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Abstract

Data reconstruction attacks against machine learning (ML) models pose a strong risk of
leaking sensitive data. When training ML models with differential privacy (DP), the success
of such reconstruction attacks can be upper bounded. However, so far, these bounds have
been formulated under worst-case assumptions, which in practice are overly pessimistic and,
by that, result in unnecessary privacy-utility trade-offs. In this work, we provide formal
bounds on the protection of DP against reconstruction attacks that do not necessitate prior
knowledge of the data. We measure the reconstruction success with different metrics and
determine its probabilistic behaviour from expectation (mean) to tail behaviour (extreme).
By providing bounds for these metrics in a real-world scenario, we equip practitioners with a
larger wealth of information to decide upon a certain set of privacy parameters.

1 Introduction and Related Work

Machine learning (ML) techniques and innovations have revolutionised a multitude of research and application
areas, such as computer vision and natural language processing. However, the performance of ML methods is
contingent on the availability of large real-world datasets. In certain domains, such as finance or medicine,
data sets contain highly sensitive information about individuals and, therefore, are subject to (stronger)
privacy legislation that can restrict their potentially already limited accessibility. This particularly concerns
ML models since, for instance, they and/or their gradient updates store information about the training data,
allowing for an (almost) perfect reconstruction of data samples (Fowl et al., 2022; Boenisch et al., 2023;
Feng & Tramer, 2024). For the acceptance of stakeholders and, by that, the availability of their data for
ML training, it is thus imperative to implement protective measures. This has sparked the research area of
privacy-preserving ML.

The gold standard technique for providing data owners with theoretical privacy protection is differential
privacy (DP) (Dwork et al., 2014). DP is a formal framework that provides mathematically provable privacy
guarantees for individuals whose data is being used, e.g., to train ML models. The strength of the guarantee
depends on the chosen set of parameters. Utilising DP inherently enforces theoretical upper bounds on the
success of attacks that aim to reconstruct the input data (Guo et al., 2022; Balle et al., 2022; Hayes et al.,
2023; Kaissis et al., 2023a). Providing such bounds by applying DP allows data owners to control the risks of
sharing their data. However, to do so, practitioners must be able to make an informed decision about privacy
parameters, which effectively protects against data reconstruction while at the same time not being overly
pessimistic, which would result in imprecise outputs and, in the context of machine learning, performance
losses of the resulting models. Therefore, in addition to these abstract privacy budgets, assessing privacy
guarantees in terms of the risk associated with specific attacks in concrete scenarios allows for a more nuanced
understanding of the provided protection for all parties involved. In the following, we refer to such guarantees
concerning interpretable risks as semantic guarantees.

Previous works have investigated these semantic guarantees employing DP (e.g. Nasr et al. (2021)). However,
they have almost exclusively analysed scenarios under “worst-case” assumptions, in which the most powerful
conceivable adversary performs the attack. Such a worst-case scenario includes knowledge about the
reconstruction target. Defining this prior knowledge of an adversary is not trivial. However, at worst, the
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reconstruction attack in such a scenario is equivalent to matching an element of a set of candidates of the
training data to a specific model or gradient. While this follows a Bayesian notion of updating a prior belief
with a posterior distribution, in many practical applications, an adversary is rather interested in recovering
the data sample that is not already in their possession. Evaluating this worst-case scenario is appealing since
an upper bound on the success of such a threat is also a bound on the success of any other reconstruction
attack under less strict settings. Moreover, the constructed bound cannot be deteriorated by post-processing
as the worst-case has control of all parameters (including the input and function) except for the introduced
randomness by the DP mechanism. Therefore, no side knowledge could systematically increase the adversary’s
success. However, only considering the worst-case scenario comes at a cost: if the adversary is weaker than
presumed, the constructed bounds become loose, overrating the adversary’s success. Overestimating privacy
risks is problematic because it drives practitioners to implement stricter privacy conditions, which, in turn,
reduces the quality of the result. The resulting compromise between privacy and performance is called the
privacy-utility trade-off (De et al., 2022). It imposes a dilemma on practitioners, particularly in fields where
highly accurate results are critical, such as the medical domain. For example, in oncological tasks, they must
choose between correctly detecting tumours or accepting the risk of leaking patients’ private information.
Hence, in practice, it is crucial to determine and analyse the case-dependent most powerful but realistic
adversary to enforce the “least amount of privacy” that sufficiently protects against such threat without
overly compromising the model’s performance.

Interestingly, state-of-the-art (SOTA) real-world reconstruction attacks do not even require all the capabilities
of a worst-case adversary. For instance, the currently best performing real-world attacks can reconstruct
the data perfectly without any assumptions about the input data or distribution beyond its dimensionality
(Fowl et al., 2022; Boenisch et al., 2023; Feng & Tramer, 2024). Hence, while the analysis of the worst case
is crucial for understanding the risks of reconstruction at the worst, we believe it is necessary to augment
it with risk models tailored to real-world attacks in order to achieve an optimal privacy-utility trade-off.
These real-world attacks operate under a relaxed threat model, i.e., the considered adversaries have fewer
capabilities and/or knowledge and are thus weaker. We note that bounds on such relaxed threat models are
not immune to post-processing. However, we believe that only practitioners who can accurately estimate the
risks for their specific threat model can make an informed decision about an appropriate choice of privacy
parameters, which leads to an optimal trade-off between privacy and utility. We envision that such analyses
can lead to full system cards (analogously to model cards (Mitchell et al., 2019)), where the privacy risks
in different contexts are described. In this work, we formulate probabilistic bounds on the reconstruction
success for this branch of attacks (Fowl et al., 2022; Boenisch et al., 2023; Feng & Tramer, 2024). With this,
we hope to provide tools for a more educated choice of privacy parameters and, by that, better privacy-utility
trade-offs that allow for both private and highly performing AT models.

1.1 Contributions

In this work, we investigate semantic privacy guarantees of Gaussian mechanisms under a relaxed threat
model, which aligns with real-world SOTA reconstruction attacks. Our contributions can be summarised as
follows:

e In Section 3.1, we formulate the analytic gradient inversion attack that delivers the optimal minimum
variance unbiased estimator for any target input.

o In Section 3.2.1, we measure the success of reconstruction attacks using MSE, PSNR, and we formulate
probabilistic bounds for these metrics in terms of (1, y(n))-reconstruction robustness (ReRo).

e In Section 3.2.2, we measure the success of reconstruction attacks using NCC, and derive a theoretical
upper bound for this quantity.

e In Section 4, we visualize the implications of our results and their correspondence to empirical
measurements.
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1.2 Assumptions

Our assumptions are based on prior work, which we discuss in-depth in the Appendix A.1. Risks in DP
settings are typically analysed under a worst-case adversary, which is colloquially often also referred to as
“DP threat model”. In this threat model, an adversary knows the query function ¢ and all parameters of
the privacy mechanism M. The query function is the function of which we are interested in the output; in
the context of AT models, it is a forward/backward pass over the model and the output is a gradient. The
architecture and parameters of the model are essential to this function output. The adversary can manipulate
these settings in their favour, including the network architecture, weights and loss. In a worst-case threat
model, the adversary aims to distinguish whether a privatised output is based on the input of two almost
synonymous datasets: D or D’. These two datasets are known and adjacent datasets, meaning D’ is the
same as D, but one entry is either removed or added, and the adversary knows all entries in D and also
which entry is removed or added. This scenario corresponds to a worst-case analysis of membership inference
risk analysis. Hayes et al. (2023) and Kaissis et al. (2023a) have empirically and theoretically analysed the
success of reconstruction attacks under multiple relaxations of the DP threat model. Even though both
analyses provide a “step closer” towards choosing DP guarantees tailored to more practicable contexts, their
assumptions for constructing theoretical bounds can still be considered “too strict” and fail to describe the
capabilities of adversaries of some of the current SOTA real-world reconstruction attacks.

Given these considerations, we choose our assumptions to be equivalent to those of several SOTA real-world
reconstruction attacks, e.g., Fowl et al. (2022); Boenisch et al. (2023); Feng & Tramer (2024). These are
relaxed compared to Hayes et al. (2023): In particular, they differ by assuming an adversary without knowledge
about the input data beyond the dimensionality. In all other regards, our threat model is congruent with the
worst-case reconstruction threat by Hayes et al. (2023). However, we note that the goal of our work differs
from Hayes et al. (2023) as they describe a posterior probability which is influenced by a prior. In contrast, we
describe the probabilities of reconstructing the input data in a certain quality. In the taxonomy by Cummings
et al. (2024), our model differs in the assumptions of population-level and dataset-level auxiliary information
compared to the DP worst-case threat model.

1.3 Background

In this preliminary subsection, we recall the established concept of (7, y)-reconstruction robustness (ReRo)
(Balle et al., 2022) that allows us to express DP guarantees in terms of the reconstruction success of an
adversary. We note that further basic concepts, specifically regarding the studied reconstruction metrics, can
be found in Appendix A.2.

Defining the “robustness” of ML models against reconstruction attacks is central to our findings, particularly
in translating the “reconstruction success” given by reconstruction error functions into properties of DP
mechanisms. Arguably, the most general definition of reconstruction robustness was given by Balle et al.
(2022):

Definition 1. A randomized mechanism M : Z" — O is (n,~)-reconstruction robust with respect to a
prior 7 over Z and a reconstruction error function  : Z x Z — R if for any dataset D_ € Z"~! and any
reconstruction attack R: © — Z:

Pzro~m_uizpll(Z, R(©)) <n] <.

In Definition 1, the reconstruction error function ! measures the similarity between the true data Z and its
reconstruction R(O), where R(O) is obtained using the randomised mechanism’s output © and the adversary’s
prior knowledge 7. The closer Z and R(O) are, the lower the values of [(Z, R(©)). Therefore, n can be
chosen in such a way that a reconstruction error above this threshold 7 indicates a distorted, non-usable
reconstruction, and an error below 7 characterises informative reconstructions. In turn, quantifying the
probability of having an error lower than this threshold 7 offers an insight into the semantic meaning of the
protection provided by the DP mechanism M. Concretely, if said probability is upper bounded by ~y for all
reconstruction attacks R, then the probability of “successfully” reconstructing the input Z is upper bounded
by ~, and we call M (n,~)-reconstruction robust with respect to = and .
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2 Methods

2.1 Analytic Gradient Inversion Attacks

Throughout this work, we consider an adversary who aims to recover the input data used to train a ML model.
We assume this adversary has control over the model’s architecture, hyperparameters and loss function, and
knows the dimension N of the input data as stated in Section 1.2. The works by Boenisch et al. (2023); Fowl
et al. (2022); Feng & Tramer (2024) have shown that, under such assumptions, said adversary can conduct a
successful reconstruction attack against a ML model. All of these attacks require performing an analytic
gradient inversion attack based on inverting linear layers with an added bias term present in (or added into)
the model.

For instance, consider a network whose first layer is a fully connected linear layer f : RV — RM with weight
matrix W € RM*N and bias scalar term b € RM . Formally, the operation of a linear layer on an input sample
X € RY can be written as

f(X)=WX +b. (1)
Typically, such a linear layer is succeeded by other neural network operations and a loss function, which we
summarise in the term g : RM — R. Hence, g describes the part of the network starting from the linear layer
and g (f(X)) denotes the network’s loss function output. As customary, all network parameters are updated
according to the loss function during each training step. For that purpose, the gradient of g o f with respect
to all network parameters is computed by a backward pass. We call this gradient the global, concatenated
gradient and denote it by Gx. Naturally, the global gradient G x is dependent on the training step and on
the input sample point X of that specific training step, which is evident since model updates change from
one training step to another. However, to ease notation, we do not additionally index Gx with the iteration
step. We recall that the adversary knows Gx under the capabilities assumed by the threat model.

