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ABSTRACT

Incorporating prior knowledge or specifications of input-output relationships into
machine learning models has gained significant attention, as it enhances general-
ization from limited data and leads to conforming outputs. However, most exist-
ing approaches use soft constraints by penalizing violations through regulariza-
tion, which offers no guarantee of constraint satisfaction—an essential require-
ment in safety-critical applications. On the other hand, imposing hard constraints
on neural networks may hinder their representational power, adversely affecting
performance. To address this, we propose HardNet, a practical framework for
constructing neural networks that inherently satisfy hard constraints without sacri-
ficing model capacity. Specifically, we encode affine and convex hard constraints,
dependent on both inputs and outputs, by appending a differentiable projection
layer to the network’s output. This architecture allows unconstrained optimization
of the network parameters using standard algorithms while ensuring constraint
satisfaction by construction. Furthermore, we show that HardNet retains the uni-
versal approximation capabilities of neural networks. We demonstrate the versa-
tility and effectiveness of HardNet across various applications: fitting functions
under constraints, learning optimization solvers, optimizing control policies in
safety-critical systems, and learning safe decision logic for aircraft systems.

1 INTRODUCTION

Neural networks are widely adopted for their generalization capabilities and their ability to model
highly non-linear functions in high-dimensional spaces. With their increasing proliferation, it has
become more important to be able to impose constraints on neural networks in many applications.
By incorporating domain knowledge about input-output relationships into neural networks through
constraints, we can enhance their generalization abilities, particularly when the available data is
limited (Pathak et al., 2015; Oktay et al., 2017; Raissi et al., 2019). These constraints introduce
inductive biases that can guide the model’s learning process toward plausible solutions that adhere to
known properties of the problem domain, potentially reducing overfitting to limited data. As a result,
neural networks can more effectively capture underlying patterns and make accurate predictions on
unseen data, despite the scarcity of training examples.

Moreover, adherence to specific requirements is critical in many practical applications. For instance,
in robotics, this could translate to imposing collision avoidance or pose manifold constraints (Ding
& Fan, 2014; Wang & Yan, 2023; Ryu et al., 2022; Huang et al., 2022). In geometric learning, this
could mean imposing a manifold constraint (Lin & Zha, 2008; Simeonov et al., 2022). In financial
risk-management scenarios, violating constraints on the solvency of the portfolio can lead to large
fines (McNeil et al., 2015). By enforcing the neural network outputs to satisfy these non-negotiable
rules (i.e., hard constraints), we can make the models more reliable, interpretable, and aligned with
the underlying problem structure.

However, introducing hard constraints can potentially limit a neural network’s expressive power. To
illustrate this point, consider a constraint that requires the model’s output to be less than 1. One
could simply restrict the model to always output a constant value less than 1, which ensures the
constraint satisfaction but obviously limits the model capacity drastically. This raises the question:

Can we enforce hard constraints on neural networks without losing their expressive power?

The model capacity of neural networks is often explained through the universal approximation the-
orem, which shows that a neural network can approximate any continuous function given a suffi-
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ciently wide/deep architecture. Demonstrating that this theorem still holds under hard constraints is
essential to understanding the trade-off between constraint satisfaction and model capacity.

Contributions We tackle the problem of enforcing hard constraints on neural networks by

• Presenting a practical framework called HardNet (short for hard-constrained neural net) for
constructing neural networks that satisfy input-dependent affine/convex constraints by construc-
tion. HardNet allows for unconstrained optimization of the networks’ parameters with standard
algorithms.

• Proving a universal approximation theorem for our method, showing that despite enforcing
the hard constraints, our construction retains the expressive power of neural networks.

• Demonstrating the utility of our method on a variety of scenarios where it’s critical to satisfy
hard constraints – learning optimization solvers, optimizing control policies in safety-critical
systems, and learning safe decision logic for aircraft systems.

• Outlining a survey of the literature on constructing neural networks that satisfy hard constraints.

2 RELATED WORK

Neural Networks with Soft Constraints Early directions focused on implementing data augmen-
tation or domain randomization methods to structure the dataset to satisfy the necessary constraints
before training the neural network. However, this does not guarantee constraint satisfaction for
arbitrary inputs (especially those far from the training distribution), and the output often violates
the constraints marginally on in-distribution inputs as well. Other initial directions focused on in-
troducing the constraints as soft penalties (Márquez-Neila et al., 2017; Dener et al., 2020) to the
cost function of the neural network along with Lagrange multipliers as hyperparameters. Raissi
et al. (2019); Li et al. (2024) leveraged this idea in their work on physics-informed neural networks
(PINNs) to enforce that the output satisfies a given differential equation.

Neural Networks with Hard Constraints Some of the conventional neural network components
can already enforce specific types of hard constraints. For instance, sigmoids can impose lower and
upper bounds, softmax layers help enforce simplex constraints, and ReLU layers are projections
onto the positive orthant. The convolution layer in ConvNets encodes a translational equivariance
constraint which led to significant improvements in empirical performance. Learning new equivari-
ances and inductive biases that accelerate learning for specific tasks is an active area of research.

Recent work has explored new architectures to (asymptotically) impose various hard constraints by
either finding certain parameterizations of feasible sets or incorporating differentiable projection
layers into neural networks, as summarized in Table 1. Frerix et al. (2020) addressed homogeneous
linear inequality constraints by embedding a parameterization of the feasible set in a neural network
layer. Huang et al. (2021) and LinSATNet (Wang et al., 2023) introduced differentiable projection
methods that iteratively refine outputs to satisfy linear constraints. However, these iterative ap-
proaches do not guarantee constraint satisfaction within a fixed number of iterations, limiting their
reliability in practice. C-DGM (Stoian et al., 2024) enforce linear inequality constraints in genera-
tive models for tabular data by incrementally adjusting each output component in a finite number of
iterations. However, its application to input-dependent constraints is limited as it cannot efficiently
handle batched data. When constraints are input-dependent, the method requires recomputing the
reduced constraint sets for each input, making it computationally prohibitive.

Beyond the affine constraints, RAYEN (Tordesillas et al., 2023) and Konstantinov & Utkin (2023)
enforce certain convex constraints by parameterizing the feasible set such that the neural network
output represents a translation from an interior point of the convex feasible region. However, these
methods are limited to constraints that depend solely on the output and not on the input. Extending
these methods to input-dependent constraints is challenging because it requires finding different
parameterizations for each input, such as determining a new interior point for every feasible set.

Another line of work considers hard constraints that depend on both input and output. Balestriero
& LeCun (2023) proposed the POLICE framework for enforcing the output to be an affine function
of the input in certain regions of the input space by reformulating the neural networks as continuous
piecewise affine mappings. KKT-hPINN (Chen et al., 2024) enforces more general affine equality
constraints by projecting the output to the feasible set where the projection is computed using the
KKT conditions of the constraints. However, these affine equality constraints are too restrictive.
DC3 (Donti et al., 2021b) is a framework for more general nonlinear constraints that reduces the
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Table 1: Comparison of methods enforcing hard constraints on neural networks for the target func-
tion y = f(x) ∈ Rnout . The baselines above the solid midline consider constraints that only depend
on the output. For computation, F and B indicate forward and backward passes, respectively.

