evaluation

MLLM Verifier

Reasoning

Ground 
Truth

Consistency or not?

Confidence-Aware Reward (CAR) Design 

Reasoning Process

Final Answer: Yes, this does represent 
adequate inspiratory effort. Accuracy

Confidence

Rcalibration

avg prob

verify

Well-Calibrated!

Rcalibration

= Racc × Conf – ( 1 - Racc ) × Conf 

…

This chest X -ray indicates adequate

inspir atory effort ,

Figure 2: Overview of our method. We first generate structured analyses and answers for medical
images using MLLM and validate them to create the high-quality Medical-CoT data. Then, the
CARE model is trained in two stages: SFT in Stage 1, followed by deep RL optimization with a
Confidence-Aware Reward (CAR) mechanism to enhance diagnosis accuracy and reliability.

to open-source models, deriving confidence values by analyzing the model’s output probability
distribution and selecting appropriate quantization techniques. Conversely, black-box methods
require the model to explicitly state its confidence level during the sampling process, constraining this
value within a predefined range through prompting. However, a core limitation is that the confidence
score itself is an unsupervised signal, making it difficult to directly integrate into a reward function to
enhance reasoning reliability. Our CARE model breaks through this barrier, allowing confidence to
directly influence the training dynamics. This process strengthens the intrinsic correlation between
the model’s expressed confidence and the actual accuracy of its predictions, thereby making the
model more aligned and reliable.

3 METHOD

3.1 OVERVIEW

Figure 2 illustrates the overall process of our approach. We first use MLLM to generate structured
analyses and answers for various medical images such as X-rays and CT scans, and, through rigorous
validation by auxiliary models, construct a high-quality Medical-CoT dataset. Next, we adopt a
two-stage architecture to train the CARE model: In the first stage, the model learns to perform
basic structured reasoning and provide answers; in the second stage, deep optimization is carried
out through a core Confidence-Aware Reward (CAR) mechanism. This mechanism evaluates
the model’s confidence in its own reasoning and, by combining the actual accuracy of the answer,
generates a calibrated reward signal. This effectively guides the model to not only make correct
diagnoses but also provide an accurate assessment of the reliability of its judgments.

3.2 MEDICAL COT DATA CONSTRUCTION

Before training, we constructed high-quality Chain-Of-Thought (CoT) data based on existing Medical-
VQA datasets for CARE. Our approach focuses on the functional role of CoT data as a training signal
rather than treating each reasoning path as a standalone, clinically perfect diagnosis. Inspired by
Wang et al., we innovatively adopted a reverse-thinking strategy, using the base model πθ itself to
automatically generate diverse reasoning paths. Given visual context V , text query Q, and ground
truth answer GT , we guide πθ to generate corresponding intermediate reasoning steps through
carefully designed prompts.

T ← πθ(V,Q,GT ) (1)

4
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Considering the functional purpose of this data, direct manual validation by medical experts for each
reasoning path is not essential. The objective is not to ensure each path is clinically flawless, but that it
constitutes a plausible and logical trajectory leading to the correct answer, thereby effectively guiding
the model’s learning process. To this end, we implemented a pragmatic and scalable automated
verification process. To ensure generation quality, we first strictly structured the reasoning paths,
requiring diagnostic steps as phase identifiers at the beginning and a summarized statement at the
end, enforced by a multi-round rule-checking mechanism. Subsequently, we introduced GPT-4o as
an auxiliary verifier with a strict criterion: a generated reasoning path is deemed valid for training
only if its final conclusion aligns perfectly with the ground truth answer GT . This automated check
ensures that the generated CoTs are goal-oriented and logically coherent enough to arrive at the
correct outcome. The ultimate validation of this data generation strategy lies not in the subjective
assessment of individual training paths, but in the objective performance improvements of the final
trained model, which, as our main results demonstrate, confirms the effectiveness of our approach.

3.3 DUAL-STAGE TRAINING OF CARE

Using the constructed medical reasoning dataset, CARE adopts a two-phase RFT strategy: SFT cold
start activation and GRPO-based RL optimization. The SFT cold start phase trains the model to
decompose complex tasks into logical steps.

SFT Cold Start Phase: This phase trains the model to break down the overall task into corresponding
medical diagnostic steps. Each sample is represented as (x, q, r, a), where x is the input image, q is
the question, r is the reasoning steps, and a is the final answer. The training objective is to maximize
the likelihood of generating r and a given (x, q):

LSFT = −E(x,q,r,a)
∼D

T∑
t=1

log πθ(yt|x, q, y<t) (2)

Here,D is the dataset, y is the concatenated sequence of r and a, and πθ is the token distribution of the
model. The output model of this phase serves as the initialization for the next phase of reinforcement
learning, ensuring a solid foundation for RL.

