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ABSTRACT

Group unfairness, which refers to socially unacceptable bias favoring certain
groups (e.g., white, male), is a frequently observed ethical concern in AI. Various
algorithms have been developed to mitigate such group unfairness in trained models.
However, a significant limitation of existing algorithms for group fairness is that
trained group-fair models can discriminate against specific subsets or not be fair
for individuals in the same sensitive group. The primary goal of this research is to
develop a method to find a good group-fair model in the sense that it discriminates
less against subsets and treats individuals in the same sensitive group more fairly.
For this purpose, we introduce a new measure of group fairness called Matched
Demographic Parity (MDP). An interesting feature of MDP is that it corresponds
a matching function (a function matching two individuals from two different
sensitive groups) to each group-fair model. Then, we propose a learning algorithm
to seek a group-fair model whose corresponding matching function matches similar
individuals well. Theoretical justifications are fully provided, and experiments are
conducted to illustrate the superiority of the proposed algorithm.

1 INTRODUCTION

AI (Artificial Intelligence) technologies have become increasingly prevalent as crucial decision-
making tools for human beings across diverse areas, including credit scoring, criminal risk assessment,
and college admissions. As we train models based on observed data from the real world, any biases
presenting in the data can significantly influence the trained models. This becomes a particular concern
when the observed data contain unfair historical biases, because it can lead to unfair decisions (Calders
et al., 2009; Feldman et al., 2015; Angwin et al., 2016; Barocas & Selbst, 2016; Chouldechova, 2016;
Kleinberg et al., 2018; Mehrabi et al., 2019; Zhou et al., 2021). Unfair preferences for specific groups
such as white individuals or men have been reported (Angwin et al., 2016; Ingold & Soper, 2016;
Dua & Graff, 2017).

Under such circumstances, ensuring fairness in AI decision-making becomes a socially crucial mis-
sion. In response, plenty of algorithms have been developed to mitigate such bias by searching models
that treat sensitive groups similarly in some sense. For example, the ratio of positive predictions for
each sensitive group is required to be similar (Calders et al., 2009; Feldman et al., 2015; Barocas &
Selbst, 2016; Zafar et al., 2017; Donini et al., 2018; Agarwal et al., 2018; Quadrianto et al., 2019).

However, a well-known problem of group-fair models is their potential risk of discrimination against
certain subsets or individuals, even when they are fair at the group level as a whole (Dwork et al.,
2012; Kearns et al., 2018; Hebert-Johnson et al., 2018; Okati et al., 2023). For instance, Dwork et al.
(2012) argued such problems, including subset targeting and self-fulfilling prophecy, and subsequently
introduced the concept of individual fairness.

The aim of this paper is to find a group-fair model that discriminates less between sensitive groups
within a subset or among individuals in the same sensitive group. For this purpose, we propose a new
group fairness measure, Matched Demographic Parity (MDP), using a matching function designed to
match two individuals from different groups. Remarkably, we show that MDP is closely related to the
well-known group fairness measures, such as the strong demographic parity with the total variation
or Wasserstein distance.
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An interesting observation is that undesirable discrimination between sensitive groups within a
subset or among individuals in the same sensitive group occurs when the matching function matches
dissimilar individuals. Based on this result, we develop a learning algorithm to seek a group-fair
model whose corresponding matching function matches similar individuals well.

The proposed algorithm consists of two steps: (1) learning a relaxed optimal transport (OT) map
(Monge, 1781; Kantorovich, 2006) that is to be used as a desirable matching function, and (2)
searching for the most accurate model among those treating similarly two matched individuals by the
relaxed OT map. We call this two-step procedure as Fairness Through Matching (FTM).

It is interesting that FTM is aligned with Fair Representation Learning (FRL). Conceptually, FTM is
understood as an FRL method where the OT map is used as the representation encoder. Empirical
results show that FTM offers improvement in accuracy and flexibility compared to FRL.

Main contributions

1. We propose a new group fairness measure, MDP, and prove that it is closely related to the strong
demographic parity measure with the total variation or Wasserstein distance.

2. We propose a new group fairness algorithm, FTM, which uses the MDP constraint to find a
group-fair model discriminating less between subsets or individuals in the same sensitive group.

3. Theoretical justifications are provided: FTM (1) achieves group fairness asymptotically, and (2) im-
proves subset/within-group fairness, which are two representative fairness concepts for discriminating
less between subsets or individuals in the same sensitive group of a given group-fair model.

4. Experiments on benchmark datasets illustrate that FTM (1) improves subset/within-group fairness
much without significant degradation in prediction accuracy and (2) is superior to FRL algorithms in
terms of accuracy and flexibility in model selection.

1.1 RELATED WORKS AND BACKGROUNDS

Fair AI algorithms Various notions of group fairness such as Demographic Parity (DP) and Strong
Demographic Parity (SDP) (Calders et al., 2009; Feldman et al., 2015; Agarwal et al., 2019; Chzhen
et al., 2020; Jiang et al., 2020), as well as Equal OPportunity (EOP) and Equalized Odds (EO) (Hardt
et al., 2016) have been introduced, and corresponding learning algorithms have been developed (Zafar
et al., 2019; Donini et al., 2018; Madras et al., 2018; Chuang & Mroueh, 2021).

To resolve the problem of a group-fair model discriminating between subsets or individuals, other
fairness notions are introduced, including individual fairness (Dwork et al., 2012; Yona & Rothblum,
2018; Yurochkin & Sun, 2021; Petersen et al., 2021) and counterfactual fairness (Kusner et al., 2017;
Chiappa & Gillam, 2018; von Kügelgen et al., 2022; Nilforoshan et al., 2022). However, individual
fairness does not guarantee group fairness when the gap between the two sensitive groups is large,
whose detailed discussion is in Section C.7 of Appendix. The use of counterfactual fairness is limited
as it requires causal models which are not easy to be obtained solely from observed data.

Optimal Transport (OT) map Optimal transport theory is initially formulated by Monge (1781).
For given source and target distributions P,Q in Rd and a cost function c (e.g., L2 distance), the OT
map from P to Q is the solution of minT:T#P=Q EX∼P (c (X,T(X))) , where T#P is the push-
forward measure of P induced by a given map T : Supp(P) → Rd. Kantorovich (2006) modified
this problem by finding the optimal coupling between two empirical measures. Subsequently, efficient
optimization algorithms have been developed with regularizations (Cuturi, 2013; Genevay et al.,
2016). Learning the optimal transport map with a functional form instead has also received much
attention (Seguy et al., 2018; Yang & Uhler, 2019; Hütter & Rigollet, 2021). Several studies such as
Gordaliza et al. (2019); Chzhen et al. (2020); Jiang et al. (2020) have applied the optimal transport
theory to fair AI. More details of the OT map are presented in Section C.1 of Appendix.

1.2 PRELIMINARIES

Notations We denote X ∈ X ⊂ Rd as the random vector, Y ∈ Y = {−1, 1} as the binary label,
and S ∈ S = {0, 1} as the binary sensitive variable. Let D = {(xi, yi, si)}ni=1 be a set of training
data of size n which are independent copies of the random tuple (X, Y, S) on X ×Y ×S. Whenever
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necessary, we split the domain of X with respect to S and write Xs as the domain of X|S = s. For a
given s ∈ {0, 1}, we denote s′ = 1− s.

Denote P the joint distribution of (X, Y, S), PX the marginal distribution of X, and Ps = PX|s, s ∈
{0, 1} the conditional distributions of X|S = s. Similarly, we write the conditional expectation as
Es(·) = E(·|S = s), and En,s as its empirical counterpart.

We consider group-fair binary classification algorithms which yield a real-valued function f ∈ F ⊂
{f : X × S → R}. Let Fs = {f(·, s) : f ∈ F}, s ∈ {0, 1} and f⋆ be the optimal model defined by
f⋆ := argminf∈F El(Y, f(X, S)) for a given loss function l : {−1, 1} × R → R+.

Integral Probability Metric (IPM) Integral Probability Metric (IPM) is a metric between two
probability measures. For a real-valued discriminator class H, the IPM between two given probability
measures P and Q on X is defined as dH(P,Q) := suph∈H

∣∣∫ h(X) dP(X)−
∫
h(Y) dQ(Y)

∣∣ .
Three popularly known IPMs are Wasserstein distance, MMD (Maximum Mean Discrepancy), and
TV (Total Variation), where H is the set of all 1-Lipschitz functions, the unit ball of an RKHS, and
all measurable functions in {h : X → [0, 1]}, respectively (Sriperumbudur et al., 2009).

Fairness measures In this paper, we consider the demographic parity as the notion of
group fairness (see Section C.6 of Appendix for equal opportunity). Let ∆DP(f ; τ) =
|P (f(X, S) > τ |S = 0)− P (f(X, S) > τ |S = 1)| . The original demographic parity ∆DP(f)
(Feldman et al., 2015; Zafar et al., 2017) is equal to ∆DP(f ; 0), which measures the difference in the
ratio of positive predictions between the two groups. A smoother version of ∆DP(f) is the mean score
parity defined as ∆DP(f) = |E (f(X, S)|S = 0)− E (f(X, S)|S = 1)| (Madras et al., 2018; Agar-
wal et al., 2018; Chuang & Mroueh, 2021; Buyl & Bie, 2022). In addition, we consider the following
three measures for strong demographic parity (Agarwal et al., 2019; Chzhen et al., 2020; Jiang et al.,
2020): ∆SDP(f) = Eτ∼U(−1,1)∆DP(f ; τ), ∆TVDP(f) := dTV

(
Pf(X,0)|S=0,Pf(X,1)|S=1

)
and ∆WDP(f) = dL1

(
Pf(X,0)|S=0,Pf(X,1)|S=1

)
, where Pf(X,s)|S=s is the distribution of

f (X, s) |S = s and dTV and dL1
are the total variation and 1-Wasserstein distances, respectively.

2 MATCHED DEMOGRAPHIC PARITY

We propose a new group fairness measure called Matched Demographic Parity (MDP), a measure
for strong demographic parity. Remarkably, it provides a new perspective on group fairness in
the sense that strong group-fair models inherently adhere to specific mechanisms and constraints.
Moreover, this finding serves as the main inspiration for our proposed algorithm.

Let Ts := {Ts : Xs → Xs′} be a given set of maps from Xs to Xs′ . We say Ts ∈ Ts is a matching
function1 if Ts#Ps = Ps′ . For a given model f ∈ F , the MDP measure is defined by

∆MDP(f) := inf
s∈{0,1}

inf
Ts∈Ts,0

Es |f(X, s)− f(Ts(X), s′)|

where Ts,0 := {Ts ∈ Ts : Ts#Ps = Ps′} is the class of matching functions.

Proposition 2.1 below shows that MDP can be considered as a measure for strong demographic
parity under regularity conditions, whose proof is in Section B.1 of Appendix. Let F∆(δ) := {f ∈
F : ∆(f) ≤ δ} be the set of group-fair models for the fairness level δ ≥ 0 with respect to a group
fairness measure ∆ : F → R+ ∪ {0}. We assume that (C1) F is the collection of bounded functions;
(C2) Ps, s = 0, 1, is absolutely continuous.
Proposition 2.1. Under (C1) and (C2), for any given fairness level δ ≥ 0, we have F∆TVDP(Cδ) ⊂
F∆MDP(δ) ⊂ F∆WDP(δ) for some constant C > 0.