Method Constraint Satisfaction
Guarantee Computation Universal

Approximator

Frerix et al. (2020) Ay ≤ 0 Always F,B: Closed-Form Unknown
LinSATNet

(Wang et al., 2023)
A1y ≤ b1, A2y ≥ b2, Cy = d
(y ∈ [0, 1]m, A∗, b∗, C, d ≥ 0)

Asymptotic F,B: Iterative Unknown

C-DGM (Stoian et al., 2024) Ay ≤ b Always F,B: Closed-Form Unknown
RAYEN

(Tordesillas et al., 2023)
y ∈ C (C: linear,

quadratic, SOC, LMI) Always F,B: Closed-Form Unknown

Soft-Constrained Any No F,B: Closed-Form Yes
POLICE

(Balestriero & LeCun, 2023) y = Ax+ b ∀x ∈ R Always F,B: Closed-Form Unknown

KKT-hPINN
(Chen et al., 2024)

Ax+By = b
(# constraints ≤ nout)

Always F,B: Closed-Form Unknown

DC3
(Donti et al., 2021b) gx(y) ≤ 0, hx(y) = 0

Asymptotic
for linear gx, hx

F,B: Iterative Unknown

HardNet-Aff A(x)y ≤ b(x), C(x)y = d(x)
(# constraints ≤ nout)

Always F,B: Closed-Form Yes

HardNet-Cvx y ∈ C(x) (C(x): convex) Asymptotic F:Iterative
B:Closed-Form Yes

violations of inequality constraints through gradient-based methods over the manifold where equal-
ity constraints are satisfied. However, its constraint satisfaction is not guaranteed in general and is
largely affected by the number of gradient steps and the step size, which require fine-tuning.

More closely related to our framework, methods to enforce a single affine inequality constraint are
proposed in control literature: Kolter & Manek (2019) presented a framework for learning a stable
dynamical model that satisfies a Lyapunov stability constraint. Based on this method, Min et al.
(2023) presented the CoILS framework to learn a stabilizing control policy for an unknown control
system by enforcing a control Lyapunov stability constraint. Our work generalizes the ideas used in
these works to impose more general affine/convex constraints while proving universal approximation
guarantees that are absent in prior works; On the theoretical front, Kratsios et al. (2021) presented
a constrained universal approximation theorem for probabilistic transformers whose outputs are
constrained to be in a feasible set. However, their contribution is primarily theoretical, and they do
not present a method for learning such a probabilistic transformer.

Formal Verification of Neural Networks Verifying whether a provided neural network (after
training) always satisfies a set of constraints for a certain set of inputs is a well-studied subject. Al-
barghouthi et al. (2021) provide a comprehensive summary of the constraint-based and abstraction-
based approaches to verification. Constraint-based verifiers are often both sound and complete but
they have not scaled to practical neural networks, whereas abstraction-based techniques are approx-
imate verifiers which are sound but often incomplete (Brown et al., 2022; Tjeng et al., 2019; Liu
et al., 2021; Fazlyab et al., 2020; Qin et al., 2019; Ehlers, 2017). Other approaches have focused on
formally verified exploration and policy learning for reinforcement learning (Bastani et al., 2018;
Anderson et al., 2020). Contrary to formal verification methods, which take a pre-trained network
and verify that its output always satisfies the desired constraints, our method guarantees constraint
satisfaction by construction.

3 PRELIMINARIES

3.1 NOTATION

For p ∈ [1,∞), ∥v∥p denotes the ℓp-norm for a vector v ∈ Rm, and ∥A∥p denotes the operator norm
for a matrix A ∈ Rk×m induced by the ℓp-norm, i.e., ∥A∥p = supw ̸=0 ∥Aw∥p/∥w∥p. v(i) ∈ R,
v(:i) ∈ Ri, and v(i:) ∈ Rm−i denote the i-th component, the first i and the last m− i components of
v, respectively. Similarly, A(:i) ∈ Rk×i and A(i:) ∈ Rk×(m−i) denote the first i and the last m − i
columns of A, respectively. [A;B] denotes the row-wise concatenation of the matrices A and B.

For a domain X ⊂ Rnin and a codomain Y ⊂ Rnout , let C(X ,Y) be the class of continuous functions
from X to Y endowed with the sup-norm: ∥f∥∞ := supx∈X ∥f(x)∥∞. Similarly,Lp(X ,Y) denotes
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the class of Lp functions from X to Y with the Lp-norm: ∥f∥p := (
∫
X ∥f(x)∥ppdx)

1
p . For function

classes F1,F2 ⊂ C(X ,Y) (resp . F1,F2 ⊂ Lp(X ,Y)), we say F1 universally approximates (or
is dense in) a function class F2 if for any f2 ∈ F2 and ϵ > 0, there exists f1 ∈ F1 such that
∥f2−f1∥∞ ≤ ϵ (resp. ∥f2−f1∥p ≤ ϵ). For a neural network, its depth and width are defined as the
total number of layers and the maximum number of neurons in any single layer, respectively. Given
x ∈ X , we drop the input dependency on x when it is evident to simplify the presentation.

3.2 UNIVERSAL APPROXIMATION THEOREM

The universal approximation property is a foundational concept in understanding the capabilities of
neural networks in various applications. Classical results reveal that shallow neural networks with
arbitrary width can approximate any continuous function defined on a compact set as formalized in
the following theorem (Cybenko, 1989; Hornik et al., 1989; Pinkus, 1999):
Theorem 3.1 (Universal Approximation Theorem for Shallow Networks). Let ρ : R → R be any
continuous function and K ∈ R be a compact set. Then, depth-two neural networks with ρ activation
function universally approximate C(K,R) if and only if ρ is nonpolynomial.

To further understand the success of deep learning, the universal approximation property for deep
and narrow neural networks has also been studied in the literature (Lu et al., 2017; Hanin & Sellke,
2017; Kidger & Lyons, 2020; Park et al., 2021). Interesting results show that a critical threshold
exists on the width of deep networks that attain the universal approximation property. For instance,
deep networks with ReLU activation function with a certain minimum width can approximate any
Lp function as described in the following theorem (Park et al., 2021, Thm. 1):
Theorem 3.2 (Universal Approximation Theorem for Deep Networks). For any p ∈ [1,∞), w-
width neural networks with ReLU activation function universally approximate Lp(Rnin ,Rnout) if and
only if w ≥ max{nin + 1, nout}.

Despite these powerful approximation guarantees, they fall short in scenarios where neural networks
are required to satisfy hard constraints, such as physical laws or safety requirements. These theo-
rems ensure that a neural network can approximate a target function arbitrarily closely but do not
guarantee that the approximation will adhere to necessary constraints. Consequently, even if the
target function inherently satisfies specific hard constraints, the neural network approximator might
violate them–especially in regions where the target function barely meets the constraints. This
shortcoming is particularly problematic for applications that demand strict compliance with non-
negotiable domain-specific rules. Therefore, ensuring that neural networks can both approximate
target functions accurately and rigorously satisfy hard constraints remains a critical challenge for
their deployment in practical applications.

4 HardNet: HARD-CONSTRAINED NEURAL NETWORKS

In this section, we present a practical framework HardNet for enforcing hard constraints on neural
networks while retaining their universal approximation properties. In a nutshell, for a parameter-
ized (neural network) function fθ : X ⊂ Rnin → Rnout , we ensure the satisfaction of given con-
straints by appending a differentiable projection layer P to fθ. This results in the projected function
P(fθ) : X → Rnout meeting the required constraints while allowing its output to be backpropagated
through to train the model via gradient-based algorithms. Importantly, we show that the proposed
architecture has universal approximation guarantees, i.e., it universally approximates the class of
functions that satisfy the constraints.

We begin with the simple intuitive case of a single affine constraint and then generalize the ap-
proach in two directions. First, we propose HardNet-Aff that ensures compliance with multiple
input-dependent affine constraints through a differentiable closed-form projection. Then, we present
HardNet-Cvx as a framework to satisfy general input-dependent convex constraints exploiting dif-
ferentiable convex optimization solvers.