RL Phase: Since the GRPO algorithm is resource-friendly (it does not require loading an independent
value model of the same size as the policy model during training), we chose it as the optimization
algorithm for the RL phase. During training, the initial version of the policy model πθ is used
as the reference model πref. In each training loop, we sample an image x and its corresponding
question (x, q) from the dataset. Then, the old policy model πold

θ generates a set of k candidate
outputs o1, o2, . . . , ok, where each output oi = (ri, ai) represents the reasoning trajectory and final
prediction result. Next, the GRPO algorithm optimizes the policy model by maximizing the following
objective function:

JGRPO(θ) = E

[
1

k

k∑
i=1

R(x, q, oi)

]
− βDKL(πθ∥πref ) (3)

Here, R(x, q, oi) is a clipped surrogate objective function based on the importance ratio and advantage
estimate Ai. The importance ratio πθ(oi|v,q)

πold
θ (oi|v,q)

is used to measure the difference between the new and
old strategies. The DKL(πθ∥πref ) is a KL divergence penalty term that ensures the updated model
does not diverge too far from the initial reference model, stabilizing the training process. In practice,
the reward function we designed scores each output oi, resulting in reward scores r1, r2, . . . , rk. The
advantage value Ai is the normalized result of these reward scores:

Ai =
Ri −mean({R})

std({R})
(4)

This advantage value reflects the quality of the corresponding output. Ultimately, reasoning paths
with reward values above the mean will have a higher sampling probability during the generation
process, while paths below the mean will be suppressed.

5
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3.4 CONFIDENCE-AWARE REWARD (CAR) DESIGN

In our practice, the reward function used for the advantage value Ai in the GRPO algorithm consists
of several key components. Unlike the conventional approach in the RLVR paradigm, which only
employs simple accuracy and format rewards, we innovatively introduce a confidence-aware reward
mechanism. By incorporating confidence calibration into the reward function design, we significantly
enhance the model’s performance, reliability, and safety. Specifically, our reward function group
includes three core parts: format reward, output reward, and calibration reward.

The format reward is responsible for verifying the structural correctness of output oi, requiring the
model to generate the reasoning process ri within the <think></think> tags and the final answer ai
within the <answer></answer> tags:

Rform(oi) =

{
1, if the output format is correct,
0, otherwise.

(5)

The output reward employs a differentiated evaluation strategy based on the question type. For
closed questions, a strict exact-matching mechanism is applied (if the ground truth, GT, is fully
contained in the final answer ai, then 1 point is given; otherwise, 0 points). For open-ended questions,
we adopted a recall-based evaluation method, focusing on the coverage of GT content in the output
oi:

Rout(oi, ai,GT) =
{
I(GT ⊆ ai), if close-ended
recall(oi,GT), otherwise

(6)

The calibration reward aims to measure the consistency of the model’s output with its own
knowledge. First, we quantify the confidence score for each output. We obtain the log-likelihood for
each token tj in the output sequence, logP (tj), and convert it to the corresponding probability value.
Then, we calculate the average of these probability values to obtain the confidence score.

C(oi) =
1

|oi|

|oi|∑
j=1

P (tj) (7)

Next, we can compute the calibration reward Rcalib:

Rcalib(oi, ai,GT) = Rout · C(oi)− (1−Rout) · C(oi) (8)

This innovation establishes a quantifiable connection between model prediction accuracy and reli-
ability. This mechanism not only reflects the model’s confidence in its output but also enables the
reinforcement learning framework to adjust the model’s exploration strategy, driving the model to
improve the robustness of its outputs while maintaining high accuracy. Ultimately, these reward
components are combined to form the foundational reward score R for advantage value computation,
enabling precise guidance of the model’s exploration strategy.

R = Rform +Rout +Rcalib (9)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset. We evaluate our CARE model on four publicly available Medical-VQA datasets:

• VQA-RAD Lau et al. (2018): A Medical-VQA dataset focused on radiology, containing
315 radiology images annotated by clinicians and 3,515 question-answer pairs.

• SLAKE Liu et al. (2021): A semantically-labeled, knowledge-enhanced Medical-VQA
dataset, containing 642 images and 14,000 bilingual question-answer pairs.

• PATH-VQA He et al. (2020): A pathology image dataset, containing a total of 4,998
pathology images and 32,799 question-answer pairs.

6
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Table 1: Main Result table with best performances bolded.