3 GROUP FAIRNESS THROUGH THE OPTIMAL MATCHING

We present an example of problematic group-fair models (Section 3.1) and then suggest an idea of
using a restricted class of matching functions for searching desirable group-fair models (Section

1The matching function is equivalent to the ‘transport map’ in Villani (2008). We use the term ‘matching
function’ since we use it to match similar individuals.
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3.2). Then, we propose the corresponding algorithm, FTM (Section 3.3), and discuss several closely
related methods to FTM (Section 3.4).

3.1 AN EXAMPLE OF PROBLEMATIC GROUP-FAIR MODELS

Figure 1: (Top) Example of problematic group-fair model
with a unreasonable matching function. (Bottom) Mitigation
of discrimination over subsets using a reasonable matching
function.

We present an example of a group-fair
model that discriminates subsets seri-
ously. Consider the following model,
which is visualized in Figure 1.

• X|S = s ∼ Unif(0, 1), s ∈ {0, 1}.

• f̂(x, s) = sign (2x− 1) (1− 2s) .

Note that f̂ is perfectly fair (i.e.
f̂(X, 0)

d
= f̂(X, 1)). However, there

is a notable issue with the treatment of
individuals in the subset {x ≥ 1/2}
(as well as {x < 1/2}); f̂ predicts la-
bel 1 for x ≥ 1/2, s = 0 and −1 for
x ≥ 1/2, s = 1. That is, f̂ discrimi-
nates individuals belonging to the sub-
set {x ≥ 1/2} (and {x < 1/2}).

This issue can be attributed to
the unreasonable matching func-
tion of f̂ . For given f , we define the corresponding matching function as Tf

s :=
argminTs∈Ts,0

Es |f(X, s)− f(Ts(X), s′)| if exists. It turns out that the matching function cor-

respond to f̂ is Tf̂
s (x) = x − sign ((2x− 1)(1− 2s)) /2. This function matches an individual in

{x < 1/2, S = s} with one in {x ≥ 1/2, S = s′}, who are far apart from each other.

In contrast, f̃(x, s) = sign (2x− 1) is perfectly fair but does not discriminate any subset. Note that
the corresponding matching function for f̃ turns out to be Tf̃

s (x) = x. If we compare the transport
cost Es∥X−Tf̂

s (X)∥2 of f̂ with that of f̃ , we can see that the former is much larger than the latter.
Refer to Figure 1 for overall illustration of this example.

3.2 MDP WITH RESTRICTED CLASSES OF MATCHING FUNCTIONS

The example in the previous subsection implies that desirable group-fair models can be discerned by
examining the corresponding matching functions. For desirable matching functions, we consider one
that matches similar individuals, i.e., x ≈ Ts(x). The OT map from Ps to Ps′ , denoted as T⋆

s, is
the best one since it minimizes the transport cost Es∥X−Ts(X)∥2 among all matching functions.

For better group fairness, we only consider group-fair models whose corresponding matching func-
tions are close to the OT map. For given δ > 0 and γ > 0, we define

F∆MDP(δ; T0,0(γ), T1,0(γ)) := {f ∈ F : inf
s∈{0,1}

inf
Ts∈Ts,0(γ)

Es |f(X, s)− f(Ts(X), s′)| ≤ δ},

where Ts,0(γ) := {Ts ∈ Ts,0 : Es∥Ts(X) − T⋆
s(X)∥2 ≤ γ} ⊆ Ts,0 for s ∈ {0, 1} are re-

stricted classes of matching functions. Then, we search an accurate prediction model among those in
F∆MDP(δ; T0,0(γ), T1,0(γ)). This restriction would help to learn group-fair models that discriminate
less between subsets or individuals in the same sensitive group, which is supported by Theorems 3.1
and 3.2.

Improvement in terms of subset and within-group fairness We show that the MDP with restricted
classes of matching functions can lead to improvement in subset and within-group fairness, both of
which are frequently violated when focusing solely on group fairness (Dwork et al., 2012; Kearns
et al., 2018; Hebert-Johnson et al., 2018; Binns, 2020; Kim et al., 2023).
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(1) Subset fairness (Dwork et al., 2012; Kearns et al., 2018): The measure for subset fairness with
respect to a collection C of bounded subsets of X is defined as ∆DPC(f) := supA∈C |E(f(X, 0)|S =
0,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)|. We note that this is a general formulation of the ‘subset
targeting’ in Dwork et al. (2012). We expect that a group-fair model whose corresponding matching
function has a lower transport cost will have a higher subset fairness. It is because the chance of two
matched individuals (from different sensitive groups) belonging to a given subset increases as the
transport cost decreases. Theorem 3.1 theoretically supports this conjecture.

Theorem 3.1 (Improvement in subset fairness). Suppose F is the collection of L-Lipschitz functions.
Then, for all f ∈ F∆MDP(δ), we have ∆DPC(f) ≤ L

(
mins

(
Es∥X−Tf

s (X)∥2
)1/2

+ U1

)
+U2δ,

where U1, U2 > 0 are constants only depending on C and Ps, s = 0, 1.

(2) Within-group fairness (Kim et al., 2023; Okati et al., 2023): Suppose that there are two individu-
als, x(1)

s and x
(2)
s , belonging to the same sensitive group s and that the unfair but optimal prediction

model prefers x(1)
s to x

(2)
s . In this case, within-group fairness requires that a group-fair model should

also prefer x(1)
s . That is, a group-fair model should not treat individuals in the same sensitive group

unfairly. It is a general formulation of the ‘self-fulfilling prophecy’ in Dwork et al. (2012).

The concept of within-group fairness can be formulated as follows. Suppose that Xs = Xs′ = X . For
any x(1) and x(2) in X such that f⋆(x(1), s) > f⋆(x(2), s) and f⋆(x(1), s′) > f⋆(x(2), s′), if there
exists Ws(x

(1),x(2), f) such that f(x(1), s)− f(x(2), s) ≥ Ws(x
(1),x(2), f) for a given model f,

then we say f is within-group fair supported by Ws(x
(1),x(2), f). A larger value of Ws(x

(1),x(2), f)
means higher within-group fairness. Theorem 3.2 shows that reducing the transport cost is helpful to
improve within-group fairness. Assume that P(S = 0) = P(S = 1), l be the squared loss and F
consists of all measurable functions. For given two matching functions T = (Ts ∈ Ts,0, s ∈ {0, 1},
let fT be the minimizer of E(Y − f(X, S))2 on {f ∈ F : mins Es|f(X, s)− f(Ts(X), s′)| = 0}.
Assume that Ts, s ∈ {0, 1} are invertible. Let X 2(f⋆) := {(x(1),x(2)) ∈ X × X : f⋆(x(1), s) >
f⋆(x(2), s), f⋆(x(1), s′) > f⋆(x(2), s′)}.

Theorem 3.2 (Improvement in within-group fairness). Let x(1) and x(2) be two individuals such that
(x(1),x(2)) ∈ X 2(f⋆). Suppose that f⋆ is L-Lipshitz. Then, for s = 0, 1, we have

fT(x
(1), s)− fT(x

(2), s) >
Ms

2
− L

2
max

∑
i=1,2

∥x(i) −Ts(x
(i))∥,

∑
i=1,2

∥x(i) −T−1
s′ (x(i))∥

 ,

for Ms = Ms(x
(1),x(2)) := f⋆(x(1), s)− f⋆(x(2), s) > 0.

Theorem 3.2 implies that within-group fairness of fT is expected to be improved when the transport
costs of Ts, s ∈ {0, 1} become smaller. Let fγ be the minimizer of E(Y − f(X, S))2 among
f ∈ F∆MDP(0; T0,0(γ), T1,0(γ)), where Ts,0(γ), s ∈ {0, 1} consist of invertible matching functions.
Then we have fγ = fTγ , where Tγ = argminTs∈Ts,0(γ),s∈{0,1}Es|fγ(X, s) − fγ(Ts(X), s′)|.
Thus, within-group fairness of fγ is expected to increase as γ decreases.

The proofs of Theorems 3.1 and 3.2 are presented in Sections C.2 and C.3 of Appendix, respectively,
and numerical evidence is given in Section 4.2.

3.3 FTM ALGORITHM

Unfortunately, obtaining Ts,0(γ) is nearly infeasible due to the limited access to the entire set of
matching functions, i.e., Ts,0. Instead, for practical implementation, we propose to use the relaxed
OT map, which is a modified version of the OT map. For a given ϵ ≥ 0, the (ϵ-)relaxed OT map
T⋆

s,ϵ is defined as the minimizer of Es∥X−Ts(X)∥2 among all Ts satisfying dH(Ts#Ps,Ps′) ≤
ϵ. Instead of F∆MDP(δ; T0,0(γ), T1,0(γ)), we consider F∆MDP(δ; {T⋆

0,ϵ}, {T⋆
1,ϵ}). Even though

{T⋆
s,ϵ} consists of a single element, F∆MDP(δ; {T⋆

0,ϵ}, {T⋆
1,ϵ}) is not overly restrictive. This claim

is supported by Proposition 3.3 below, which shows that F∆MDP(δ; T0,0(γ), T1,0(γ)) is close to
F∆MDP(δ; {T⋆

0,ϵ}, {T⋆
1,ϵ}) when γ, ϵ are small. The proof is in Section B.2 of Appendix.
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Proposition 3.3. For any given fairness level δ ≥ 0, there exist δ1, δ2 depending on δ, γ, ϵ such
that F∆MDP(δ1; {T⋆

0,ϵ}, {T⋆
1,ϵ}) ⊂ F∆MDP(δ; T0,0(γ), T1,0(γ)) ⊂ F∆MDP(δ2; {T⋆

0,ϵ}, {T⋆
1,ϵ}).

Furthermore, δ1, δ2 → δ as γ, ϵ → 0. 2

Another justification of using F∆MDP(δ; {T⋆
0,ϵ}, {T⋆

1,ϵ}) is its relation with FRL. Conceptually, FTM
can be interpreted as an algorithm of FRL where the relaxed OT map is used as the representation
encoder. See Section 3.4 for details.

Regularized OT maps (Cuturi, 2013; Alaya et al., 2019), which are similar to the relaxed OT map,
have been developed and widely applied. However, these maps are only defined on the training dataset
and require recalculation for test data, leading us to consider the relaxed OT map instead. A detailed
comparison between the relaxed and regularized OT maps is in Section C.1 of Appendix.

We call the learning algorithm with MDP constraint whose matching function is the relaxed OT map
as Fairness Through Matching (FTM). FTM consists of the following two steps. Let ϵ (IPM level)
and δ (fairness level) be two given positive constants.

(STEP 1) We train the matching networks T̂s, s ∈ {0, 1} using D as

T̂s = T̂s,ϵ := argmin
Ts∈Ts

En,s∥X−Ts(X)∥2 s.t. dH(Ts#Pn,s,Pn,s′) ≤ ϵ (1)

where Ts and H are given classes of transport maps and discriminator functions, respectively. To
make the optimization implementable, we choose DNN (Deep Neural Network) function classes
T DNN
n and HDNN

n as Ts and H, respectively, whose details are in Theorem B.5 and its proof.

