
Published in Transactions on Machine Learning Research (08/2022)

Equivariant Mesh Attention Networks

Sourya Basu∗ sourya@illinois.edu
University of Illinois at Urbana-Champaign, USA

Jose Gallego-Posada∗ gallegoj@mila.quebec
Mila and DIRO, Université de Montréal, Canada

Francesco Viganò∗ f.vigano21@imperial.ac.uk
Imperial College London, UK

James Rowbottom∗ jabrowbottom@gmail.com
Independent Scholar

Taco Cohen tacos@qti.qualcomm.com
Qualcomm AI Research, The Netherlands†

Reviewed on OpenReview: https://openreview.net/ forum?id=3IqqJh2Ycy

Abstract

Equivariance to symmetries has proven to be a powerful inductive bias in deep learning
research. Recent works on mesh processing have concentrated on various kinds of natural
symmetries, including translations, rotations, scaling, node permutations, and gauge trans-
formations. To date, no existing architecture is equivariant to all of these transformations.
In this paper, we present an attention-based architecture for mesh data that is provably
equivariant to all transformations mentioned above. Our pipeline relies on the use of relative
tangential features: a simple, effective, equivariance-friendly alternative to raw node positions
as inputs. Experiments on the FAUST and TOSCA datasets confirm that our proposed
architecture achieves improved performance on these benchmarks and is indeed equivariant,
and therefore robust, to a wide variety of local/global transformations.

1 Introduction

Equivariance to symmetries has proven to be a powerful inductive bias in machine learning tasks ranging
across classification, regression, segmentation, and reinforcement learning. Commonly studied symmetries
include permutations (Keriven & Peyré, 2019; Zaheer et al., 2017), rotations (Cohen & Welling, 2016; Weiler
et al., 2018; Li et al., 2018; Veeling et al., 2018), translations (LeCun et al., 1998), scaling (Sosnovik et al.,
2020), and gauge transformations (Cohen et al., 2019a; de Haan et al., 2021).

These symmetries lead to different requirements for invariance or equivariance, depending on the learning task.
For example, in a mesh shape-classification task, we would like to find a classifier that consistently predicts
the same label, invariant to whether the input mesh is rotated, scaled or translated. In a node segmentation
task, in addition to these invariances, we expect that the model predictions change in concurrence with a
relabelling of the nodes, thus being permutation equivariant.

Achieving models with guaranteed equivariance is of high practical interest. The equivariance paradigm
constitutes a principled way of incorporating task-specific prior information, which allows the model to
simultaneously handle “equivalence classes of inputs” (i.e., those inputs related by symmetry transformations),
and removes the need for data augmentation during training (Bronstein et al., 2021; Cohen, 2021).

∗Equal contribution. Our code is available at: https://github.com/gallego-posada/eman
†Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

1

https://openreview.net/forum?id=3IqqJh2Ycy
https://github.com/gallego-posada/eman

Published in Transactions on Machine Learning Research (08/2022)

In this work we concentrate on learning tasks involving 3-dimensional meshes as inputs. The main challenge
in realizing equivariance in the case of mesh data lies in adequately handling the (arbitrary) numerical
representation associated with the “geometric components” of a mesh. This is because different symmetry
transformations have different effects on the mesh components. For example, a rotation modifies the positions
of the nodes but leaves the face areas intact, while scaling leaves angles between nodes unchanged, but affects
the positions, edge lengths and face areas.

While it is possible to discard the geometric structure of the mesh and consider it as a mere graph or point
cloud, retaining this geometric information can be crucial for successful learning. Verma et al. (2018) and
de Haan et al. (2021) report poor performance for models which discard connections between nodes (e.g.
edges or faces). When used on mesh data, mesh-specific designs outperform models built for less-structured
data, like 3D point clouds or embedded graphs. However, employing expressive models on meshes may
require the introduction of additional constraints, such as equivariance with respect to gauge transformations
(de Haan et al., 2021).

To achieve equivariance, the model predictions should depend only on the intrinsic geometry of the mesh,
and not on the particular embedding used to represent the mesh computationally. In response to this
challenge, the first contribution of our work is the introduction of relative tangential (RelTan) features.
RelTan features transform absolute node positions into tangent vectors, in a way that accounts for the
local geometry of the mesh at each node. We prove that this map is equivariant under global rotations, and
invariant under translations and scaling of the ambient space R3.

Moreover, RelTan features are geometric features (§3.2): although the numerical representation of these
features may change depending on the specific choice of gauge, the geometric quantities represented by the
features remain unchanged. We leverage the gauge equivariant convolutions of de Haan et al. (2021) as a
building block to satisfy the gauge equivariance requirement.

The conjunction of RelTan features and gauge equivariant convolutions allows us to design models that
exhibit equivariance/invariance to all the symmetry transformations discussed above. Besides these desirable
equivariance properties, our experiments demonstrate that relative tangential features provide consistent
performance improvements. Thus, RelTan features constitute a simple (yet effective!) alternative to using
“raw” node positions as inputs.

Our second contribution is an extension of mesh processing algorithms to include a gauge equivariant
attention mechanism in a way that provably satisfies the aforementioned requirements. We refer to
this architecture as an Equivariant Mesh Attention Network (EMAN). Attention mechanisms have been a
groundbreaking innovation in deep learning powering state-of-the-art results in natural language processing
(Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020), computer vision (Dosovitskiy et al., 2021),
reinforcement learning (Chen et al., 2021), multi-modal learning (Jaegle et al., 2021), and graph neural
networks (Veličković et al., 2018; Chamberlain et al., 2021). However, attention-based methods remain largely
unexplored in the context of mesh data.

We carry out experiments on the FAUST (Bogo et al., 2014) and TOSCA (Bronstein et al., 2008) datasets.
We do not apply any form of data augmentation during training. However, we evaluate the performance of all
models on the test set, while applying transformations to the unseen examples. These transformations consist
of rotations, translations, scalings, permutations and local gauge changes. We apply the transformations
“one-at-a-time” as an ablation study which allows us to systematically verify the equivariance properties of
all the compared models. Our results confirm that our proposed model design is the only one to achieve
equivariance, and therefore robustness, to all of these local/global transformations

2 Related Work

Equivariance on graphs and manifolds. Equivariance on graphs and manifolds has been studied from
numerous perspectives. Cohen et al. (2018; 2019b) propose novel gauge equivariant convolution techniques
on manifolds such as spheres and platonic solids. Satorras et al. (2021) propose E(n)-equivariant graph
neural network models, which are applied to equivariant normalizing flows by Köhler et al. (2020). Moreover,
de Haan et al. (2021) point out a relation between different types of equivariances: their gauge equivariant

2

Published in Transactions on Machine Learning Research (08/2022)

model is also equivariant to the group of isometries of the given mesh. The equivariance with respect to this
group of isometries has been extensively studied by Weiler et al. (2021) and Cohen (2021). In contrast, our
work focuses on equivariance with respect to gauge transformations and global transformations of R3.

Equivariant attention. Attention has been used to provide more expressive filters over the isotropic
convolutions in GCN (Kipf & Welling, 2017). Veličković et al. (2018); Shi et al. (2021) and Chamberlain et al.
(2021) implement attention mechanisms to give anisotropic filters. Several works propose alternative forms of
equivariant attention. Hutchinson et al. (2021) introduce an attention architecture that is equivariant to Lie
group actions. SE(3)-Transformer (Fuchs et al., 2020) is a roto-translation equivariant attention network,
designed for point-cloud data and graphs, and not meshes. Wang et al. (2020) propose a self-supervised
equivariant attention mechanism in image segmentation that generates more consistent class activation maps
over rescaling. Romero & Cordonnier (2021) propose a general group-equivariant self-attention formulation
for processing images.

Equivariant attention on meshes. Gauge Equivariant Transformers (GET), recently proposed by He et al.
(2021), also consider gauge equivariant attention on meshes. The authors propose features which represent
the raw node positions in the local coordinate system of each node. We refer to these as GET features. These
features are equivariant to global rotations, but are not equivariant to scaling or translation of the mesh. In
contrast, RelTan features are local features which successfully provide invariance to scaling and translations,
in addition to equivariance to global rotations (Section 4).

Moreover, the attention mechanism used in GET is only gauge equivariant to multiples of 2π/N , for a
certain positive integer hyperparameter N . Only when N is odd, He et al. (2021) provide a framework for
approximate equivariance to arbitrary gauge transformation, along with an estimate of the approximation
error incurred. In contrast, EMAN attention mechanism is exactly equivariant to arbitrary transformations
of gauge (Section 6). A more detailed discussion about the difference between our architecture and choice of
input features and those used in GET is provided in Appendix H.

3 Geometry

In this section we describe meshes, geometric features, parallel transport, equivariances and invariances and
graph convolutions. Familiar readers may choose to proceed directly to Section 4.

3.1 Meshes

A mesh M is determined by a set of vertices, or nodes, a set of (undirected) edges, and a set of faces. We
consider oriented meshes embedded in the ambient space R3 and require the faces to “properly glue along
the edges”, so that M is in fact a piece-wise linear sub-manifold of R3. One can think of the mesh M as a
discretization (e.g., a triangulation) of a 2-dimensional manifold.