Model / Dataset VQA-RAD SLAKE PathVQA OmniMedVQA
Open Closed All Open Closed All Open Closed All All

Non-Reasoning Medical MLLMs

HuatuoGPT-Vision-7B 31.88 66.90 53.00 42.20 59.80 49.10 11.07 52.90 32.00 /
Med-Flamingo-9B 50.00 65.07 59.09 78.18 63.22 72.31 7.74 63.20 35.49 38.51
HealthGPT-14B 28.82 77.70 58.30 56.82 76.40 64.50 2.83 85.90 44.40 /
Med-MoE-3.6B 58.55 82.72 73.13 85.06 85.58 85.26 34.74 91.98 63.38 46.85
Llava-Med-7B 61.52 84.19 75.19 83.08 85.34 83.97 37.95 91.21 64.60 25.43

Reasoning Medical MLLMs

Med-R1-3B 40.99 58.09 51.30 52.58 70.43 59.58 14.88 62.49 38.70 65.34
MedVLM-R1-2B 34.14 65.81 53.24 41.23 64.66 50.42 12.80 64.46 38.65 76.04

Ours

CARE-3B 57.30 76.84 69.08 85.20 81.01 83.56 36.88 82.15 59.53 76.70
CARE-7B 61.98 86.40 76.71 88.13 86.06 87.32 42.13 95.54 68.86 81.53

• OmniMedVQA Hu et al. (2024): a novel comprehensive Medical-VQA benchmark, con-
taining a total of 127995 question-answer pairs.

Baseline Methods. We compare the CARE model with the following two categories of state-of-
the-art (SOTA) baseline models: (1) Non-Reasoning Medical MLLMs: This includes vision models
pre-trained on specific medical corpora, such as HuatuoGPT-Vision-7B Chen et al. (2024), Med-
Flamingo-9B Moor et al. (2023), HealthGPT-14B Lin et al. (2025), Med-MoE-3.6B Jiang et al. (2024),
and Llava-Med-7B Li et al. (2024a). (2) Reasoning Medical MLLMs: This includes Med-R1-3B Lai
et al. (2025) and MedVLM-R1-2B Pan et al. (2025). We measure the performance of models on the
VQA benchmarks using recall for open-ended questions and accuracy for closed-ended questions.
For the OmniMedVQA evaluation, we assessed the recall performance of the open-access data across
the three modalities: CT, MRI, and X-ray.

4.2 IMPLEMENTATION DETAILS

During the training phase, we use Qwen2.5-VL-3B-Instruct Bai et al. (2025) and Qwen2.5-VL-7B-
Instruct as the base models for CARE, performing full-parameter fine-tuning on a server cluster
equipped with 6×A100 GPUs. The SFT phase utilizes the AdamW optimizer with a learning rate set
to 1e-5, following a cosine annealing schedule. To balance training accuracy and efficiency, the RFT
phase generates 4 rollouts per sample with a batch size of 2, using bfloat16 mixed precision.

4.3 MAIN RESULTS

Overall performance comparisons. To comprehensively evaluate the performance of our proposed
CARE model, we conducted extensive experiments on four Medical-VQA benchmark datasets,
comparing the performance of CARE-3B/7B with current state-of-the-art non-reasoning and reasoning
medical MLLMs. As shown in Table 1, we evaluated the models’ performance on the VQA-RAD,
SLAKE, and PathVQA datasets across open-ended (Open), closed-ended (Closed), and overall (All)
settings. Since the OmniMedVQA dataset consists entirely of multiple-choice questions, we only
report its overall (All) accuracy.

In general, CARE-7B demonstrated superior performance across all settings on the four datasets.
On the VQA-RAD dataset, CARE-7B achieved 61.98% on open-ended questions, 86.40% on
closed-ended questions, and an overall accuracy of 76.71%, outperforming all competing models.
Compared to the current best-performing non-reasoning model, Llava-Med-7B (with an overall
accuracy of 75.19%), CARE-7B demonstrated a steady improvement, with an increase of 0.46
percentage points on open-ended tasks and 1.52 percentage points overall. Furthermore, CARE-3B
achieved an overall accuracy of 69.08%, also surpassing most models with a similar parameter
scale, reflecting a good balance between performance and model efficiency. On the SLAKE dataset,
CARE-7B reached 88.13%, 86.06%, and 87.32% for open-ended, closed-ended, and overall settings,
respectively. Particularly in open-ended tasks, CARE-7B showed a significant 3.07 percentage point
improvement over the previous leading model, Med-MoE-3.6B (85.06%), demonstrating extremely