(STEP 2) We train FTM classifiers f̂ FTM
s , s ∈ {0, 1} using D as

f̂ FTM
s := argmin

f∈F
Enl(Y, f(X, S)) s.t. REGs(f) ≤ δ (2)

where F is a given class of prediction models, l is a given loss function, such as the cross-entropy,
and REGs(f) := En,s|f(X, s)− f(T̂s(X), s′)|. Then, we select one from {f̂FTM

0 , f̂FTM
1 } as the final

model (e.g., using validation data).

Choice of ϵ and δ For ϵ, we set it as small as possible so that the level of fairness predominantly
depends on δ. However, using too small ϵ would make optimization unstable. Therefore, we set ϵ to
the smallest value with which T̂s, s ∈ {0, 1} are learnable (see Section D.3 of Appendix). Then, we
control δ to make the trained prediction model achieve a given level of group fairness.

Fairness consistency of FTM We also prove that f̂ FTM
s asymptotically achieves a given level of

group fairness by controlling δ accordingly. We say that an estimator f̂ is fairness-consistent with
respect to a fairness measure ∆ of level δ > 0 if there exists a positive sequence an converging to 0
such that ∆(f̂) ≤ δ + an with probability converging to 1 as n → ∞. The fairness consistency of
f̂ FTM
s under regularity conditions is given in Theorem B.5 in Section B.5 of Appendix.

3.4 CLOSELY RELATED APPROACHES

Fair Representation Learning (FRL) Fair Representation Learning (FRL) algorithm aims at
searching a fair representation space (Zemel et al., 2013) in the sense that the distributions of the
encoded representation vectors of each sensitive group are similar. Initiated by Edwards & Storkey
(2016), various FRL algorithms have been developed (Madras et al., 2018; Zhang et al., 2018).

Remarkably, the matching function Ts in FTM can be interpreted as a fair representation encoder,
where the representation space is Xs′ . That is, FTM is a variant of FRL that uses barycentric mapping
as the representation encoder. On the other hand, there is a difference in how they achieve a given
level of fairness: FTM sets (or tunes) δ to control fairness under ϵ ≈ 0, whereas FRL sets ϵ to control
fairness under δ = 0. In fact, Gordaliza et al. (2019) proposed to use the barycentric mapping for
FRL. FTM has several advantages compared to Gordaliza et al. (2019). Section 4.3 and Section C.5
of Appendix provide empirical and conceptual comparisons, respectively, between FTM and FRL.

2When γ is large, we can still use F∆MDP (δ2; {T⋆
0,ϵ}, {T⋆

1,ϵ}
)

to exclude undesirable group-fair models.
See Section C.4 of Appendix.
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Counterfactual fairness FTM is also related to counterfactual fairness (Kusner et al., 2017), where
a given input and its counterfactual are treated similarly. Instead of using graphical models to define
counterfactuals, the MDP constraint uses a matching function. In fact, under a simple Structural
Equation Model (SEM), the OT map results in the counterfactual. Particularly, write Xs = X|S = s
for s ∈ {0, 1} and consider an SEM Xs = µs + AXs + ϵs for given A ∈ Rd×d, µs ∈ Rd with
random Gaussian noise ϵs ∼ N (0, σ2

sD) of a diagonal matrix D ∈ Rd×d and variance scaler σ2
s . An

example DAG (Directed Acyclic Graph) is Figure 2.

XS

ϵs ∼ N (0, σ2
sD)

Figure 2: An example DAG of the
SEM Xs = µs +AXs + ϵs.

Let xs be a realization of Xs and assume (I−A) has its inverse
B := (I −A)−1 where I ∈ Rd×d is the identity matrix. Then,
its counterfactual becomes x̃CF

s = Bµs′ + σs′σ
−1
s (xs −Bµs)

(proved with Proposition 3.4). On the other hand, by Lemma
A.7 in Section A of Appendix, the image of xs by the OT map is
given as x̃OT

s = Bµs′ +Ws(xs−Bµs) for some Ws ∈ Rd×d.
Proposition 3.4 shows x̃CF

s = x̃OT
s , whose proof is referred to

Section B.4 of Appendix.

Proposition 3.4 (Counterfactual fairness and the OT map). For
all A having (I −A)−1, x̃CF

s = x̃OT
s .

Fairness assessment In FlipTest (Black et al., 2020), the OT map is used to measure the group
fairness of a given prediction model. However, in Black et al. (2020), there is no discussion about
how to learn a group-fair model. Moreover, the measure for FlipTest is fundamentally different from
ours. See Section C.8 of Appendix for details.

4 EXPERIMENTS

This section presents the experimental results supporting the superiority of FTM to existing group
fairness algorithms. In particular, we empirically show that FTM achieves better subset/within-group
fairness without degrading accuracy significantly. Additionally, we illustrate the advantages of FTM
over FRL in terms of fairness-accuracy trade-off and flexibility in model selection. Finally, we provide
an ablation study to compare the relaxed OT map with other possible matching functions.

4.1 SETTINGS

Datasets We use five real benchmark tabular datasets, Adult (Dua & Graff, 2017), German (Dua &
Graff, 2017), COMPAS3, Dutch (Van der Laan, 2001), and Law (Ramsey et al., 1998), whose basic
information is provided in Table 4 in Section D of Appendix. We disclaim that COMPAS dataset
is used solely for experimental purposes, despite its several known limitations regarding policing
practices (Fabris et al., 2022). We partition the datasets randomly into 8:2 for training and test datasets
except for Adult, which has a separate test dataset. We repeat this procedure 5 times over 5 random
initial parameters and take the average of these test results.

Implementation details and baseline algorithms For FTM, we use 2-layer MLP networks as
Ts, a single-layer neural network as F , and MMD as dH for stable optimization. We train T̂s with
ϵ as small as possible to make T̂s be close to the true OT map. Then, we train f̂ FTM

s , s ∈ {0, 1}
for many given δs. For the FRL algorithms, we consider fair AutoEncoder (AE) regularized by
MMD (AE-MMD, Deka & Sutherland (2023)), and two adversarial learning-based approaches from
Madras et al. (2018) (LAFTR) and Kim et al. (2022) (sIPM-LFR). To ensure fair comparisons,
we use 2-layer MLP networks for the encoder and single-layer networks for the prediction head.
For the in-processing algorithms, we consider Reg (minimizing cross-entropy + λ∆DP (Chuang
& Mroueh, 2021; Donini et al., 2018), Adv (Zhang et al., 2018), Fair-Mixup (Chuang & Mroueh,
2021), and Reduction (Agarwal et al., 2018). The unfair baseline (abbr. Unfair) is the classifier trained
without fairness regularization. For the in-processing and unfair algorithms, we use single-layer
neural networks as the model. For fairness measures, we consider ∆DP,∆DP, and ∆SDP. More
implementation details are explained in Section D of Appendix.

3https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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4.2 MAIN RESULTS: COMPARISON WITH GROUP-FAIR ALGORITHMS

The key to the success of FTM is lies in the use of the relaxed OT map as the matching function.
It can improve subset and within-group fairness without degrading accuracy significantly, which
we empirically investigate in this section. We compare FTM with the seven state-of-the-art baseline
algorithms described in Section 4.1.

Figure 3: Subset fairness: boxplots of the levels of
∆DP on 1,000 randomly generated subsets Dsub
for COMPAS test dataset. Boxplots for the other
datasets are presented in Figure 5 in Section E of
Appendix.

Subset fairness To evaluate subset fairness,
we generate a random subset Dsub of the test
data by Dsub = {i : v⊤xi ≥ 0} for a random
vector v generated from the uniform distribution
on [−1, 1]d. Then, we calculate ∆DP on Dsub.
Figure 3 draws the boxplots of the ∆DP values
on COMPAS dataset for 1,000 randomly gener-
ated Dsub for FTM and baselines. Outliers in the
boxplots (points in red box) are the cases of sub-
set unfairness. Note that FTM has the smallest
number of outliers consistently, indicating that
FTM achieves higher levels of subset fairness.

Within-group fairness A reasonable measure
for within-group fairness would be Spearman’s
rank correlation between unfair and fair predic-
tion scores of each sensitive group: a higher
correlation implies better within-group fairness.
Table 1 presents the two rank correlations of the two sensitive groups, showing that FTM achieves
better within-group fairness with large margins in most cases. Table 7 in Section E of Appendix
presents an additional experimental result, indicating that FTM classifier has relatively fewer cases
of flipping its prediction as Ŷ = 0 for samples that the unfair classifier predicts as Ŷ = 1, when
compared to other group-fair classifiers.

Table 1: Within-group fairness: Spearman’s correlation coefficient between the scores of the unfair
model and group-fair models under a fixed level of ∆DP. The bold faces are the best, and underlined
ones are the second placers. Table 6 in Section E of Appendix shows standard errors.

Dataset Adult German COMPAS Dutch Law

∆DP : Unfair → Fair 0.19 → 0.10 0.09 → 0.04 0.19 → 0.10 0.34 → 0.14 0.17 → 0.07

Sensitive attribute S 0 1 0 1 0 1 0 1 0 1

AE-MMD 0.771 0.872 0.651 0.779 0.436 0.463 0.825 0.929 0.790 0.585
LAFTR 0.710 0.876 0.677 0.772 0.457 0.468 0.835 0.912 0.820 0.703

sIPM-LFR 0.745 0.880 0.698 0.809 0.402 0.587 0.794 0.920 0.674 0.710
Reg 0.907 0.885 0.852 0.863 0.852 0.792 0.950 0.916 0.775 0.553
Adv 0.885 0.845 0.830 0.804 0.795 0.742 0.944 0.927 0.807 0.599

Fair-Mixup 0.894 0.905 0.829 0.758 0.904 0.812 0.953 0.907 0.791 0.653
Reduction 0.905 0.890 0.840 0.851 0.848 0.800 0.950 0.916 0.867 0.583

FTM 0.921 0.945 0.836 0.906 0.907 0.864 0.931 0.975 0.915 0.738

Accuracy We also observe that FTM does not excessively degrade prediction accuracy (see Table
2: the averaged relative drop of accuracy compared to the averaged accuracy of the seven base-
lines is 0.8%). This represents a trade-off; this slight degradation in accuracy is made to improve
subset/within-group fairness. For more detailed results, see Table 8 in Section E of Appendix.

Table 2: The averaged relative change of Acc under a fixed ∆DP.

Dataset (∆DP) Adult (0.06) German (0.05) COMPAS (0.12) Dutch (0.03) Law (0.04) Average

Relative change of accuracy -1.3% -0.4% -1.1% -1.2% +0.2% -0.8%
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4.3 ANOTHER ADVANTAGE OF FTM: COMPARISON WITH FRL

As discussed earlier in Section 3.4, FTM and unsupervised FRL are closely related in the sense that
the distribution matching approach is applied to achieve group fairness. Therefore, we specifically
compare with FRL in two aspects: (1) fairness-accuracy trade-off and (2) flexibility in model selection.

Figure 4: FTM vs FRL: Pareto-front
lines for fairness-accuracy trade-off for
Adult dataset. Full results on the five
datasets with respect to the three fair-
ness measures ∆DP,∆DP and ∆SDP
are provided in Figure 6 in Section E of
Appendix.