A 2-dimensional sub-manifold of R3 admits a tangent plane at each point. The discrete equivalent for a
mesh M, at a point p ∈M, is the plane orthogonal to the normal vector

np =
∑

F ∋pA(F) nF

||
∑

F ∋pA(F) nF ||
, (1)

where || · || denotes the 2-norm. The normal vector np (at a point p) is computed as a weighted sum of the
normal vectors to the adjacent faces {F ∋ p}, where the contribution of face F is proportional to its area
A(F). We denote the tangent plane at a point p by TpM.

For the tangent plane TpM at p, we consider a gauge, or frame, Ep = {ep,1, ep,2}. We only allow orthonormal
gauges, for which the triple Ep ∪ {np} constitutes a positively oriented orthonormal basis of R3. Therefore,
any other admissible orthonormal frame of TpM is obtained from the previous gauge Ep by a rotation
g ∈ SO(2). We use g to denote both the rotation and its corresponding angle, modulo 2π.

Finally, we define angles θpq, which take into account the local orientation of the neighbors of a node p. θpq

is the angle between the projection of the vector q − p onto TpM and the reference axis ep,1. The angles θpq

are thus gauge-dependent quantities.

3

Published in Transactions on Machine Learning Research (08/2022)

3.2 Geometric Features

Geometric features are a central concept in our work. Here we closely follow the presentation and notation
of de Haan et al. (2021). Meshes possess a richer structure than mere graphs. An important insight in
geometric deep learning is to take the mesh structure into consideration, and allow the features on the
underlying space to be not just simple functions on the space, but rather sections of vector bundles.

As an example, a tangential feature f on a mesh is given by a choice of tangent vector in the plane TpM,
for each point p ∈M. The tangent vector f(p), determined by evaluating f at p, can be represented by a
2-dimensional vector of coordinates fp with respect to the gauge Ep. Note that the coordinate vector fp ∈ R2

is dependent on the choice of a gauge, while the tangent vector f(p) ∈ TpM is independent.

Therefore, as we change the gauge at p, we should prescribe how the coordinate vector fp gets modified. For
tangential features, fp changes as fp 7→ ρ1(−g)fp, where ρ1(−g) denotes the rotation by the angle −g. This
transformation rule precisely characterizes tangential features. In contrast, scalar features are 1-dimensional
features that do not change when the gauge is transformed, and thus we may write fp 7→ ρ0(−g)fp, where
ρ0(−g) = 1 for all g ∈ SO(2).

More generally, for n ∈ N, n ≥ 1, we can consider 2-dimensional features f , that change fp 7→ ρn(−g)fp under
a gauge change g ∈ SO(2). Here ρn(−g) denotes the rotation by angle −ng. The representations ρn are

ρ0(g) = 1, ρn(g) =
(

cos ng − sin ng
sin ng cos ng

)
for n ≥ 1.

We say that a feature is of type ρ if it changes accordingly with the representation ρ. The {ρn} form an
exhaustive list of irreducible representations, the building blocks of all finite-dimensional representations of
SO(2). In other words, there is no loss of generality in considering only geometric features corresponding
to direct sums of such representations, obtained by concatenation of multiple irreducible components. We
consider these types of features throughout the rest of the paper. For example, ρ = 4ρ0⊕ρ1⊕3ρ2 corresponds
to a feature type of dimension 4 · 1 + 1 · 2 + 3 · 2. Note also that these feature types are orthogonal, meaning
that ρ⊤ = ρ−1.

3.3 Parallel Transport

Message passing updates involve processing features stored at different nodes of the mesh. However, geometric
features present a challenge. For instance, tangential features stored at different nodes belong to different
tangent planes (i.e. different vector spaces), and thus are not immediately comparable. Parallel transport
is a procedure from differential geometry that describes how to “coherently translate” between tangent planes
at different points, respecting the curvature of the manifold.

Discrete parallel transport can be intuitively understood as follows∗: for a node p ∈ M, and a neighbor
q ∈ Np, we first translate the tangent plane TqM, together with the normal vector nq, to p, along the edge
joining q and p. Then, we consider the unique rotation of R3 that maps nq to np, with fixed axis nq × np.
Under this rotation, TqM is mapped onto TpM, and it is now coherent to compare tangent vectors at q with
tangent vectors at p.

However, a feature f onM is represented by coordinate vectors fp and fq with respect to two different gauges.
In general, even after rotating TqM onto TpM, the two gauges do not coincide. Therefore, we denote by
−gq→p ∈ SO(2) the 2-dimensional rotation corresponding to the gauge change from the given gauge at q
(after rotating TqM onto TpM), and the given gauge at p. It is now coherent to compare coordinate vectors
fp with ρ(gq→p)fq, as they both represent coordinates of geometric features of the same type ρ, at the same
point p, with respect to the same gauge Ep. If we denote by Rq→p the unique rotation of R3 that maps nq to
np, with fixed axis nq × np, we can express (the angle) gq→p as:

gq→p = atan2
(
(Rq→peq,2)⊤ep,1, (Rq→peq,1)⊤ep,1)

)
. (2)

∗See Fig. 3 in de Haan et al. (2021) for a nice illustration.

4

Published in Transactions on Machine Learning Research (08/2022)

3.4 Equivariances and Invariances

Throughout this section, we denote by Fin and Fout the spaces of features of type ρin and ρout, respectively,
and by F a generic space of features of type ρ. Also, given a transformation Ψ applied on a mesh M, we use
Ψ∗ to denote the pushforward operator induced by Ψ. We describe specific cases of this pushforward below.

Gauge equi/invariance. To coherently define a feature mapping K : Fin → Fout, we require its computation
to be independent of the choice of the gauge. Consider an arbitrary change of gauge g ∈ SO(2). Since
features of type ρin transform as fp 7→ ρin(−g)fp, and similarly for ρout, we demand K to satisfy the gauge
equivariance constraint

ρout(−g) ◦ K = K ◦ ρin(−g). (3)
If the representation ρout is a (direct sum of) scalar feature(s) ρ0, then we talk about gauge invariance, as
the resulting features are insensitive to the particular choice of gauge.

Global rotation equi/invariance. Given a gauge-equivariant feature mapping K : Fin → Fout, we study
its interaction with a global rotation R ∈ SO(3). Denote by RM the mesh obtained by rotating M. We
write KM : FM

in → FM
out and KRM : FRM

in → FRM
out , to distinguish between the same feature mapping applied

to feature spaces on two different meshes.

If f ∈ FM, the rotation R transforms f to a feature R∗f ∈ FRM. Formally, if f is represented at p by the
coordinate vector fp relative to the gauge Ep, then R∗f is represented at Rp by the same coordinate vector
(R∗f)Rp = fp, relative to the rotated gauge REp. For example, when fp is a tangent vector fp ∈ TpM, the
action of R∗ corresponds geometrically to the rotation of the vector fp by R.

Global rotation equivariance of the feature mapping K is given by:

R∗ ◦ KM = KRM ◦R∗. (4)

Again, if the representation ρout is one, or a sum of scalar features ρ0, then we talk about global rotation
invariance.

Global translation invariance. A translation Tp = p + x of R3, with x ∈ R3, trivially pushes features on
M to features on TM: if f ∈ FM is represented by fp in the gauge Ep at p, then T∗f ∈ FT M is represented
by the same coordinate vector (T∗f)T p = fp in the same gauge Ep at Tp. Intuitively, T∗f is the same feature
as f , “stored” at the translated points. Therefore, we say that a feature mapping K is global translation
invariant if

T∗ ◦ KM = KT M ◦ T∗. (5)

Global scaling invariance. A scaling Sp = λp of R3, λ > 0, similarly allows a definition of a push-forward
S∗ : FM → FSM: if f ∈ FM is represented by fp in the gauge Ep at p, then S∗fp ∈ FSM is represented by
the same coordinates (S∗f)Sp = fp in the gauge Ep at Sp.

While for rotations R and translations T new gauges are obtained through the differentials dR and dT , this
is not the case for scalings S, since the new gauge would not be normalized. With our definition, tangential
features do not scale as the mesh scales, and preserve their norm. For this reason, we say that a feature
mapping K is global scaling invariant (and not equivariant) if

S∗ ◦ KM = KSM ◦ S∗. (6)

Node permutation equi/invariance. Consider a re-labeling of the nodes in a mesh M. We talk about
node permutation equivariance (resp. node permutation invariance) when the outcome of a process
computed over rearranged nodes is the rearrangement of the outcome from the original ordering, under the
same permutation (resp. does not depend on the ordering of the nodes). We expect a segmentation model to
be permutation equivariant, while a classification model should be permutation invariant.

3.5 Graph Convolution on Meshes

If we ignore the faces of a mesh and its embedding in R3, we obtain a graph. The works of Scarselli et al.
(2009); Bruna et al. (2013); Defferrard et al. (2016) and Kipf & Welling (2017) led to Graph Convolutional

5

Published in Transactions on Machine Learning Research (08/2022)

Networks (GCNs), which give an efficient algorithm for node classification. However, GCNs do not account
for the local geometry of the mesh and use the same isotropic kernel to process signals from all neighbors.