7
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strong performance on medical tasks requiring deeper understanding and generation capabilities.
CARE-3B also showed competitive performance on this dataset with an overall accuracy of 83.56%.
On the PathVQA dataset, CARE-7B once again ranked first in all settings (42.13%, 95.54%, and
68.86%). Notably, in open-ended tasks, CARE-7B surpassed the second-best model, Llava-Med-7B
(37.95%), by 4.18 percentage points, and its closed-ended accuracy also reached the current highest
level. On the OmniMedVQA dataset, CARE-7B also achieved the highest overall accuracy of
81.53%, significantly outperforming other models like MedVLM-R1 (76.04%). This indicates that
our model maintains excellent robustness and performance when processing medical images across
different modalities and scenarios. In conclusion, the experimental results clearly demonstrate that
CARE, particularly CARE-7B, consistently leads in terms of accuracy and reasoning reliability
across the four major Medical-VQA benchmarks, fully validating the effectiveness and advanced
nature of our model’s design.

Table 2: Overall accuracy and ECE of CARE and other medical MLLMs. Smaller ECEs corresponds
to more calibrated and reliable results.

Models VQA-RAD SLAKE PathVQA OmniMedVQA
Acc.↑ ECE ↓ Acc.↑ ECE ↓ Acc.↑ ECE ↓ Acc.↑ ECE ↓

Med-R1-3B 51.30 45.07 59.58 36.90 38.70 58.38 65.34 33.62
MedVLM-R1-2B 53.24 44.77 50.42 47.39 38.65 58.69 76.04 22.19
Med-MoE-3.6B 73.13 22.13 85.26 12.64 63.38 30.18 46.85 46.58
Llava-Med-7B 75.19 52.36 83.97 43.73 64.60 55.94 25.43 67.28

CARE-7B 76.71 20.23 87.32 11.45 68.86 29.02 81.53 16.76

Comparisons of reliability by confidence-related metrics. In terms of reliability evaluation,
this study employs the Expected Calibration Error (ECE) as a quantitative metric. This metric
assesses reasoning reliability by measuring the alignment between a model’s confidence and its
prediction accuracy. Specifically, ECE divides prediction confidences into M equal-width bins
{Bm|m = 1, ...,M} and calculates the weighted average difference between the mean accuracy and
the mean confidence within each bin, thereby precisely quantifying the degree of deviation between
model confidence and prediction accuracy:

ECE =

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)| (10)

As shown in Table 2, we compared CARE-7B with several baseline models. The experimental
results strongly demonstrate that our method not only significantly enhances the model’s overall
performance but, more importantly, also ensures the reliability of the reasoning process. In terms of
accuracy, CARE-7B achieved state-of-the-art levels on the VQA-RAD (76.71%), SLAKE (87.32%),
PathVQA (68.86%), and OmniMedVQA (81.53%) datasets. In terms of reliability, its ECE scores
were as low as 20.23, 11.45, 29.02, and 16.76, respectively, marking the best performance among all
compared models. It is worth noting that we found existing reasoning models (such as Med-R1-3B,
MedVLM-R1-2B), despite having certain reasoning capabilities, generally exhibit poor reliability,
with ECE metrics at high levels (>33). In contrast, our CARE-7B model, with its confidence-aware
reasoning framework, significantly surpassed them in all tests, for instance, drastically reducing the
ECE on VQA-RAD from approximately 45 to 20.23 and on OmniMedVQA from over 33 to 16.76.
This indicates that our method not only improves model performance but also makes its judgments
and reasoning more cautious and trustworthy.

Table 3: Ablation study results for different module configurations. CA: confidence-aware reward
design; RE: generated medical reasoning data.

Setting VQA-RAD SLAKE PathVQA OmniMedVQA
Acc.↑ ECE ↓ Acc.↑ ECE ↓ Acc.↑ ECE ↓ Acc.↑ ECE ↓

CARE 76.71 20.23 87.32 11.45 68.86 29.02 81.53 16.76
w/o RE 58.18 38.13 82.92 15.75 61.89 36.54 63.84 35.38
w/o CA 62.10 35.53 85.31 13.25 66.63 30.85 70.22 26.78
w/o CA+RE 56.93 42.41 79.80 22.36 59.67 38.06 62.63 36.80
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Table 4: Ablation study results for different training stages.