Therefore, for a fixed training step, besides other model updates concerning the parameters of the part of the
network given by g, for all j € {1, ..., M}, the adversary observes

9g(f(X))
0b;
namely, the gradient of g o f with respect to jth row of the matrix W and the derivative of g o f with respect

to the j-th entry of the bias term b, respectively. Moreover, the adversary is aware that the gradient and the
derivative in 2 are constructed by a backward pass in the following way:

Vw,9(f(X)) € RN and e R, (2)

Vi alf(0) = B ), - S x, ®)
9gUI(X)) _ 09(/(X) D(X); _ Dolf(X) "
b, 0f(X);  0b; of(X);

for all j € {1,..., M}. Note that the gradient in Equation 3 is a scaled version of the input X and that the

multiplicative factor % on the right-hand side of Equation 3 equals the observed update with respect
J

to the j-th entry of the bias given in Equation 4. Thus, if there exists j' € {1, ..., M}, such that the update
%(f)) # 0, the adversary can reconstruct the input sample X analytically by performing
99(f(X))

Vi, () 0

= X, (5)

where @ denotes the entry-wise division. Computing 5 is possible for all j € {1, ..., M} such that %&X)) £ 0.

In the assumed setting, the adversary can modify the model to facilitate their analytic reconstruction attack.
Specifically, if necessary, they can insert the fully connected linear layer f, as given in Equation 1, as a first
layer into the network or even replace it entirely. Therefore, from now on, we consider neural networks of the
above form g o f. Similarly, we assume the adversary chooses the batch size B to equal one to ensure that
only one input sample X is used per iteration step and avoid contaminating the model updates with the
information from different samples. For a more detailed discussion concerning the batch size B, we refer to
Section A.1, specifically the paragraph referring to prior works on analytic gradient inversion attacks.
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2.2 Analytic Gradient Inversion Attacks under DP

Fulfilling the requirements of DP can be achieved by randomising the output of a deterministic function
q: X = RY, where X’ denotes a universe of sensitive records. This randomisation can be conducted employing
a DP additive noise mechanism M, that adds noise drawn from an appropriate distribution, calibrated to
the (global) sensitivity A, of ¢, to the deterministic output ¢(D) of the function ¢ over a data set D. The
sensitivity A, of ¢ is calculated using the £,-norm: Ay(q) = supp prex,p~pr la(D) — q(D')|[,, for p € [1,00),
where D ~ D’ denotes that D and D’ are adjacent data sets, i.e., data sets which differ in exactly one entry.
In this work, we consider the Gaussian additive noise mechanism or Gaussian mechanism, the predominant
approach in applications with high-dimensional data. Let M be the Gaussian mechanism over a query
function ¢ : X — RY with sensitivity Ay := As(q), then the output of the DP mechanism M is given by

M(q(D)) = q(D) +&, &~N(0,0°Adly),

for I being the N-dimensional identity matrix and o the noise scale. In particular, the choice of ¢ modulates
the privacy guarantee provided by (a single execution of) the Gaussian mechanism M.

From now on, we consider training networks of the form g o f, as stated in Section 2.1, with DP to protect
the training data against analytic gradient inversion attacks and evaluate the provided protection. In the
context of neural networks, applying DP is usually achieved by training with DP-SGD (Song et al., 2013).
Since in DP-SGD the privatised quantity is the global gradient, the noise must be calibrated to the sensitivity
of the global gradient, which is not (necessarily) bounded and can be hard to compute. Hence, the DP-SGD
algorithm is based on two main steps: (1) Clipping the fo-norm of the global, concatenated gradient to
a predefined bound C in order to have an artificial bound on the sensitivity and (2) adding calibrated,
zero-centered Gaussian noise to the gradient. The hyperparameter C' is usually called the maximum gradient
norm.

For a network g o f, for a fixed iteration step, the global gradient G x has the following form:

T
Gx = [Vunglr 0", ZIE g0y, 29D G I ©)

where G'x p denotes the concatenated gradient of g o f with respect to the rest of the parameters of the
network, where all vectors are unrolled to scalars. To induce a bound on the norm of the global gradient Gx,
G x is multiplied by the clipping term:

1
lGxll2 )
max (1,%)

We note that (X)) is dependent on the iteration step by definition and it decreases with increasing norm of
the global gradient G x. Next, independent and identically distributed (i.i.d.) noise samples £ are drawn from
a multivariate Gaussian distribution N (0, C?02I), where I is the identity matrix of the dimension of the
global gradient G x and 0 denotes zero vector also matching the dimension of Gx. Hence, when a network is
trained with DP-SGD, the adversary observes noisy versions of the model updates in Equations 3 and 4 that
could be used for the gradient inversion attack:

Bo(X) = (7)

Vw, = Bc(X)Vw,g(f(X)) + & = ﬂc(X)wX +&, &~ N0y, C*?Iy), (8)
T, = o0 EEN g oIS g g~ w.c) )

for all j € {1,...,M}. Under non-DP training, the gradient in Equation 3 stored a scaled version of the
target input point X (see Section 2.1). In contrast, when employing DP, the model updates have the form
presented in 8 where the stored target X has not only been rescaled but also perturbed by adding Gaussian
noise. Therefore, for each j € {1, ..., M}, Expression 8 denotes a privatised version of the input X. It is easy
to see that the introduced randomness impedes performing a simple division to recover the input sample X
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analogously to the operation in 5. Using the distribution of the sampled noise, the noisy model updates in
Equations 8 and 9 can be expressed as samples from random variables in the following way

Vw, LY;, for YjNN<ﬁc( )65;{( )))X C?o?I ) (10)
and %bj 4 zj, for zj~N (ﬂc(X)W,CZUQ) , (11)

for all j € {1,..., M}, where 2 means equal in distribution. Even though the adversary cannot perform the
division in 5 to reconstruct X, they can use the privatised global gradient, in particular, the observations
Vwis oo, Vivass Vg, -5 Vi, and the knowledge about their distributions, as given in 10 and 11, to design
an estimator for the target point X. Ultimately, this estimator serves as the reconstruction Yx of X. We
highlight that Vi, ..., Vi,, are M observed, privatised versions of X, whereby M can be modulated by the
adversary since it denotes the number of rows of the matrix W that specifies the linear layer f (see 1). In
Section 3.1, we address parameter M’s importance for the estimator and, thus, for the attack’s success.

Without making assumptions on the part of the network given by g, it is difficult to determine whether, for
all or for some iteration steps, the part of the gradient denoted by Gx, p (see 6) and, thereby, its privatised
version contain usable information to estimate the target X. Therefore, we first assume that the privatised
model updates given by V..., Vw,,, Vi, ..., Vs,, are sufficient to estimate X and ignore the remaining
part of the privatised global gradient. Later, we address the influence Gx p has on formulating an estimator
for X and, in Corollary 1, we specify the choice of the part of the network given by g that renders the analytic
gradient inversion attack with the highest reconstruction success in terms of the MSE.

Reconstructing the target X using only the observations 6W1, ey 6WM is “not far from” solving a classical

mean estimation problem. However, the means of the distributions of the samples 6W1 s ooy Vyy,, are not X

but rescaled versions of X, namely B¢ (X )85}{)(?2))( W Be(X )dg(f())())X respectively (see 10). Removing

ag(f(X)) 99(f(X))
)ng7 76 ( )Bgf(X)

estimator for X (see Proposition B.1 in the appendlx) such as the sample mean. Since the adversary also
observes noisy versions of these scaling factors, namely Vbl, . Vb w (see 11), we can differentiate between the
cases where the adversary needs and does not need Vy,, ... VbM to construct an unbiased estimator for X.

the dependency on the scaling factors So (X is necessary for creating an unbiased

In the former case, the adversary can try to integrate the observed privatised gradients
Vs ooy Vivags Vs ooy Vi, by dividing entry-wise VW by Vs, for all j € {1,..., M} such that V;, # 0.

Consequently, to determine the behaviour of VW]. @ wa j €{1,..., M}, they combine 10 and 11 and consider
9g(f(
N (pol) B, C20%)

= s d
Vw, @V, =V;, for Vj;~
W (Be() %G C20%)

(12)

where V;; denotes the i-th entry of V; for all ¢ € {1,..., N}, and V;; are pairwise independently distributed.
The ratio of two Gaussian distributions, as the one in 12, follows the Cauchy distribution. Generally, this
distribution has no defined statistical moments (Marsaglia, 2006), such as an expectation. Although, under
certain assumptions these moments can be approximated (Marsagha 2006; Diaz-Francés & Rubio, 2013),
no general statements about the behaviour of the samples VW @ Vb , J € {1,..., M}, or the asymptotic
behaviour of estimators constructed using said samples, can be made if the statistical moments do not
exist. This is particularly problematic considering that the distribution in 12 varies for all j € {1, ..., M},
X € D and each iteration step. Therefore, we assume that the adversary refrains from employing 12

to estimate X. However, if necessary, the adversary uses Vy,,...,Vp,, to estimate the scaling factors
Be(X) ag}{g(X)), o Be(X )%g;(f)(())(&) first and then, separately, they use these estimators to rescale the observed

privatised gradients 8, reformulate their distributions 10 and solve the mean estimation problem. Due to the
inherent randomness of estimators it is easy to see that a reconstruction Yy of X is more accurate if the
scaling factors Bc (X )Og}{ X0 s Po(X )%gf({)(())iy are known. In particular, this implies that upper bounding

the success of a reconstruction Yy when the scaling factors are known is sufficient to bound the reconstruction
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success of Yx when the scaling factors are estimated. As we are interested in the most precise reconstruction
an adversary could obtain, in the following, we assume that these scaling factors are available to the attacker.

3 Theoretical results

3.1 Construction of the optimal analytic gradient inversion reconstruction attack under DP

Let X = (21,...,2x5)T € D C RN be a fixed reconstruction target point, and also fix the training iter-
ation step. Again, we emphasise that from now on, we assume the adversary can estimate the scales

Be(X )%, oy Be(X )% without requiring their noisy versions 9 and after observing the privatised
gradients %le . %W]\/I (see 8), as explained in the last part of Section 2.2. However, we also consider this
case as such scaling factors can be approximated by various strategies independently of 9, in the simplest
case, by constraints on the data, e.g., for images by setting their pixels to range from 0 to 255.