4.1 HardNet-Aff: IMPOSING INPUT-DEPENDENT AFFINE CONSTRAINTS

First, consider the following single input-dependent affine constraint for a function f : X → Rnout :

a(x)⊤f(x) ≤ b(x) ∀x ∈ X , (1)

where a(x) ∈ Rnout and b(x) ∈ R. We assume a(x) ̸= 0 as the constraint solely depending on
the input is irrelevant to the function. We can ensure this constraint on P(fθ) by constructing the
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Figure 1: Illustration of input-dependent constraints and projections performed by HardNet (left)
and its schematic diagram (right). A target function f :R→R2 satisfies hard constraints f(x)∈C(x)
for each x ∈ R. The feasible set C(x) is visualized as the gray area for two sample inputs x1
and x2. While the function fθ closely approximates f , it violates the constraints. Our framework
HardNet projects the violated output onto the feasible set in two directions; one in parallel to the
boundaries of the satisfied affine constraints (HardNet-Aff) and the other towards the feasible point
with the minimum ℓ2-norm distance from the violated output (HardNet-Cvx). These differentiable
projections allow unconstrained optimization of the network parameters using standard algorithms.

projection for all x ∈ X as:

P(fθ)(x) = argmin
z∈Rnout

∥z − fθ(x)∥2 s.t. a(x)⊤z ≤ b(x) (2)

= fθ(x)−
a(x)

∥a(x)∥2ReLU
(
a(x)⊤fθ(x)− b(x)

)
. (3)

For example, the constraint (f(x))(0) ≥ x(f(x))(1) on f(x) : R → R2 can be encoded with
a(x) = [−1;x], b(x) = 0 so that a sample fθ(1) = [3; 4] is projected to P(fθ)(1) = [3.5; 3.5]
that satisfies the constraint. This closed-form solution is differentiable almost everywhere so that
the projected function can be trained using conventional gradient-based algorithms such as SGD.
This type of closed-form projection has been recently utilized in the control literature as in Kolter &
Manek (2019) for learning stable dynamics and in Donti et al. (2021a); Min et al. (2023) for learning
stabilizing controllers. Nonetheless, they are limited to enforcing only a single inequality constraint.
Moreover, their empirical success in learning the desired functions has not been theoretically un-
derstood. To that end, we generalize the method to satisfy more general constraints and provide a
rigorous explanation for its expressivity through universal approximation guarantees.

Suppose we have multiple input-dependent affine constraints in an aggregated form:

A(x)f(x) ≤ b(x), C(x)f(x) = d(x) ∀x ∈ X , (4)

where A(x) ∈ Rnineq×nout , b(x) ∈ Rnineq , C(x) ∈ Rneq×nout , d(x) ∈ Rneq for nineq inequality and neq
equality constraints. For partitions A(x) = [A(:neq) A(neq:)] and C(x) = [C(:neq) C(neq:)], we make
the following assumptions about the constraints:
Assumption 4.1. For all x ∈ X , i) there exists at least one y ∈ Rnout that satisfies all constraints
in (4), ii) C(:neq) is invertible, and iii) Ã(x) := A(neq:) −A(:neq)C

−1
(:neq)

C(neq:) has full row rank.

Given x ∈ X , when C(x) has full row rank (i.e., no redundant constraints), there exists an invertible
submatrix of C(x) with its neq columns. Without loss of generality, we can assume C(:neq) is such
submatrix by considering a proper permutation of the components of f . Then, the second assump-
tion holds when the same permutation lets C(:neq) invertible for all x ∈ X . The last assumption
requires the total number of the constraints nineq + neq to be less than or equal to the output di-
mension nout and A(x) to have full row rank. This assumption could be restrictive in practice, for
instance, to enforce the constraints 0≤ f(x)≤ 1. In such cases, we can still utilize our method by
choosing a subset of constraints to guarantee satisfaction and imposing the others as soft constraints.
Note that treating the equality constraints as pairs of inequality constraints C(x)f(x) ≤ d(x) and
−C(x)f(x) ≤ −d(x) increases the total number of the constraints to nineq + 2neq and forms the
rank-deficient aggregated coefficient [A(x);C(x);−C(x)].
Under the assumptions, we first efficiently reduce the nineq + neq constraints to nineq equivalent
inequality constraints on partial outputs f(neq:) for a partition of the function f(x) = [f(:neq); f(neq:)].
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Consider the hyperplane in the codomain Y over which the equality constraints are satisfied. Then,
for the function output f(x) to be on the hyperplane, the first part f(:neq) is determined by f(neq:):

f(:neq)(x) = C−1
(:neq)

(
d(x)− C(neq:)f(neq:)(x)

)
. (5)

Substituting this f(:neq) into the inequality constraints, the constraints in (4) is equivalent to the
following inequality constraints with (5):(

A(neq:) −A(:neq)C
−1
(:neq)

C(neq:)︸ ︷︷ ︸
=:Ã(x)

)
f(neq:)(x) ≤ b(x)−A(:neq)C

−1
(:neq)

d(x)︸ ︷︷ ︸
=:b̃(x)

∀x ∈ X . (6)

With this nineq equivalent inequality constraints on f(neq:), we propose HardNet-Aff by developing
a novel generalization of the closed-form projection for the single constraint case in (3). Since the
first part f(:neq) of the function is completely determined by the second part f(neq:) as in (5), we let
the parameterized function fθ : X → Rnout−neq approximate only the second part (or disregard the
first neq outputs if fθ(x) ∈ Rnout is given). Then, HardNet-Aff projects fθ to satisfy the constraints
in (4) as below:

HardNet-Aff :
P(fθ)(x) =

[
C−1

(:neq)

(
d(x)− C(neq:)f

∗
θ (x)

)
f∗θ (x)

]
∀x ∈ X

where f∗θ (x) := fθ(x)− Ã(x)+ReLU
(
Ã(x)fθ(x)− b̃(x)

), (7)

and A+ := A⊤(AA⊤)−1 is the pseudoinverse of A. This novel projection satisfies the following
properties; see Appendix A.1 for a proof.
Proposition 4.2. Under Assumption 4.1, for any parameterized (neural network) function fθ : X →
Rnout−neq and for all x ∈ X , HardNet-Aff P(fθ) in (7) satisfies
i) A(x)P(fθ)(x) ≤ b(x), ii) C(x)P(fθ)(x) = d(x),

iii) For each i-th row ai ∈ Rnout of A(x), a⊤i P(fθ)(x) =

{
a⊤i f̄θ(x) if a⊤i f̄θ(x) ≤ b(i)(x)

b(i)(x) o.w.
,

where f̄θ(x) :=
[
[C−1

(:neq)

(
d(x)− C(neq:)fθ(x)

)
]; fθ(x)

]
∈ Rnout .

Remark 4.3 (Parallel Projection). Note that HardNet-Aff in (7) for (nineq, neq) = (1, 0) is equiv-
alent to the single-inequality-constraint case in (3). However, unlike (3), which is the closed-form
solution of the optimization in (2), HardNet-Aff, in general, does not perform the minimum ℓ2-norm
projection for the constraint in (4). Instead, we can understand its projection geometrically based on
Proposition 4.2 (iii). First, f̄θ(x) determined by fθ(x) is on the hyperplane over which the equality
constraints hold. Then, the projection preserves the distance from the boundary of the feasible set
for each constraint when f̄θ(x) satisfies the constraint. Otherwise, the projected output is located on
the boundary. Thus, HardNet-Aff projects the augmented output f̄θ(x) onto the feasible set in the
direction parallel to the boundaries of the satisfied constraints’ feasible sets as described in Fig. 1.
Remark 4.4 (Gradient Properties). When the pre-projection output fθ(x) violates certain constraints,
the added projection layer can result in zero gradients under specific conditions, even if the projected
output differs from the target value. However, such cases are infrequent in practical settings and can
be mitigated as gradients are averaged over batched data. Thus, HardNet-Aff allows the projected
function to be trained to achieve values (strictly) within the feasible set using conventional gradient-
based algorithms. Additionally, we can promote the model fθ to be initialized within the feasible set
using the warm-start scheme outlined in Appendix A.7, which involves training the model without
the projection layer for a few initial epochs while regularizing constraint violations. Further details
and discussions are provided in Appendix A.8.