Gauge Equivariant Mesh CNNs (GEM-CNNs) (de Haan et al., 2021) were introduced to overcome this
geometric obstacle. Their update step uses anisotropic kernels that depend on the spatial arrangement of
the neighboring nodes {q ∈ Np}. The message passing in a GEM-CNN is performed as

f ′
p = Kselffp +

∑
q∈Np

Kneigh(θpq)ρin(gq→p)fq. (7)

The kernel Kneigh(θ) depends on the angle θpq formed by the edge p→ q, with respect to the reference gauge
at p. Moreover, the kernels Kself and Kneigh(θ) satisfy geometric constraints, so that the output feature f ′

p

transforms accordingly with the change of gauge. Hence, GEM-CNNs take into account the local geometry of
the mesh, while also ensuring equivariance to change of gauge. In particular, Kself and Kneigh(θ) satisfy:

Kself = ρout(−g) Kself ρin(g), Kneigh(θ − g) = ρout(−g) Kneigh(θ) ρin(g). (8)

For details on Kself and Kneigh(θ), please see Appendix A, and de Haan et al. (2021).

4 Relative Tangential Features

Given a mesh M, we construct relative tangential (RelTan) features vp(r), depending on the local
geometry of the meshM around a node p. We use the adjective relative to underline their dependency on the
relative node positions q − p of the neighbors {q ∈ Np}, rather than the absolute node positions. As shown in
Lemma 4.1, RelTan features provide global rotational equivariance, and invariance under translations and
scaling of the ambient space R3. At a node p, we define the 3-dimensional vector vp as:

vp(r) = 1
N

3/2
p

∑
q∈Np

πp

(
q − p

||q − p||

)
·

[
||q − p||r−1∑

q′∈Np
||q′ − p||r−1

]−1

where Np = |Np| denotes the degree of node p, and the projection πp onto the tangent plane TpM is I−npn⊤
p .

The factor 1/N
3/2
p is included in order to guarantee a correct asymptotic behavior of vp(r) as the node degree

Np increases; for a detailed discussion of this normalizing factor, see Appendix B.1.

RelTan features provide a convenient geometric input, as they satisfy the following properties:
Lemma 4.1. For any r ∈ R, the process of computing relative tangential features vp(r) is equivariant under
global rotations, and invariant under translations and scaling of R3. Namely, if R ∈ SO(3) is a rotation,
x ∈ R3 is a translation vector, and λ > 0 is a scaling factor, then [Proof]

vRM
Rp = R(vM

p), vλM
λp = vM

p , vM+x
p+x = vM

p .

See Appendix B.2 for a proof of this result. Thanks to their geometric properties, RelTan features constitute
a simple, equivariance-friendly alternative to using raw node positions as input features.

Influence of the relative power r. Each of the neighbors q ∈ Np affects the computation of vp(r) in two
ways. First, there is a directional component πq

(
q−p

||q−p||

)
which considers the alignment between the edge

connecting q to p and the tangent plane at p. Second, the distances between all neighbors and p are used to
weigh the directional contributions: neighbors with smaller distances contribute more.

Note that the effect of the distances is mediated by the power r − 1. We refer to the real-valued parameter
r as the relative power . As the relative power r decreases, the contributions of far-away neighbors are
highlighted. In contrast, as the relative power increases, neighbors close to p become most relevant in
the computation of vp(r). In particular, when r = 1, the distances are ignored and only the directional
components affect the final value of vp(r). These behaviors are illustrated in Fig. 1.

6

Published in Transactions on Machine Learning Research (08/2022)

Figure 1: Examples of computation of RelTan features on planar neighborhoods. Orange, blue and green
vectors represent relative tangent features vp(r) for r = 1, r = −2 and r = 3, respectively. For small relative
powers r, neighbors far from p contribute more to the relative tangent feature vp(r), and vice versa.

Selecting relative powers. As discussed above, different values of r provide different perspectives on the
local geometry of the mesh M around the node p. Balancing the importance of the directional and distance
components may depend on domain-specific properties of the data. Moreover, multiple relative powers can
be simultaneously used for capturing information of the local neighborhoods “at different scales”. Which of
these scales is most relevant for the task at hand can be in turn learned as part of the optimization of the
model weights during training. Note, however, that this strategy increases the number of parameters in the
model. Hence, one should use enough relative powers that can capture rich information about the nodes
while not being computationally wasteful. In our experiments, choosing two relative powers simultaneously
provided desirable performance.

5 Verifiably Equivariant Message Passing

In this section we empirically verify that RelTan features, coupled with a suitable choice of bias for the
convolutional layers, allow us to build models that are in fact equi/invariant to all the transformations
mentioned in Section 3.4. We highlight the effect that “small” design choices, such as biases, can have when
trying to integrate them towards building a fully equivariant pipeline. We also emphasize on the importance
of performing a thorough evaluation of the model by applying the transformations of interest to unseen inputs
in order to reliably verify the desired equivariance properties.

Figure 2: Angular bias applied to the tangential fea-
tures in the convolution blocks. Original features are
coloured in red, bias in purple, new features in blue.
Equivariance is preserved by rotating ρn≥1-features.

Designing equivariant biases. The traditional
way of including biases in standard convolutional
layers involves the addition of a fixed vector across
the different channels of the output tensor. However,
in the context of mesh data, this procedure is not
equivariant to changes of gauge. When consider-
ing geometric features, the addition of this “fixed”
bias vector would correspond to summing a gauge-
sensitive quantity to the coordinate vectors repre-
senting a feature. As a response to this, we consider
angular biases that respect gauge equivariance.

Given a general representation ρ, we decompose it in its irreducible components {ρn}. The cumulative bias
for ρ is assembled from the biases on its irreducible components. If n = 0, we may add a simple (non-angular)
bias b to the 1-dimensional scalar feature f . For n > 0, we instead rotate the 2-dimensional coordinate vector
fp by an angular bias b, or equivalently we consider ρn(b)fp. See Section 5. Therefore, for a feature of type
ρ, the number of involved biases is the same as the number of irreducible components in ρ. This choice of
bias is therefore suitable for our goal of designing a fully equivariant model.

Verifying model equivariance. Table 1 compares the violation of equivariance to global/local transforma-
tions exhibited by randomly initialized models.† We consider a SpiralNet++ (Gong et al., 2019) using raw

†We use untrained models since we are interested in assessing the equivariance of the model, rather than its accuracy.

7

Published in Transactions on Machine Learning Research (08/2022)

positions as inputs; and a GEM-CNN model (de Haan et al., 2021) using raw positions, RelTan features
and GET features (He et al., 2021) as inputs, as well as the non-equivariant, and angular biases mentioned
above. GET features correspond to raw node positions, represented using the local coordinate system at each
node. A detailed description of GET features is given in Appendix H. Since we are interested in obtaining a
model that is equivariant to arbitrary gauge changes, and not only to multiples of a given rotation, we do not
employ (quantized) regular non-linearities (de Haan et al., 2021, §4).

A GEM-CNN model with RelTan features and angular bias is the only configuration that achieves equivariance
to all the considered transformations. Note that SpiralNet++ is perfectly gauge equivariant as it only employs
scalar features. The larger magnitude observed for the minimum error achieved for gauge transformations
is explained by the fact that gauge transformations affect every convolutional layer of the model, causing
numerical errors to accumulate.

Table 1: Equivariance gap of randomly initialized models for various transformations on FAUST meshes. The
gap is computed as the MSE between the logits for the outputs corresponding to the same mesh with or
without a given transformation. The reported value is an average across all test meshes. Entries with small
(resp. high) error are shown in blue (resp. red). Values in this table should be compared within the same
column, based on the order of magnitude of the realized errors.

Equivariance Gap

Model Bias Initial Features Gauge Rot-Tr-Scale Perm
SpiralNet++ - XYZ 0 1.03·10−1 0

GEM-CNN

Non-Equiv XYZ 1.43·10−1 6.55·10−1 2.26·10−13

Angular
XYZ 7.95·10−6 1.19 1.55·10−13

GET 8.75 ·10−6 2.60 1.69·10−13

RelTan 1.31·10−5 5.57·10−9 1.88·10−13

The importance of tansformations in evaluation. We complete this section by studying the robustness
of a similar set of models after training on the FAUST dataset. Experimental details can be found in
Appendix E. We do not apply any transformations to meshes in the training set. The results displayed in
Table 2 show that the pattern of robustness to these transformations carries out verbatim, from that of
untrained models shown in Table 1.

Table 2: Accuracy for models trained on FAUST. No data augmentation is applied during training. The last 4
columns represent the performance of the model on the test set under different transformations. Blue entries
show robustness to transformations for each column, whereas the red entries correspond to poor performance.

Accuracy (%)

Model Bias Initial Features Train Test Gauge Rot-Tr-Scale Perm
SpiralNet++ - XYZ 100.0 99.91 99.91 0.30 99.91

GEM-CNN

Non-Equiv XYZ 99.99 99.90 0.06 12.48 99.90

Angular

XYZ 99.45 97.97 96.85 0.17 97.97
GET 99.18 97.75 97.40 0.61 97.75

RelTan[0.7] 99.68 98.69 98.20 98.69 98.69
RelTan[0.5, 0.7] 99.63 98.36 97.84 98.36 98.36

However, we highlight that the shortcomings of the non-equivariant models cannot be detected by looking
only at the un-transformed training and test set accuracies! For example, an inadequate choice of a “small”
component like the bias used in the convolutional layers can drastically affect the equivariance of the model:
compare the equivariance to gauge transformations for a GEM-CNN model with (equivariant) angular bias
and with (non-equivariant) additive bias. Therefore, when evaluating equivariance-aimed models, applying

8

Published in Transactions on Machine Learning Research (08/2022)

the transformations of interest is crucial for successfully validating whether a model indeed satisfies the
desired equivariance properties.