D, e B
privatised gradients Vy,, ..., Viy,, (see 8), construct their sample average X, and use Xy as an unbiased
estimator for X:

Having access to Sc(X implies that the adversary can rescale the observed

1 M 1 N
Xvi=—Y ——— Vi,
M 2 o) D

(13)

Consequently, using the distribution of the observations 6Wj, j€{l,..., M}, given in 10, the distribution of
the sample mean X is given by:

M

N 1 C2%g2
Xu~N|X, — Iy (14)
Ve 5 2

In this work, we have assumed the adversary is able to modify the model’s architecture, hyperparameters and
loss function to facilitate their attack. Therefore, they are capable of adjusting the neural network g o f to
minimise the coordinate-wise variance of the sample mean X in 14, aiming to increase the probability that
X takes a value “close enough” to its expectation, namely to the target X. One potential strategy, could
be to increase the number of rows M of the matrix W of the first (linear) layer f (see 1) of the network.
However, for increasing M, the norm of the global gradient G'x (see 6) increases and the clipping term S (X)
(see 7) decreases requiring a careful consideration of the interaction between M and Bc(X). In the appendix
(see Proposition B.2), we show that the coordinate-wise variance of the sample mean Xy is lower bounded
by 02| X||3 for M — oo. Intuitively, this implies that, from the adversary’s perspective, the variability of the
estimator X, can only get “so good”, but after a certain value for M it will not further decrease and, in
particular, it will never be zero such that X, results in the undistorted target point.

The next proposition specifies the concrete modifications to the network that render the sample mean Xu
with the lowest variance:

Proposition 1. Let the part of neural network given by g be replaced by the loss function £ : RM — R with
L(f(X)) = 13, f(X), where 1yr is the M-dimensional 1-vector, and

M > max (17[ - ¢ -D7 (15)
mMinxep\{on} ||X||2

M %52
j=1 99(F(X))2
7 BC(X)Q oF(X);

where [-] denotes the function that rounds up its argument to the nearest integer, then # >
is minimal and takes the value o®|| X ||3.

Assume the adversary replaces the entire network by the linear function f : RN — RM given by f(X) = WX,
W € RM*N and the loss function £ : RM — R given by £(f(X)) := 1%, f(X), then 85}{?2) = 3§;{§()§j) =1
for all j € {1,..., M}. In particular, this implies that

99(f(X)) 99(f(X))

ﬁC(X)W =..= 5C(X)m = Bc(X) (16)
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reducing the approximation of M scales, presented in the first part of this section, to the estimation of only
one scale, namely o (X).

Moreover, by Proposition 1, for all M’ satisfying 15, the sample mean X is distributed in the following

way:

Kr LR, for X~ N (X,0%|X|2IN). 17)

If C/minxep\(oyy [[X]|2 > 1, Proposition 1 implies that setting M below { _‘, results in a

TninXeD\{ON} [1 X2
sample mean with a higher variability in terms of its variance. Therefore, from the adversary’s perspective,

engineering M appropriately can be viewed informally as counteracting the addition of “overproportional”
noise to the observed privatised model updates, since no clipping is triggered and thus the noise can be
calibrated to a smaller value. However, increasing M beyond the bound in 15 does not further minimise the
variance of the estimator in 17. In particular, the choices of the network presented in Proposition 1 suggest
that no privatised version of the gradient Gx p (see 6) can improve the estimator’s variance in 17 or improve
the performance of the analytic reconstruction attack.

Since the adversary cannot directly manipulate the randomisation introduced by the DP mechanism to their
benefit, their strategy can only rely in increasing the number of observed privatised versions of the input
X and aggregating them, as presented in Proposition 1. As mentioned before, this approach makes the
analytic reconstruction attack a classic mean estimation problem whose success depends on the variance of the
estimator in 17. Due to the nature of the clipping term S (X) (see 6), any non-usable observed information
contained in Gx p, increases the variance of this estimator (see Proof of Proposition 1 in Appendix B).
Moreover, usable observed information contained in Gx p can be optimally incorporated into the mean
estimation problem if it is a privatised version of the input X of the form in 8, making Gx p the gradient
of a linear layer. Thus, the (insertion of the) linear layer and choosing M as in Proposition 1 makes Gx p
redundant at best. In other words, in such a case, the entire, necessary information to estimate the target
sample X is already contained in the gradient of the linear layer and Gx p # O can only decrease the
reconstruction quality by adding to the gradient norm and triggering the addition of “overproportional” noise.

If the adversary chooses M according to Proposition 1, then the behaviour of the sample mean X coincides
with X’s one (see 17) independently of the specific value of M. Moreover, it is worth noting that X is
independent of the clipping norm C' and its variance is exactly calibrated to the norm of the target X. Next,
we examine some properties of X.

Proposition 2. X s the minimum variance unbiased estimator (MVUE) for X. Moreover, the expected
mean squared error between the target X and X is given by:

Ex[MSEx (X, X)] = 2| X|2. (18)

A minimum variance unbiased estimator (MVUE) for the target X is desirable when dealing with the statistical
estimation problem because such an estimator achieves the lowest expected mean squared error (MSE) and
has the lowest variability in terms of its variance compared to all other estimators for X constructed with the
same observations Vyy, , ..., Viy,,. The following result further emphasises the relevance of the estimator X
regarding reconstructing the target X:

Theorem 1. Using the MSE as an optimality criterion, X s the best achievable estimator and, thus,
reconstruction for the target point X.

In this work, we utilise the MSE as an optimality criterion, because the mean squared error is equal to zero,
i.e., MSEx (X, X ) =0, if and only if X = X, namely whenever the adversary perfectly reconstructs the target
X. A perfect reconstruction denotes the best case scenario for the adversary or conversely the worst case
scenario concerning privacy preservation. Therefore, by Theorem 1, analysing the error between X and X,
specifically lower bounding this error, is sufficient to upper bound the reconstruction success of the adversary:

Corollary 1. Assume the adversary replaces the original model by a single, fully connected linear layer

f(X) = WX of a single input X € RN by a learnable matrizv W € RM*N ' M = max (1, [4—‘),
A minxep\ foy} X2

and sets the loss function £ : RM — R to be LW, X) := IEWX. Then, X, as defined in Equation 17, is the
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Figure 1: Demonstration of how an adversary can enforce to obtain the least amount of noise on the
reconstruction for constant privacy parameters by adjusting the parameter M. If they increase M such

that M > (ﬁ), they will get the least amount of additive noise (right column). If they do not exceed

this threshold, the additive noise is stronger (“overproportional”) for the same privacy parameters C' and o
(middle column). Middle column: M = 1, right column: M = 1000. All other parameters remain constant
for both reconstructions: o = 5-107%, C' = 5.0 - 103, N = 150528. All images are from the ImageNet dataset
(Deng et al., 2009).

MVUE with the lowest expected MSE and variability in terms of the variance compared to all other possible
MVUE obtained under other choices regarding the model’s architecture, hyperparameters and loss function.

Upper bounding the reconstruction success of an adversary that performs the attack described in Corollary 1
automatically bounds the success of an adversary that performs any other analytical gradient inversion attacks
under DP. Therefore, we focus on the attack specified in Corollary 1 as well as on the optimal estimator X as
in 17. From now, we set X to be the reconstruction of the adversary.

3.2 Determining the reconstruction success

In this section, we aim to determine the privacy effect DP has on the success of analytic reconstruction
attacks performed against models privatised by the Gaussian Mechanism. To do so, we evaluate how well
the adversary’s reconstruction X, as defined in 17, resembles its respective target input point X via the
mean squared error (MSE), the peak signal-to-noise ratio (PSNR) and the normalised crossed-correlation
(NCC). These metrics compare the input point X to its reconstructed version X in different ways. However,
we interpret it as high reconstruction success whenever they indicate high similarity between X and X.
We associate the reconstruction success of the adversary with the privacy guarantees provided by the DP
framework. Additionally, we express the MSE and PSNR as random variables, examine their tail behaviour
and provide guarantees in terms of the well-established notion of reconstruction robustness.

3.2.1 Reconstruction success measured by the MSE, PSNR and ReRo

First, we recover the value of the expected MSE x (X, X ) for all X # Oy stated in Equation 18. To interpret
the result in 18, we consider the cases C' < minxepy\ oy} [|X |2 and C' > minxep\fo,} || X||2 separately.

Assume C' < minxepy\ oy} [[X|[2 holds. Then, the expected reconstruction error measured by the MSE

between X and and the reconstruction X can be lower bounded by the product of the squared maximum
gradient norm C? and the squared noise scale o2 for all X € D\ {Oy}, implying that the MSE between X
and any of its unbiased estimators can be lower bounded by C?02. Hence, the higher the variance of the
additive noise mechanism M, the higher the expected error in terms of the MSE. It is, thus, easy to see that
the privacy of the DP-mechanism and the expected MSE are positively correlated.
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However, if we assume C' > minxep\ oy} [|IX||2 holds, then the expected reconstruction error measured by

the MSE between X and the reconstruction X equals o2||X||3 for all X € D\ {Ox} and cannot be lower
bounded solely using the DP parameters C' and o. In such a case, the result 18 illustrates the effect that
increasing M, i.e., the number of reconstructions that are retrieved, has on the reconstruction success of
the adversary, namely it cancels the addition of “overproportional” noise to all X such that C > || X|2 .
Specifically, in this case, the error measured by the MSE is exactly calibrated to the norm of each target X.
Due to the optimality of the estimator X , we conclude as before, that the expected MSE between X and
any of its unbiased estimators can be lower bounded by the product of the squared norm || X||3 and o2 if
C > minXeD\{ON} ||X||2

It is difficult to make general claims regarding the occurrence of the cases C' < minxea\ o3 [|[X|[2 and C >
minxex\foy} || X2 since, in practice, the maximum gradient norm C'is usually an arbitrary hyperparameter,
chosen on experience and not necessarily dependent on minxcp\g, [|X|l2. For instance, C' =1 is a very
typical choice for classification tasks or whenever practitioners want to simplify all of their calculations.

To illustrate the behaviour of the MSEx (X, X ), we turn to the calculation of probabilistic bounds for
this quantity. Concretely, fixing the target X, we can formulate the MSEx (X, X ) as a random variable
determined by the randomness of the reconstruction X and explore its tail behaviour. We are particularly
interested in computing and bounding the probability of the error measured by the MSE falling below a
certain threshold 7. The choice of the threshold 7 indicates the interpretation of such a probabilistic bound
since, for instance, 7 can be chosen such that an error measured by the MSE x (X, X ) below 7 characterises
informative reconstructions.

Theorem 2. ) )
a 0’| X]3

MSEx (X, X) < N Y with Y ~x%, (19)

where X3, denotes the central chi-squared distribution with N degrees of freedom. In particular, for n given,
. N Nn

Py (MSEx(X,X)<n)=Tg|—,———5 20

< OB (X, %) <) =T (G gy ) (20)

where I'r is the reqularised gamma function.

By Theorem 2, the MSE x (X X ) between any target point and its reconstruction is a chi-squared distributed
random variable with NV degrees of freedom multiplied by the product between 1/N and ¢2||X||3. Thus, it is
no coincidence that the latter ratio equals the expected MSE given in Equation 18 because the expectation
of a chi-squared distributed random variable with N degrees of freedom equals N. Therefore, we can recover
the interpretation of 02| X |3 stated in the first part of this section, specifically the behaviour of this quantity
for the cases C' < minxepy\ oy} [[ X2 and C > minxepyjo,3 [[X||2. Moreover, Theorem 2 demonstrates that
0?|| X |3 determines not only the expectation of the MSE but also its distribution, highlighting the influence
that the DP parameters C' and o and the parameter M, chosen by the adversary, have on the error measured
by the MSE and consequently on the reconstruction success of the adversary measured by the MSE.

Informally, the chi-squared distribution with N degrees of freedom converges to the normal distribution
for N — oco. Therefore, for cases where the dimension of the training data is “very high”, it is pertinent
to additionally analyse the asymptotic behaviour of the MSE x (X X ) for N — oo. In the appendix, in
Proposition B.3, we formally present the convergence in distribution of the MSEx (X,X ) for N — .
However, we leave out an in-depth discussion of the result in Proposition B.3.