While HardNet-Aff is guaranteed to satisfy the hard constraints in (4), it should not lose the neural
network’s expressivity to be useful for deployment in practical applications. To that end, we pro-
vide a rigorous argument for HardNet-Aff preserving the neural network’s expressive power by the
following universal approximation theorem; see Appendix A.2 for a proof.
Theorem 4.5 (Universal Approximation Theorem with Affine Constraints). Consider input-
dependent constraints (4) that satisfy assumption 4.1. Suppose X ⊂ Rnin is compact, and
A(x), C(x) are continuous over X . For any p ∈ [1,∞), let F = {f ∈ Lp(X ,Rnout)|f satisfies (4)}.
Then, HardNet-Aff with w-width ReLU neural networks defined in (7) universally approximates F
if w ≥ max{nin + 1, nout − neq}.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The main idea behind this theorem is bounding ∥f − P(fθ)∥ in terms of ∥f − fθ∥. By selecting
fθ such that ∥f − fθ∥ is arbitrarily small, we can make P(fθ) approach the target function f as
closely as desired. The existence of such an fθ is guaranteed by existing universal approximation
theorems. While we utilize Theorem 3.2 in this theorem, other universal approximation theorems
on plain neural networks, such as Theorem 3.1, can also be employed.

4.2 HardNet-Cvx: IMPOSING GENERAL INPUT-DEPENDENT CONVEX CONSTRAINTS

Going beyond the affine constraints, we present HardNet-Cvx as a framework that enforces general
input-dependent convex constraints:

f(x) ∈ C(x) ∀x ∈ X (8)

where C(x) ⊂ Rnout is a convex set. Unlike the affine constraints case, we cannot extend the closed-
form projection of the single constraint case in (3) for general convex constraints. Thus, we present
HardNet-Cvx by generalizing the optimization-based projection in (2) as below:

HardNet-Cvx : P(fθ)(x) = argmin
z∈Rnout

∥z − fθ(x)∥2 s.t. z ∈ C(x) ∀x ∈ X . (9)

While no general closed-form solution for this optimization problem exists, we can employ differen-
tiable convex optimization solvers for an implementation of HardNet-Cvx such as Amos & Kolter
(2017) for affine constraints (when HardNet-Aff cannot be applied) and Agrawal et al. (2019) for
more general convex constraints. This idea was briefly mentioned by Donti et al. (2021b) and used
as a baseline (for input-independent constraints) in Tordesillas et al. (2023). However, the computa-
tional complexity of such solvers can be a limiting factor in time-sensitive applications. That said,
we present HardNet-Cvx as a general framework, independent of specific implementation methods,
to complement HardNet-Aff and provide a unified solution for various constraint types.

As in Section 4.1, we demonstrate that HardNet-Cvx preserves the expressive power of neural
networks by proving the following universal approximation theorem; see Appendix A.3 for a proof.
Theorem 4.6 (Universal Approximation Theorem with Convex Constraints). Consider input-
dependent constrained sets C(x) ⊂ Rnout that are convex for all x ∈ X ⊂ Rnin . For any p ∈ [1,∞),
let F = {f ∈ Lp(X ,Rnout)|f(x) ∈ C(x) ∀x ∈ X}. Then, HardNet-Cvx with w-width ReLU
neural networks defined in (9) universally approximates F if w ≥ max{nin + 1, nout}.

5 EXPERIMENTS

In this section, we demonstrate the versatility and effectiveness of HardNet over four scenarios with
required constraints: fitting functions under constraints, learning optimization solvers, optimizing
control policies in safety-critical systems, and learning safe decision logic for aircraft systems.

As evaluation metrics, we measure the violation of constraints in addition to the application-specific
performance metrics. For a test sample x∈X and nineq inequality constraints gx

(
f(x)

)
≤0∈Rnineq ,

their violation is measured with the maximum (≤ max) and mean (≤ mean) of ReLU(gx(f(x)))
and the number of violated constraints (≤ #). Similar quantities of |hx(f(x))| are measured for
neq equality constraints hx(f(x)) = 0 ∈ Rneq . Then, they are averaged over all test samples. The
inference time (Ttest) for the test set and the training time (Ttrain) are also compared.

We compare HardNet with the following baselines: (i) NN: Plain neural networks, (ii) Soft: Soft-
constrained neural networks. To penalize constraint violation, for a sample point xs ∈ X , additional
regularization terms λ≤∥ReLU(gx(f(xs)))∥22 + λ=∥hx(f(xs))∥22 are added to the loss function,
(iii) DC3 (Donti et al., 2021b): Similarly to HardNet-Aff, DC3 takes a neural network that ap-
proximates the part of the target function. It first augments the neural network output to satisfy
the equality constraints. Then, it corrects the augmented output to minimize the violation of the
inequality constraints via the gradient descent algorithm. DC3 backpropagates through this itera-
tive correction procedure to train the model, (iv) NN+Proj/Soft+Proj/DC3+Proj: The projection of
HardNet is applied at test time to the outputs of NN/Soft/DC3. For all methods, we use 3-layer fully
connected neural networks with 200 neurons in each hidden layer and ReLU activation function. For
HardNet-Cvx, its projection is implemented using Agrawal et al. (2019).

5.1 FUNCTION FITTING UNDER CONSTRAINTS

In this experiment, we demonstrate the efficacy of HardNet-Aff on a problem involving fitting a
continuous function f : [−2, 2] → R shown in Fig. 2. The function outputs are required to avoid
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Figure 2: Learned functions at the initial (left) and final (right) epochs for the function fitting experi-
ment. The models are trained on the samples indicated with circles, with their RMSE distances from
the true function shown in parentheses. HardNet-Aff adheres to the constraints from the start of the
training and generalizes better than the baselines on unseen data. On the other hand, the baselines
violate the constraints throughout the training.

Table 2: Results for the function fitting experiment. HardNet-Aff generalizes better than the base-
lines with the smallest RMSE distance from the true function without any constraint violation. The
max, mean, and the number of constraint violations are computed out of 401 test samples. Viola-
tions are highlighted in red. Standard deviations over 5 runs are shown in parentheses.

RMSE ≰ max ≰ mean ≰ # Ttest (ms) Ttrain (s)

NN 1.06 (0.21) 2.39 (0.42) 0.44 (0.12) 206.00 (9.27) 0.17 (0.00) 1.96 (0.04)
Soft 1.45 (0.26) 3.36 (0.62) 0.66 (0.16) 206.00 (9.44) 0.17 (0.00) 1.99 (0.07)
DC3 1.01 (0.11) 2.20 (0.39) 0.39 (0.06) 200.80 (6.34) 8.25 (0.05) 13.96 (1.59)
HardNet-Aff 0.40 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.88 (0.01) 3.31 (0.11)

specific regions defined over separate subsets of the domain [−2, 2]. These constraints can be ex-
pressed as a single input-dependent affine constraint on the function output. The models are trained
on 50 labeled data points randomly sampled from [−1.2, 1.2]; see Appendix A.4 for details.

As shown in Fig. 2 and Table 2, HardNet-Aff consistently satisfies the hard constraints throughout
training and achieves better generalization than the baselines, which violate these constraints. Es-
pecially at the boundaries x=−1 and x = 1 in the initial epoch results, the jumps in DC3’s output
value, caused by DC3’s correction process, insufficiently reduce the constraint violations. The per-
formance of its iterative correction process heavily depends on the number of gradient descent steps
and the step size, DC3 requires careful hyperparameter tuning unlike HardNet-Aff.

5.2 LEARNING OPTIMIZATION SOLVER

We consider the problem of learning optimization solvers as in Donti et al. (2021b) with the follow-
ing nonconvex optimization problem:

f(x) = argmin
y

1

2
y⊤Qy + p⊤ sin y s.t. Ay ≤ b, Cy = x, (10)

where Q ∈ Rnout×nout ⪰ 0, p ∈ Rnout , A ∈ Rnineq×nout , b ∈ Rnineq , C ∈ Rneq×nout are constants and
sin is the element-wise sine function. The target function f outputs the solution of each optimiza-
tion problem instance determined by the input x ∈ [−1, 1]neq . The main benefit of learning this
nonconvex optimization solver with neural networks is their faster inference time than optimizers
based on iterative methods. To ensure that the learned neural networks provide feasible solutions,
the constraints of the optimization problems are set as hard constraints.

