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Abstract

Neural networks pre-trained on large datasets provide useful embeddings for downstream
tasks and allow researchers to iterate with less compute. For computer vision tasks, many
models that were pre-trained on ImageNet can be easily downloaded for fine-tuning on
various tasks. Recently, equivariant models have become prevalent in vision achieving
SOTA in many tasks, yet no such models are available that have been pre-trained on large
datasets. In this work, we implement several equivariant versions of the residual network
architecture and publicly release the weights after training on ImageNet. We also perform
a comparison of enforced vs. learned equivariance in the largest data regime to date.
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1. Introduction

Symmetry is inherent to most computer vision problems, for example, object identity is
invariant to movements of the camera observing it. Equivariant networks utilize such sym-
metry during processing, enabling them to generalize to unseen transformations of the data.
For this reason, equivariant networks have become popular for tasks with limited data.

Another technique for increasing performance on data-scarce applications is to pre-train
the network on a different large dataset, such as ImageNet. A pre-trained network can gen-
eralize to inputs similar to the pre-training data after fine-tuning on the target task. Since
equivariance and pre-training are both aimed at improving performance and generalization,
it makes sense to study how they work together. Even though neural networks can learn to
be equivariant given sufficient data, it may still be beneficial to build equivariance in the
network, particularly when the target task data is scarce.

In this paper, we explore the combination of pre-training and equivariance by training
equivariant vision models on ImageNet1k. The contribution of this work is two-fold:

• We trained equivariant architectures on ImageNet1k to generate a public repository1

of pre-trained equivariant models for computer vision tasks.

• We compared enforced vs. learned equivariance on ImageNet1k, where we find that
enforced equivariance only outperforms if representational capacity is maintained.

1. Github page will be linked in final version.
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2. Related Work

Equivariant Vision Model Constraining networks to be equivariant to image transfor-
mations has proved beneficial in many applications, such as pose estimation (Esteves et al.,
2019; Klee et al., 2023), reinforcement learning (Wang et al., 2022b), object detection (Han
et al., 2021) and semantic segmentation (Linmans et al., 2018). These networks are con-
structed using group convolutions (Cohen and Welling, 2016), where the learned filters are
acted upon by elements of the group. Because a group convolution is expensive for large
groups, most work has focused on smaller datasets and model architectures (in contrast to
current trends in deep learning (Schuhmann et al., 2022)).

An interesting, parallel line of work to ours introduces a custom layer to extract equivari-
ant features from non-equivariant pre-trained models (Basu et al., 2023b,a). This approach
avoids the compute overhead of equivariance constraints during training, while reaping the
generalization capabilities during fine-tuning.

Equivariance at Scale An under-explored question in the literature is: what is the role of
enforced equivariance in the large data regime? In the low data regime, there is consensus
that enforced equivariance is beneficial for performance and generalization (Elesedy and
Zaidi, 2021). There is some evidence that reducing equivariance error in network operations
improves performance of convolution models on large datasets (Zhang, 2019). However,
with enough data an unconstrained network may learn to be equivariant while maintaining
more representational capacity (e.g. to handle imperfect symmetries (Wang et al., 2022c)).
This idea is supported by the work of Gruver et al. (2022) who observe that sufficiently
large models trained with effective training recipes can fit equivariances in the data without
needing to impose inductive biases in the network.

3. Method

3.1. Model Implementation

We provide equivariant implementations of ResNet (He et al., 2016). The models are
implemented using the escnn library (Cesa et al., 2022), where all convolutional layers
are replaced with group convolution layers that operate on regular representation features.
A group pooling layer is applied to the final feature map, followed by spatial pooling and
a linear layer to predict class logits. We keep the same number of layers and blocks as
the original ResNet implementations, but change the base width (e.g. number of hidden
channels) to maintain the same number of trainable parameters. We provide ResNet18,
ResNet50, and ResNet101 architectures that are equivariant to several discrete groups: D1

(horizontal flips), C4 (rotations by 90 degrees), D4 (rotations by 90 degrees and horizontal
flips), and C8 (rotations by 45 degrees).

3.2. Training Details

We followed the IMAGENET1K V12 procedure from PyTorch (Paszke et al., 2019) to replicate
the performance of existing pre-trained models. The models are trained for 90 epochs on
the ImageNet1K dataset (Deng et al., 2009) with an initial learning rate of 0.1 that decays

2. https://github.com/pytorch/vision/tree/main/references/classification
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by a factor of 0.1 every 30 epochs. The models are optimized using SGD a momentum of
0.9 and weight decay of 0.0001 on all trainable parameters. We use an effective batch size of
256. During training, the images were augmented with random crops and horizontal flips.
The training script was implemented using PyTorch Lightning (Falcon, 2019) to handle
training on multi-GPU devices (models are trained on 4x V100 GPUs).

4. Results

4.1. ImageNet Performance

We report the ImageNet1K classification performances of all models in Table 1. As a
baseline, we include the performance of the non-equivariant models (group = {e}), which
we re-trained to verify our training scheme was consistent with torchvision. The weights of
all pre-trained models here are available for download on our Github (see Appendix A).