Training Stages VQA-RAD SLAKE PathVQA OmniMedVQA
Open ↑ ECE ↓ Closed ↑ ECE ↓ Open ↑ ECE ↓ Closed ↑ ECE ↓ Open ↑ ECE ↓ Closed ↑ ECE ↓ Acc.↑ ECE ↓

Training-Free 48.25 48.45 65.81 34.13 51.30 45.58 68.99 28.65 15.02 82.33 66.39 32.57 75.78 20.40
SFT 51.98 46.83 62.87 35.93 80.31 18.82 76.68 22.45 34.92 63.97 85.72 13.26 79.49 18.64
RL 56.27 40.65 86.40 9.62 81.89 17.56 86.06 11.88 16.59 72.70 95.54 2.03 78.70 19.33
SFT+RL 61.98 36.34 68.38 27.49 88.13 11.18 77.88 20.93 42.13 56.05 86.29 12.09 81.53 16.76

4.4 ABLATION STUDIES

Different Module Configurations. As shown in Table 3, we conducted a thorough ablation study
to dissect the individual contributions of CARE’s key modules. The results unequivocally show
that the complete model consistently achieved the best performance across all datasets. Removing
the Reasoning Data (w/o RE) caused a significant drop in accuracy. This finding highlights the
critical role of CoT data. More revealingly, removing the Confidence-Aware module (w/o CA) not
only reduced accuracy but, more critically, severely degraded model reliability, as evidenced by a
sharp increase in ECE. This indicates that the model became dangerously overconfident, providing
incorrect answers with high certainty—a failure mode that is unacceptable in clinical applications.
This result powerfully validates our CA module’s effectiveness in calibrating model confidence.
Finally, removing both modules (w/o CA+RE) led to a synergistic performance collapse, yielding the
worst results across the board. This confirms that both components are indispensable and function in
a complementary manner to achieve both high accuracy and trustworthiness.

Different Training Stages. As detailed in Table 4, our analysis of training stages revealed intriguing
patterns for open-ended and closed-ended question formats. For open-ended questions, which
require generating descriptive answers, the two-stage SFT+RL framework was clearly superior. The
SFT stage provides an essential foundation by teaching the model the necessary domain knowledge,
reasoning structure, and response style. The subsequent RL fine-tuning then sharpens this generative
ability for greater factual accuracy and reliability, resulting in the best overall performance in both
accuracy and ECE. In stark contrast, for closed-ended questions (e.g., Yes/No), which demand a dis-
criminative choice rather than generation, using only the RL stage was far more effective, achieving
the highest accuracy and the lowest ECE (e.g., 95.54% accuracy and 2.03 ECE on PathVQA). Since
answer choices are predefined, skipping the SFT stage trains the model as a direct ”decision-maker,”
optimizing its policy for logical judgment and avoiding redundant generative biases. Interestingly, on
the OmniMedVQA benchmark—also a multiple-choice task—the combined SFT+RL configuration
achieved the best accuracy (81.53%) and reliability (ECE 16.76). This suggests OmniMedVQA’s
questions are complex enough to benefit from the broad knowledge base instilled by SFT and later
refined by RL, reinforcing the value of our combined approach for robust performance on challenging
benchmarks.

5 CONCLUSION AND DISCUSSION

To address the reliability issues in medical MLLMs, we propose the Confidence-Aware REasoning
model, CARE. Through high-quality medical reasoning data and a novel reward mechanism, CARE
surpasses existing models on multiple Medical-VQA benchmarks. It not only improves performance,
but its lower Expected Calibration Error (ECE) also indicates that it effectively alleviates the model’s
overconfidence problem.

We acknowledge the computational cost of creating our CoT dataset. However, we consider this a
necessary, one-time investment for a crucial trade-off. In high-stakes fields like medicine, prioritizing
model reliability over computational cost is essential. The significant gains in trustworthiness and
performance justify this upfront effort. This reliability-centric approach is valuable for other critical
domains, and we anticipate the cost will decrease as underlying technologies become more efficient.

The core contribution of this research is the proposal of a new paradigm for enhancing the reliability
and interpretability of medical MLLMs. By integrating confidence into the learning process, CARE
not only ensures diagnostic accuracy but also makes the reasoning process more transparent and
trustworthy, providing a key technical pathway for building safe next-generation clinical decision
support systems.
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A APPENDIX: REPRODUCIBILITY CHECKLIST

Unless specified otherwise, please answer “yes” to each question if the relevant information is
described either in the paper itself or in a technical appendix with an explicit reference from the main
paper. If you wish to explain an answer further, please do so in a section titled “Reproducibility
Checklist” at the end of the technical appendix. This paper:

• Includes a conceptual outline and/or pseudocode description of AI methods introduced
(yes/partial/no/NA) yes

• Clearly delineates statements that are opinions, hypothesis, and speculation from objective
facts and results (yes/no) yes

• Provides well marked pedagogical references for less-familiare readers to gain background
necessary to replicate the paper (yes/no) yes

Does this paper make theoretical contributions? (yes/no) yes

If yes, please complete the list below.