We do not include accuracies for the SpiralNet++ model with RelTan features. However, one finds that
this model with RelTan features is invariant to translations and scalings, as RelTan features are invariant
to these transformations. Nonetheless, the SpiralNet++ model with RelTan features is not global rotation
equivariant, since its layers are not designed to be compatible with rotations of the ambient space R3. We
included a short note on node permutation equivariance of the SpiralNet++ model in Appendix D.

6 Equivariant Mesh Attention Networks

Equipped with a “fully equivariant” pipeline comprising a base GEM-CNN model with angular biases and
the use of RelTan features, we now proceed to the presentation of our proposed attention mechanism.

The typical update step employed in GCNs considers the information coming from all the neighbors q ∈ Np to
be equally important when computing the update at node p. The similarity or alignment between the features
fp and fq is irrelevant. Veličković et al. (2018) introduced Graph Attention Networks (GATs) to address this
expressivity issue. In the update step, the message passed from neighbors is scaled using attention weights
dependent on fp and fq.

Equivariant Mesh Attention Networks (EMAN) are the second contribution of our work. EMAN combines
1⃝ anisotropic kernels (de Haan et al., 2021), with 2⃝ attention coefficients αpq relating neighboring nodes

(Veličković et al., 2018). The kernel is gauge equivariant, and the attention coefficients are scalar features
(namely, unaffected by gauge transformations). This combination results in a gauge equivariant attention
model. The convolutional update for EMAN is given by:

f ′
p =

∑
q∈Np

αpq K(θpq)ρin(gq→p)fq. (9)

Equivariant Mesh Attention Layers. Algorithm 1 provides an overview of the design of our attention
mechanism. The definitions of the quantities involved are presented below.

Algorithm 1 Convolutional update in an Equivariant Mesh Attention Layer

Forward ((fp)p∈M, Kquery, Kkey(θ), Kvalue(θ)):
for p ∈M:

Qp ← Kqueryfp

Kp ← Concatenate(Kkey(θpq)ρin(gq→p)fq for q ∈ Np)
Vp ← Concatenate(Kvalue(θpq)ρin(gq→p)fq for q ∈ Np)

f ′
p ← Np · Vp · softmax

(
K⊤

p Qp√
Catt

)
Output: (f ′

p)p∈M

We start by considering an auxiliary representation ρatt : SO(2)→ RCatt . Let Kquery be a Catt × Cin matrix.
Consider families Kkey(θ) and Kvalue(θ) of matrices of size Catt × Cin and Cout × Cin, respectively. Given a
node p on the mesh, for every neighbor q ∈ Np, we compute:

Qp = Kqueryfp, Kpq = Kkey(θpq)ρin(gq→p)fq, Vpq = Kvalue(θpq)ρin(gq→p)fq, (10)

To provide gauge equivariance, we impose constraints on the matrices Kquery, Kkey and Kvalue. These
constraints must be respected for all g ∈ SO(2). The solutions to these equations are provided in Appendix A.

Kquery = ρatt(−g) Kquery ρin(g),
Kkey(θ − g) = ρatt(−g) Kkey(θ) ρin(g) (11)

Kvalue(θ − g) = ρout(−g) Kvalue(θ) ρin(g),

9

Published in Transactions on Machine Learning Research (08/2022)

We define Kp and Vp as the Catt ×Np and Cout ×Np matrices obtained by concatenating as columns the
vectors Kpq, and Vpq, respectively, over the neighbors q ∈ Np:

Kp = Concat(Kpq for q ∈ Np), Vp = Concat(Vpq for q ∈ Np). (12)

The value of the updated feature f ′
p (of dimension Cout) is then given by:

f ′
p =

∑
q∈Np

αpq︷ ︸︸ ︷[
Np · softmax

(
K⊤

p Qp√
Catt

)]
q

Kvalue(θpq)ρin(gq→p)fq︸ ︷︷ ︸
as in GEM-CNNs

= Np · Vp · softmax
(

K⊤
p Qp√
Catt

)
. (13)

Note that the factor Np is not present in the work of Veličković et al. (2018). We introduce it here so that
Eq. (13) precisely generalizes GEM-CNN convolution (with no self-contribution), in the case where the
components of the softmax vector are all equal to 1/Np (compare with discussion in Section 3.5).

Equivariance properties of EMAN. Thanks to the constraints satisfied by the kernels Kself , Kkey(θ), and
Kvalue(θ), we obtain gauge equivariance for EMAN (Lemma 6.1). This is illustrated in Fig. 3.
Lemma 6.1. The convolutional update in Eq. (13) is gauge equivariant. [Proof]

Figure 3: Message passing mechanism in Equivariant Mesh Attention Networks. For convenience, we represent
a planar portion of the mesh and therefore ignore parallel transport. Tangent vectors fp, fqi

are aggregated
according to the attention coefficients αpqi

(on the figure, going from top to bottom). A change of gauge
reference neighbor (from q0 to q1) determines a rotation ρ(−g) on tangent vectors of angle −g (on the
figure, going from left to right). Attention coefficients are invariant under gauge change. Pictorially, gauge
equivariance can be rephrased as: “go right, go down” is the same as “go down, go right”.

Lemma 6.2. With the choice of kernels given by Eq. (11), the Equivariant Mesh Attention convolutional
update in Eq. (13) (and thus Algorithm 1) is equivariant to global rotations, and invariant to translations and
scalings of the ambient space R3. [Proof]

The complete pipeline we propose in this work is formed by 1⃝ the use of RelTan features (Section 4) as
inputs, 2⃝ angular biases (Section 5) in the convolutional operators, and 3⃝ EMAN layers (with the update
rule from Algorithm 1). In conjunction, all these components contribute to a model architecture which is
equivariant with respect to the complete range of transformations we are interested in:
Theorem 6.3. With initial relative tangential features, Equivariant Mesh Attention Networks are equivariant
to node permutations, and invariant under global rotations, translations and scalings of the ambient space R3,
and under arbitrary gauge changes. [Proof]

Self-contribution. The self-contribution αppKselffp is not present in Eq. (9). The base implementation
of GEM-CNNs (de Haan et al., 2021) we used as a baseline did not include the self-contribution in the

10

Published in Transactions on Machine Learning Research (08/2022)

convolutional step. To perform a fair comparison between our attention mechanism and GEM-CNNs, we do
not include the self-contribution in our implementation either and leave experiments with self-contribution to
future work. However, our formulation can be easily extended to include self-contributions. We present the
details of this extension in Appendix C.5.

Multi-head attention. Our model can also support multi-head attention. See Appendix C.4 for details.
We did not notice an improvement in performance when integrating this factor in our implementation for the
considered tasks. The experimental results presented below consider single-head attention only.

7 Experiments

We carry out experiments on the FAUST (Bogo et al., 2014) and TOSCA (Bronstein et al., 2008) datasets for
segmentation and classification tasks, respectively. We compare GEM-CNN and EMAN models using raw
node XYZ positions, GET and RelTan features as inputs. All the models use the angular biases described
in Section 5. Details on our experimental settings can be found in Appendix E.

• No transformations are applied to the training meshes. All our experiments involving test accuracy
report test results applying different transformations to the unseen meshes.

• Since we are interested in obtaining a model that is equivariant to arbitrary gauge changes, and not
only to multiples of a given rotation, we do not employ (quantized) regular non-linearities (de Haan
et al., 2021, §4).

• In Appendix F we provide performance comparison between equivariant models, and non-equivariant
models trained using data augmentation. Appendix G contains a time-complexity comparison
between GEM-CNN and EMAN.

Comparison with GET (He et al., 2021). Both GEM-CNN and EMAN are equivariant to arbitrary
gauge transformations unlike the GET model. From an equivariance perspective, our proposed attention
mechanism is more powerful than that of GET. For this reason, in the experiments below, the lines labeled
GET correspond to retaining the GEM-CNN and EMAN convolution and using GET features as inputs.

Relative powers. For models using RelTan features, we consider two choices of relative powers. Relative
tangential features allow us to choose a different relative power to be used for each of the channels in the
input feature (see Section 4). This increases the expressivity of the model as different relative powers induce
a processing of the local geometry at a point in the mesh. We find that using multiple channels with different
relative powers translates into performance improvements on the (transformed) test set.

7.1 Segmentation

The FAUST dataset consists of 100 (80 training, 20 test) 3-dimensional human meshes with 6890 vertices
each. Nodes in each mesh are numbered so that nodes corresponding to the same “location” on the human
meshes are labelled with the same number. The goal of the model is to predict, given an embedded mesh, the
label for each of the nodes in the mesh.

Table 3 illustrates the performance of various gauge equivariant models on FAUST. We highlight that, rather
than an overwhelmingly better prediction performance, the core advantage of using GEM-CNN or EMAN
with RelTan featuresfeatures is that the models become fully equivariant to a wide range of symmetries.

Note that models employing XYZ or GET features as input fail to be equivariant to rotations, translations
and scaling transforms (Rot-Tr-Scale). This challenge is reliably overcome by RelTan features. Using several
relative powers along with with attention provides a slight boost in performance. Finally, note that solely
evaluating the performance of the models on the un-transformed test set would not have been sufficient to
detect the lack of equivariance to Rot-Tr-Scale transforms of the models that use XYZ or GET features.