In this experiment, we guarantee that the given constraints are feasible for all x ∈ [−1, 1]neq by
computing a proper b for randomly generated A,C as described in Donti et al. (2021b). Then the
models are trained on 10000 unlabeled data points uniformly sampled from [−1, 1]neq . To perform
this unsupervised learning task, the loss function for each sample xs is set as 1

2fθ(xs)
⊤Qfθ(xs) +

p⊤ sin fθ(xs). To reproduce similar results as in Donti et al. (2021b), the models are equipped
with additional batch normalization and dropout layers in this experiment. As shown in Table 3,
HardNet-Aff consistently finds feasible solutions with a small suboptimality gap from the optimizer
(IPOPT) with a much shorter inference time.
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Table 3: Results for learning solvers of nonconvex optimization problems with 100 variables, 50
equality constraints, and 50 inequality constraints. HardNet-Aff attain feasible solutions with the
smallest suboptimality gap among the feasible methods. The max, mean, and the number of viola-
tions are computed out of the 50 constraints. Violations are highlighted in red. Standard deviations
over 5 runs are shown in parentheses.

Obj. value ≰ max/mean/# ̸= max/mean/# Ttest (ms) Ttrain (s)

Optimizer -14.28 (0.00) 0.00/0.00/0 (0.00/0.00/0) 0.00/0.00/0 (0.00/0.00/0) 1019.3 (10.3) -
NN -27.42 (0.00) 11.81/1.07/11.99 (0.02/0.00/0.01) 14.88/6.33/50 (0.01/0.00/0) 0.33 (0.04) 41.01 (1.62)
NN+Proj 740.93 (5.50) 0.00/0.00/0 (0.00/0.00/0) 0.00/0.00/0 (0.00/0.00/0) 3.45 (0.03) 41.01 (1.62)
Soft -12.02 (0.04) 0.00/0.00/0 (0.00/0.00/0) 0.46/0.17/49.98 (0.00/0.00/0.00) 0.31 (0.00) 40.00 (1.77)
Soft+Proj -10.76 (0.09) 0.00/0.00/0 (0.00/0.00/0) 0.00/0.00/0 (0.00/0.00/0) 4.34 (1.65) 40.00 (1.77)
DC3 -12.86 (0.06) 0.00/0.00/0.01 (0.00/0.00/0.00) 0.00/0.00/0 (0.00/0.00/0) 4.92 (0.18) 967.24 (232.31)
DC3+Proj -12.86 (0.06) 0.00/0.00/0 (0.00/0.00/0) 0.00/0.00/0 (0.00/0.00/0) 7.98 (0.22) 967.24 (232.31)
HardNet-Aff -13.67 (0.03) 0.00/0.00/0 (0.00/0.00/0) 0.00/0.00/0 (0.00/0.00/0) 3.41 (0.02) 222.41 (40.07)

Table 4: Results for optimizing safe control policies. HardNet-Aff generates trajectories without
constraint violation and has the smallest costs among the methods with zero violation. The max and
mean constraint violations are computed for the violations accumulated throughout the trajectories.
Violations are highlighted in red. Standard deviations over 5 runs are shown in parentheses.

Cost ≰ max ≰ mean Ttest (ms) Ttrain (min)

NN 422.22 (0.48) 156.65 (2.38) 118.25 (1.50) 0.24 (0.01) 141.03 (2.01)
NN+Proj 1566.23 (630.61) 0.00 (0.00) 0.00 (0.00) 2.87 (0.12) 141.03 (2.01)
Soft 479.26 (0.46) 7.28 (0.16) 4.45 (0.17) 0.25 (0.02) 115.41 (6.09)
Soft+Proj 1038.83 (425.53) 0.00 (0.00) 0.00 (0.00) 2.88 (0.11) 115.41 (6.09)
DC3 502.70 (40.85) 8.05 (2.22) 5.22 (2.05) 25.16 (0.09) 415.76 (109.11)
DC3+Proj 4795.80 (7463.67) 0.00 (0.00) 0.00 (0.00) 27.50 (0.18) 415.76 (109.11)
HardNet-Aff 521.30 (13.11) 0.00 (0.00) 0.00 (0.00) 2.71 (0.15) 195.97 (24.19)

5.3 OPTIMIZING SAFE CONTROL POLICY
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Figure 3: Simulated trajectories from
a random initial state. The cost of
each trajectory is shown in parentheses.
HardNet-Aff avoids the obstacles while
obtaining a low cost value. Even though
the soft-constrained method and DC3
appear to avoid obstacles and achieve
smaller costs than the other collision-
free trajectories, they violate the safety
constraints (which are more conserva-
tive than hitting the obstacles).

In this experiment, we apply HardNet-Aff to enforce
safety constraints in control systems. Consider a control-
affine system with its known dynamics f and g:

ẋ(t) = f(x(t)) + g(x(t))u(t), (11)

where x(t) ∈ Rnin and u(t) ∈ Rnout are the system
state and the control input at time t, respectively. For
safety reasons (e.g., avoiding obstacles), the system re-
quires x(t) ∈ Xsafe ⊂ Rnin for all t. We translate this
safety condition into a state-dependent affine constraint
on the control input using a control barrier function (CBF)
h : Rnin → R (Ames et al., 2019). Suppose its super-level
set {x ∈ Rnin |h(x) ≥ 0} ⊂ Xsafe and h(x(0)) ≥ 0. Then,
we can ensure h(x(t)) ≥ 0 ∀t ≥ 0 by guaranteeing

ḣ(x) = ∇h(x)⊤
(
f(x) + g(x)π(x)

)
≥ −αh(x) (12)

at each x(t) for a state-feedback control policy π :
Rnin → Rnout with some α > 0. Enforcing (12) for multi-
ple CBFs ensures the trajectory remains within the inter-
section of the corresponding safe sets.

We consider controlling a unicycle system to minimize
the cost over trajectories while avoiding collisions with
two elliptical obstacles, each presented with a CBF (see
Appendix A.5 for details). Given a nominal controller
πnom : Rnin → Rnout designed without obstacle consider-
ations, a conventional approach to find a safe controller is
to solve a quadratic program:

CBF-QP: πCBF-QP(x) = argmin
u

∥u− πnom(x)∥2 s.t. (12) holds for all CBFs (13)
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Table 5: Results for the HCAS experiments with 17 inequality constraints. Constraint violations
are highlighted in red. Standard deviations over 3 runs are shown in parentheses. HardNet-Cvx
was warm-started with 250 epochs of soft-penalty training. HardNet-Cvx-NP (no projection) is the
same model as HardNet-Cvx but disables the projection at test time. HardNet-Cvx attains feasible
solutions with the smallest suboptimality gap among the feasible methods.

Test Loss ≰ max ≰ mean ≰ # Ttest (µs)

NN 7.98 (1.33) 0.67 (0.26) 0.03 (0.00) 0.11 (0.00) 1.31 (0.03)
NN+Proj 8.15 (1.32) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 6442.21 (250.87)
Soft 7.98 (1.33) 0.67 (0.26) 0.03 (0.00) 0.11 (0.00) 1.33 (0.06)
Soft+Proj 8.15 (1.32) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 6216.16 (332.36)
HardNet-Cvx-NP 7.58 (0.74) 0.38 (0.24) 0.02 (0.00) 0.11 (0.00) 1.66 (0.05)
HardNet-Cvx 7.69 (0.74) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 9367.21 (1383.97)

at each x(t). The downside of this method is that the controller cannot optimize a cost/reward over
the trajectories as it only attempts to remain close to the nominal controller. Instead, we can do so by
training neural network policies πθ(x) := πnom(x) + fθ(x) with neural networks fθ by minimizing
the costs of rolled-out trajectories from randomly sampled initial states. As shown in Fig. 3 and
Table 4, HardNet-Aff consistently generates safe trajectories with low costs.

5.4 AIRBORNE COLLISION AVOIDANCE SYSTEM (ACAS)

In this example, we consider learning an airborne collision avoidance system called the Horizontal
Collision Avoidance System (HCAS), which is a variant of the popular system ACAS Xu used by
Katz et al. (2017), for which the labeled training dataset is publicly available (Julian & Kochenderfer,
2019). The goal of the HCAS system is to recommend horizontal maneuvers—clear of conflict,
weak left, strong left, weak right, strong right—to aircrafts in order to stay safe and avoid collisions.
The system takes the state of the ownship and the relative state of the intruder airplane as inputs, and
outputs a score for each of the 5 possible horizontal maneuvers listed above. Traditionally, this was
accomplished using lookup tables but using neural networks has recently become customary.