Expressing the MSE as a random variable enables the formulation of its tail behaviour as given in 20. We
note that the result in Equation 20 resembles the notion of reconstruction robustness as given in Definition 1.
In the following, we generalise this result to lose the dependency on the target point X and translate the
probabilistic bound in 20 into reconstruction robustness:

Proposition 3. Let n given. Then, for all X € D\ {0y},

. N Nn
P, (MSE (X,X) < ) <Tr(=, : 21
< X SN)SIR{ 552 minyep || X||3 Y

10
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where ' is the reqularised gamma function. Moreover, the DP-mechanism M is (n,v(n))-reconstruction robust

with respect to the MSE for any reconstruction and v(n) =T'r (N L) If C <minxex || X2

2 202 minxep HXH%

holds, then M is (n,~'(n))-reconstruction robust with respect to the MSE for any reconstruction and ~'(n) =
Pa (5. 2% ).

Depending on the training data, other reconstruction error functions might be more informative when
assessing the similarity between the target X and the reconstruction X. Concretely, we consider the peak
signal-to-noise-ratio (PSNR) (see Definition 3) as a reconstruction quality function next. We note that the
PSNR is defined via the MSE. In particular, as the MSE decreases, the PSNR increases, implying that if
there exists one reconstruction that minimises the MSE and this minimum is non-zero, this reconstruction
maximises the PSNR. Thus, by Theorem 1 and Corollary 1, the chosen reconstruction X is also optimal
with respect to the PSNR.

Next, we provide probabilistic bounds for the PSNR between X and X to determine its tail behaviour. To
do so, we assume max xcp max(X) and minxep min(X) are known quantities. This information is known
whenever the adversary has access to the range of the data, such as when the training data are images. Unlike
the MSE, the PSNR increases as the similarity between X and X grows. Therefore, we formulate a bound
for the probability of the event when the PSNR exceeds a certain threshold 7. In contrast to the MSE, 1 can
be chosen such that a similarity measured by the PSNR above 7 characterises informative reconstructions.

Proposition 4. Assume max max(X) and ;{ni% min(X) are known quantities. Then, for all X € D\ {On},
€ €

N Nij(n)

X( S Rx< ) )777>7 R(2’2a2minXeD\{oN}”X|%>’ )

2
for ij(n) := 1010 <I)?a% max(X) — )r{ni% min(X)) , and for T'g being the reqularised gamma function. If
€ €

C < minxep | X||2 holds, then

(23)

Py (PSNRx (X, X) 2 ) < T (N Nﬁ(n)) |

2720202
forall X e D\ {On}.

To reformulate the result in Proposition 4 into reconstruction robustness terms, we utilise the negative PSNR
(=PSNR) as a reconstruction error function:

Proposition 5. Assume max max(X) and gli% min(X) are known quantities, and let Yx be any possible
€ €

reconstruction. Then, for all X € D\ {On},

N Nij(n) )
Py, (PSNRx (X,Yx) >n) <Tg|( &, i ’ .
Yx ( X ( X) 77) R < 27902 minxep\{oy} ||XH% ( )

for Tr being the regularised gamma function and 7j(n) as defined in Proposition 4. In particular, the
DP-mechanism M is (—n,7(7(n)))-reconstruction robust with respect to the negative PSNR (—PSNR) for

any analytic reconstruction and ¥(7(n)) =T'r (%7 557 minszz(\ﬁ,\,} IIXI\§)' Moreover, if C < minxep || X||2

holds, then the DP-mechanism M is (—n,% (7j(n)))-reconstruction robust with respect to —PSNR for any

reconstruction, ' (f(n)) = Tr (%7 é\;@(gg .

The CDF of the MSEx (X, X) and the survival funciton (SF) of the PSNR x (X, X) for different values of o,
N and || X||2 are depicted in Figure 3. We remark that bounding the probability of a specific reconstruction
loss allows for interpreting our results in terms of (7, v(n))-ReRo (compare Figure 3 to Propositions 3 and 5).

3.2.2 Reconstruction success measured by the NCC

Let us consider the linear correlation given by the NCC between a target X and its reconstruction X. The
NCC can be measured empirically using their entries {z1,...,2y} and {Z1, ..., x5} as sample sets, thereby

11
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Figure 2: Empirical reconstruction results overlaid on our theoretical results. Each column shows one
reconstruction metric: Left: MSE, Middle: PSNR, Right: NCC. For MSE and PSNR, the probability density
function (PDF) of the theoretical distribution is encoded in colour, where white corresponds to low values
and black to high values along each ¢. For the NCC, the dashed line shows the theoretical bound. For
all plots, we have performed empirical reconstructions of four-dimensional data samples (N = 100) with
M = 100, which are sampled from a uniform distribution (0, 1). The resulting reconstruction metrics are
displayed as boxplots, where the orange line shows the mean reconstruction result, the green box displays the
interquartile range (IQR) from the first quartile to the third quartile, and the whiskers extend to the data
point, which is the last within 1.5 of the IQR. Further outliers are displayed as circles. First row shows the
case where C' = minx¢p || X||2. Hence, the sensitivity is exhausted, and the resulting reconstruction cannot
be further improved for this scenario even if M = 1. In the second row, we have C' = vM minxep || X||2.
Here, several data samples only exceed the sensitivity threshold because multiple observations are combined.
In the last row, no data sample is clipped as C' is set to be larger than any data norm and M has not been
chosen according to the optimal attack. Therefore, the sensitivity limit is not reached, and “overproportional”
noise is applied. This decreases the reconstruction success.

computing the sample NCC. The calculation of the sample NCC and a brief comment regarding its usefulness
can be found in the appendix in Proposition B.4 and Remark B.1, respectively. However, in this section, we
concentrate on the (theoretical) correlation between X and X.

To compute the NCC between X and X, we apply the following strategy: First, let the target X be fixed. We
assume there exists a continuous, one-dimensional random variable z distributed in such a way that {1, ...,xn}
are probable samples from this distribution. In particular, we let [min;c¢y . N} i, max;eq1,.. N} T3] be the
support of x and set Var(x) < || X||3/N. The latter assumption is motivated by the following fact: X is an
N-dimensional vector, hence, drawing a random element from its entries {x1,...,xx} can be represented by a
discrete, uniformly distributed random variable with support {1, ...,zx} and variance bounded by || X||3/N.
However, for our analysis, x needs to be a continuous random variable. Hence, we define x to be continuous,
but maintain the range of the support and the variance of its discrete counterpart. Analogously, we construct
the continuous, one-dimensional random variable # such that 2 := x + ¢, for ¢ ~ N(0,02||X||2) independent

12
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of x. By definition, 21, ..., £ are probable samples of the random variable Z. It is easy to see, that measuring
the correlation between z and % is equivalent to measuring the correlation between X and X.

Proposition 6. Let x and & be the two random variables as defined above. Then,

1 1
. § |
NCC(z,2) \/1+a2||X||§/Var(x) SVizew (25)

By Proposition 6, the NCC (z, £) is determined by the ratio between the entry-wise variance of the recon-
struction X given by 02|/ X||2 and variability within the target X given by Var(z). Therefore, if this ratio is
not “high enough”, we conclude from Equation 25 that the DP mechanism’s noise is insufficient to disrupt
the linear association between x and Z, or, conversely, between X and its reconstruction X. Moreover, due
to the nature of the reconstruction X (see 17) a perfect (or “good enough”) correlation between x and &
implies a perfect (or “good enough”) reconstruction of the target X. In particular, Equation 25 equals one if
and only if the noise scale o equals zero, i.e., when no noise is added to model updates before release and the
observed gradient G'x is not privatised during training. Since any non-affine transformation of the observed
privatised gradient would distort the linear dependency between X and the non-privatised gradient, it is easy
to see that X is an optimal reconstruction with respect to the NCC as well.

If o # 0, we observe that the NCC (z, ) decreases with increasing noise scale 0. However, Proposition
6 demonstrates that the NCC between X and X highly depends on the dimension N. In particular, the
right-hand side of Expression 25 € O(4/1/N). Thus, for increasing dimension N, the correlation between X
and X measured by the NCC decreases independently of the noise of the DP mechanisms as long as o # 0.
Therefore, in the context of our work, for high values of NV, the NCC is not necessarily a good metric to
assess the reconstruction success of the adversary.

4 \Visualisation and Interpretation

In this section, we show the implications of our bounds and their correspondence to empirical results.
Specifically, we illustrate the effect of the parameters o, C', M, N and || X||2 on our results to allow for
a more intuitive understanding of their behaviour. The code to reproduce our figures can be found on
https://anonymous.4open.science/r/FromMeanToExtreme-46D1.

In Figure 1, we demonstrate the influence of M on the reconstruction result. Only by selecting an M large

2
enough to exceed (ﬁ) no overproportional noise is added and the reconstruction cannot be further

improved. The same effect is present in Figure 2. Here, we display the behaviour of MSE, PSNR, and NCC
under variation of the privacy parameters C' and o. For the MSE and PSNR, we plot the PDF for each value
of o as colour coding, where white areas have low probability and dark show high probability areas. For the
NCC, we plot the bound on the expected reconstruction success. We create an artificial dataset consisting of
100 four-dimensional data points sampled from a uniform distribution ¢(0,1). An adversary attempts to
reconstruct these data points using the attack specified in Section 2.2. The empirical reconstruction success
measured by the respective metrics is displayed as boxplots. We observe, analogously to Figure 1, only if
the clipping threshold is exceeded, either because the data norm is larger than C (first row) or because the
adversary set M to be large (second row), the empirical reconstruction results overlap with the worst case
distributions we have derived earlier. However, if this threshold is not exceeded then the additive noise is
larger, which in turn increases the MSE and respectively decreases the PSNR and NCC.

In Figure 3, we visualize the influence of o, N, and || X||2 on the distribution of the MSE and PSNR. If a
parameter is not varied in a specific row this parameter is also set to be 1. Unsurprisingly, we observe in the
first row that increasing the noise scale o leads to smaller probabilities for high-fidelity reconstructions. In
the second row, we observe that the distributions become “steeper” for a changing data dimensionality, i.e.,
they are not spread out as much for high-dimensional data. This means that for high dimensional data it
becomes increasingly unlikely to observe errors, which largely differ from the expected error. Of note, the
expected error for the MSE remains constant, but changes for the PSNR. This is due to the conversion to an
exponential scale, a transformation which the expected value is not robust against. In the last row, we see

13
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Figure 3: Cumulative Distribution Function of the MSE and Survival Function of the PSNR for vary-
ing parameters o, N and minxey || X||2. If not varied then parameters are set to be 0 = 1, N = 1,
maxyxep || X|2 = 1.Vertical dashed lines show the corresponding bounds on the expected values. For a given
error threshold 7, we have a risk probability lower than or equal to (7). Note that lower values of the PSNR
denote better reconstruction results. Hence, for (1, v(n))-ReRo the negative PSNR needs to be considered
(compare Proposition 5).

the impact of the f>-norm of the data sample on the reconstruction error distribution. Here, we observe that
if all other parameters remain unchanged, data samples with larger norms have higher errors. This is because
the MSE is scaled linearly along with its input. More concretely, the same data sample and reconstruction
have a different MSE if both are multiplied by the same constant, namely the multiplication of the constant
and the previous MSE, although semantically the reconstruction contains the same information (compare
Supplementary Figure 5). The PSNR is principally robust against this behaviour as it incorporates the data
range. However, for the above experiment, the data range was kept constant.