• All assumptions and restrictions are stated clearly and formally. (yes/partial/no) yes

• All novel claims are stated formally (e.g., in theorem statements). (yes/partial/no) yes

• Proofs of all novel claims are included. (yes/partial/no) yes

• Proof sketches or intuitions are given for complex and/or novel results. (yes/partial/no) yes

• Appropriate citations to theoretical tools used are given. (yes/partial/no) yes

• All theoretical claims are demonstrated empirically to hold. (yes/partial/no/NA) yes

• All experimental code used to eliminate or disprove claims is included. (yes/no/NA) yes

Does this paper rely on one or more datasets? (yes/no) yes

If yes, please complete the list below.

• A motivation is given for why the experiments are conducted on the selected datasets
(yes/partial/no/NA) yes

• All novel datasets introduced in this paper are included in a data appendix.
(yes/partial/no/NA) yes

• All novel datasets introduced in this paper will be made publicly available upon publication
of the paper with a license that allows free usage for research purposes. (yes/partial/no/NA)
yes

• All datasets drawn from the existing literature (potentially including authors’ own previously
published work) are accompanied by appropriate citations. (yes/no/NA) yes

• All datasets drawn from the existing literature (potentially including authors’ own previously
published work) are publicly available. (yes/partial/no/NA) yes

• All datasets that are not publicly available are described in detail, with explanation why
publicly available alternatives are not scientifically satisficing. (yes/partial/no/NA) yes

Does this paper include computational experiments? (yes/no) yes

If yes, please complete the list below.

• This paper states the number and range of values tried per (hyper-) parameter during
development of the paper, along with the criterion used for selecting the final parameter
setting. (yes/partial/no/NA) partial

• Any code required for pre-processing data is included in the appendix. (yes/partial/no) yes

• All source code required for conducting and analyzing the experiments is included in a code
appendix. (yes/partial/no) yes
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• All source code required for conducting and analyzing the experiments will be made publicly
available upon publication of the paper with a license that allows free usage for research
purposes. (yes/partial/no) yes

• All source code implementing new methods have comments detailing the implementation,
with references to the paper where each step comes from (yes/partial/no) partial

• If an algorithm depends on randomness, then the method used for setting seeds is described
in a way sufficient to allow replication of results. (yes/partial/no/NA) yes

• This paper specifies the computing infrastructure used for running experiments (hardware
and software), including GPU/CPU models; amount of memory; operating system; names
and versions of relevant software libraries and frameworks. (yes/partial/no) partial

• This paper formally describes evaluation metrics used and explains the motivation for
choosing these metrics. (yes/partial/no) yes

• This paper states the number of algorithm runs used to compute each reported result. (yes/no)
yes

• Analysis of experiments goes beyond single-dimensional summaries of performance (e.g.,
average; median) to include measures of variation, confidence, or other distributional
information. (yes/no) yes

• The significance of any improvement or decrease in performance is judged using appropriate
statistical tests (e.g., Wilcoxon signed-rank). (yes/partial/no) yes

• This paper lists all final (hyper-)parameters used for each model/algorithm in the paper’s
experiments. (yes/partial/no/NA) partial

B APPENDIX: LLM USE

In the preparation of this manuscript, we utilized a Large Language Model (LLM) as a general-purpose
writing assistant. The use of the LLM was strictly confined to improving the language and rhetoric of
the text. Its role was limited to tasks such as correcting grammatical errors, rephrasing sentences for
better clarity, and polishing the overall prose. The LLM did not contribute to the conceptualization
of our core ideas, the experimental design, the analysis of results, or the formulation of scientific
conclusions. All fundamental concepts and intellectual contributions presented in this paper are
solely those of the authors, who take full responsibility for the accuracy and integrity of the content.
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C APPENDIX: SUPPLEMENTARY MATERIALS

（a）

（b）

Open                   Closed

（a）

（b）

Open                   Closed

（a）

（b）

Open                Closed

Figure 3: We use visualized confusion matrices to investigate in detail the respective impacts of the
confidence-aware (CA) and reasoning (RE) components on the accuracy of answers for open-ended
and closed-ended questions across different datasets. From left to right: SLAKE, VQA-RAD, and
PathVQA.

C.1 VISUALIZATION AND ANALYSIS

To delve deeper into the core contribution of our proposed Confidence-Aware (CA) module to
model accuracy and to analyze it in conjunction with another key component—the Reasoning Data
(RE)—we conducted a visualization analysis across various datasets. As shown in Figure 3, the
confusion matrices intuitively illustrate the performance improvement from answers corrected from
incorrect to correct (green area) after introducing the module, as well as the potential impact of
answers changing from correct to incorrect (orange area).