Fairness-accuracy trade-off Figure 4 depicts Pareto-
front lines as is done by Madras et al. (2018); Kim et al.
(2022); Chuang & Mroueh (2021) to present the fairness-
accuracy trade-off with respect to ∆DP. The larger-sized
plots with standard error intervals for the three fairness
measures ∆DP,∆DP and ∆SDP are provided in Figure 6
in Section E of Appendix. It is obvious that FTM algorithm
achieves superior or at least competitive performances
compared to the FRL algorithms.

Flexibility in model selection Another important advan-
tage of FTM over FRL is that the selection of the classifier
model F and the transport network Ts can be made sep-
arately. In contrast, the full model network of FRL is the
composition of the encoder on the input space and the
prediction head on the representation space. For example
of interpretability, when it is required to use simple mod-
els such as linear or generalized additive models, FRL’s
full network becomes overly simple. We compare FTM
and FRL under this scenario: F is the class of linear mod-
els. The overall fairness-accuracy trade-offs are provided
in Figure 7 in Section E of Appendix, which shows the
outperformance of FTM.

4.4 ABLATION STUDY: COMPARISON WITH OTHER MATCHING FUNCTIONS

For ablation, we assess and compare three variations of FTM: FTM-coupling, FRL-bary, and FRL-
match. This study aims to compare many matching functions in terms of the fairness-accuracy
trade-off. (1) FTM-coupling is a variant of FTM where the matching function is defined by the
optimal coupling (Kantorovich, 2006), (2) FRL-bary is an FRL where the encoder is the optimal
transport map to the barycenter, which is similar to Gordaliza et al. (2019). (3) FRL-match is a variant
of FTM whose matching is done using the encoder and decoder learned by Kim et al. (2022). Figure
8 of Section E of Appendix shows that the relaxed OT map performs consistently better than the three
other alternatives. Refer to Section E of Appendix for more details.

5 CONCLUDING REMARKS

We have demonstrated that MDP can be considered as a measure of strong demographic parity. The
proposed algorithm built on this finding, FTM, offers several advantages over its competitors, in terms
of subset and within-group fairness, without significantly sacrificing accuracy. Using the relaxed OT
map as the matching function may be inefficient when a large portion of the input comprises noise. In
such cases, it is necessary to remove noise before learning the relaxed OT map.
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A THEORETICAL TOOLS

A.1 MATHEMATICAL DEFINITIONS

Definition A.1 (Function norms). Let X be a compact subset of Rd. Denote || · ||p be the lp norm

defined as ||g||p = ||g||p,X :=
(∫

X |g(x)|p dµ(x)
)1/p

for a given function g : X → R, where µ is the
standard Lebesgue measure on Rd. We write ||g||∞ = ||g||∞,X := supx∈X |g(x)|. For vector-valued
function T(·) = [T1(·), · · · , Td(·)]⊤ : X → Rd, we write ∥T∥∞ := supx∈X

1
d

∑d
j=1 |Tj(x)|.

Definition A.2 (Function derivatives). For a given t > 0, let [t] be the largest integer less than or
equal to t and ⌈t⌉ as the smallest integer greater or equal to t. For given s = [s1, · · · , sd]⊤ ∈ Nd

0,
where N0 is the set of non-negative integers, we define the derivative of a function g of order q as

∂qg =
∂|q|g

∂xq1
1 · · · ∂xqd

d

,

where |q| = q1 + · · ·+ qd. Further, for r ∈ (0, 1], we denote

[g]r,X = sup
x,x′∈X ,x̸=x′

|g(x)− g(x′)|
|x− x′|r

.

Definition A.3 (Smooth functions). For an integer m, we denote Cm(X ) the space of functions on
X whose partial derivatives of order q with |q| ≤ m exist are continuous. That is,

Cm(X ) = {g : X → R, ∂qg are continuous for ∀q such that |q| ≤ m}.

Definition A.4 (Hölder function class). The real-valued Hölder function class with smoothness γ > 0
(i.e., γ-Hölder smooth function class) is a function space defined as

Gγ = Gγ(X ) := {g ∈ C [γ](X ) : ||g||Gγ(X ) < ∞}

where
||g||Gγ(X ) = max

|m|≤[γ]
||∂mg||∞,X + max

|m|=[γ]
[∂mg]γ,X .

The vector-valued (d-dimensional) Hölder function class with smoothness β > 0 is a function space
defined as

Tβ = Tβ(X ) = {T : x 7→ [T1(x), · · · , Td(x)]
⊤,x ∈ X , Tj ∈ Gβ , j ∈ [d]}.

Definition A.5 (Rademacher complexity). Let σ be a binary random variable whose distribution is
Uniform({−1, 1}). For n many independent realizations σ1, . . . , σn of σ, we define the empirical
Rademacher complexity of G as

Rn(G) :=
1

n
Eσ

(
sup
g∈G

n∑
i=1

σig(Xi)

)
.

The (population) Rademacher complexity R(G) is the expectation of the empirical Rademacher
complexity over X = [X1, · · · ,Xn], i.e.,

R(G) := EX (Rn(G)) .

A.2 TECHNICAL LEMMAS

Lemma A.6 (Generalization bound: Theorem 4.10 of Wainwright (2019) or Theorem 26.5 of
Shalev-Shwartz & Ben-David (2014)). Let P be the distribution of a random vector X. For n many
i.i.d. samples X1, · · · ,Xn ∼ P, we write Pn as the empirical distribution of X1, · · · ,Xn. Let G be
a set of real-valued functions such that supg∈G ∥g∥∞ ≤ BG for a BG > 0. Then,

sup
g∈G

∣∣∣∣∫ g(x)d(P − Pn)(x)

∣∣∣∣ ≤ 2Rn(G) +BG

√
2 log(1/δ)

n

with probability at least 1− δ > 0.
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Lemma A.7 (Optimal transport map between two Gaussians). For mean vectors µX, µY ∈ Rd and
covariance matrices ΣX,ΣY ∈ Rd×d, the OT map from N (µX,ΣX) to N (µY,ΣY) is given as

TOT(x) = WOTx+ bOT where WOT = Σ
− 1

2

X

(
Σ

1
2

XΣYΣ
1
2

X

) 1
2

Σ
− 1

2

X and bOT = µY −WOTµX.

Proof. Consider the centered Gaussians, i.e., µX = µY at first. Based on Theorem 4 of
Olkin & Pukelsheim (1982), we have that W2 (N (0,ΣX),N (0,ΣY)) = Tr(ΣX + ΣY −

2
(
Σ

1/2
X ΣYΣ

1/2
X

)1/2
) = ∥Σ1/2

X −Σ
1/2
Y ∥2F where ∥ · ∥ is the Frobenius norm. Correspondingly, Knott

& Smith (1984) derived the optimal transport map as x 7→ Σ
−1/2
X

(
Σ

−1/2
X ΣYΣ

1/2
X

)1/2
Σ

−1/2
X x.

Combining these results, we can extend the OT map formula of Gaussians with nonzero means
as follows. Since E∥X −Y∥2 = E∥ (X− µX) − (Y − µY) + (µX − µY) ∥2 = E∥ (X− µX) −
(Y − µY) ∥2+∥µX−µY∥2, the Wasserstein distance is given as W2 (N (µX,ΣX),N (µY,ΣY)) =

∥µX − µY∥2 + ∥Σ1/2
X − Σ

1/2
Y ∥2F , and so the corresponding optimal transport map is also given

as x 7→ Σ
−1/2
X

(
Σ

−1/2
X ΣYΣ

1/2
X

)1/2
Σ

−1/2
X x+µY −Σ

−1/2
X

(
Σ

−1/2
X ΣYΣ

1/2
X

)1/2
Σ

−1/2
X µX, which

completes the proof. □

Lemma A.8 (Approximation of the class of Hölder smooth functions by DNNs). For a given β, there
exists a DNN function class T DNN

n such that ∃T ∈ T DNN
n satisfying ∥T−Tβ∥∞ ≤ O(n−β/(2β+d))

for any Tβ ∈ Tβ and Rn(T DNN
n ) ≤ O(n−β/(2β+d)) up to a logarithm factor. For a given γ, there

exists a DNN function class HDNN
n such that ∃h ∈ HDNN

n satisfying ∥h− hγ∥∞ ≤ O(n−γ/(2γ+d))

for any hγ ∈ Hγ and Rn(HDNN
n ) ≤ O(n−γ/(2γ+d)) up to a logarithm factor.

The proof of Lemma A.8 can be found in Theorem 5 and Lemma 5 of Schmidt-Hieber (2020).
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B PROOFS OF MAIN THEOREMS

B.1 PROOF OF PROPOSITION 2.1

Let B > 0 be the bound of sup-norm of f, i.e., supx |f(x, s)| ∈ [−B,B].

Definition B.1. For s = 0, 1 and any measurable set A ⊆ [−B,B], we denote

f−1
s (A) := {x ∈ Xs : f(x, s) ∈ A}.

Lemma B.2. For any given f ∈ F∆TVDP(δ), there exists Ts satisfying dTV (Ts#Ps,Ps′) = 0 and
Es |f (X, s)− f (Ts(X), s′)| ≤ Cδ for some constant C > 0.

Proof. Without loss of generality, let s = 0 and s′ = 1.

Denote F0 : [−B,B] → [0, 1] and F1 : [−B,B] → [0, 1] the CDFs (Cumulative Distribution
Function) of f(X, 0)|S = 0 and f(X, 1)|S = 1, respectively. Note that F0 and F1 have at most
countably many discontinuous points. We define the set of all discontinuous points of Fs as Ds,
which is countable.

1. We define the sub-CDF F cont
s (v) := Fs(v)−

∑
t∈Ds,t≤v ∆Fs(t) for v ∈ [−B,B].

We prove the lemma for the case of F cont
1 (B) ≤ F cont

0 (B). The case of F cont
1 (B) >

F cont
0 (B) can be treated similarly.

There exists z ≤ B such that F cont
1 (B) = F cont

0 (z). Define vk = −B + ⌊δ⌋k for k ∈
{0, . . . ,m− 1} where m ∈ N satisfies −B + (m− 1)⌊δ⌋ ≤ z ≤ −B +m⌊δ⌋. We also let
vm = z.

Fix k ∈ {1, . . . ,m}. Suppose that F cont
1 ((vk−1, vk]) ≤ F cont

0 ((vk−1, vk]). Then, there
exists zk ≤ vk such that F cont

1 ((vk−1, vk]) = F cont
0 ((vk−1, zk]). Define X0,k :=

f−1
0 ((vk−1, zk] \ D0) and X1,k := f−1

1 ((vk−1, vk] \ D1). We can define X0,k and X1,k

similarly when F cont
1 ((vk−1, vk]) ≥ F cont

0 ((vk−1, vk]).

For each k ∈ {1, . . . ,m}, we define probability measures Ps,k, s ∈ {0, 1} such that
Ps,k(A) := Ps(A ∩ Xs,k)/Ps(Xs,k) for measurable subsets A ⊆ X .

Then, there exists a matching function T
(1)
0,k from P0,k(·) to P1,k(·), by Breiner’s Theorem

(Villani, 2008; Hütter & Rigollet, 2021) under (C2). Since vk − vk−1 ≤ δ, ∀k, we have that
|f(x, 0)− f(T

(1)
0,k(x), 1)| ≤ δ for x ∈ X0,k.