11

Published in Transactions on Machine Learning Research (08/2022)

Table 3: Means (and standard deviations over 5 seeds) of the segmentation accuracy on the FAUST dataset.
No data augmentation is applied during training. Last 4 columns represent the performance of the model on
the test set under different transformations. All models use angular biases.

Accuracy (%)

Model Initial Features Train Test Gauge Rot-Tr-Scale Perm

GEM-CNN

XYZ 99.42 (0.15) 97.92 (0.30) 96.90 (0.25) 2.14 (1.49) 97.92 (0.30)
GET 99.42 (0.15) 98.03 (0.17) 97.15 (0.39) 1.47 (1.60) 98.03 (0.17)

RelTan[0.7] 99.69 (0.05) 98.62 (0.06) 98.04 (0.12) 98.62 (0.06) 98.62 (0.06)
RelTan[0.5, 0.7] 99.70 (0.09) 98.64 (0.22) 97.99 (0.18) 98.64 (0.22) 98.64 (0.22)

EMAN

XYZ 99.62 (0.09) 98.46 (0.15) 97.26 (0.34) 0.02 (0.00) 98.46 (0.15)
GET 99.60 (0.08) 98.43 (0.17) 97.32 (0.46) 0.02 (0.00) 98.43 (0.17)

RelTan[0.7] 99.27 (1.01) 98.13 (1.19) 97.44 (1.26) 98.13 (1.19) 98.13 (1.19)
RelTan[0.5, 0.7] 99.68 (0.00) 98.66 (0.07) 98.41 (0.25) 98.66 (0.07) 98.66 (0.07)

7.2 Classification

TOSCA consists of meshes belonging to nine different classes such as cats, men, women, centaurs, etc. While
figures in each class are similarly meshed, each class has a varying number of nodes and edges. The dataset
consists of 80 meshes, which we uniformly split into a train set of 63 meshes and a test set of 17 meshes. The
goal of the model is to predict, given an embedded mesh, the class to which the mesh belongs.

Table 4: Means (and standard deviations over 5 seeds) of the segmentation accuracy on the TOSCA dataset.
No data augmentation is applied during training. Last 3 columns represent the performance of the model on
the test set under different transformations. All models use angular biases.

Accuracy (%)

Model Initial Features Train Test Gauge Rot-Tr-Scale

GEM-CNN

XYZ 97.78 (2.41) 82.35 (5.88) 82.35 (5.88) 12.94 (2.63)
GET 90.79 (2.84) 82.35 (9.30) 82.35 (9.30) 17.65 (7.20)

RelTan[0.7] 93.97 (4.26) 91.76 (6.71) 91.76 (6.71) 91.76 (6.71)
RelTan[0.5, 0.7] 90.16 (8.43) 89.41 (14.65) 89.41 (14.65) 89.41 (14.65)

EMAN

XYZ 47.30 (4.55) 42.35 (20.55) 44.71 (18.88) 12.94 (2.63)
GET 44.13 (7.39) 42.35 (11.31) 41.18 (9.30) 10.59 (2.63)

RelTan[0.7] 92.70 (4.14) 94.12 (4.16) 94.12 (4.16) 94.12 (4.16)
RelTan[0.5, 0.7] 97.46 (4.14) 98.82 (2.63) 98.82 (2.63) 98.82 (2.63)

We do not apply permutations to the nodes in the test meshes since the different number of nodes across classes
makes the implementation of this transformation cumbersome. In addition to our theoretical guarantees, and
the empirical verification of permutation equivariance in the previous experiments, we do not expect node
permutations to significantly affect the behavior of the models for a shape classification task since we use a
mean pooling layer for aggregating the information across the nodes for this dataset.

We find that when using XYZ features, GEM-CNNs outperform EMANs. This seems to point to a higher
sensitivity of EMANs to un-normalized data. This sensitivity is not present when using RelTan features.
We do not normalize the XYZ data in order to emphasize the fact that finding a good normalization strategy
becomes unnecessary when using RelTan features, given their scaling-invariance properties. In fact, using
RelTan features (with relative powers [0.5, 0.7]), we find EMAN to achieve the best test performance, which
is also robust to all the considered transformations.

12

Published in Transactions on Machine Learning Research (08/2022)

8 Conclusion

In this work, we propose Equivariant Mesh Attention Networks (EMAN), an attention-based model that is
equi/invariant to node permutations, local gauge transformations, as well as global transformations such as
rotations, translations, scalings. Our model consists of two major components: relative tangential features
(RelTan) as input types and a message passing algorithm based on a gauge equivariant attention mechanism.
We also emphasize the importance of rigorous testing of the overall assembled model, since small design
choices – such as biases – can result in an non-equivariant model, damaging its robustness transformations in
the data. We verify the equi/invariance of our overall model theoretically and empirically. EMANs achieve
competitive performance on the FAUST and TOSCA datasets, while maintaining equivariance to all the
aforementioned transformations.

Acknowledgments

Experiments on the FAUST and TOSCA datasets were performed using the HAL (Kindratenko et al., 2020)
and Mila compute clusters.

This research is the result of a collaboration initiated at the London Geometry and Machine Learning Summer
School 2021 (LOGML). This work utilizes resources supported by the National Science Foundation’s Major
Research Instrumentation program, grant #1725729, as well as the University of Illinois at Urbana-Champaign.
SB was supported in part by the Department of Energy (DOE) award (DE-SC0012704). JGP is supported
by the Canada CIFAR AI Chair Program and by an IVADO PhD Excellence Scholarship. FV is supported
by the Engineering and Physical Sciences Research Council [EP/S021590/1] (the EPSRC Centre for Doctoral
Training LSGNT — UCL and Imperial College London).

References
Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. FAUST: Dataset and Evaluation for

3D Mesh Registration. In CVPR, 2014.

Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical Geometry of Non-Rigid Shapes.
Springer Science & Business Media, 2008.

Michael Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges. arXiv:2104.13478, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are Few-Shot Learners.
In NeurIPS, 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally Connected
Networks on Graphs. arXiv:1312.6203, 2013.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and Emanuele
Rossi. GRAND: Graph Neural Diffusion. In ICML, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning via Sequence Modeling. In
NeurIPS, 2021.

Taco Cohen. Equivariant Convolutional Networks. PhD thesis, University of Amsterdam, 2021.

Taco Cohen and Max Welling. Group Equivariant Convolutional Networks. In ICML, 2016.

Taco Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In ICLR, 2018.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge Equivariant Convolutional
Networks and the Icosahedral CNN. In ICML, 2019a.

13

Published in Transactions on Machine Learning Research (08/2022)

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge Equivariant Convolutional
Networks and the Icosahedral CNN. In ICML, 2019b.

Pim de Haan, Maurice Weiler, Taco Cohen, and Max Welling. Gauge Equivariant Mesh CNNs: Anisotropic
convolutions on geometric graphs. In ICLR, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering. In NeurIPS, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In NAACL-HLT, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. In ICLR, 2021.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. SE(3)-Transformers: 3D Roto-Translation
Equivariant Attention Networks. In NeurIPS, 2020.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural Networks. In AISTATS,
2011.

Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos Zafeiriou. Spiralnet++: A Fast and Highly
Efficient Mesh Convolution Operator. In IEEE, 2019.

Lingshen He, Yiming Dong, Yisen Wang, Dacheng Tao, and Zhouchen Lin. Gauge Equivariant Transformer.
In NeurIPS, 2021.

Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and Hyunjik Kim.
Lietransformer: Equivariant Self-Attention for Lie Groups. In ICML, 2021.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira. Perceiver:
General Perception with Iterative Attention. In ICML, 2021.

Nicolas Keriven and Gabriel Peyré. Universal Invariant and Equivariant Graph Neural Networks. In NeurIPS,
2019.

Volodymyr Kindratenko, Dawei Mu, Yan Zhan, John Maloney, Sayed Hadi Hashemi, Benjamin Rabe, Ke Xu,
Roy Campbell, Jian Peng, and William Gropp. HAL: Computer System for Scalable Deep Learning, pp.
41–48. Association for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450366892.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In
ICLR, 2017.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant Flows: Exact Likelihood Generative Learning for
Symmetric Densities. In ICML, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. In IEEE, 1998.

Junying Li, Zichen Yang, Haifeng Liu, and Deng Cai. Deep Rotation Equivariant Network. Neurocomputing,
290:26–33, 2018.

David W Romero and Jean-Baptiste Cordonnier. Group Equivariant Stand-Alone Self-Attention For Vision.
In ICLR, 2021.

Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n)-Equivariant Graph Neural Networks. In
ICML, 2021.

14

Published in Transactions on Machine Learning Research (08/2022)

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The Graph
Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked Label
Prediction: Unified Message Passing Model for Semi-Supervised Classification. In IJCAI, 2021.

Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-Equivariant Steerable Networks. In ICLR, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. JMLR, 15(1):1929–1958, 2014.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds.
arXiv:1802.08219, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need. In NeurIPS, 2017.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation Equivariant
CNNs for Digital Pathology. In MICCAI, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph Attention Networks. In ICLR, 2018.

Nitika Verma, Edmond Boyer, and Jakob Verbeek. FeaStNet: Feature-Steered Graph Convolutions for 3D
Shape Analysis. In CVPR, 2018.

Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. Self-Supervised Equivariant Attention
Mechanism for Weakly Supervised Semantic Segmentation. In CVPR, 2020.

Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. In NeurIPS, 2019.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning Steerable Filters for Rotation Equivariant
CNNs. In CVPR, 2018.

Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate Independent Convolutional
Networks - Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds. arXiv:2106.06020,
2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep Sets. In NeurIPS, 2017.

15

Published in Transactions on Machine Learning Research (08/2022)

Appendix

A Geometric Kernel Constraints in GEM-CNNs

Table 5: Solutions to the angular kernel constraint for kernels that map from ρn to ρm, where c± = cos((m±n)θ)
and s± = sin((m± n)θ). This table is directly taken from de Haan et al. (2021).

ρin → ρout linearly independent solutions for Kneigh (θ)
ρ0 → ρ0 (1)
ρn → ρ0 (cos nθ sin nθ), (sin nθ − cos nθ)

ρ0 → ρm

(
cos mθ
sin mθ

)
,

(
sin mθ

− cos mθ

)
ρn → ρm

(
c− −s−
s− c−

)
,

(
s− c−
−c− s−

)
,

(
c+ s+
s+ −c+

)
,

(
−s+ c+

c+ s+

)
ρin → ρout linearly independent solutions for Kself (θ)

ρ0 → ρ0 (1)

ρn → ρn

(
1 0
0 1

)
,

(
0 1
−1 0

)

Message passing in GEM-CNNs de Haan et al. (2021) is defined by the equation

f ′
p = Kselffp +

∑
q∈Np

Kneigh(θpq)ρin(gq→p)fq.

Gauge equivariance translate on the kernels Kself and Kneigh(θ) as

Kself = ρout(−g) Kself ρin(g), Kneigh(θ − g) = ρout(−g) Kneigh(θ) ρin(g).

The representation ρin decomposes in irreducible components as ⊕ρnj , and the representation ρout as ⊕ρmi .
Then, the kernels Kself and Kneigh(θ) are block matrices obtained by combining possible block kernels (Kself)ij

and (Kneigh(θ))ij from features of type ρnj
to features of type ρmi

. Linearly independent solutions of the
kernel constraint are listed in Table 5 (derived in Weiler & Cesa (2019)). A generic kernel from features of
type ρn to feature of type ρm is a linear combination of learnable parameters of the given basis. Table 5 also
provides solutions for the kernel equations in Section 6.

B More on Relative Tangential Features

B.1 The exponent 3/2

In this section, we discuss the renormalization factor 1/N
3/2
p present in the expression of RelTan features. We

call unnormalized RelTan features the same expression, without the renormalization factor. Unnormalized
RelTan features do not scale properly as the number of neighbors grows. In particular, we show that
unnormalized RelTan features at a node explode as the node degree increases, under reasonable assumptions.
Furthermore, we make the asympthotic behavior of the size of RelTan features explicit, as a function of the
degree of the node. Finally, the rescaling provides an expression for normalized RelTan features that does
not explode nor vanish as the node degree increases.

We recall that the expression of RelTan features is:

vp(r) = 1
N

3/2
p

∑
q∈Np

πp

(
q − p

||q − p||

)
·

[
||q − p||r−1∑

q′∈Np
||q′ − p||r−1

]−1

16

Published in Transactions on Machine Learning Research (08/2022)

Note that we may rewrite vp as

vp = 1
N

3/2
p

· πp

∑
q∈Np

q − p

||q − p||r

 ·
∑

q∈Np

||q − p||r−1

 ,

and we focus on the expression inside the square brackets.

Since we analyze the asymptotic behavior of the expected size of the relative tangent feature vp, we view
the vectors q − p, as q ∈ Np, as random vectors Xi, for i = 1, . . . , N , where N = Np is the degree of p. The
expression for vp becomes therefore

N∑
i=1

Xi

||Xi||r
·

N∑
j=1
||Xj ||r−1.

We also assume that:

• The random vectors Xi are independent and identically distributed (i.i.d.),

• The probability density function of the random vectors Xi factors into radial and angular components,

• The angular component is a uniform distribution.

Under these assumption, the expected value of the squared norm of the vector vp is

E

〈 N∑
i=1

Xi

||Xi||r
·

N∑
j=1
||Xj ||r−1,

N∑
i′=1

Xi′

||Xi′ ||r
·

N∑
j′=1
||Xj′ ||r−1

〉 =
N∑

i,j,i′,j′=1
E
[
||Xj ||r−1||Xj′ ||r−1

||Xi||r||Xi′ ||r
⟨Xi, Xi′⟩

]
.

Note that the terms with i ̸= i′ in the sum cancel out, as the vectors Xi are i.i.d., and the angular component
of the distribution is uniform. The considered expected value then simplifies (only considering i = i′) as

N∑
i,j,j′=1

E
[
||Xj ||r−1||Xj′ ||r−1

||Xi||2(r−1)

]
.

This sum presents N3 addends. Notice that these terms are potentially different. As we assume that the
variables are i.i.d., at least N3− 3N2 + 2N terms – for which i, j, j′ are all distinct – are the same. Therefore,
the sum scales with a factor of N3. We introduce a factor 1/N3/2 into the original vector, so that the
considered expected value neither explodes nor vanishes as N becomes large.

B.2 Proof of Lemma 4.1

We recall that RelTan features to the mesh M are given by:

vM
p = 1

N
3/2
p

∑
q∈Np

πM
p

(
q − p

||q − p||

)
·

[
||q − p||r−1∑

q′∈Np
||q′ − p||r−1

]−1

,

where we make explicit the given mesh M.

Equivariance under global rotations of R3. Let R ∈ SO(3) be a global rotation in R3, and denote by
RM the mesh obtained by rotating M according to R. Notice that the set of neighbors ℓ ∈ NRp of the node
Rp in the mesh RM is the set of points Rq, as q ∈ Np for the mesh M. Also, the normal vector nRM

Rp to the
mesh RM at the node Rp is nothing but RnM

p . Consequently,

πRM
Rp = I − nRM

Rp

(
nRM

Rp

)⊤ = I −RnM
p

(
nM

p

)⊤
R⊤ = RπM

p R⊤,

17

Published in Transactions on Machine Learning Research (08/2022)

where we used that RR⊤ = I. The relative tangential feature at node Rp for the mesh RM is

vRM
Rp = 1

N
3/2
Rp

∑
ℓ∈NRp

πRM
Rp

(
ℓ−Rp

||ℓ−Rp||

)
·

[
||ℓ−Rp||r−1∑

ℓ′∈NRp
||ℓ′ −Rp||r−1

]−1

= 1
N

3/2
p

∑
q∈Np

RπRM
p R⊤

(
R(q − p)
||R(q − p)||

)
·

[
||R(q − p)||r−1∑

q′∈Np
||R(q′ − p)||r−1

]−1

= 1
N

3/2
p

∑
q∈Np

RπRM
p

(
q − p

||(q − p)||

)
·

[
||q − p||r−1∑

q′∈Np
||q′ − p||r−1

]−1

= RvM
p ,

that is equivariance under global rotations.

Invariance under translations of R3. The argument is similar. If x ∈ R3 determines a translation, denote
by M+ x the translated mesh. The set of neighbors ℓ ∈ Np+x of the node p + x in the mesh M+ x is the
set of points q + x, as q ∈ Np for the mesh M. Also, the normal vector nM+x

p+x to the mesh M+ x at the
node p + x is the original nM

p , and therefore πM+x
p+x = πM

p . Hence,

vM+x
p+x = 1

N
3/2
p+x

∑
ℓ∈Np+x

πM+x
p+x

(
ℓ− (p + x)
||ℓ− (p + x)||

)
·

[
||ℓ− (p + x)||r−1∑

ℓ′∈Np+x
||ℓ′ − (p + x)||r−1

]−1

= 1
N

3/2
p

∑
q∈Np

πM
p

(
q − p

||q − p||

)
·

[
||q − p||r−1∑

q′∈Np
||q′ − p||r−1

]−1

= vM
p ,

that is invariance under translations.

Invariance under scaling of R3. Again, a similar argument. Let λ > 0 be the scaling factor, determining
the map p 7→ λp for p ∈ R3. The set of neighbors ℓ ∈ Nλp of the node λp in the mesh λM is the set of points
λq, as q ∈ Np for the mesh M. As above, we deduce that πλM

λp = πM
p . Thus, as λ > 0,

vλM
λp = 1

N
3/2
λp

∑
ℓ∈Nλp

πλM
λp

(
ℓ− (λp)
||ℓ− (λp)||

)
·

[
||ℓ− (λp)||r−1∑

ℓ′∈Nλp
||ℓ′ − (λp)||r−1

]−1

= 1
N

3/2
p

∑
q∈Np

πM
p

(
λ(q − p)
||λ(q − p)||

)
·

[
||λ(q − p)||r−1∑

q′∈Np
||λ(q′ − p)||r−1

]−1

= 1
N

3/2
p

∑
q∈Np

πM
p

(
q − p

||(q − p)||

)
·

[
||(q − p)||r−1∑

q′∈Np
||(q′ − p)||r−1

]−1

= vM
p ,

that is invariance under scaling.

C Equivariant Mesh Attention Layer: proofs, multi-head, and self-contribution

C.1 Proof of Lemma 6.1

The proof boils down to two core steps. First, the softmax-argument is invariant under gauge transformation.
In addition, multiplying the matrix Vp (that transforms as a feature of type ρout) with the invariant
softmax-vector produces a feature of type output. Here we provide a detailed proof.