Table 1: Comparison of model performance on ImageNet1K

Architecture Group Params Acc@1 Acc@5
Runtime

(min/epoch)

ResNet18

{e} 11.7M 0.697 0.892 9
D1 11.5M 0.709 0.901 15
C4 11.5M 0.734 0.915 22
D4 11.7M 0.737 0.916 34
C8 11.7M 0.738 0.914 34

ResNet50

{e} 25.6M 0.746 0.921 13
D1 25.7M 0.769 0.935 34
C4 24.7M 0.785 0.943 42
D4 24.8M 0.789 0.946 60
C8 24.8M 0.787 0.945 60

ResNet101

{e} 44.5M 0.776 0.937 21
D1 44.7M 0.785 0.943 56
C4 43.4M 0.801 0.952 71
D4 43.9M 0.804 0.953 106

The results in Table 1 show that, given the same representational capacity, equivariant
networks slightly outperform non-equivariant networks on ImageNet. This result aligns
with existing works (Weiler and Cesa, 2019; Wang et al., 2022a) that show equivariance
is beneficial even if the test set does not include symmetric transformations of the data
As Weiler and Cesa (2019) mention, symmetry may still exist at the local level, e.g. edge
detection is rotation-equivariant. We encourage future work to explore the performance
gap between the non-equivariant and equivariant models when fine-tuned on tasks that are
equivariant (e.g. tissue segmentation or pose estimation).

It is worth noting that while the models share similar number of trainable parameters,
the equivariant models take significantly longer to train (since the effective size of the filters
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after basis expansion is larger). For instance, we observe resnet101 takes 2.5x longer to
train with D1 equivariance and 5x longer to train with D4 equivariance.

4.2. Equivariance vs. Data Augmentation

Given that enforcing equivariance can slow down training, it is important to understand
whether the performance boost is worth the cost. To this end, we conduct an experi-
ment where the equivariant models are restricted to a similar compute budget as the non-
equivariant models. We evaluate two methods for reducing training time of equivariant
models: reducing parameter count to use the same filter size after basis expansion, and
reducing number of training epochs for fixed parameter models. All models are trained
on a rotated version of ImageNet1k (images are randomly rotated by up to 360 degrees),
following the training protocol from Section 3.2. The results for ResNet50 models are shown
in Table 3 (we observe similar trends for ResNet18, see Appendix B).

Table 2: Comparison on rotated ImageNet1K with restricted compute budget.

Group Params Epochs Acc@1 Acc@5

{e} 25.6M 90 0.725 0.908

Reduced Epochs
C4 24.7M 27 0.727 0.910
D4 24.8M 18 0.715 0.905

Reduced Params
C4 5.4M 90 0.707 0.898
D4 2.7M 90 0.678 0.881

The results show that using equivariant models with a similar number of parameters
perform best, even with significantly less training epochs. However, we find that more equiv-
ariance constraints can restrict learning, even if the symmetry is present in the problem:
classification of rotated ImageNet is D4 invariant but the C4-invariant models outperform
the D4-invariant models for both the capacity- and training-limited settings. Lastly, we
find that the non-equivariant model performs similarly to the enforced equivariant models
(with similar capacity). One notable limitation of our analysis is that the classification task
is invariant; we expect that enforced equivariance would provide more of a benefit on fully
equivariant tasks. We hope to extend our analysis to such tasks (segmentation or optical
flow) in the future.

5. Conclusion

In this work, we provide implementations of popular residual networks that are equivariant
to rotations or reflections in the image plane. We include weights of each model after pre-
training on ImageNet-1K that can be easily downloaded. Our hope is that the availability
of these models encourages more researchers to try out and fine-tune equivariant models
for computer vision applications where symmetries are present (e.g. cell identification,
tissue segmentation, object pose estimation). Currently, only ResNet-style architectures
are implemented and trained; we plan to add equivariant vision transformers (introduced
by Romero and Cordonnier (2020)), and are open to supporting other models.
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Appendix A. Loading Pre-Trained Models

Our goal with this work is to make it easy for other researchers to test out equivariant
models for vision applications. To this end, we provide a simple interface (inspired by
torchvision3) to instantiate the models and load pre-trained weights. In the example shown
in Listing 1, the pre-trained D1-equivariant ResNet18 model is loaded and a forward pass is
performed to generate the final feature map contained regular representations of the group.

1 from equivision.models import d1resnet18

2

3 # load model with weights

4 model = d1resnet18(pretrained=True)

5 model.eval()

6

7 # generate final feature map

8 fmap = model.forward_features(img_tensor)

Listing 1: Loading Pretrained Model to Predict Equivariant Feature Map

All equivariant models in Table 1 are available on our Github page (link will be available
in final version).

Appendix B. Additional Results

Table 3: ResNet18 on rotated ImageNet1K with restricted compute budget.

Group Params Epochs Acc@1 Acc@5

{e} 11.7M 90 0.640 0.853

Reduced Epochs
C4 11.5M 42 0.686 0.883
D4 11.7M 27 0.681 0.883

Reduced Params
C4 2.0M 90 0.640 0.853
D4 1.0M 90 0.520 0.770

3. https://pytorch.org/vision/stable/models.html
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