Specifically, for the SLAKE dataset (leftmost confusion matrix), the CA module demonstrates signif-
icant practical value, especially when handling complex open-ended questions, where it successfully
corrected up to 22.16% of wrong answers while introducing only 4.2% new errors. This result
strongly proves that the CA module can effectively perceive the model’s own uncertainty and guide it
toward more reliable judgments, thereby significantly enhancing the model’s performance. For the
VQA-RAD dataset (middle confusion matrix), the RE process is also a key factor in improving model
performance, correcting 27.02% of errors on open-ended questions. Similar trends were observed on
the PathVQA dataset (rightmost confusion matrix), further confirming the robust contribution of
both modules.

In summary, this cross-dataset analysis confirms the critical role of our proposed CA and RE modules
in enhancing both the model’s accuracy and reliability. This is particularly crucial for navigating
the diagnostic ambiguity inherent in many clinical scenarios. The significant gains observed across
SLAKE, VQA-RAD, and PathVQA datasets, especially in handling open-ended questions with
high uncertainty, establish these modules as key innovations within our system. Ultimately, this
demonstrates CARE’s strong potential for trustworthy application in real-world clinical practice.

C.2 PROMPT SETTINGS

To support our framework, we designed two distinct types of prompts for different stages of the
process.

The first is a ”reverse-thinking” prompt, illustrated in Figure 4, which is used for generating the
high-quality medical Chain-of-Thought (CoT) dataset. This prompt provides an advanced model
with an existing medical image, a question, and a ground-truth answer. It then instructs the model to
construct a detailed, step-by-step reasoning process that logically leads to the provided answer. To
ensure the quality and consistency of the generated data, the prompt enforces specific requirements,
such as a minimum word count and a concluding summary, without repeating the final answer itself.

The second prompt, shown in Figure 5, is the instruction template used during the training and
evaluation of the CARE model. This prompt directs the model to first analyze the given medical
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Based on the following medical question and image, generate a detailed thought process to 
explain how to derive the answer from the inputs.  

Image: {<image></image>}
Question: {original_question} 
Answer: {original_answer}  

Requirements:
1. The reasoning must be step-by-step and clearly divided into points (1., 2., 3., etc.)
2. The total length must be at least 200 words
3. End with a clear summary and proper punctuation (must end with '.')
4. Do not output the answer, only generate the reasoning process.

Figure 4: Demonstrates our reverse-thinking prompt to generating high-quality medical Chain-of-
Thought (CoT) datasets. Leveraging existing visual question-answering (VQA) datasets containing
images and QA pairs, we employ advanced models to produce high-reasoning processes, followed by
rigorous format and content verification.

Look the given medical image carefully, and complete the tasks below.

Your task:
1. Think through the question step by step, enclose your reasoning process in <think>...</think> tags.
2. Then provide the correct answer inside <answer>...</answer> tags.
3. No extra information or text outside of these tags.

<image></image>
Question: Does the picture contain kidney? 

Figure 5: Our instruction prompt templates guide the CARE model to perform format-compliant
reasoning on visual inputs, producing detailed thought processes and precise answers during both
training and evaluation.

image and question, then externalize its reasoning process within <think></think> tags, and finally
provide a concise answer within <answer></answer> tags. This structured format ensures that the
model’s outputs are consistent and easily parsable, separating the reasoning from the final conclusion.

C.3 MEDICAL COT DATASET EXAMPLES

Our data generation process produces detailed, high-quality reasoning paths for both open-ended and
closed-ended questions across different medical domains.

Figure 6 shows an example of an open-ended question based on a pathology image. The model is
asked to characterize ”hyperplasia without atypia”. The generated reasoning process methodically
breaks down the task into five steps: identifying key histological features, analyzing glandular
structures, examining cell arrangement, contextualizing the condition, and drawing a final conclusion.
This detailed analysis leads to the correct final answer, ”By nests of closely packed glands”.