Our work attempts to address a central question: How can practitioners choose the privacy parameters o
and C' for their specific model to protect the training data? As explained in Section 3.1, the adversary can
counteract the privatising effect of the maximum gradient norm C' under the given threat model. Therefore, C'
does not (necessarily) influence the reconstruction success and can be set depending on the model application
to retrieve the best-performing outcome. However, reconstruction success is determined by the selected
noise scale o and depends on the norm of the data points and their dimension N. Given a fixed data
set with samples of the same dimension N, practitioners can choose some data samples and observe the
impact various choices of the noise scale o can have on their reconstruction success (see results in Sections
3.2.1 and 3.2.2). This is particularly important for assessing thresholds 1 (see Definition 1) that describe
informative reconstructions in terms of the MSE or PSNR. Understanding what are appropriate choices
for such thresholds, practitioners can calculate the probability v of occurrence of such reconstructions and
obtain the levels of protection determined by the reconstruction robustness. We highlight that no one general
threshold for the MSE, PSNR and NCC determines a successful reconstruction for all cases as one can see,
for instance, in Supplementary Figure 6.

14
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5 Discussion and Conclusion

In this work, we formalise bounds over three reconstruction metrics for any data protected by the Gaussian
mechanism. This is motivated by several state-of-the-art attacks, which found ways to extract such privatised
data in settings and are designed to be real-world applicable. Providing bounds for the best current
reconstruction attacks allows practitioners to make informed decisions to defend against this family of attacks
based on mathematical guarantees. Considering the problem of the so-called privacy-utility trade-off, it is
important to choose privacy parameters adjusted to the specific threat model in order to achieve the lowest
utility penalty while maintaining an acceptable level of data security.

The MSE, PSNR, and NCC show different but complementary notions of reconstruction success. The MSE
is a standard, wide-spread error metric. However, a notable drawback in practice is that it is only comparable
to other MSE-values if it is zero and thus, the data is perfectly reconstructed. Namely, general assessments
regarding the quality of a reconstruction based on the MSE can only by made on a comparative basis with
the exception of an MSE equal to zero which signifies that the data is perfectly reconstructed. For many
applications such as optimisation tasks, this is sufficient. However, for a metric measuring reconstruction
success, it is desirable to be comparable to any other value. Moreover, the MSE is not robust to scaling,
implying that if the data and its reconstruction are multiplied by the same scalar value, the resulting
MSE changes (see Figure 5) even though no real development in the difference between the data and its
reconstruction occurred. Therefore, if the privacy parameters are decided with respect to a certain bound on
the MSE, practitioners must be aware of the exact scale of their dataset. PSNR can correct for this effect by
setting the value range appropriately. The NCC is, by design, robust against any (positive) multiplication of
the original data sample or its reconstructed version. This is because it only measures the linear correlation
between these entities. Most importantly, for the MSE and PSNR, we can, for any set of privacy parameters,
calculate the risk of being above a certain value, which corresponds to the notion of (7, v)-ReRo. This gives
any practitioner the maximum flexibility of choosing a reconstruction error and its risk, which is acceptable
for their workflow. We argue that for a holistic decision for a certain set of privacy parameters, practitioners
should consider all three metrics for their specific dataset in order to decide on bounds that sufficiently
protect against reconstruction.

Even though an adversary cannot manipulate the DP mechanism, we showed they can improve their
reconstruction result by setting M to be “large enough” so that even for large sensitivity thresholds C, the
data is clipped and no overproportional noise is added. However, we demonstrate that the randomisation
introduced by the DP mechanism still bounds the reconstruction success independently of the choice of M.
Moreover, we note that increasing M also increases the computational complexity in O(M), whereas the
enforced increase in the gradient norm is only in O(\/M ). Therefore, in real-world applications, an adversary
needs to trade off the likelihood of an optimal reconstruction against the computational requirements. At the
same time, the Al practitioner has an interest in setting the clipping threshold C' not too large, as this would
again lead to overproportional additive noise and thus lead to stronger utility losses of a trained network
architecture. Hence, for any defence evaluation, the optimal reconstruction under a specific set of privacy
parameters should be considered as a realistic outcome.

We note that while our bounds are directly transferable to some of the currently best real-world reconstruction
attacks, none of these attacks exploits data priors. Depending on the specific data, an adversary might have
related data or prior knowledge that they can exploit to further improve their reconstruction success. This
was, for example, empirically demonstrated by Schwethelm et al. (2024). In that case, our bounds also do
not hold anymore, and other bounds, which consider prior knowledge, need to be applied, e.g., Hayes et al.
(2023). However, years of research in generating artificial data are proof that modelling the distribution of
a specific kind of data is not straightforward, especially not in providing a mathematical description of it.
Hence, it is likely that only optimistic (our work) and pessimistic (Hayes et al., 2023) mathematical bounds
can be provided.

One limitation of our work is that the NCC cannot be interpreted in a (7,7)-ReRo notation. This is
due to the fact that the NCC is an descriptive property of the interaction between two random variables
or two data samples such as an image and its reconstructed version. The NCC is determined by the
covariance between these quantities and their standard deviations, attributes that are deterministic in our
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work. Therefore, although we have established a bound indicating that the NCC does not exceed a certain
value, individual samples drawn from the distribution are likely to deviate from this bound due to the
probabilistic nature of the random variable (see Remark B.1). Furthermore, we note that the NCC varies
drastically for different dimensions and impedes comparison of the reconstruction success between scenarios
with unequal dimensionality. Especially for N — oo, only perfect reconstructions will lead to NCC > 0,
rendering its practical use in very high-dimensional settings to be limited.

Other well-established metrics, such as the normalized mutual information (NMI), structural similarity (SSIM)
or even perceptual losses, also empirically seem to directly correspond to the influences we observed (see
Figure 4). Deriving mathematical bounds on these metrics is left for future work. Analogously, in this work,
we have considered the case for a single query of one data sample. However, a central field of research in the
context of differentially private neural network training is accounting the privacy loss over repeated queries
with subsampling amplification. Repeated queries would obviously allow for a better reconstruction as the
result of these queries could be averaged, which does not affect the underlying signal but, in expectation,
cancels out the additive noise. Subsampling, on the other hand, would impede this strategy, as the adversary
needs to correctly match queries which are based on the same sample. It remains for future work to analyse
how these counteracting effects affect the results of our work.

The overarching question of providing bounds for adversarial attacks remains: how can we optimally choose
the least amount of privacy in order to not introduce utility losses but still provide reasonable protection? We
argue that solely investigating worst-case bounds introduces stronger privacy-utility trade-offs than necessary.
Our work provides the theoretical bounds on the risks for a branch of real-world reconstruction attacks and
allows for a more precise evaluation of the potential privacy leakage in these settings. Specifically, we allow
a practitioner to tune their privacy parameters from mean attack success to extreme attack success given
by the expected reconstruction success and the tail behaviour of the reconstruction, respectively. However,
we note that our bounds should be seen in context and as an augmentation to the worst-case bounds, as
adversaries exploiting data priors outperform the reconstruction success our bounds suggest. We see our
work as a first step towards a broad suite of threat model analyses as part of a full system model card, which
provide a tailored risk report for practitioners for their specific settings in addition to a contextualisation of
how changes in the capabilities of the adversary can influence the attack success probabilities.
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A Background

A.1 Prior Work

Reconstruction Bounds DP is a standard privacy-preserving technique in ML. We assume the reader
to be familiar with basic DP terminology and refer to Dwork et al. (2014) for a comprehensive background
explanation. Additionally, we also refer to Mironov (2017) for a detailed introduction to Rényi-DP. Guo et al.
(2022) laid the foundation for bounding the success of data reconstruction attacks by deriving a bound based
on Rényi-DP. However, their work is limited to o« = 2, which leads to loose bounds, as shown by Hayes et al.
(2023). Balle et al. (2022) further formalised and tightened the success upper-bound of reconstruction attacks
by introducing the notion of reconstruction robustness (ReRo). Specifically, they defined (7,~)-ReRo as the
probability of an adversary having a reconstruction error lower or equal to 1 to be lower or equal than v (see
Definition 1). Intuitively, a practitioner here can define an error metric on the reconstruction and a threshold
1 where they think that if the error metric is above this threshold, the reconstruction is not usable anymore.
Then an algorithm which is (7, )-ReRo gives the practitioner a guarantee that the probability of having a
reconstruction below this threshold is at most . Based on this work, Hayes et al. (2023) empirically analysed
reconstruction robustness of a worst-case adversary, with access to all intermediate outputs (gradients), all
training data except the target sample as well as an additional collection of data samples, including the
target sample (prior set). Kaissis et al. (2023a) extended this work by providing closed-form ReRo-bounds
for the Gaussian and the Laplacian mechanism. Under the above-mentioned worst-case assumptions, the
reconstruction attack is equivalent to matching the privatised output of a query function (in the case of
neural network this corresponds to the intermediate gradients) to the correct sample in the prior set. Hence,
the adversary’s success can be represented as a binary variable as they either succeed, i.e., achieve perfect
reconstruction, or fail. The authors show that using DP formally bounds the success rate of such an adversary
and fulfils (0,v)-ReRo (Hayes et al., 2023; Kaissis et al., 2023a). Kaissis et al. (2023b) challenged the idea
that the worst-case scenario is realistic and instead examined privacy guarantees (including the bounds for the
success of a reconstruction attack) under a slightly relaxed threat model. However, the proposed assumptions
still cannot be considered to describe a typical real-world workflow either, as, for example, the adversary
requires a perfect reconstruction algorithm and only checks whether it succeeded. Cummings et al. (2024)
recently proposed a taxonomy of threat models and alongside formulated bounds for a specific relaxed threat
model. This analysed threat model does not impose the strict requirements to have knowledge about the
concrete dataset. Furthermore, they assume that the distribution of the data is known and samples are drawn
i.i.d. from this distribution. However, this implies that bounds are not over “most distinguishable” data
samples. They can show that their bounds fulfil a strictly weaker notion of (n,)-ReRo, which they term
distributional reconstruction robustness (DistReRo). More realistic threat models have also been investigated
for Membership Inference Attacks (MIA), another type of attack where the adversary tries to infer whether a
specific data point has been part of the training set. Nasr et al. (2021) construct empirical lower bounds
on the probability that an MIA is successful depending on the adversary’s capabilities and compare them
to the success’ upper bound given by the most powerful adversary. MIA is a much simpler attack than
reconstruction attacks since only one bit of information is reconstructed (whether a subject was part of the
training set or not). However, Nasr et al. (2021) conclude that relaxing the threat model considerably reduces
the practical risk of attack success even for this simpler attack type.