In their original work, Katz et al. (2017) developed a method called Reluplex for formally verifying
that the deep neural networks used for generating the scores of the advisories always satisfy certain
hard constraints. This requires training a model and then verifying that it satisfies the constraints by
solving a satisfiability problem. In addition, the original work trains 45 different models for various
values of τ (the time to collision or loss of vertical separation) and pra (the previously recommended
advisory) in order to satisfy strict computational limits imposed by the inference hardware. In our
work, we train a single model that generalizes across various values of τ and pra.

In our implementation, we demonstrate a method for learning neural networks that output con-
strained airplane advisories by construction, rather than engaging in an iterative cycle of training a
neural network and separately verifying it until convergence. While some of the properties in the
original problem (Katz et al., 2017) are non-convex in nature, we pick all five of the properties that
can be encoded in a convex form. The results for this example are presented in Table 5. Additional
details for the experiment can be found in Appendix A.6.

6 CONCLUSION

In this paper, we presented HardNet, a practical framework for constructing neural networks that
inherently satisfy input-dependent affine/convex constraints. We proved that imposing these hard
constraints does not limit the expressive power of these neural networks by providing universal
approximation guarantees. We demonstrated the utility and versatility of our method across several
application scenarios, such as learning solvers for optimization problems, control policies for safety-
critical systems, and advisories for aircraft navigation systems. Using HardNet in other application
domains that benefit from incorporating domain-specific knowledge is a promising direction for
future work. Additionally, we aim to explore developing methods for performing fast projections
for problems with more general constraints. Lastly, extending our approach to support other forms
of inductive biases, such as equivariances and invariances, would potentially be of great interest.
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tion under constraints is possible with transformers. arXiv preprint arXiv:2110.03303, 2021.

Xi’an Li, Jiaxin Deng, Jinran Wu, Shaotong Zhang, Weide Li, and You-Gan Wang. Physical in-
formed neural networks with soft and hard boundary constraints for solving advection-diffusion
equations using fourier expansions. Computers & Mathematics with Applications, 159:60–75,
2024. ISSN 0898-1221. doi: https://doi.org/10.1016/j.camwa.2024.01.021.

Tong Lin and Hongbin Zha. Riemannian manifold learning. IEEE transactions on pattern analysis
and machine intelligence, 30(5):796–809, 2008.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, and Mykel J.
Kochenderfer. Algorithms for verifying deep neural networks. Foundations and Trends® in
Optimization, 4(3-4):244–404, 2021. ISSN 2167-3888. doi: 10.1561/2400000035.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information process-
ing systems, 31, 2018.

Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep net-
works: Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.
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A APPENDIX

A.1 PROOF OF PROPOSITION 4.2

Proof. We simplify the notation of the partition by (·)1 := (·)(:neq) and (·)2 := (·)(neq:). Then,

A(x)P(fθ)(x) = A1P(fθ)1 +A2P(fθ)2 (14)

= A1C
−1
1 (d− C2f

∗
θ ) +A2f

∗
θ (15)

= (A2 −A1C
−1
1 C2)f

∗
θ +A1C

−1
1 d (16)

= Ãf∗θ − b̃+ b (17)

= Ãfθ − ReLU(Ãfθ − b̃)− b̃+ b ≤ b̃− b̃+ b = b(x). (18)

This shows (i). For (ii),

C(x)P(fθ)(x) = C1P(fθ)1 + C2P(fθ)2 = (d− C2f
∗
θ ) + C2f

∗
θ = d(x). (19)

For (iii), we first observe that

a⊤i f̄θ(x) ≤ b(i)(x) ⇐⇒ a⊤i1fθ + a⊤i2C
−1
2 (d− C1fθ) ≤ b(i) ⇐⇒ ã⊤i fθ ≤ b̃(i). (20)

Then, if a⊤i f̄θ(x) ≤ b(i)(x),

a⊤i P(fθ)(x) = a⊤i1P(fθ)1 + a⊤i2P(fθ)2 (21)

= (a⊤i2 − a⊤i1C
−1
1 C2)f

∗
θ + a⊤i1C

−1
1 d (22)

= (a⊤i2 − a⊤i1C
−1
1 C2)fθ + a⊤i1C

−1
1 d = a⊤i f̄θ(x), (23)

where the second last equality is from Ãf∗θ = Ãfθ − ReLU(Ãfθ − b̃) and ã⊤i fθ ≤ b̃(i). Similarly,
if a⊤i f̄θ(x) > b(i)(x),

a⊤i P(fθ)(x) = (a⊤i2 − a⊤i1C
−1
1 C2)f

∗
θ + a⊤i1C

−1
1 d = b̃(i) + a⊤i1C

−1
1 d = b(i)(x) (24)

A.2 PROOF OF THEOREM 4.5

Proof. We first show that ∥f(x)−P(fθ)(x)∥2 can be bounded by some constant times ∥f(neq:)(x)−
fθ(x)∥2. From (7),

∥f(x)− P(fθ)(x)∥22 = ∥f(:neq)(x)− P(fθ)(:neq)(x)∥22 + ∥f(neq:)(x)− P(fθ)(neq:)(x)∥22 (25)

= ∥C−1
(:neq)

C(neq:)(f(neq:) − f∗θ )∥22 + ∥f(neq:) − f∗θ ∥22 (26)

≤
(
1 + ∥C−1

(:neq)
C(neq:)∥22

)
∥f(neq:) − f∗θ ∥22, (27)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where the second equality holds by substituting f(:neq) in (5). Meanwhile,

∥f(neq:) − f∗θ ∥2 ≤ ∥f(neq:) − fθ∥2 + ∥Ã+ReLU
(
Ãfθ − b̃

)
∥2 (28)

≤ ∥f(neq:) − fθ∥2 + ∥Ã+∥2∥ReLU
(
Ãf(neq:) − b̃+ Ã(fθ − f(neq:))

)
∥2 (29)

≤ ∥f(neq:) − fθ∥2 + ∥Ã+∥2∥Ã(fθ − f(neq:))∥2 (30)

≤ (1 + ∥Ã+∥2∥Ã∥2)∥f(neq:) − fθ∥2. (31)

Then, putting them together, we obtain

∥f(x)− P(fθ)(x)∥2 ≤
(
1 + ∥Ã+∥2∥Ã∥2

)√
(1 + ∥C−1

(:neq)
C(neq:)∥22)∥f(neq:)(x)− fθ(x)∥2. (32)

SinceA(x), C(x) are continuous over the compact domain X , there exists some constantK > 0 s.t.(
1 + ∥Ã+∥2∥Ã∥2

)√
(1 + ∥C−1

(:neq)
C(neq:)∥22) ≤ K (33)

for all x ∈ X . Thus,
∥f(x)− P(fθ)(x)∥2 ≤ K∥f(neq:)(x)− fθ(x)∥2 (34)

Extending the inequalities to general ℓp-norm for p ≥ 1 by using the inequalities ∥v∥q ≤ ∥v∥r ≤
m

1
r−

1
q ∥v∥q for any v ∈ Rm and q ≥ r ≥ 1,

∥f(x)− P(fθ)(x)∥p ≤ (nout − neq)
| 1p−

1
2 |K∥f(neq:)(x)− fθ(x)∥p (35)

Then, fθ being dense in Lp(X ,Rnout−neq) implies P(fθ) being dense in Lp(X ,Rnout). Thus, we
can employ any universal approximation theorem for fθ and convert it to that for P(fθ). We utilize
Theorem 3.2 in this theorem.