Figure 7 provides an example of a closed-ended question related to a radiology image (a cross-
sectional scan). The question is a simple verification: ”Does the picture contain kidney?”. The
model’s reasoning process again follows a logical progression, starting with an initial observation of
the image type, placing it in an anatomical context, comparing the visible structures to known kidney
anatomy (such as the renal pelvis and cortex), and concluding based on the evidence. This leads to
the correct binary answer, ”Yes”.
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Reasoning Process:

1. Identify the Key Features: The image provided appears to depict a histological section of tissue, likely from a glandular structure, given the 
presence of gland-like structures. Hyperplasia refers to an increase in the number of cells within a tissue or organ, while atypia indicates 
abnormal cell morphology or behavior that could suggest malignancy.
2. Analyze the Image for Glandular Structures: In the image, there are distinct areas that resemble glandular structures, which are composed 
of epithelial cells arranged in a specific pattern. These structures are typically lined by a single layer of cells and may contain secretory 
products.
3. Examine the Cell Arrangement: The glands in the image appear to be tightly packed together, forming nests. This arrangement suggests a 
dense clustering of cells, which is characteristic of hyperplasia where there is an increased number of cells but they maintain their normal 
morphology.
4. Consider the Context of Hyperplasia Without Atypia: Hyperplasia without atypia means that the cells are increasing in number but do not 
show any signs of abnormality in their appearance or behavior. This condition is often benign and can be seen in various physiological 
processes such as hormonal stimulation or chronic inflammation.
5. Conclusion from the Analysis: Based on the image and the characteristics described, the nests of closely packed glands observed in the 
image are indicative of hyperplasia without atypia. This is because the glands are densely packed, suggesting an increase in cell numbers, but 
there is no evidence of atypia, meaning the cells retain their normal structure and function.
Summary: The image shows nests of closely packed glands, which is characteristic of hyperplasia without atypia, indicating an increase in cell 
numbers without any abnormal cell morphology or behavior.

Final Answer:   By nests of closely packed glands.

Example of Our Medical-CoT Data

Question: How is hyperplasia without atypia characterized?

Figure 6: Sample from our medical reasoning dataset: An open-ended analysis of a pathology case,
illustrating how our model breaks down diagnostic imaging through step-by-step clinical reasoning.

Reasoning Process:

1. Initial Observation: The provided image is a cross-sectional view of an organ, likely obtained through medical imaging such as MRI or CT 
scan. The grayscale nature of the image suggests it is a type of medical imaging that uses contrast to highlight different tissues and structures 
within the body.
2. Anatomical Context: The shape and structure visible in the image are consistent with the appearance of a kidney. Kidneys are typically 
bean-shaped organs located near the back of the abdomen, just below the ribcage. They have a central cavity filled with urine, surrounded by 
renal tissue.
3. Comparison with Known Anatomy: In this image, there is a central dark area that resembles the renal pelvis, which is the main collecting 
duct system of the kidney. Surrounding this area, there appears to be a layer of tissue that could represent the renal cortex and medulla, 
which are the outer and inner layers of the kidney, respectively.
4. Contrast and Tissue Differentiation: The image shows a clear differentiation between the central dark area and the surrounding tissue, 
which is characteristic of the renal pelvis and the surrounding renal parenchyma. The presence of these distinct layers further supports the 
identification of the organ as a kidney.
5. Conclusion Based on Evidence: Given the anatomical features observed in the image—such as the central dark area resembling the renal 
pelvis and the surrounding tissue resembling the renal cortex and medulla—it is reasonable to conclude that the image indeed contains a 
kidney.
Summary: The image does contain a kidney based on the observed anatomical features and the differentiation between the renal pelvis and 
the surrounding renal parenchyma.

Final Answer:   Yes.

Example of Our Medical-CoT Data

Question: Does the picture contain kidney?

Figure 7: Sample from our medical reasoning dataset: A closed-ended analysis of a radiology case,
illustrating how our model breaks down diagnostic imaging through step-by-step clinical reasoning.

C.4 CONFIDENCE DISTRIBUTION SHIFT

Figure 8 visualizes the impact of our training framework on the CARE model’s confidence distribution
across the VQA-RAD, SLAKE, and PathVQA datasets. The charts compare the distribution of
confidence scores before training (red bars) and after training (green bars).

A clear and consistent trend is observable across all three datasets. Before training, the model’s
confidence is widely dispersed, with a significant number of predictions having low to moderate
confidence scores. After training with our confidence-aware reward mechanism, there is a distinct shift
in the distribution toward higher confidence levels. The green bars are predominantly concentrated
on the right side of the charts, particularly in the 0.75 to 1.00 range, indicating that the model has
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(a) VQA-RAD (b) SLAKE (c) PATH-VQA

Figure 8: The change in confidence distribution of CARE before and after training on three datasets
(after normalization), where red represents before-training and green represents after-training. It can
be observed that the confidence-aware training framework not only improves answer accuracy but
also significantly enhances confidence levels.

become significantly more confident in its predictions. This result demonstrates that our framework
is effective not only in improving answer accuracy but also in enhancing the model’s calibration,
making it more certain of its correct responses.
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