Analytic Gradient Inversion Attacks Our work is inspired by a branch of reconstruction attacks, which
have recently received substantial attention, as they (a) are conceivable and hard to detect in real-world
scenarios, (b) allow for an (almost) perfect reconstruction success, and (c) are based on computationally
low-cost analytical procedures, in contrast to optimisation based attacks (Geiping et al., 2020). Fowl et al.
(2022) and Boenisch et al. (2023) concurrently proposed attacks on a decentralised, federated learning setup.
They showed that potentially unnoticed modifications to a deep learning model by a malicious central server
can lead to the input data being stored in the gradients of the model. In particular, they exploit that (a)
linear layers are a common type of neural network component and (b) they have the property to encode their
input in the gradients calculated by the chain rule (backward pass). The former makes them unsuspicious for
any check, which is unaware of the latter. To recover the entire input such a linear layer is prepended to the
original network architecture. Here, the input is encoded once for each projection, i.e., a layer projecting an
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input # € RY to b € RM| recovers M versions of x (bins). Specifically, this is achieved by performing an
element-wise division between the gradient of the bias and the gradient of the weight of the linear layer, the
exact input can be recovered. For batch sizes larger than one or multiple consecutive update steps, each bin
encodes an arbitrary amount of inputs to the network. This is problematic, as any reconstruction more than
one (meaningful) input, is an average of its inputs, which implies that the signals of these inputs overlap and
may make them meaningless. While the authors propose several sophisticated strategies to avoid this effect,
it cannot be impeded entirely. Hence, the worst-case is a single sample update step (i.e. batch size is one)
where no data can overlap.

Based upon the same attack principle, Feng & Tramer (2024) proposed an extension that no longer relies on
the intermediate gradients but only requires access to the model before and after training. This strategy
makes such attacks much more critical for real-world scenarios, as practitioners would only need to use
a manipulated pretrained model in order for the training data to be stored in the weights. From there,
the adversary can read it out after training. Feng & Tramer (2024) carry out this attack by designing
and inserting a so-called data trap into the model, i.e., a part of the network where the data is encoded
and, with high probability, is not contaminated by any other gradients. By doing so, they circumvent the
problem of overlapping data after multiple gradient update steps (yet not larger batch sizes), such that the
attack is independent of the access to intermediate gradients. Furthermore, they show that these attacks
can be performed without leading to substantial performance losses and with only minimal changes to the
architecture, making it challenging to detect such an attack.

A.2 Metrics

Concretely, we introduce three metrics used in our analysis: the mean squared error (MSE), the peak
signal-to-noise ratio (PSNR) and the normalised cross-correlation (NCC). These metrics allow us to assess
the similarity and relation between an input point and its reconstruction and, consequently, determine the
quality of said reconstruction.

In the following, let X € RY, N € N, represent a fixed target input point and Yy € RY, be its estimator that
serves as its reconstructed version. Moreover, we let z; and y; x, for ¢ € {1,..., N}, denote the i-th element of
X and Yy, respectively. First, we turn to the mean squared error (MSE), defined as average of the squared
distances between the entries of the input vector and the entries of its reconstruction:

Definition 2. The mean squared error (MSE) between a fixed input X and its estimator Yx is given by
1
MSEx (X, Yx) = +I|X — YxB,
where || - ||2 denotes the euclidean norm.

The MSE is one of the most common measures to quantify the reconstruction error. A decreasing MSE
denotes a high similarity between X and Yx or, conversely, a low reconstruction error. In particular, we note
that X = Yx if and only if the MSEx (X, Yx) equals zero. Nevertheless, while the MSE is widely used as an
error function, it has unfavourable properties when assessing the reconstruction quality. Most importantly,
it is not robust to scaling, hence, two reconstructions with the same MSE # 0 could have a very different
reconstruction quality. This drawback is well-known and to overcome this, the PSNR, which is based on the
MSE, has been established as a standard metric in signal processing applications:

Definition 3. The peak signal-to-noise-ratio (PSNR) between a fixed input point X and its estimator Yx is
given as

PSNR x(X,Yx) = 10 - logq ((max(X) — min(X))2> |

MSE(X, Yx)
with
max(X)= max x;, and min(X)= min x;.
i€{1,...,N} i€{1,...,N}

The PSNR contrasts the maximal range of the values of the entries of X to the MSE between X and its
estimator Yx. Thus, the PSNR puts the error measured in terms of the MSE into the context of the input
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value range of X. By that, the PSNR is robust to a linear scaling of the data and and can be better compared
across different scenarios. In this regard, the PSNR is a superior indicator of the reconstruction quality, and,
although it is based on the same measurement, has advantages over the MSE (Wang & Bovik, 2009). Notably,
unlike MSE; the PSNR is no error but a reconstruction quality function where larger values correspond to
higher fidelity (and lower error) between X and Yx.

Furthermore, we note that fixing the target input point X enables formulating the MSE and the PSNR in
terms of the randomness of the estimator Yx. In particular, if we view Yx as the sample of a random variable,

the MSE and the PSNR can be formulated as random variables and we can examine their tail behaviour (see
Section 3.2).

Next, we introduce the NCC:

Definition 4. The normalised cross-correlation (NCC) (Rodgers & Nicewander, 1988) between a fixed input
point X and its estimator Yy is defined as

NCO(X, Yy) = ST
OXO0yx
where
1 N
Cov(X,Yx) =N Z: JWi,x — Eyy [yx]),

for E;[z],Ey, [yx] denoting the numerically obtained expected values within a sample. Moreover, ox =

Var(X) and oy, = y/Var(Yx), for Var(X) and Var(Yx) being the sample variances of X and Yx,
respectively.

We note that the NCC is equivalent to the Pearson’s Correlation Coefficient, which is common in statistical
testing. As both names suggest, this metric measures the linear correlation between a target point X and its
estimated counterpart Yx instead of measuring a difference. Hence, as opposed to metrics such as the MSE
or PSNR it is robust to linearly transformed inputs. High values of the NCC denote a high linear correlation
between X and Yx, which, depending on the context, can imply a high similarity between X and Yx. For
more information on interpreting the NCC results in the context of this work, we refer to Section 3.2.
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B Proofs

In the following, we give the proofs for our theoretical results.

)ag(f(X)) 99(f(X))

Proposition B.1. If the scaling factors B (X s ooy Bo(X) B7X)n ore unknown, then there is no
“realisable” unbiased estimator of the target X that can be constructed solely using the observed privatised
gradients Vyy,, ..., Vi, .

Proof. First, we show there is no deterministic transformation Tx : RY — RN, such that Tx <§Wj),

je{l,.., M}, is a “realisable” unbiased estimator of X.

Let X be a fixed reconstruction target point and w.l.o.g. assume X # Oy, for Oy the N-dimensional zero

vector. Moreover, for a fixed j € {1,..., M}, let Tx (6WJ) be a realisable, unbiased estimator of X. Since

9g(f(X))
Of(X);

Tx (%WJ) must be an affine function, because that is the only transformation that can invert a multiplication

Vw, = Bo(X) 2 X p ey g~ N(ON, CP0Iy),

and a sum. Hence, Tx (%WJ) has the following form:

X (%Wj) = Aﬁwj +b, (26)

for A € RV*¥ invertible and constant, and b € RV*¥ constant. In particular, A and b are not functions of
X, since T'x (VW]) is a realisable estimator. Next, we compute the expectation of T'x (VWJ) for X fixed:

Ex [7x (Vw,)] = Bx [TX (%(X)WX +€j>}

4X+A§++4

Tx (%Wj) is an unbiased estimator of X if and only if Ex {TX (VW.

J

)} = X, which is equivalent to the
following:

9g(f(X))
0f(X);

9g(f(X))

AP0, 07(X),

X+b=X < O%() A]N>X+b_0N. (27)

Since b cannot depend on X and (BC(X ) 6;}{5()2)14 -1 N) X is a linear transformation of X, we cannot set

(BC(X) < ICLCO /Ry ) X = —b and solve the equation. Therefore, the equations in 27 are satisfied if and

f(X);
only if
dg(f(X
(50( ) g(f( ))A IN>XON and b=0y. (28)
F(X);
Since X # 0, it is easy to see that ASc(X) Bg}(c{;@)X + b= X holds if and only if
1
= —IN and b= ON
99(f(X)) ’
Be(X) 50,

)69(f(X))
of(X);

dicting the assumption that T'x (%Wj) is a realisable estimator. Therefore, for any j € {1, ..., M}, there is

implying that A depends on B¢ (X , a quantity that can only be computed knowing X and contra-

no realisable unbiased estimator of X that can be constructed using the observed privatised gradient ﬁwj.
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It is easy to see that, for this setting, if there was an unbiased estimator of X that can be constructed with
Vwy, . Vv, then there would exists at least one j € {1,..., M} such that an unbiased estimator of X can

be constructed with %W However, since there is no j € {1, ..., M} such that an unbiased estimator of X
can be constructed with VW , it follows by contraposition, that there is no unbiased estimator of X than can
be constructed with VW1 - VWM O

Proposition B.2. The coordinte-wise variance of sample average X stated in 13 is lower bounded by
0?||X||3 for M — oo and for all X € D\ {0y}.
Proof. Let the iteration step be fixed and observe the sample mean Xu given in 13 with distribution described

in 14. Then, consider the ith entry of X M, © € {1,..., N}, particularly, its variance given by

M

N 1 C?0?
Var(Xp ;) = — . (29)
' M?2 Ag(f(X))2
=1 Ao (X))
Without loss of generality, we assume that % >0 for all j € {1,...,M}.
It is easy to see that 29 decreases for decreasing Z =1 W Therefore, minimising
M
1
30
2 299(f(X))? (30)

=1 Be(X) K Ii0orn

35}{;?;3) - %gf(&))(&) minimises the variance in 29. Note that doing so does not affect the

multiplicative term C202 /M. By definition of the global concatenated gradient G'x (see 6), the squared norm
of Gx is given by

with respect to

Iex3 = Zagf{%j |X||2+Zag D" ol (31)

Set ||Rest||2 := Z;w 1 89(8})()()) + ||Gx_p||3. Without loss of generality, we assume the target X # Oy, for Oy

being the N dimensional vector with zeros everywhere. Then, we can reformulate 31 and obtain the following

29(f(X)) 99(f(X)) .
Of(X)1 7 Of(X)m -

constraint regarding =5

o~ 99(f(X))? _ [IGx|3 — ||Rest[3
29500, Bk 32)

Minimising the variance in 29 with respect to Bg}{ )(();)) s %qf({)(()){&) under the constraint given in 32, does

not affect the norm of the global gradient Gx and, thus, it does not affect the value of S¢(X). Therefore,
9g9(f(X)) 9g9(f(X))

minimising 30 with respect to =5 f( X (X under the constraint given in 32 is equivalent to minimising
M 1 dg(f (X)) 9g(f(X)) 9g(f(X))? ;
ijl W with respect to DO DI X ar under 32. Hence, setting y; = Tt Jforj € {1,..., M},
J

we have an optimisation problem of the following form:

M M

1 Gx||3 — ||Rest|3
Minimise Z— for Zyj = IG5 H2 stz and y1,...,ynm > 0, (33)

j=1 J j=1 ||X||2

33 is a well-known minimisation problem with solution given by y; = %ﬁ% for all j € {1,...,M}.
2

However, if needed, a proof of the statement can be obtained using the gradient of the function in 33 to
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construct the direction of the steepest descent and combining this with the given constraints in 33. Hence,
setting
2
9g(f(X))” _ [IGx|I3 — [[Rest|3

- (34)
df(X); M| X3
for all j € {1,..., M}, minimises the variance given in 29 with respect to 689}{;?3) sy %gf({)(())(w)l).
We insert the choice 34 into the variance 35 and obtain
M
. 1 C202M||X |3 2021 X 3
VaI‘(X]\/[ 2) > — 2 = 2 ’ (35)
M? Jz::l Be(X)2(IGxZ — [Rest]3))  Be(X)*(|GxIIZ — [Rest]|7))

forie {1,..,N}.