A.3 PROOF OF THEOREM 4.6

Proof. Similarly to the proof of Theorem 4.5 in Appendix A.2, we first prove the following inequal-
ity:

∥f(x)− P(fθ)(x)∥2 ≤ ∥f(x)− fθ(x)∥2 ∀x ∈ X . (36)

Given x ∈ X , consider the simple case fθ(x) ∈ C(x) first. Then, P(fθ)(x) = fθ(x) from the
projection in (9) which satisfies ∥f(x)− P(fθ)(x)∥2 ≤ ∥f(x)− fθ(x)∥2.

On the other hand, if fθ(x) /∈ C(x), consider the triangle connecting fθ(x),P(fθ)(x) and f(x).
Then, the side between fθ(x) and P(fθ)(x) is orthogonal to the tangent hyperplane of the convex
set C(x) at P(fθ)(x). For the two half-spaces separated by the tangent hyperplane, f(x) belongs to
the other half-space than the one that contains fθ(x) since C(x) is convex. Thus, the vertex angle at
P(fθ)(x) is larger than π/2. This implies that the side between fθ(x) and f(x) is the longest side
of the triangle, so ∥f(x)− P(fθ)(x)∥2 ≤ ∥f(x)− fθ(x)∥2.

Then, We can extend this ℓ2-norm result to general ℓp-norm for p ≥ 1 as in Appendix A.2:

∥f(x)− P(fθ)(x)∥p ≤ n
| 1p−

1
2 |

out ∥f(x)− fθ(x)∥p. (37)

Thus, fθ being dense inLp(X ,Rnout) implies P(fθ) being dense inLp(X ,Rnout), and we can employ
any universal approximation theorem for fθ and convert it to that for P(fθ). We utilize Theorem 3.2
in this theorem.

A.4 DETAILS FOR THE FUNCTION FITTING EXPERIMENT

The target function and constraints are as below:

f(x)=


−5 sin π

2 (x+1) if x ≤ −1

0 if x ∈ (−1, 0]

4− 9(x− 2
3 )

2 if x ∈ (0, 1]

5(1− x) + 3 if x > 1

,Constraints :


y ≥ 5 sin2 π

2 (x+ 1) if x ≤ −1

y ≤ 0 if x ∈ (−1, 0]

y ≥
(
4−9(x− 2

3 )
2
)
x if x ∈ (0, 1]

y ≤ 4.5(1− x) + 3 if x > 1

.

(38)
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Figure 4: Learned functions at the initial (left) and final (right) epochs for the function fitting ex-
periment. The models are trained on the samples indicated with circles, with their RMSE distances
from the true function shown in parentheses. HardNet-Aff adheres to the constraints from the start
of the training. On the other hand, the baselines violate the constraints throughout the training.

Table 6: Results for the function fitting experiment. HardNet-Aff attains a comparable RMSE dis-
tance from the true function as other methods without any constraint violation. The max, mean, and
the number of constraint violations are computed out of 401 test samples. Violations are highlighted
in red. Standard deviations over 5 runs are shown in parentheses.

RMSE ≰ max ≰ mean ≰ # Ttest (ms) Ttrain (s)

NN 0.21 (0.03) 0.75 (0.08) 0.02 (0.01) 39.40 (3.72) 0.16 (0.00) 2.03 (0.15)
Soft 0.24 (0.02) 0.73 (0.05) 0.02 (0.00) 31.60 (1.96) 0.16 (0.00) 1.97 (0.09)
DC3 0.20 (0.02) 0.51 (0.04) 0.01 (0.00) 32.20 (3.06) 7.76 (0.07) 13.57 (2.18)
HardNet-Aff 0.25 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.81 (0.01) 3.21 (0.05)

These four constraints can be aggregated into the following single affine constraint:

a(x)y ≤ b(x) :


a(x) = −1, b(x) = −5 sin2 π

2 (x+ 1) if x ≤ −1

a(x) = 1, b(x) = 0 if x ∈ (−1, 0]

a(x) = −1, b(x) =
(
9(x− 2

3 )
2−4

)
x if x ∈ (0, 1]

a(x) = 1, b(x) = 4.5(1− x) + 3 if x > 1

. (39)

The results in Section 5.1 show HardNet-Aff can help generalization on unseen regimes by enforc-
ing constraints. In this section, we provide additional results that train the models on data spanning
the entire domain of interest [−2, 2]. As shown in Figure 4 and Table 6, the models exhibit similar
generalization performances while HardNet-Aff satisfy the constraints throughout the training.

A.5 DETAILS FOR THE SAFE CONTROL EXPERIMENT

In this experiment, we consider controlling a unicycle system with system state x =
[xp, yp, θ, v, w]

⊤ which represents the pose, linear velocity, and angular velocity. The dynamics
of the unicycle system is given by

ẋp
ẏp
θ̇
v̇
ẇ

 =


v cos θ
v sin θ
w
0
0

+


0 0
0 0
0 0
1 0
0 1


[
alin
aang

]
, (40)

with the linear and angular accelerations alin, aang as the control inputs.

To avoid an elliptical obstacle centered at (cx, cy) with its radii rx, ry , one could consider the fol-
lowing CBF candidate:

hellipse(x) =
(cx − (xp + l cos θ)

rx

)2

+
(cy − (yp + l sin θ)

ry

)2

− 1, (41)

where l is the distance of the body center from the differential drive axis of the unicycle system.
However, it is not a valid CBF since the safety condition (12) does not depend on the control input
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(i.e., ∇hellipse(x)
⊤g(x) = 0 ∀x). Instead, we can exploit a higher-order CBF (HOCBF) given by

h(x) = ḣellipse(x) + κhellipse(x), (42)

for some κ > 0. Then, ensuring h ≥ 0 implies h ≥ 0 given h(x(0)) ≥ 0, and the safety condi-
tion (12) for this h depends on both control inputs alin, aang. Refer to Tayal et al. (2024) for a detailed
explanation.

The goal of this problem is to optimize the neural network policy πθ(x) = πnom(x) + fθ(x) to
minimize the expected cost over the trajectories from random initial points within the range from
[−4, 0,−π/4, 0, 0] to [−3.5, 0.5,−π/8, 0, 0]. For an initial state sample xs, we consider the cost of
the rolled-out trajectory through discretization with time step ∆t = 0.02 and nstep = 50 as

∆t

nstep−1∑
i=0

x⊤i Qxi + πθ(xi)
⊤Rπθ(xi), (43)

where xi is the state after i steps, and Q = diag(100, 100, 0, 0.1, 0.1) and R = diag(0.1, 0.1) are
diagonal matrices. The neural network policies are optimized to reduce (43) summed over 1000
randomly sampled initial points.

A.6 DETAILS FOR THE HCAS EXPERIMENT

A.6.1 PROBLEM DETAILS

In this section, we provide additional details for the HCAS experiment.

• Input - The input is a 7-dimensional vector.

1. ρ (ft) - Range to intruder
2. θ (radians) - Bearing angle to intruder
3. ψ (radians) - Relative heading angle of intruder
4. vown (ft/s) - Ownship speed
5. vint (ft/s) - Intruder speed
6. τ (s) - Time to loss of vertical separation
7. sadv - Previous advisory

• Output - The output is a 5-dimensional vector y of floats each of whom represent the score
for a particular advisory (in order). We also list the ownship turn rate range corresponding
to each advisory.