2. Second, we consider the intersection of D0 and D1. Let D0,1 := D0 ∩D1.

Fix d ∈ D0,1. Suppose that P1(f
−1
1 ({d})) ≤ P0(f

−1
0 ({d})). Then, there exists

f−1
0 ({d})′ ⊂ f−1

0 ({d}) such that P0(f
−1
0 ({d}))′ = P1(f

−1
1 ({d})). Define X̃0,d :=

f−1
0 ({d})′ and X̃1,d := f−1

1 ({d}). We can define X̃0,d and X̃1,d similarly when
P1(f

−1
1 ({d})) > P0(f

−1
0 ({d})).

For each d ∈ D0,1, we define probability measures P̃s,d, s ∈ {0, 1} such that P̃s,d(A) :=

Ps(A ∩ X̃s,d)/Ps(X̃s,d) for measurable subsets A ⊆ X .

Then, there exists a matching function T
(2)
0,d from P̃0,d(·) to P̃1,d(·). By definition of D0,1,

we note that f(x, 0) = f(T
(2)
0,d(x), 1) for x ∈ X̃0,d.

3. Third, we collect the complement sets as

X ′
0 := X0 \

 ⋃
k∈{1,...,m}

X0,k ∪
⋃

d∈D0,1

X̃0,d


and

X ′
1 := X1 \

 ⋃
k∈{1,...,m}

X1,k ∪
⋃

d∈D0,1

X̃1,d

 .
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Because P0(
⋃

k∈{1,...,m} X0,k) = P1(
⋃

k∈{1,...,m} X1,k) and P0(
⋃

d∈D0,1
X̃0,d) =

P1(
⋃

d∈D0,1
X̃1,d), we have P0(X ′

0) = 1− P0(
⋃

k∈{1,...,m} X0,k)− P0(
⋃

d∈D0,1
X̃0,d) =

P1(X ′
1).

We define probability measures P ′
s, s ∈ {0, 1} such that P ′

s(A) := Ps(A∩X ′
s)/Ps(X ′

s) for
measurable subsets A ⊆ X .

Then, there exists a matching function T
(3)
0 from P ′

0(·) to P ′
1(·).

Furthermore, because dTV
(
Pf(X,0)|S=0,Pf(X,1)|S=1

)
≤ δ, we have P0(X ′

0) ≤ δ, and by
f(·) ∈ [−B,B], it holds that

E0

(
|f(X, 0)− f(T

(3)
0 (X), 1)| · I(X ∈ X ′

0)
)

=

∫
|f(X, 0)− f(T

(3)
0 (X), 1)| · I(X ∈ X ′

0)dP0(X)

≤ 2B

∫
I(X ∈ X ′

0)dP0(X) = 2BP0(X ′
0) ≤ 2Bδ.

(3)

4. Finally, combining 1 to 3, we define

T0(·) :=
m∑

k=1

T
(1)
0,k(·)I(· ∈ X0,k) +

∑
d∈D0,1

T
(2)
0,d(·)I(· ∈ X̃0,d) +T

(3)
0 (·)I(· ∈ X ′

0). (4)

We note that
{
{X0,k}mk=1, {X̃0,d}d∈D0,1 ,X ′

0

}
and

{
{X1,k}mk=1, {X̃1,d}d∈D0,1 ,X ′

1

}
are par-

titions of X0 and X1, respectively. Moreover, P0(X0,k) = P1(X1,k),∀k, P0(X̃0,d) =

P1(X̃1,d),∀d, and P0(X ′
0) = P1(X ′

1). Hence, T0 is a matching function from P0 to P1.

Furthermore, we have that

E0|f(X, 0)− f(T0(X), 1)| =
∫

|f(X, 0)− f(T0(X), 1)|dP0(X)

=
∑

k∈{1,...,m}

∫
|f(X, 0)− f(T

(1)
0,k(X), 1)| · I(X ∈ X0,k)dP0(X)

+
∑

d∈D0,1

∫
|f(X, 0)− f(T

(2)
0,d(X), 1)| · I(X ∈ X̃0,d)dP0(X)

+

∫
|f(X, 0)− f(T

(3)
0 (X), 1)| · I(· ∈ X ′

0)dP0(X)

≤ δ
∑

k∈{1,...,m}

P0(X0,k) +

∫
|f(X, 0)− f(T

(3)
0 (X), 1)| · I(· ∈ X ′

0)dP0(X)

≤ δ + 2Bδ.

(5)

Letting C = 1 + 2B completes the proof.

□
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Lemma B.3. If a given map Ts ∈ Ts satisfies dTV(Ts#Ps,Ps′) = 0, then we have
∆WDP(f),∆DP(f) ≤ δ for any f ∈ {f ∈ F : Es|f(X, s)− f(Ts(X), s′)| ≤ δ}.

Proof of Lemma B.3. Fix f ∈ {f ∈ F : Es|f(X, s)− f(Ts(X), s′)| ≤ δ}.

∆WDP(f) = dL1

(
Pf(X,0)|S=0,Pf(X,1)|S=1

)
= sup

u∈L1

|Es(u ◦ f(X, s))− Es′(u ◦ f(X, s′))|

≤ sup
u∈L1

|Es(u ◦ f(X, s))− Es(u ◦ f(Ts(X), s′))|

+ sup
u∈L1

|Es(u ◦ f(Ts(X), s′))− Es′(u ◦ f(X, s′))|

≤ sup
u∈L1

Es |u ◦ f(X, s)− u ◦ f(Ts(X), s′)|

+ sup
u∈L1

|Es(u ◦ f(Ts(X), s′))− Es′(u ◦ f(X, s′))|

u∈L1

≤ Es |f(X, s)− f(Ts(X), s′)|
+ sup

u∈L1

|Es(u ◦ f(Ts(X), s′))− Es′(u ◦ f(X, s′))|

≤ δ + sup
u∈L1

|Es(u ◦ f(Ts(X), s′))− Es′(u ◦ f(X, s′))|

≤ δ + sup
f∈F

sup
u∈L1

|Es(u ◦ f(Ts(X), s′))− Es′(u ◦ f(X, s′))|

≤ δ + dTV(Ts#Ps,Ps′)

≤ δ.

(6)

For ∆DP(f), because the identity map is 1-Lipschitz, we have that ∆DP(f) ≤ ∆WDP(f), which
completes the proof. □

Proposition 2.1 Under (C1) and (C2), for any given fairness level δ ≥ 0, we have F∆TVDP(Cδ) ⊂
F∆MDP(δ) ⊂ F∆WDP(δ) for some constant C > 0.

Proof of Proposition 2.1. Lemma B.3 implies F∆MDP(δ) ⊂ F∆WDP(δ), while Lemma B.2 implies
F∆TVDP(Cδ) ⊂ F∆MDP(δ) for some constant C > 0. □
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B.2 PROOF OF PROPOSITION 3.3

The following lemma is used to prove Proposition 3.3.
Lemma B.4 (Distance between T⋆

s,ϵ and T⋆
s).

Es∥T⋆
s,ϵ(X)−T⋆

s(X)∥2 ≤
(

2

λϕ⋆

+ 1

)
ϵ

where λϕ⋆ is the supremum of λ such that ϕ⋆(x)− λ|x|2/2 is convex on X .

Proof of Lemma B.4. By definition of Wasserstein distance,

W2(T
⋆
s,ϵ#Ps,Ps′) = min

T:T#T⋆
s,ϵ#P=Q

Es∥T⋆
s,ϵ(X)−T ◦T⋆

s,ϵ(X)∥2

= Es∥T⋆
s,ϵ(X)− T̃s,ϵ ◦T⋆

s,ϵ(X)∥2 ≤ ϵ.
(7)

Using equation (7), we have

Es∥T⋆
s,ϵ(X)−T⋆(X)∥2 ≤ Es∥T⋆

s,ϵ(X)− T̃s,ϵ ◦T⋆
s,ϵ(X)∥2 + Es∥T̃s,ϵ ◦T⋆

s,ϵ(X)−T⋆
s(X)∥2

≤ ϵ+ Es∥T′
s,ϵ ◦T⋆

s,ϵ(X)−T⋆
s(X)∥2

(8)

where T′
s,ϵ is the OT map from T⋆

s,ϵ#Ps to Ps′ .

Now, we derive the upper bound of the second term Es∥T̃s,ϵ ◦T⋆
s,ϵ(X)−T⋆

s(X)∥2 in the right-hand
side of equation (8). Because T̃s,ϵ ◦T⋆

s,ϵ is a transport map, i.e., T′
s,ϵ#T

⋆
s,ϵ#Ps = Ps′ , we can apply

Proposition 3.3 of Gigli (2011) directly resulting in

Es∥T̃s,ϵ ◦T⋆
s,ϵ(X)−T⋆

s(X)∥2 ≤ 2

λϕ⋆

(
Es∥T̃s,ϵ ◦T⋆

s,ϵ(X)−X∥2 − Es∥T⋆
s(X)−X∥2

)
≤ 2

λϕ⋆

(
Es∥T̃s,ϵ ◦T⋆

s,ϵ(X)−T⋆
s,ϵ(X)∥2 + Es∥T⋆

s,ϵ(X)−X∥2 − Es∥T⋆
s(X)−X∥2

)
≤ 2

λϕ⋆

ϵ

(9)

where λϕ⋆ is the supremum of λ such that ϕ⋆(x)− λ|x|2/2 is convex on X . The third inequality of
(9) is because the first term of the right-hand-side of the second line is smaller than ϵ and the second
term of the right-hand side is smaller than 0 since the transport cost of T⋆

s,ϵ is smaller than that of T⋆
s

because {Ts : Ts#P0 = P1} ⊂ {Ts : W2(Ts#P0,P1) ≤ ϵ}. Finally, by plugging equation (9) to
(8), we conclude

Es∥T⋆
s,ϵ(X)−T⋆

s(X)∥2 ≤
(

2

λϕ⋆

+ 1

)
ϵ. (10)

□
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We now prove Proposition 3.3 using Lemma B.4.

Proposition 3.3 For any given fairness level δ ≥ 0, there exist δ1, δ2 depending on δ, γ, ϵ such
that F∆MDP(δ1; {T⋆

0,ϵ}, {T⋆
1,ϵ}) ⊂ F∆MDP(δ; T0,0(γ), T1,0(γ)) ⊂ F∆MDP(δ2; {T⋆

0,ϵ}, {T⋆
1,ϵ}).

Furthermore, δ1, δ2 → δ as γ, ϵ → 0.

Proof of Proposition 3.3. Let C1 :=
(

2
λϕ⋆

+ 1
)

in Lemma B.4.

1. Find δ1 such that F∆MDP(δ1; {T⋆
0,ϵ}, {T⋆

1,ϵ}) ⊂ F∆MDP(δ; T0,0(γ), T1,0(γ)).
For any Ts,γ ∈ Ts,0(γ), we have that

Es|f(X, s)− f(Ts,γ(X), s′)|
≤ Es|f(X, s)− f(T⋆

s,ϵ(X), s′)|+ Es|f(T⋆
s,ϵ(X), s′)− f(Ts,γ(X), s′)|

≤ δ1 + Es|f(T⋆
s,ϵ(X), s′)− f(T⋆

s(X), s′)|+ Es|f(T⋆
s(X), s′)− f(Ts,γ(X), s′)|

≤ δ1 + LEs∥T⋆
s(X)−T⋆

s,ϵ(X)∥2 + LEs∥T⋆
s(X)−Ts,γ(X)∥2

≤ δ1 + LC1ϵ+ Lγ.