Recall the definition of the clipping term S¢(X) given in 7. Using 34, we can see that the norm of the global
gradient ||Gx||2 is linearly increasing in M. Thus, there exist M, such that for all M > M, ||Gx||2 > C and
Be(X) = ﬁ Hence, by 35

. 1
lim Var(Xy;) > C*0?||X[3 - lim
i, VerGhana) = CoIXl i o o ox T~ TRestT)

1

2 2 2. T

= Ol Xle - i TReg
IGxI3

= 0’| X3 (36)

Equality 36 holds because ||Rest||» is independent of M. Lastly, if X # Oy, then o2|| X3 > 0. O

Proposition 1. Let the part of neural network given by g be replaced by the loss function £ : RM — R with
L(f(X)) = 1%,f(X), where 1y is the M-dimensional 1-vector, and

M > max (17" - ¢ -D7 (15)
minyep\ foy3 X2

C?52
2g9(f(X))
BC(X)zgf(iX‘)j

where [-] denotes the function that rounds up its argument to the nearest integer, then 5= Ejle

is minimal and takes the value || X||3.

Proof. Let the iteration step be fixed and observe the sample mean Xu given in 13 with distribution described
in 14. Then, consider the ith entry of X, particularly, its variance given by

M
A 1 C?g?
Var(XMi) = 722 2 (37)
’ o
M® 7= Bo(X)2 2840

for i € {1,..., N}. Without loss of generality, let X # Oy. We have shown in the proof of Proposition B.1
that the choice )
9g(f(X))" _ [IGx|I5 — [[Rest|3

(38)
df(X); M| X3
for all j € {1, ..., M}, minimises the variance given in 37 with respect to agj(g&);)) s e %qf((";(())?l). Let us set
2
D9(/(X))* _ |IGx 3~ [Rest]3 59)
Of(X) M|x|z
and insert this choice into the variance 37:
R 02 2 1
Var(Xara) > —7 G (40)
Be (XG0,

23



Under review as submission to TMLR

2
fori € {1,...., N}. If ||Gx]||2 is fixed, it follows from 38 that ag}{g;)) increases with decreasing norm ||Rest||s.

However, ||Rest||s cannot be bounded or quantified for any iteration step without specific knowledge of the

neural network. Thus, the adversary cannot minimise |Rest||s without manipulating some layers of the

network. If they manipulate these layers, we see 40 is minimal whenever Bg}’(c ggl)) is maximal, i.e., whenever

|IRest||2 = 0. ||Rest||2 = 0 occurs for all X € D and all iteration steps when the adversary replaces the entire
network by the linear layer f (see Section 2.1, specifically Equation 1) and sets the bias term b to be equal to
0)s. In such a case the neural network is given by the linear layer f(X) = WX and a loss function which we

denote by £ : RM — R. As a consequence, ag}{g();)) = agjﬁ{ )(())(1)). In particular, 38 implies

dg(f(X)?  oL(f(X)*  |Gx|3

af (X of(X)n  MIX[3

Inserting 41 into the right hand side of 40 further bounds the variance Var(X M,i)

A 0202||X||§
Var(Xpyi) 2 ———5———,
(Xar) Be(X)2|Gx |3

forall i € {1,...,N}.
Now, we observe the lower bound in 42. Naturally, the right hand side of 42 is lowest when the denominator in
42 is highest. By definition of the clipping term B¢ (X) (see 7), the product B¢ (X)?||Gx||3 is upper bounded
by C?, delivering .

Var(Xar) = 0| X]J3, (43)
for i € {1,..., N}. In particular, no change in the parameters or architecture of the network can increase the
product Bc(X)?||Gx||3 beyond C? to further decrease the lower bound given in 43. Therefore, we assume,
the adversary chooses M and % such that that |Gx||%3 > C? for as many data points X as possible.
Using 41, ||Gx||3 > C? implies
LX) C?

o, IXIE

Next, we consider two cases, when minxep || X||2 > 0 and minxep || X2 = 0. If minxep || X||2 > 0, then

oL(f(x)*
Of(X)1 ~ minxep | X3

M, minxep || X||2 and C fixed during training and do not changed from iteration to iteration. Thus, 45

M

(44)

IGx||3>C? VXED < M VX €D. (45)

holds for all X € D if 26U 0) i constant for all X and all iteration steps, implying £ is an affine function

9f (X1
of f(X). If C > minxep || X||2, then choosing M > [ —‘ and the loss function £ : RM — R to be

L(f(X)) = 1T, f(X), where 1, is the M-dimensional 1-vector, delivers the sample average X, with the
lowest variance per entry given by

N G
minxyep [ X2

Var(Xa,i) = o®|| X3, (46)

where [-] denotes the function that rounds up its argument to the nearest integer. If C' < minxep [ X2,
then choosing M > 1 and the loss function to be L(f(X)) = f(X) delivers the sample average X s with the
lowest variance per entry given by

Var(Xar) = 02| X2 > o*C% (47)
All in all, we conclude that if minxep || X||2 > 0, replacing the subpart of the neural network given by g
by the loss function £(f(X)) = 11, f(X) and setting M > max (1, {m—‘) minimises the variance
Var(Xyy,;) for all i € {1,...,N}.
OL(f((X))

If minxep || X2 = 0, then there is no choice for B0, OF M such that 44 holds for all X € D. However,

in such a case, without loss of generality, we assume that the adversary sets the loss function to be
L(f(X)) = f(X) and chooses M to ensure that 44 holds for all X € D with X # Oy. In such a case, the

adversary sets M = —‘ , analogously as the argumentation above. O

minxep\foy} X2
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The following lemma serves as an auxiliary result to obtain Proposition 2:

Lemma B.1. For all j € {1,...,N}, the jth entry &; of the estimator X is a (fully) efficient estimator for
the jth entry x; of the target X.

Proof. The estimator X given in 17 is normally distributed with mean X and covariance matrix given by
o?|| X||3In. Let 2;, i € {1,..., N}, denote the ith entry of X. Then, by distribution of X, 21,...,2x are
independent, normally distributed with mean 1, ..., 2y, respectively, and same variance given by 02|/ X||3.
Thus, for all ¢ € {1,..., N}, &; is an unbiased estimator of the ith entry of the target X.

Moreover, applying the Cramér-Rao bound for scalar unbiased estimators, we compute a lower bound for the
variance of any the estimator of Z;, i € {1,..., N }:

Vary (#:) > I(xi) ™" = o*|| X3, (48)

where I(z;) denotes the Fisher information matrix that measures the amount of information the rescaled,
observable normally distributed random variables Z; carries about its unknown mean x;. Since this matrix is
well-known in literature, we do not provide a proof for the right hand side of the equality in 48.

Since for all ¢ € {1,..., N}, &; is an unbiased estimator of x; that achieves the Cramér-Rao bound, it is a
(fully) efficient estimator of z; achieving the smallest variability in terms of the variance. O

Proposition 2. X is the minimum variance unbiased estimator (MVUE) for X. Moreover, the expected
mean squared error between the target X and X is given by:

Ex[MSEx (X, X)] = 0| X|I5. (18)
Proof. Let Y = (91, ..,9n)T denote any estimator of X. Then,

X Y3

Ex[MSEx(X,Y)] = Ex [ ~

N
= % Z (qu [x; — @]2 + Varg, (z; — @7))

N
1
=N Z (Biasg, (;, i) + Vary, (9:)) - (49)

For all unbiased estimators, the expected MSE, as given in 49, is solely determined by the sum of the variances
of each entry ;. Therefore, by Lemma B.1, X is the unbiased estimator that minimises 49. In other words,
X is the unbiased estimator that achieves the lowest expected MSE. Such estimators are called minimum
variance unbiased estimators in the literature and achieve the smallest variability in terms of the variance.

Lastly, we compute the expected MSE between X and X:
1N
Ex[MSEx (X, )] = 57 3 Vare, (8:) = | X3

O

Theorem 1. Using the MSE as an optimality criterion, X s the best achievable estimator and, thus,
reconstruction for the target point X.
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Proof. Since the adversary only observes one privatised version of the gradient Vyy they can use to construct
an estimator for X, it is easy to see that X is a sufficient statistic for estimating X. Moreover, by Proposition
2, X is the unblased estimator, which uses the sufficient statistic Vy as input, that achieves the lowest
expected MSEx (X, X). Such unbiased estimators achieve the lowest possible MSE and have the smallest
variability in terms of their variance. Thus, using the MSE as an optimality criterion, X is the optimal
estimator for X. Since lower values of MSE x (X X ) denote high similarity between X and X, we conclude

that X is the best achievable reconstruction for X. O
Theorem 2.
d 02||X I3 2
MSEx (X, X) N Y with Y ~ X7y, (19)
where X3, denotes the central chi-squared distribution with N degrees of freedom. In particular, for n given,

(20)

P (MSEx (X, X) < 1) = FR<N N )

27202 X2

where I'r is the reqularised gamma function.

Proof. We can compute the MSE between X and its reconstruction X as the mean error over their components:

(z; — &)

2=
1=

MSEyx (X, X) =

N
Il
—

-2

i G~ N0,9%X3)

I
=] =
H'Mz

K2

1
2
1 1 ~
—1 2

7=

o2 2 N

2

=

where p; := m&, for i € {1,..., N}. If X is fixed, p1, ..., py are pairwise independent random variables
with p; ~ N (0,1) for all i € {1, ..., N}. Hence,

N
>0~ X (51)
=1

where y% denotes the central chi-squared distribution with N degrees of freedom. Thus,

a o?|IX|13

MSEx (X, X) £ =5

Y with Y ~x%.
Then, for n given

P. (MSEx(X,X)<n)= PMY< =
< x(X,X)<n)=v < Py N Y =n)=7

Since Y is a centered chi-squared distributed random variable with N degrees of freedom, its cumulative
distribution function can be computed via the regularized gamma function I'r. Hence,

a2 X |13 Nn N Np
Py (——2.y<p|l=P ([Y<—1_ | =Tg|=>, —"—
Y( N —") Y( —02||X|§) R(2’202|X||§>

N Nn
2’202 X3

implies

Py (MSEX (X, X) < 77) T'n ( (52)
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Proposition B.3. For N — oo, it holds

VN (MSEX(X,X) - a2||X||§) 4N (0,204 X4) . (53)

Proof. By Theorem 2, it holds

N N
. 1 1
MSEx (X, X) = o? | X[ 30 07 = 30X /7, (54)

i=1 i=1

where p; are i.i.d. standard normally distributed random variables, for all ¢ € {1,..., N}. Consider the

behaviour of 02| X ||3p? for i € {1,..,N}:

E [0®|X|[30}] = o*| X|3E [p7] = 0| X |5 Var(pi) = o°[| X3,
and

Var (o2 X[307) = | X[[3Var (p2) = o*||X |3 (E [}] — E [62]*) = o*I X143 — 1) = 20*| X3,

7

since E [pﬂ corresponds to the 4-th moment of the standard normal distribution and can be, thus, computed
easily. Therefore, using the central limit theorem, for N — oo, it follows

N
A 1
VN (MSEx (X, %) - o?|X|3) = VN <N202X||§p? —a?||X||%> 4N (0,201 X]3)
=1

Proposition 3. Letn given. Then, for all X € D\ {0y},

X N Nn
Py (MSEx (X, %) <) <Tn (5, : 21
< X SN =R 5052 minxep || X3 Y

where T'g is the regularised gamma function. Moreover, the DP-mechanism M is (n,y(n))-reconstruction robust
with respect to the MSE for any reconstruction and y(n) =T'g (%, Wrmn])\([—ZDHXH%) If C < minxeyx || X2

holds, then M is (n,~'(n))-reconstruction robust with respect to the MSE for any reconstruction and +'(n) =

N N
FR (77 20’27C]'2 ) .