Under a gauge transformation g ∈ SO(2), the coordinate vectors fp and ρin(gq→p)fq at p transform as

fp 7→ ρin(−g)fp, ρin(gq→p)fq 7→ ρin(−g)ρin(gq→p)fq.

18

Published in Transactions on Machine Learning Research (08/2022)

Also, the angle θ changes as θ 7→ θ − g under the same gauge transformation. Using these relations, together
with the ones expressed in Equation 11, we see that Qp and the Kpq transform as features of type ρatt, while
the Vpq transform as features of type ρout:

Qp 7→ ρatt(−g)Qp, Kpq 7→ ρatt(−g)Kpq, Vpq 7→ ρout(−g)Vpq.

We see this explicitly, for instance, for the case of Kpq:
Kpq = Kkey(θpq)ρin(gq→p)fq

7→ Kkey(θpq − g)ρin(g−1)ρin(gq→p)fq

= ρatt(−g)Kkey(θ)ρin(g)ρin(g−1)ρin(gq→p)fq

= ρatt(−g)Kkey(θ)ρin(gq→p)fq

= ρatt(−g)Kpq,

where we made use of the constraint Kkey(θ − g) = ρatt(−g)Kkey(θ)ρin(g). Computations for the other cases
are similar. Being obtained by column-concatenation from Kpq and Vpq, the matrices Kp and Vp undergo
the same transformations as well:

Kp 7→ ρatt(−g)Kp, Vp 7→ ρout(−g)Vp.

Finally, the convolutional outcome transforms as

f ′
p 7→ ρout(−g) ·Np · Vp · softmax

(
K⊤

p ρatt(−g)⊤ρatt(−g)Qp√
Catt

)

= ρout(−g) ·Np · Vp · softmax
(

K⊤
p ·Qp√
Catt

)
= ρout(−g) · f ′

p,

where we used the orthogonality of the representation ρatt, namely ρatt(−g)⊤ = ρatt(−g)−1. In conclusion,
f ′

p transforms as a feature of type ρout, and the proposed method is gauge equivariant.

C.2 Proof of Lemma 6.2

Suppose that R ∈ SO(3) is a global rotation of R3, mapping the mesh M to the mesh RM. Given a feature
f of type ρin on M, we represent it at a point p by its coordinates fp, with respect to a gauge Ep. Then, the
rotation R defines a feature R∗f on RM, with coordinates (R∗f)Rp = fp with respect to the gauge REp.
Here comes the key remark: the quantities θRp,Rq and gRq→Rp with respect to the gauge REp at Rp for RM
are precisely the quantities θpq and gq→p with respect to the gauge Ep at p for M. Indeed, gq→p can be
computed as

gq→p = atan2
(
(Rq→peq,2)⊤ep,1, (Rq→peq,1)⊤ep,1)

)
,

where Rq→p is the unique rotation of R3 that maps nq to np, with fixed axis nq × np,

For θpq, instead, we notice that the angle can be written as
θpq = atan2(e⊤

p,2 logp(q), e⊤
p,1 logp(q)),

where logp is the norm-preserving discrete logarithmic map

logp(q) = ||q − p||
(I − npn⊤

p)(q − p)
||(I − npn⊤

p)(q − p)|| .

Therefore, the outcome (R ∗ f)′
Rp of the convolution at Rp for RM is equal to the outcome of the convolution

f ′
p at p for M. In other words, the feature mapping defined by the convolutional update is global rotation

equivariant.

A similar argument can be applied to global translation T and scaling S: the coordinate vector of the feature
do not change under T∗ or S∗, the gauge is left unchanged, and the quantities θpq and gq→p are not modified.
In conclusion, the convolutional step is also translation and scaling invariant. Notice that a key property,
implicitly used when considering scaling, is the dependence of the kernel only on angles, and not on the radial
component.

19

Published in Transactions on Machine Learning Research (08/2022)

C.3 Proof of Theorem 6.3

We prove the result for the designed Equivariant Mesh Attention models for segmentation and classification
tasks, whose details are described in Appendix E.

Thanks to Lemma 6.1 and Lemma 6.2, each of the three blocks in the convolutional block is gauge and global
rotation equivariant, and global translation and global scaling invariant. Therefore, the whole convolutional
block satisfies the same properties, and it outputs a sum of scalar features. As operations in the dense block
are defined on scalar features only, and not involving any quantities related to the geometry of the mesh, the
same equi/in-variant properties hold also for the dense block. Finally, thanks to Lemma 4.1, the process of
computing RelTan features is consistent with the above properties, and the whole model is gauge invariant,
global rotation equivariant, and global translation and global scaling invariant.

Regarding equivariance under permutation, it is enough to notice that all the operations involved in the
convolutional block, and the process of computing RelTan features, are permutation equivariant. Moreover,
the operations in the dense block are defined node-wise, and the same operation on features is applied at
each node. In conclusion, the whole model is equivariant under permutation (in the segmentation task, and
invariant in the classification task).

C.4 Multi-head

It is feasible to incorporate multi-head attention in the Equivariant Mesh Attention layer, and we present
here how. However, we did not notice an improvement in performance when integrating this factor in our
implementation for the considered tasks.

Choose h and d = dmodel such that Cout = dh. For each i = 1, . . . , h, consider projection matrices of size
d×Catt, denoted by W i

query, W i
key, and a projection matrix of size d×Cout, denoted be W i

value. Also, for each
i = 1, . . . , h we fix a representation ρi : SO(2)→ Rd. For these matrices, we require the gauge equivariant
conditions

W i
query = ρi(−g)W i

queryρatt(g), W i
key = ρi(−g)W i

keyρatt(g), W i
value = ρi(−g)W i

valueρout(g).

Finally, we consider a Cout × Cout matrix W O. We define the representation ρdiag : SO(2) → RCout by
block-diagonal concatenation of the h representations ρi. The gauge equivariant condition satisfied by W O is
therefore

W O = ρout(−g)W Oρdiag(g).
Then, the multihead attention outcome is defined by

MultiHead(Qp, Kp, Vp) = W O · Concat(head1, . . . , headh),

where
headi = Att(W i

queryQp, W i
keyKp, W i

valueVp).

C.5 Equivariant Mesh Attention Layer with Self-Contribution

Here we provide the details of the convolutional update variant including self-contribution:

f ′
p = αppKselffp +

∑
q∈Np

αpqKneigh(θpq)ρin(gq→p)fq.

In line with Section 6, we consider the quantities

Qp = Kqueryfp, Kpp = Kself
key fp, Kpq = Kneigh

key (θpq)ρin(gq→p)fq,

Vpp = Kself
valuefp, Vpq = Kneigh

value (θpq)ρin(gq→p)fq.

Here, Kquery, Kself
key , and Kneigh

key (θ) are Catt×Cin matrices, while Kself
value and Kneigh

value (θ) are Cout×Cin matrices.
We define Kp as the Catt × (Np + 1) matrix obtained by concatenating as columns the column vectors Kpp

20

Published in Transactions on Machine Learning Research (08/2022)

and Kpq, as q varies. Similarly, Vp is the Cout × (Np + 1) matrix obtained via the same procedure from the
column vectors Vpp and Vpq, as q varies. The outcome

f̃p = (Np + 1) · Vp · softmax
(

K⊤
p ·Qp√
Catt

)

is a column vector of length Cout, and in fact a feature of type output.

Gauge equivariance conditions for the matrices Kquery, Kkey(θ), and Kvalue(θ), translates as:

Kquery = ρatt(−g)Kqueryρin(g),
Kself

key = ρatt(−g)Kself
key ρin(g),

Kneigh
key (θ − g) = ρatt(−g)Kneigh

key (θ)ρin(g),
Kself

value = ρout(−g)Kself
valueρin(g),

Kneigh
value (θ − g) = ρout(−g)Kneigh

value (θ)ρin(g).

D Node permutation equivariance of SpiralNet++

The SpiralNet++ convolution on meshes makes use of spiral sequences around nodes (Gong et al., 2019).
Given a node, a spiral length, an orientation, and a preferred starting neighbor, the node sequence that
constitutes the spiral is uniquely determined‡. The authors consider a fixed counter-clockwise orientation for
all spiral sequences, and the choice of starting neighbor is arbitrary. With these choices, let S(i, λ) denote
the indices of the nodes belonging to the spiral sequence of length λ starting at node i. The feature update
follows the rule x′

i = MLP
(∥∥

j∈S(i,λ)xj

)
.

In Section 5, we analyze the response of SpiralNet++ to different types of transformations, including node
permutation. This is equivalent to saying that the indices of the preferred neighbor choices transform
according to the permutation. This may represent an issue for node permutation equivariance: since the
choice of preferred neighbor is arbitrary, unless stored explicitly along with the mesh, it is not possible to
guarantee that the “same” choice of starting neighbors will be made after having permuted the nodes. For
example, consider a common mesh along with two different labelings A and B of its nodes, and an arbitrary
choice of starting neighbors under labeling A. It is not possible to infer the arbitrary choice of starting
neighbors under labeling B based only on the permutation relating the change of labeling A→ B.

This challenge can be easily resolved by taking into account the geometry of the mesh when choosing starting
neighbors: e.g., choosing the closest neighbor in the Euclidean distance as preferred neighbor.