(11)

By letting δ1 := δ − LC1ϵ− Lγ, we have minTs∈Ts,0(γ) Es|f(X, s)− f(Ts(X), s′)| ≤ δ, which
concludes the desired result. Moreover, we have δ1 = δ − LC1ϵ− Lγ → δ as γ, ϵ → 0.

2. Find δ2 such that F∆MDP(δ; T0,0(γ), T1,0(γ)) ⊂ F∆MDP(δ2; {T⋆
0,ϵ}, {T⋆

1,ϵ}).
For all f ∈ F∆MDP(δ; T0,0(γ), T1,0(γ)), we have minTs∈Ts,0(γ) Es|f(X, s)− f(Ts(X), s′)| ≤ δ.

For given f ∈ F∆MDP(δ; T0,0(γ), T1,0(γ)), let Tf
s := argminTs∈Ts,0(γ) Es|f(X, s) −

f(Ts(X), s′)|.
Then, we have that

Es|f(X, s)− f(T⋆
s,ϵ(X), s′)|

≤ Es|f(X, s)− f(Tf
s (X), s′)|+ Es|f(Tf

s (X), s′)− f(T⋆
s,ϵ(X), s′)|

≤ δ + Es|f(Tf
s (X), s′)− f(T⋆

s(X), s′)|+ Es|f(T⋆
s(X), s′)− f(T⋆

s,ϵ(X), s′)|
≤ δ + LEs∥T⋆

s(X)−Tf
s (X)∥2 + LEs∥T⋆

s(X)−T⋆
s,ϵ(X)∥2

≤ δ + Lγ + LC1ϵ.

(12)

By letting δ2 := δ + Lγ + LC1ϵ, we have Es|f(X, s)− f(T⋆
s,ϵ(X), s′)| ≤ δ2, which concludes the

desired result. Moreover, we have δ2 = δ + Lγ + LC1ϵ → δ as γ, ϵ → 0. □
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B.3 PROOF OF THEOREM 3.1 AND 3.2

Proofs for Theorem 3.1 and 3.2 are provided in Section C.2 and C.3, respectively, with details.

B.4 PROOF OF PROPOSITION 3.4

Proof of Proposition 3.4. Once we observe x0, the randomness ϵ0 is observed as ϵ0 = B−1x0 −
µ0. By replacing the sensitive attribute on the randomness ϵ0, we obtain σ−1

1 (B−1x̃CF
0 − µ1) =

σ−1
0 (B−1x0 − µ0). Then, its counterfactual becomes x̃CF

0 = Bµ1 + σ1σ
−1
0 (x0 −Bµ0). Then, we

prove Proposition 3.4 by showing the if and only if condition as follows.

W0 = (σ2
0BDB⊤)−1/2

(
(σ2

0BDB⊤)1/2σ2
1BDB⊤(σ2

0BDB⊤)1/2
)1/2

(σ2
0BDB⊤)−1/2

= σ1σ
−1
0 (BDB⊤)−1/2

(
(BDB⊤)1/2BDB⊤(BDB⊤)1/2

)1/2
(BDB⊤)−1/2

= σ1σ
−1
0 (BDB⊤)−1/2

(
(BDB⊤)2

)1/2
(BDB⊤)−1/2

= σ1σ
−1
0 .

(13)

The same result can be done for x1. Hence, we conclude Ws = σs′σ
−1
s . □
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B.5 PROOF OF THEOREM B.5

We provide sufficient conditions, i.e., (C3) and (C4) described below, under which the fairness
consistencies of f̂ FTM

s with respect to ∆WDP and ∆DP hold. (C3) Both P0 and P1 have densities
and belong to (β − 1)-Hölder smooth function class with β > 1. (C4) Fs, s ∈ {0, 1} are subsets
of ζ-Hölder smooth function class with ζ ≥ 1 s.t. Rn(Fs) ≤ O(bn) for some positive sequence
bn → 0, where Rn(Fs) is the Rademacher complexity of Fs.

The definitions of the Hölder smooth function class and Rademacher complexity are in Section A
of Appendix. We assume the Hölder smoothness since they can be approximated well by DNNs
(Schmidt-Hieber, 2020).

Theorem B.5 (Fairness consistency of f̂ FTM
s ). Under (C3) and (C4), there exist ϵn ↓ 0 and DNN

function classes T DNN
n and HDNN

n such that f̂ FTM
s with ϵ = ϵn, Ts = T DNN

n and H = HDNN
n satisfies

∆WDP(f̂ FTM
s ),∆DP(f̂ FTM

s ) ≤ δ +O
(
Rn(Fs) + n− γ

2γ+d (log n)τ
)

for some constant τ > 0 with

probability at least 1− 1/n, where γ = β ∧ ζ.

Theorem B.5 implies that f̂ FTM
s is fairness-consistent as long as Rn(Fs) converges to 0, which

is satisfied by many popularly used Fs such as linear models and sparse DNNs (Schmidt-Hieber,
2020). The complexities of HDNN

n and T DNN
n depend on the smoothnesses of Fs and Ps, s ∈ {0, 1},

respectively, whose relations are given in the proof of Theorem B.5 (Section B.5 of Appendix).

Let Tβ be the (vector-valued) β-Hölder smooth function class and Hγ be the γ-Hölder smooth
function class (γ = β ∧ ζ). Also let T DNN

n and HDNN
n be the DNN function classes defined in Lemma

A.8.

Lemma B.6. There exists T ∈ T DNN
n satisfying dHDNN

n
(T#P0,P1) ≤ O

(
n− β

2β+d

)
up to a logarithm

factor.

Proof of Lemma B.6. We know that ∃T⋆
β,0 ∈ Tβ such that dHDNN

n
(T⋆

β,0#P0,P1) = 0 under (C3)
because there exists the population OT map in Tβ (Theorem 12.50-(iii) of Villani (2008), Caffarelli
(1996a)) and the IPM induced by the population OT map is exactly zero regardless of HDNN

n .

By Lemma A.8, we have there exists T ∈ T DNN
n such that

dHDNN
n

(T#P0,P1) ≤ dHDNN
n

(T#P0,T
⋆
β,0#P0) + dHDNN

n
(T⋆

β,0#P0,P1)

= dHDNN
n

(T#P0,T
⋆
β,0#P0)

= sup
h∈HDNN

n

∣∣∣∣∫ h ◦T(X)dP0(X)−
∫

h ◦T⋆
β,0(X)dP0(X)

∣∣∣∣
≤ C

∥∥T−T⋆
β,0

∥∥
∞

≤ O
(
n− β

2β+d

)
(14)

up to a logarithm factor for some constant C only depending on the first derivative of h.

□

Lemma B.7. For any T ∈ T DNN
n satisfying dHDNN

n
(T#P0,P1) ≤ O

(
n− β

2β+d

)
up to a logarithm

factor, dHDNN
n

(T#Pn,0,Pn,1) ≤ O
(
n− γ

2γ+d

)
up to a logarithm factor with probability at least

1− 1/n.
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Proof of Lemma B.7. We derive the bound of dHDNN
n

(T#Pn,0,Pn,1) as

dHDNN
n

(T#Pn,0,Pn,1) ≤ dHDNN
n

(T#P0,P1) + sup
h∈HDNN

n

|
∫

h ◦T(X)d(P0 − Pn,0)(X)|

+ sup
h∈HDNN

n

|
∫

h(X)d(P1 − Pn,1)(X)|

≤ O
(
n− β

2β+d

)
+ sup

h∈HDNN
n

|
∫

h ◦T(X)d(P0 − Pn,0)(X)|

+ sup
h∈HDNN

n

|
∫

h(X)d(P1 − Pn,1)(X)|

by Lemma A.6,A.8

≤ O
(
n− β

2β+d + n− γ
2γ+d

)

(15)

up to a logarithm factor with probability 1−1/n at least. Because we set γ = β∧ ζ, the rate becomes
O
(
n− β

2β+d + n− γ
2γ+d

)
= O

(
n− γ

2γ+d

)
.

□

Lemma B.8. For any T ∈ T DNN
n satisfying dHDNN

n
(T#Pn,0,Pn,1) ≤ O(n− γ

2γ+d ) up to a logarithm
factor with probability at least 1 − 1/n, dHγ

(T#P0,P1) ≤ O(n− γ
2γ+d ) up to a logarithm factor

with probability at least 1− 1/n.

Proof of Lemma B.8. We decompose the difference between dHγ (T#P0,P1) and
dHDNN

n
(T#Pn,0,Pn,1) as:

dHγ (T#P0,P1) = dHDNN
n

(T#Pn,0,Pn,1) + dHγ (T#P0,P1)− dHDNN
n

(T#Pn,0,Pn,1)

= dHDNN
n

(T#Pn,0,Pn,1) + dHγ
(T#P0,P1)− dHDNN

n
(T#P0,P1)

+ dHDNN
n

(T#P0,P1)− dHDNN
n

(T#Pn,0,Pn,1)

≤ dHDNN
n

(T#Pn,0,Pn,1) + sup
h∈Hγ

∣∣∣∣∫ h ◦T(X)dP0(X)−
∫

h(X)dP1(X)

∣∣∣∣
− sup

h∈HDNN
n

∣∣∣∣∫ h ◦T(X)dP0(X)−
∫

h(X)dP1(X)

∣∣∣∣+ ∣∣dHDNN
n

(T#P0,P1)− dHDNN
n

(T#Pn,0,Pn,1)
∣∣ .

(16)

The first term of the right-hand side of the equation (16), i.e., dHDNN
n

(T#Pn,0,Pn,1) , is bounded by
O(n−γ/(2γ+d)) up to a logarithm factor by the assumption.

We denote h⋆
γ ∈ Hγ a γ-Hölder smooth function satisfying∣∣∫ h⋆

γ ◦T(X)dP0(X)−
∫
h⋆
γ(X)dP1(X)

∣∣ = suph∈Hγ

∣∣∫ h ◦T(X)dP0(X)−
∫
h(X)dP1(X)

∣∣ .
Similarly, let h̃n ∈ HDNN

n be the DNN function satisfying∣∣∣∫ h̃n ◦T(X)dP0(X)−
∫
h̃n(X)dP1(X)

∣∣∣ = suph∈HDNN
n

∣∣∫ h ◦T(X)dP0(X)−
∫
h(X)dP1(X)

∣∣ .
On the other hand, by Lemma A.8, there exists h⋆

n ∈ HDNN
n satisfying ∥h⋆

n − h⋆
γ∥∞ ≤ O

(
n− γ

2γ+d

)
up to a logarithm factor.
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Then, we have

sup
h∈Hγ

∣∣∣∣∫ h ◦T(X)dP0(X)−
∫

h(X)dP1(X)

∣∣∣∣− sup
h∈HDNN

n

∣∣∣∣∫ h ◦T(X)dP0(X)−
∫

h(X)dP1(X)

∣∣∣∣
=

∣∣∣∣∫ h⋆
γ ◦T(X)dP0(X)−

∫
h⋆
γ(X)dP1(X)

∣∣∣∣− ∣∣∣∣∫ h̃n ◦T(X)dP0(X)−
∫

h̃n(X)dP1(X)

∣∣∣∣
≤
∣∣∣∣∫ h⋆

γ ◦T(X)dP0(X)−
∫

h⋆
γ(X)dP1(X)

∣∣∣∣− ∣∣∣∣∫ h⋆
n ◦T(X)dP0(X)−

∫
h⋆
n(X)dP1(X)

∣∣∣∣
≤
∣∣∣∣∫ h⋆

γ ◦T(X)dP0(X)−
∫

h⋆
γ(X)dP1(X)−

∫
h⋆
n ◦T(X)dP0(X) +

∫
h⋆
n(X)dP1(X)

∣∣∣∣
≤
∣∣∣∣∫ (h⋆

γ ◦T(X)− h⋆
n ◦T(X))dP0(X)

∣∣∣∣+ ∣∣∣∣∫ (h⋆
γ(X)− h⋆

n(X))dP1(X)

∣∣∣∣
≤ 2

∥∥h⋆
γ − h⋆

n

∥∥
∞

≤ O
(
n− γ

2γ+d

)
(17)

up to a logarithm factor.