1. y[0] : Clear-Of-Conflict (COC) : [−1.5 deg/s, 1.5 deg/s]
2. y[1] : Weak Left (WL) : [1.0 deg/s, 2.0 deg/s]
3. y[2] : Weak Right (WR) : [−2.0 deg/s, −1.0 deg/s]
4. y[3] : Strong Left (SL) : [2.0 deg/s, 4.0 deg/s]
5. y[4] : Strong Right (SR) : [−4.0 deg/s, −2.0 deg/s]

• Constraints -

1. Property #1 :
– Description : If the intruder is distant and is significantly slower than the ownship,

the score of a COC advisory will always be below a certain fixed threshold.
– Conditions on input for constraint to be active :

* ρ ≥ 55947.691

* vown ≥ 1145

* vint ≤ 60
– Constraints on output : y[0] ≤ 1500

2. Property #5 :
– Description : If the intruder is near and approaching from the left, the network

advises “strong right”.
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– Conditions on input for constraint to be active :
* 250 ≤ ρ ≤ 400

* 0.2 ≤ θ ≤ 0.4

* 100 ≤ vown ≤ 400

* 0 ≤ vint ≤ 400
– Constraints on output : y[4] should be the minimal score which translates to

* y[4] < y[0]

* y[4] < y[1]

* y[4] < y[2]

* y[4] < y[3]
3. Property #6 :

– Description : If the intruder is sufficiently far away, the network advises COC.
– Conditions on input for constraint to be active :

* 12000 ≤ ρ ≤ 62000

* 100 ≤ vown ≤ 1200

* 0 ≤ vint ≤ 1200
– Constraints on output : y[0] should be the minimal score which translates to

* y[0] < y[1]

* y[0] < y[2]

* y[0] < y[3]

* y[0] < y[4]
4. Property #9 :

– Description : Even if the previous advisory was “weak right”, the presence of a
nearby intruder will cause the network to output a “strong left” advisory instead.

– Conditions on input for constraint to be active :
* 2000 ≤ ρ ≤ 7000

* −0.4 ≤ θ ≤ −0.14

* 100 ≤ vown ≤ 150

* 0 ≤ vint ≤ 150
– Constraints on output : y[3] should be the minimal score which translates to

* y[3] < y[0]

* y[3] < y[1]

* y[3] < y[2]

* y[3] < y[4]
5. Property #10 :

– Description : For a far away intruder, the network advises COC.
– Conditions on input for constraint to be active :

* 36000 ≤ ρ ≤ 60760

* 0.7 ≤ θ ≤ 3.141592

* 900 ≤ vown ≤ 1200

* 600 ≤ vint ≤ 1200
– Constraints on output : y[0] should be the minimal score which translates to

* y[0] < y[1]

* y[0] < y[2]

* y[0] < y[3]

* y[0] < y[4]

A.6.2 NEURAL NETWORK TRAINING HYPERPARAMETERS

• Learning rate (lr) : 1× 10−3

• Number of epochs : 260

A.7 LEARNING WITH WARM START

In addition to the HardNet architecture that consists of a neural network fθ and a differentiable
projection layer P appended at the end, we propose a training scheme that can potentially result
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in better-optimized models. For the first k epochs of training, we disable the projection layer and
train the plain neural network fθ. Then, from the (k+1)-th epoch, we train on the projected model
P(fθ). During the k epochs of warm start, the neural network fθ can be trained in a soft-constrained
manner by regularizing the violations of constraints. In this paper, we train the HardNet-Aff models
without the warm-start scheme for simplicity, except in Section 5.2 where we use the warm-start
for the initial 100 epochs. In the case of HardNet-Cvx, we find that performing a warm start is
necessary for cvxpylayers since it makes it easier for the convex program solver (SCS) to perform
the projection.

A.8 GRADIENT PROPERTIES OF HardNet-Aff

This section investigates how the projection layer in HardNet-Aff affects gradient computation. For
simplicity, we focus on the case where neq = 0 (i.e., no equality constraints). For a datapoint (x, y),
consider the loss function ℓ

(
P(fθ(x)), y

)
. Using the chain rule, the gradient is given by:

∇θℓ
(
P(fθ(x)), y

)⊤
=
∂ℓ

(
P(fθ(x)), y

)
∂P(fθ(x))

∂P(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
. (44)

Here, the Jacobian of the projection layer ∂P(fθ(x))
∂fθ(x)

∈ Rm×m plays a key role. Let vi :=

1{ai(x)⊤fθ(x) > b(i)(x)} indicate whether the i-th constraint is violated by fθ(x). Then,

∂P(fθ(x))

∂fθ(x)
= I −A+

 v1a
⊤
1

...
vnineqa

⊤
nineq

 . (45)

Two critical properties of this Jacobian can lead to zero gradient in (44). First, if the number of
constraints equals the output dimension (nineq = m) and all constraints are violated (vi = 1 ∀i),
then the Jacobian becomes zero, causing the gradient (44) to vanish. Note that this issue never
happens when nineq < m. Second, for each i ∈ {1, 2, . . . , nineq}, the following holds:

a⊤i
∂P(fθ(x))

∂fθ(x)
= a⊤i − a⊤i A

+

 v1a
⊤
1

...
vnineqa

⊤
nineq

 = a⊤i − e⊤i

 v1a
⊤
1

...
vnineqa

⊤
nineq

 = a⊤i − via
⊤
i . (46)

This implies that if the gradient of the loss with respect to the projected output,
(∂ℓ

(
P(fθ(x)),y

)
∂P(fθ(x))

)⊤ ∈
Rm, lies in the span of {ai|i ∈ {1, . . . , nineq}, vi = 1}, then the overall gradient (44) becomes zero.
This case in fact subsumes the first case, as when nineq = m and vi = 1 ∀i, the constraint vectors
set spans the entire output space Rm. However, such cases are infrequent in practical settings,
particularly when the model is trained on batched data. Even when zero gradients occur for certain
datapoints, they can be offset by nonzero gradients from the other datapoints within the batch. This
averaging effect allows the model to update in a direction that decreases the overall loss function,
mitigating the issue effectively.

We demonstrate the gradient behaviors discussed earlier using simple simulations of training
HardNet-Aff with the conventional gradient-descent algorithm. Consider two datapoints: d1 =
(−1, [−0.5, 0.5]⊤) and d2 = (1, [0.5, 0]⊤), and a neural network fθ : R → R2 with two hidden lay-
ers, each containing 10 neurons with ReLU activations. The model enforces the input-independent
constraint [0, 1]P(fθ)(x) ≤ 0.9 using HardNet-Aff. Starting from the same initialization, the model
is trained to minimize the squared error loss, first on d1 alone and then on both datapoints, using two
different learning rates (0.01 and 0.1), as shown in Fig. 5.

Initially, fθ violates the constraint on both datapoints. When trained on d1 alone with a learning
rate of 0.01, the optimization path converges to a point where the gradient of the loss w.r.t. the
projected output is orthogonal to the gradient boundary, causing the overall gradient (44) to vanish.
However, when the model is trained on both datapoints, the vanishing gradient for d1 is mitigated by
the nonzero gradient for d2, enabling the model to achieve target values strictly within the feasible
set. Furthermore, using a larger learning rate (0.1) allows the model to avoid the vanishing gradient
issue and reach the target value even when trained solely on d1.
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Figure 5: Visualization of 100 gradient descent steps for training a HardNet-Aff model on a single
datapoint (first row) and two datapoints (second row) from the same initialization, using two differ-
ent learning rates (0.01 and 0.1). With the smaller learning rate, training on a single datapoint results
in a zero gradient due to the projection layer (top left). However, when training on both datapoints,
the vanishing gradient for the first datapoint is mitigated by the nonzero gradient from the second
datapoint (bottom left). Also, using the larger learning rate enables the model to avoid the vanishing
gradient issue, even when trained on the single datapoint (top right).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.9 RELATED WORK IN NEURO-SYMBOLIC AI

HardNet also aligns with the objectives of Neuro-symbolic AI, a field that has gained significant at-
tention in recent years for its ability to integrate complex background knowledge into deep learning
models. Unlike HardNet, which focuses on algebraic constraints, the neuro-symbolic AI literature
primarily addresses logical constraints. A common approach in this field is to softly impose con-
straints during training by introducing penalty terms into the loss function to discourage constraint
violations (Xu et al., 2018; Fischer et al., 2019; Badreddine et al., 2022; Stoian et al., 2023). While
these methods are straightforward to implement, they do not guarantee constraint satisfaction. In
contrast, works such as Giunchiglia & Lukasiewicz (2020); Ahmed et al. (2022); Giunchiglia et al.
(2024) ensure constraints are satisfied by embedding them into the predictive layer, thus guarantee-
ing compliance by construction. Another line of research maps neural network outputs into logical
predicates, ensuring constraint satisfaction through reasoning on these predicates (Manhaeve et al.,
2018; Pryor et al., 2023; van Krieken et al., 2023).
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