E Experimental Details

Inputs. The input feature type XYZ is 3× ρ0; and for RelTan features it is ρ0 ⊕ ρ1, where relative tangent
features are stored in the ρ1 part of the feature, and the scalar ρ0 is set to zero. GET features also have type
ρ0 ⊕ ρ1, where the ρ0 component stores the projection onto the normal.

Models. For both segmentation and classification tasks, our models consist of two blocks: a convolution
block and a dense block. The convolution block further consists of three sequential gauge equivariant residual
blocks. Each residual block consists of two gauge equivariant convolutions followed by a summation of the
input to the output of the block. The nature of message passing in these convolutions correspond to the
choice of the model, e.g. GEM-CNN consists of convolutions of the form equation 7, whereas EMAN consists
of attention mechanism equation 13.

For each model, the feature type of the input layer matches the feature type of the input features. The final
layer of the sequence of residual blocks is of feature type 16× ρ0, i.e., 16 channels with only scalar features.

‡See Section 3.2 of (Gong et al., 2019) for details on the construction of the spirals.

21

Published in Transactions on Machine Learning Research (08/2022)

All the intermediate feature types in the model are fixed to 16× (ρ0 ⊕ ρ1 ⊕ ρ2). The second block consists of
two dense layers. The first dense layer is of dimension 16× 256 and the second dense layer maps to the target
dimension followed by a softmax function. The output of the first layer is also passed through ReLU Glorot
et al. (2011) and a dropout layer with parameter 0.5 Srivastava et al. (2014). The target dimension for the
segmentation task on FAUST is 6890 and for classification task on TOSCA is 9. Further, in the case of
classification, we also use mean pooling of the output of the first dense layer over the nodes.

Hyperparameters. We train using a learning rate of 0.01 for 100 epochs for FAUST segmentation tasks. In
the case of TOSCA, we train for 50 epochs and use a learning rate of 2 · 10−3 for GEM-CNN models, and
7 ·10−4 for EMAN models. All tasks use the Adam optimizer Kingma & Ba (2015) and negative log-likelihood
loss function.

F Equivariance vs Data Augmentation

Equivariance in machine learning has arisen as a principled alternative to data-augmentation. Section 5.1 of
Thomas et al. (2018) shows that “rotation equivariance eliminates the need for rotational data augmentation”
for point cloud data. Here, we show that the same applies to mesh data as well. To this end, we perform
experiment on the FAUST dataset with data augmentation applied to both the training and test sets and
compare the improvements brought by equivariance and data augmentation.

Figure 4: Effect of RelTan features on test accuracy during training for a GEM-CNN model (averaged over 3
seeds). The results show better performance and lower variance for the model trained using RelTan features.

Fig. 4 shows the accuracy (over 3 runs) for GEM-CNN models with initial XYZ and RelTan features trained
using roto-translation augmentations on the training set. This experiment confirms that data augmentation
improves the generalization of non-equivariant model to unseen roto-translations: compare purple line above
90% with 2.14% test accuracy for GEM-CNN with XYZ features in Table 3.

Despite this improvement, data augmentation is outperformed by equivariance: the equivariant model (using
RelTan features) learns faster, has better final performance and lower variance during training.

G Time Comparison between EMAN and GEM-CNN

Here we provide a high-level time complexity analysis of EMAN compared to GEM-CNN. The bottleneck
computations for both GEM-CNN and EMAN are expressions involving multiple matrix multiplications, of
the type K(θpq)ρin(gq→p)fq, computed for every orientation of each edge q → p. For EMAN, additionally,
attention coefficients are computed for every orientation of each edge. Computation of attention coefficients
involve the same type of matrix multiplication as in GEM-CNN. Therefore, we observe an increased time to
process features in EMAN than in GEM-CNN. Moreover, as both EMAM and GEM-CNN time complexities
are proportional to the number of such operations involved in the models, the ratio of runtimes for EMAN
and GEM-CNN scales as a constant in the limit of number of edges.

In practice, from Fig. 5 we find that EMAN takes twice as much time as GEM-CNN for the FAUST dataset.
However, because of the use of attention mechanism, EMAN surpasses the performance of GEM-CNN within
the 30 minutes that GEM-CNN takes to complete its 100 epochs. Hence, even though EMAN has higher
time-complexity, it can outperform GEM-CNN within a short window of training time.

22

Published in Transactions on Machine Learning Research (08/2022)

Figure 5: Wall-time comparison between GEM-CNN and EMAN. EMAN requires twice as long per epoch,
due to the use of attention. However, given a fixed budget of 30 minutes, the accuracy for EMAN on the
FAUST dataset surpasses that of GEM-CNN.

H Comparison with Gauge Equivariant Transformers

In this appendix, we compare in detail our model with the Gauge Equivariant Transformer (GET) proposed
by He et al. (2021). More specifically, we discuss the differences between the choices of initial features, the
layer designs, and the effects of the combinations of features and model architectures.

Comparison of features. We recall the expression of RelTan features, for a node p:

vp(r) = 1
N

3/2
p

∑
q∈Np

πp

(
q − p

||q − p||

)
·

[
||q − p||r−1∑

q′∈Np
||q′ − p||r−1

]−1

,

where Np denotes the degree of node p. The projector πp onto the tangent plane TpM is I − npn⊤
p , and the

real number r is the relative power. The vector vp is a 3D vector that belongs to TpM.

On the other hand, GET feature at node p is nothing but the position p of the node itself, considered in
suitable coordinates. Assume that {ep,1, ep,2} is a frame for TpM, and np is the normal vector to M at p.
Then, the coordinates of the GET features with respect to {ep,1, ep,2, np}, that we denote by wp, are

wp =
(
⟨p, ep,1⟩ , ⟨p, ep,2⟩ , ⟨p, np⟩

)
.

As noted by the authors in He et al. (2021), GET features are of type ρ0 ⊕ ρ1; the ρ0 component corresponds
to the projection onto the normal vector, and the ρ1 component to the projection onto the tangent plane.
Therefore, GET features are geometric features, and formally constitute a good candidate for initial features
of a gauge equivariant model, as discussed in Section 3.2.

We analyze the behavior of vp and wp when acting with a global transformation of the space R3. The
vector vp is equivariant to rotations of the space R3, as stated in Lemma 4.1. This precisely means that the
coefficients of vp with respect to a gauge {ep,1, ep,2} are invariant under change of gauge. The same property
holds for the coefficients wp.

However, the situation looks different for scalings and translations. The vector vp is invariant under scalings
and translations, as stated in Lemma 4.1. On the other hand, the coefficients wp are not invariant under these
transformations. A scaling of a factor λ transforms wM

p to wλM
λp = λ · wM

p , and a translation by a vector x

transforms wM
p to wM+x

p+x = wM
p +

(
⟨x, ep,1⟩ , ⟨x, ep,2⟩ , ⟨x, np⟩

)
(compare with expressions in Lemma 4.1 for

the behavior of RelTan features).

Fig. 6 provides a visual interpretation of the differences between RelTan and GET features. To keep the
figure readable, we only show features at node p. RelTan features remain unchanged compared to Fig. 1
regardless of the choice of global coordinates. On the other hand, a translation or scaling of the global
coordinates would alter the GET features (not just their coordinate vectors, but the geometric features
themselves). Our accompanying code includes a notebook with a 3D visualization of both types of features.

23

Published in Transactions on Machine Learning Research (08/2022)

Figure 6: Visual comparison between RelTan and GET features on planar neighborhoods. In contrast
with Fig. 1, we include global coordinate axes in these plots as GET features depend on the absolute node
positions (although they are in turn expressed in the local frame at node p).

Comparison of the layer designs. The GET layer is only gauge equivariant to multiples of 2π/N , for a
certain positive integer N , as He et al. (2021) consider regular representations for the hidden features. They
provide a theoretical setting for an extension of regular representations to representations of the whole SO(2)
(when N is odd), and develop a framework to deduce the solution to the equivariant constraint. Moreover,
they provide an estimation for the error in equviariance for generic rotations in SO(2). In contrast, our model
is directly built on top of the convolutional kernels of GEM-CNN, for which de Haan et al. (2021) developed
an architecture of precise equivariance to arbitrary rotations in SO(2).

Comparison of features and models. The GET model architecture applied to wp is not designed to
scale properly for multiplication of a factor λ, or when adding a vector x (in suitable coordinates). As a
consequence, the GET model is not scaling and translation equi/in-variant.

A possible solution to this issue is a initial modification of the mesh M, before the computation of the
coefficients wp. For instance, we may translate M so that its center of mass coincides with the origin, and
scale it so that the average of the norm of the nodes p is 1. This procedure annihilates the action of potential
translations and scalings.

However, we argue that RelTan features, in contrast with GET features, present another characteristic
that makes them favorable for mesh processing. Their expression is local, as it involves the computation of
relative quantities (the vectors q − p and their norms) among the neighbors q of a node p. Moreover, as
discussed in Section 4, different values of the relative power r detect different aspects of the neighboring
disposition around p, and therefore of the local geometry of the mesh at p. Opposed to this, mere positions
are prescribed in a global fashion, as they strictly depend on the embedding of the mesh in R3 and are not
defined by the local geometry (that is, the neighboring nodes). Our experimental results show that the choice
of RelTan features is preferable to simple node positions.

24