The last term of the right-hand side of (16) is bounded as:∣∣dHDNN
n

(T#P0,P1)− dHDNN
n

(T#Pn,0,Pn,1)
∣∣

≤ sup
h∈HDNN

n

∣∣∣∣∫ h ◦T(X)d(P0 − Pn,0)(X)

∣∣∣∣+ sup
h∈HDNN

n

∣∣∣∣∫ h(X)d(P1 − Pn,1)(X)

∣∣∣∣
by Lemma A.6,A.8

≤ O
(
n− γ

2γ+d

) (18)

up to logarithm with probability at least 1− 1/n.

Hence, we conclude that dHγ
(T#P0,P1) ≤ O(n− γ

2γ+d ) up to a logarithm factor with probability at
least 1− 1/n. □

Proof of Theorem B.5. For given pair of transport maps Ts ∈ T DNN
n , s ∈ {0, 1} satisfying

dHDNN
n

(Ts#Pn,s,Pn,s′) ≤ O(n− γ
2γ+d ) up to a logarithm factor with probability at least 1− 1/n, we

define f̂Ts
as the minimizer of En (l(Y, f(X, S))) on {f ∈ Fs : En,s (|f(X, s)− f(Ts(X), s′)|) ≤

δ}.
(∆WDP)

Without loss of generality, consider f̂T0 only, because it is proved clearly with the same arguments
for the case of f̂T1 . We decompose the level of fairness ∆WDP(f̂T0) as:

∆WDP(f̂T0) = sup
u∈L1

∣∣∣E0(u ◦ f̂T0(X, 0))− E1(u ◦ f̂T0(X, 1))
∣∣∣

≤ sup
u∈L1

∣∣∣E0(u ◦ f̂T0(X, 0))− E0(u ◦ f̂T0(T0(X), 0)
∣∣∣

+ sup
u∈L1

∣∣∣E0(u ◦ f̂T0
(T0(X), 0)− E1(u ◦ f̂T0

(X, 1))
∣∣∣ .

(19)

The first term of the equation (19) is bounded as follows.
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By Lemma A.6 and |a− b|− |c−d| ≤ |a− b− c+d| ≤ |a− c|+ |b−d|, we have the generalization
bound as

sup
u∈L1

∣∣∣E0

(
u ◦ f̂T0

(X, 0)
)
− E0

(
u ◦ f̂T0

(T0(X), 0)
)∣∣∣

− sup
u∈L1

∣∣∣En,0

(
u ◦ f̂T0(X, 0)

)
− En,0

(
u ◦ f̂T0

(T0(X), 0)
)∣∣∣

≤ sup
u∈L1

∣∣∣E0

(
u ◦ f̂T0(X, 0)

)
− En,0

(
u ◦ f̂T0(X, 0)

)
− E0

(
u ◦ f̂T0(T0(X), 0)

)
+ En,0

(
u ◦ f̂T0(T0(X), 0)

)∣∣∣
≤ sup

u∈L1

∣∣∣E0

(
u ◦ f̂T0(X, 0)

)
− En,0

(
u ◦ f̂T0(X, 0)

)∣∣∣
+ sup

u∈L1

∣∣∣E0

(
u ◦ f̂T0

(T0(X), 0)
)
− En,0

(
u ◦ f̂T0

(T0(X), 0)
)∣∣∣

≤ C

(
Rn(L1 ◦ F0) +

√
log n

n

)
Rn(L1◦F0)≤1·Rn(F0)

≤ C

(
Rn(F0) +

√
log n

n

)
(20)

with probability 1− 1/n at least.

By definition of f̂T0
, we have that En,0

(
|f̂T0

(X, 0)− f̂T0
(T0(X), 0)|

)
≤ δ, which directly implies

sup
u∈L1

∣∣∣En,0

(
u ◦ f̂T0

(X, 0)
)
− En,0

(
u ◦ f̂T0

(T0(X), 0)
)∣∣∣

≤ sup
u∈L1

En,0

∣∣∣u ◦ f̂T0
(X, 0)− u ◦ f̂T0

(T0(X), 0)
∣∣∣

u∈L1

≤ En,0

∣∣∣f̂T0(X, 0)− f̂T0(T0(X), 0)
∣∣∣ ≤ δ.

(21)

Combining the above two inequalities (20) and (21) concludes that with probability 1− 1/n,

sup
u∈L1

∣∣∣E0

(
u ◦ f̂T0

(X, 0)
)
− E0

(
u ◦ f̂T0

(T0(X), 0)
)∣∣∣

≤ sup
u∈L1

∣∣∣En,0

(
u ◦ f̂T0

(X, 0)
)
− En,0

(
u ◦ f̂T0

(T0(X), 0)
)∣∣∣+ C

(
Rn(F0) +

√
log n

n

)

≤ δ + C

(
Rn(F0) +

√
log n

n

)
.

(22)

The second term of the equation (19) is bounded as follows.

sup
u∈L1

∣∣∣E0

(
u ◦ f̂T0(T0(X), 0)

)
− E1

(
u ◦ f̂T0(X, 1)

)∣∣∣
(C4)

≤ C sup
h∈Hγ

∣∣∣∣∫ h ◦T0(X)dP0(X)−
∫

h(X)dP1(X)

∣∣∣∣
= CdHγ

(T0#P0,P1)

by LemmaB.8

≤ O(n− γ
2γ+d ).

(23)

with probability at least 1− 1/n.

Applying the upper bounds of (22) and (23) to (19), we conclude ∆WDP(f̂T0) ≤ δ +O(Rn(F0) +

n− γ
2γ+d ) up to a logarithm factor with probability at least 1− 1/n.
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By using exactly the same arguments, we can derive the bound ∆WDP(f̂T1
) ≤ δ +O(Rn(F1) +

n− γ
2γ+d ) up to a logarithm factor with probability at least 1− 1/n.

Thus, we have the desired result that ∆WDP(f̂Ts
) ≤ δ +O(Rn(Fs) + n− γ

2γ+d ) up to a logarithm
factor with probability at least 1− 1/n.

Note that if we choose ϵn = O(n− γ
2γ+d ) up to a logarithmic factor, then T̂s satisfies

dHDNN
n

(T̂s#Pn,s,Pn,s′) ≤ O(n− γ
2γ+d ) up to a logarithmic factor by the definition of T̂s. Thus,

we conclude that

∆WDP(f̂ FTM
s ) ≤ δ +O(Rn(Fs) + n− γ

2γ+d )

up to a logarithmic factor with probability at least 1− 1/n. Finally, Lemmas B.6 and B.7 ensure the
existence of T̂s satisfying dHDNN

n
(T̂s#Pn,s,Pn,s′) ≤ O(n− γ

2γ+d ) up to a logarithmic factor, which
completes the proof.

(∆DP)

Without loss of generality, consider f̂T0
only, because it is proved clearly with the same arguments

for the case of f̂T1
. We decompose the level of fairness ∆DP(f̂T0

) as:

∆DP(f̂T0
) =

∣∣∣E0(f̂T0
(X, 0))− E1(f̂T0

(X, 1))
∣∣∣

≤
∣∣∣E0(f̂T0

(X, 0))− E0(f̂T0
(T0(X), 0)

∣∣∣+ ∣∣∣E0(f̂T0
(T0(X), 0)− E1(f̂T0

(X, 1))
∣∣∣ .

(24)

The first term of the equation (24) is bounded as follows.

By Lemma A.6 and |a− b|− |c−d| ≤ |a− b− c+d| ≤ |a− c|+ |b−d|, we have the generalization
bound as∣∣∣E0

(
f̂T0

(X, 0)
)
− E0

(
f̂T0

(T0(X), 0)
)∣∣∣− ∣∣∣En,0

(
f̂T0

(X, 0)
)
− En,0

(
f̂T0

(T0(X), 0)
)∣∣∣

≤
∣∣∣E0

(
f̂T0

(X, 0)
)
− En,0

(
f̂T0

(X, 0)
)
− E0

(
f̂T0

(T0(X), 0)
)
+ En,0

(
f̂T0

(T0(X), 0)
)∣∣∣

≤
∣∣∣E0

(
f̂T0

(X, 0)
)
− En,0

(
f̂T0

(X, 0)
)∣∣∣+ ∣∣∣E0

(
f̂T0

(T0(X), 0)
)
− En,0

(
f̂T0

(T0(X), 0)
)∣∣∣

≤ C

(
Rn(F0) +

√
log n

n

)
(25)

with probability 1− 1/n at least.

By definition of f̂T0
, we have that En,0

(
|f̂T0

(X, 0)− f̂T0
(T0(X), 0)|

)
≤ δ, which directly implies

∣∣∣En,0

(
f̂T0

(X, 0)
)
− En,0

(
f̂T0

(T0(X), 0)
)∣∣∣ ≤ En,0

∣∣∣f̂T0
(X, 0)− f̂T0

(T0(X), 0)
∣∣∣ ≤ δ. (26)

Combining the above two inequalities (25) and (26) concludes that with probability 1− 1/n,∣∣∣E0

(
f̂T0(X, 0)

)
− E0

(
f̂T0(T0(X), 0)

)∣∣∣
≤
∣∣∣En,0

(
f̂T0

(X, 0)
)
− En,0

(
f̂T0

(T0(X), 0)
)∣∣∣+ C

(
Rn(F0) +

√
log n

n

)

≤ δ + C

(
Rn(F0) +

√
log n

n

)
.

(27)
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The second term of the equation (24) is bounded as follows.∣∣∣E0

(
f̂T0

(T0(X), 0)
)
− E1

(
f̂T0

(X, 1)
)∣∣∣ (C4)

≤ C sup
h∈Hγ

∣∣∣∣∫ h ◦T0(X)dP0(X)−
∫

h(X)dP1(X)

∣∣∣∣
= CdHγ

(T0#P0,P1)

by LemmaB.8

≤ O(n− γ
2γ+d ).

(28)

with probability at least 1− 1/n.

Applying the upper bounds of (27) and (28) to (24), we conclude ∆DP(f̂T0) ≤ δ +O(Rn(F0) +

n− γ
2γ+d ) up to a logarithm factor with probability at least 1− 1/n.