Proof. Consider the CDF of the MSEx (X, X) for X € D\ {Oy} given Equation 20 in Theorem 2. Since the
regularised gamma function is increasing in its second argument, using Theorem 2, it follows that

. N N77 N N77
]P)‘ (MSE X7X < ) :F — 5T o < F ) 9 55
% x( )<n R<2 202||X||§> - R(Q 202minXeX|X||§> )

for all reconstruction target points X € D\ {Ox}. Moreover, due to the optimality of the estimator X, it
holds .
Py, (MSEx (X, Y%) <) < Py (MSEx(X, %) <) (56)

for all possible reconstructions Yy . Therefore, combining 55 and 56, we conclude that M is (n,v(n))-

N Nn

reconstruction robust with respect to the MSE for any reconstruction and v(n) =T (5, ST mmx e X2 )
2

Moreover, if C < minxey || X||2, then

A N Np
IP’A(MSE X, %) < )<r AL/ 57
« (MSEx(X.2) <) < T (F 50005 ) 57)
for all X € D\ {On}. In particular, in such a case, M is (n,v'(n))-reconstruction robust with respect to the
MSE for any reconstruction and v'(n) = I'g (%, %) O
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Proposition 4. Assume max max(X) and ;{ni% min(X) are known quantities. Then, for all X € D\ {On},
€ €

X N N1j(n)
. > < J—
Py (PSNRX (X,X) > 77) <Tp < 57 557 T X5 ) (22)

2
for ij(n) := 10~ 10 (glg% max(X) — )I(Ilel% min(X)) , and for T'g being the reqularised gamma function. If

C < minxep | X||2 holds, then

Py (PSNRX (X, X) > n) <Tg (N N(n) ) : (23)

forall X € D\ {On}.

Proof. The cumulative distribution function (CDF) of the PSNR can be calculated using the CDF of the
MSE. In particular, this implies that we can also compute probabilistic bounds for the PSNR using Theorem
2. Let n be given. Then,

A

PSNRx (X, X) > 1
max(X) — min(X))?2 )
MSE(X, X)

Y
3

— 10log;q <<

= log,o((max(X) — min(X))2) — log;o(MSE(X, X) > 1%
= 2logo[(max(X) — min(X))] — 110 > logy, (MSE(X,X))
— (max(X) — min(X))?10~1 > MSE(X, X).
Thus, setting ’
A(n) = 10770 (max(X) — min(X))%, (58)
it follows from Theorem 2 that
. R N N#(n) 1 >
= P4 (MSEx (X, X) < <Tx(=, : . 59
RSB (X, ) <) < T (5 G e (59)

We note that the right hand side of the previous result is still dependent on the target value X due to 7(n).
To remove this dependency, we find an upper bound for 7#(n):

2
N _ 7110 I 2 < ,110 o . . —
A(n) = 10710 (max(X) — min(X))* < 10 (1)?2% max(X) ;{nel% m1n(X)> = 17(n).

Since the regularised gamma function I'g is increasing with respect to the second argument, it follows:

N N N7i(n) >
P, (PSNRx(X,X)>n) <T —_, - s 60
X( x( ) 7 f < 27 202 MmNy ep\{on} HX ||§ (60)

for all X € D\ {Ox}. Using the same argument, if C' < minxep\{oyy [[X|2, then

Pe(PSNRx (X, ) 2 1) < T (5 3 50k ). (61)
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Proposition 5. Assume max max(X) and ;{ni% min(X) are known quantities, and let Yx be any possible
€ €

reconstruction. Then, for all X € D\ {On},

N Nii(n) )
Py, (PSNRy (X,Yx) >17) <T 24
vx (PSNRx (X, ) 2 m) < R<2 = r—— (24)

for Tr being the regularised gamma function and 7j(n) as defined in Proposition 4. In particular, the
DP-mechanism M is (—n,3(1)(n)))-reconstruction robust with respect to the negative PSNR (—PSNR) for

any analytic reconstruction and ¥(7j(n)) =T'r ( 7> 552 mmXZZZ(\Z')oN} IIXHZ)' Moreover, if C < minxep || X||2

holds, then the DP-mechanism M is (—n, 7 (7i(n)))-reconstruction robust with respect to —PSNR for any

N Ni(n)
2 252C2

reconstruction, ' (71(n)) = Tr (

Proof. On the one hand, by the optimality of the reconstruction X with respect to the PSNR, it holds that
Py, (PSNRx (X, Y}) > 5) < P (PSNRx (X, X) > 1),

for any analytic reconstruction Y%. On the other hand, by Proposition 4,

X N Nij(n) >
P+ (PSNRx (X, X) > PSNR x (X, X) < <T
il x(&,X) 2 ) =Pe(= x(%,X) < =) R<2 " 202 minxep\(oy} [ X3

for 7j(n) as defined in Proposition 4 and I'p being the regularised gamma function. Therefore, using
Definition 1, we conclude that the DP mechanism M is (—n,5(7(n)))-reconstruction robust for (7j(n)) =

T'r ( N () ) with respect to the negative PSNR, i.e., —PSNR.

27 202 minxep\{oy} X3

Lastly, since the regularised gamma function I'g is increasing with respect to the second argument, if
C < minxep || X|2, then the DP mechanism M is (—n,5 (7(n)))-reconstruction robust for 5'(7(n)) =

I'r (%, ;VU’Z@) with respect to the negative PSNR, i.e., —PSNR. O

Proposition B.4. Let ox and o denote the sample standard deviations of {x1,...,xn} and {Z1,...,Zn},
respectively. Then, the sample NCC between X and X is given by

N
NCC(X, Bo(X)1X) = ZX o+ ! (;ZM—@) (62)

JX (TXo'X
for ¢ ~ N (0N, 02| X|31N)-

Proof. We recall that the reconstruction X of X is obtained by the adversary using the observed privatised
gradients given in 8. Due to the from X independent random noise added to these gradients, they can be
viewed as samples from random variables (see 10). Consequently, X can also be viewed as a sample from a
random variable (see 17):

X if/x, for YX N./\/’(X,O'QHXHgIN)

For the target point X being fixed and, thus, || X||> being also fixed, we let ¢ ~ N (O, 02| X|31y) be a
random variable drawn independently of X. It is easy to see that

XLx+c

Let

81
Il
2=

&

o

=]
o,

IS

1 N N B B 1 N
N; z::xz—l—gzx—i—(, for (::N;Ci, (63)
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denote the sample means of {z1,...,zy} and {21, ..., &5}, respectively. Moreover, let

ox = and oy =

1 N
& (i~ )2
i=1

denote the sample standard deviations of {z1,...,zx} and {21, ...,&n}, respectively. Then, by definition of
the sample NCC (see Definition 4), it follows

o1 (=) (- @)
NCC(X,X)_N; -~ o
& (@ —F) (# -7+ G- )
_N; ox JX'

i=1 IXT%
Cox 1 (1Y _ .
= + X0 (N Zil(xi —Z)(¢ — C)) . (65)

The multiplicative term < Zi\;l(xz — Z)(¢; — €) of 65 corresponds to the sample covariance between the
entries of target X and the random noise, namely between the sets {z1,...,2x} and {(1,...,(n}. Next, we
simplify the sample covariance:

N

N
%Z(% —7)(G-¢) = %Z(%Q — ¢ — ¢ + C)
=1 i=1
1Y 1Y 1 & _
i=1 i=1 i=1
1Y _
i=1

Using 66, we conclude:

N
A 1 1 _x
NOC(X, fe(X) ™1 X) = 75 4 (N 3w - x<> .
X X i=1
O

Remark B.1. Since the entries of the target {x1,...,zx} and the noise {(i, ...,{n} are independent, the sample
covariance, i.e., multiplicative term % ZZ\; x;(; — ZC on the right-hand side of 62, converges to its theoretical
value, i.e., zero, for N — oco. Otherwise, for N < oo, the sample covariance can be positive or negative,
increasing or decreasing the right-hand side of 62 arbitrarily, hindering the computation of meaningful upper
and lower bounds for the sample NCC.

Proposition 6. Let x and & be the two random variables as defined above. Then,

1 1
. ) |
NCC(z,2) \/1+02||X||§/Var(x) SVizew (25)
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Proof. Using the definition of the NCC (see Definition 4) it follows:

Cov (z, )
Var(x)+/Var(z)
_ Cov (z,z) + Cov (z,()
B V/Var(z)/Var(z) + Var(()
B Var(zx)
B \/Var(z)+/Var(x) + Var(€)

_ \/ Var(zx)
Var(z) + Var(¢)

1
- \/1 + Var(¢)/Var(x) " (67)

NCC (z,%) =

We recall that Var(¢) = 2|/ X||3 by definition. Thus, using the assumption that Var(z) < || X|3/N, it follows

from 67:
NCC (z, 8) = ! < ]2 (68)
SN T ¥ 2 X |2/ Var(z) = V 1+ 02N

O
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C Additional Figures

10° ! 40 1.0

" lll",//
il i 7
il Uy .
10! il o M. ' 7
il W 7
w “".xf o ’!mi, L 0.6 %
) “lll, = Wi O Y
= ! uW“' - ”m%p 4%?2
’mm. !m“ii"" 0.4 ///
. l!ﬂ!!!’!!” d ”"ﬁiimy, 0.2 %
o - L i,
0.0 180444y
1.0
0.8 0.8
S 00 gos
(]
B4 éé(x4
0.2 0.2
0.0 0.0
1073 1071 1073 1071
g g g

Figure 4: Reconstruction metrics for 100 reconstructed data samples from the ImageNet dataset under
varying o. Additionally to the MSE, PSNR, and NCC we also include the Normalized Mutual Information
(NMI), Structural Similarity (SSIM) and a perceptual loss. We see that the NMI, SSIM and the perceptual
loss show a very similar result as our bounded metrics, especially the NCC. Of note, the perceptual loss
inherently incorporates an image prior due to the network being trained on image data. Although this violates
our assumption for the adversary, the metric still aligns with all other reconstruction metrics.
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1 X]]2 = 2.1-10? X2 =2.1-10
MSE = 4.6 - 1072 MSE = 4.6 - 10°

Figure 5: Demonstration how the ¢s-norm of the data sample influences the MSE. The same image, which
is rescaled by a constant factor a = 10, is being reconstructed. We keep o = 1.0 - 1072 constant for both and
set C' = || X||2. The resulting MSE is scaled by the factor a®.
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Figure 6: Exemplary reconstructions on the ImageNet dataset (Deng et al., 2009) under varying o. Scenario
(1): N =224 x 224 x 3, data range in (0,1). Scenario (2): N = 224 x 224 x 3, data range in (0, 255). Scenario
(3): N =64 x 64 x 3, data range in (0,1). All scenarios: C =1, M = 1. The colours of the image frames
match the corresponding metric curves.
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