By using exactly the same arguments, we can derive the bound ∆DP(f̂T1) ≤ δ + O(Rn(F1) +

n− γ
2γ+d ) up to a logarithm factor with probability at least 1− 1/n.

Thus, we have the desired result that ∆DP(f̂Ts) ≤ δ + O(Rn(Fs) + n− γ
2γ+d ) up to a logarithm

factor with probability at least 1− 1/n.

Note that if we choose ϵn = O(n− γ
2γ+d ) up to a logarithmic factor, then T̂s satisfies

dHDNN
n

(T̂s#Pn,s,Pn,s′) ≤ O(n− γ
2γ+d ) up to a logarithmic factor by the definition of T̂s. Thus,

we conclude that
∆DP(f̂ FTM

s ) ≤ δ +O(Rn(Fs) + n− γ
2γ+d )

up to a logarithmic factor with probability at least 1− 1/n. Finally, Lemmas B.6 and B.7 ensure the
existence of T̂s satisfying dHDNN

n
(T̂s#Pn,s,Pn,s′) ≤ O(n− γ

2γ+d ) up to a logarithmic factor, which
completes the proof. □
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C FURTHER DISCUSSIONS

C.1 PRELIMINARIES ON THE OPTIMAL TRANSPORT THEORY

The Optimal Transport (OT) theory provides an approach for geometric comparison between two
probability measures. The OT map is the optimal choice among all transport maps from a source
distribution P to a target distribution Q. In this context, optimal refers to minimizing a given transport
cost, such as Lp distance in Euclidean space.

Initially formulated by Monge (1781), the OT problem is expressed as

min
T:T#P=Q

E (c(T(X),X))

for some given cost function c : X × X → R. The semi-dual problem of Monge problem is to
find the potential function ϕ, which minimizes S(ϕ) :=

∫
ϕ(X)dP(X) +

∫
ϕ̃(Y)dQ(Y) where

ϕ̃(·) := supx∈Rd⟨x, ·⟩ − ϕ(x) is the conjugate of ϕ. The solution ϕ⋆ = argminϕ∈L1(P ) S(ϕ), is the
anti-derivative of the OT map.

When the given source distribution P is absolutely continuous, a unique solution exists (Brenier’s
theorem (McCann, 1995; Villani & Society, 2003)). Moreover, if the densities of P and Q are smooth
and satisfy the strong density assumption (i.e., with strict lower and upper bounds), then the unique
OT map is smooth (Caffarelli’s theorem (Caffarelli, 1996b)).

Unfortunately, the existence or uniqueness of the solution to the Monge problem, which is hard to
solve due to its non-linearity, is not guaranteed when the source and target distributions are discrete
and have different numbers of support (Villani, 2008). Kantorovich relaxed the Monge problem by
seeking the optimal coupling between two distributions rather than the map with functional form
(Kantorovich, 2006). The optimization objective is infπ∈Π(P,Q) EC(X,Y) where Π(P,Q) is the
set of all joint measures of P and Q. This approach enables finding the OT map between two discrete
measures.

Beyond theoretical minimax estimation of the OT map (Deb et al., 2021; Hütter & Rigollet, 2021;
Seguy et al., 2018; Yang & Uhler, 2019), various computationally feasible estimators have been
developed (Cuturi, 2013; Genevay et al., 2016), and applied to various tasks such as domain adaptation
(Damodaran et al., 2018; Forrow et al., 2019), computer vision (Su et al., 2015; Li et al., 2015;
Salimans et al., 2018), and economics (Galichon, 2016; Chiappori et al., 2010), to name a few.

Regularized OT maps (Cuturi, 2013; Genevay et al., 2016), which are similar to the relaxed OT map,
have been proposed to calculate the OT map efficiently. The advantages of the relaxed OT map over
the (regularized) OT map are: (1) computationally simpler since standard gradient descent algorithms
can be used to learn a good relaxed OT map, (2) provides a functional form of the transport map,
ensuring that exactly the same individuals in a sensitive group are always matched with the same
individual in the opposite sensitive group, (3) theoretical studies for group fairness can be done
relatively easily, and (4) has empirical evidence supporting that the relaxed OT map is more effective
than the (regularized) OT map as the matching function in FTM algorithm (see Section 4.4).
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C.2 SUBSET FAIRNESS

Definition The mathematical definition of the subset fairness would be as follows: Let C be a given
collection of subsets of X . Then, the measure of the subset unfairness with respect to C is defined as

∆DPC(f) = sup
A∈C

|E(ϕ ◦ f(X, 0)|S = 0,X ∈ A)− E(ϕ ◦ f(X, 1)|S = 1,X ∈ A)|

for a given function ϕ : R → R. When C = {X} and ϕ(z) = I(z > 0.5), it becomes the standard
∆DP, and when C = {X} and ϕ(z) = z, then it becomes ∆DP.

Note that ∆DPC(f) measures how much f is unfair on all subsets in C. If C is known a priori, we
can try to find an accurate model f that minimizes ∆DPC(f). This is similar to the problem of
the subgroup fairness of Kearns et al. (2018), which considers groups defined by multiple sensitive
jointly.

The problem we consider is different in the sense that we do not know C in advance. The goal of our
problem is to improve the subset fairness among group-fair models. Note that we cannot find a model
that minimizes ∆DPC(f) because we do not observe C in the training phase. However, we can try to
select one among various fair learning algorithms that are better with respect to the subset fairness,
and FTM is such an algorithm.

FTM improves subset fairness In Section 3, we explained that FTM can improve the subset
fairness. The following Theorem 3.1 and its proof provide rigorous mathematical evidence. Let
ϕ(z) = z and consider ∆DPC(f) = supA∈C |E(f(X, 0)|S = 0,X ∈ A)− E(f(X, 1)|S = 1,X ∈
A)|.
Theorem 3.1 Suppose F is the collection of L-Lipschitz functions. Then, for all f ∈ F∆MDP(δ), we
have ∆DPC(f) ≤ L

(
mins

(
Es∥X−Tf

s (X)∥2
)1/2

+ U1

)
+ U2δ, where U1, U2 > 0 are constants

only depending on C and Ps, s = 0, 1.

Proof. We write Ts = Tf
s for notational simplicity. For any A ⊂ C,

|E(f(X, 0)|S = 0,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)|
≤ |E(f(X, 0)|S = 1,X ∈ A)− E(f(T1(X), 0)|S = 1,X ∈ A)|
+ |E(f(T1(X), 0)|S = 1,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)|
+ |E(f(X, 0)|S = 0,X ∈ A)− E(f(X, 0)|S = 1,X ∈ A)|.

(29)

By (C1), the first term is bounded by LE1∥X − T1(X)∥, which is also bounded by
L
(
E1∥X−T1(X)∥2

)1/2
.

The second term is bounded by δ up to a constant due to the fairness constraint in the FTM algorithm.
To be more specific, let Ps denote the distribution of X|S = s. Then, we have

|E(f(T1(X), 0)|S = 1,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)|

=

∣∣∣∣∫ f(T1(X), 0)I(X ∈ A)dP1(X)∫
I(X ∈ A)dP1(X)

−
∫
f(X, 1)I(X ∈ A)dP1(X)∫

I(X ∈ A)dP1(X)

∣∣∣∣
≤ 1∫

I(X ∈ A)dP1(X)

∫
X∈A

|f(T1(X), 0)− f(X, 1)|dP1(X)

≤ 1∫
I(X ∈ A)dP1(X)

∫
X∈X

|f(T1(X), 0)− f(X, 1)|dP1(X)

= U ′
2(A,P1)× E1|f(T1(X), 0)− f(X, 1)|

≤ U ′
2(A,P1)× δ

(30)

where U ′
2(A,P1) = 1/

∫
I(X ∈ A)dP1(X) = 1/P(X ∈ A|S = 1) is a constant only depending on

P1 and A.

The third term |E(f(X, 0)|S = 0,X ∈ A)−E(f(X, 0)|S = 1,X ∈ A)| is not controllable by either
the matching function or the fairness constraint but depends on the given distributions and A. Let
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diam(A) := supx,y∈A ∥x− y∥2 be the diameter of a given bounded set A. Then, the third term is
bounded by Ldiam(A) :

|E(f(X, 0)|S = 0,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)| ≤ max
x∈A

f(x, 0)−min
x∈A

f(x, 0)

= f(xmax, 0)− f(xmin, 0)

≤ L∥xmax − xmin∥2
≤ Ldiam(A)

(31)

where xmax = argmaxx∈A f(x, 0) and xmin = argminx∈A f(x, 0).

For any A, we have

|E(f(X, 0)|S = 0,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)|

≤ L
(
(E1∥X−T1(X)∥2)1/2 + diam(A)

)
+ U ′

2(A, 1)δ.
(32)

By letting U1 := supA∈C diam(A) and U2(1) := supA∈C U
′
2(A,P1), we conclude

sup
A∈C

|E(f(X, 0)|S = 0,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)|

≤ L
(
(E1∥X−T1(X)∥2)1/2 + U1

)
+ U2(1)δ.

(33)

We can similarly derive

sup
A∈C

|E(f(X, 0)|S = 0,X ∈ A)− E(f(X, 1)|S = 1,X ∈ A)|

≤ L
(
(E0∥X−T0(X)∥2)1/2 + U1

)
+ U2(0)δ.

(34)

Letting U2 := max(U2(0), U2(1)) completes the proof. □

The first term of RHS, LEs∥X−Ts(X)∥2, implies that using the (relaxed) OT map helps improve
the subset fairness. The uncontrollable constant U1, can be small for certain subsets. For example,
for disjoint sets C1, · · · , CK of C, suppose that Ps is a mixture of uniform distribution given as
Ps(·) =

∑K
k=1 pskI(· ∈ Ck) with psk ≥ 0 and

∑K
k=1 psk = 1 (e.g., the histogram). Then, U1

becomes zero for all C in C = {Ck, k = 1, . . . ,K}. The third term of RHS, U2δ is small when δ is
small.
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C.3 WITHIN-GROUP FAIRNESS

FTM improves within-group fairness In Section 3, we explained that FTM can improve the
within-group fairness. The following Theorem 3.2 and its proof provide a theoretical justification of
this assertion.

Theorem 3.2 Let x(1) and x(2) be two individuals such that (x(1),x(2)) ∈ X 2(f⋆). Suppose that f⋆

is L-Lipshitz. Then, for s = 0, 1, we have

fT(x
(1), s)− fT(x

(2), s) >
Ms

2
− L

2
max

∑
i=1,2

∥x(i) −Ts(x
(i))∥,

∑
i=1,2

∥x(i) −T−1
s′ (x(i))∥

 ,

for Ms = Ms(x
(1),x(2)) := f⋆(x(1), s)− f⋆(x(2), s) > 0.

Proof. Assume mins Es|f(X, s)− f(Ts(X), s′)| = E0|f(X, 0)− f(T0(X), 1)|.
We can similarly prove for the case when mins Es|f(X, s) − f(Ts(X), s′)| = E1|f(X, 1) −
f(T1(X), 0)| to obtain the desired result.

(s = 0 case)

Fix x(1),x(2) ∈ X0 = X such that (x(1),x(2)) ∈ X 2(f⋆). Since fT is the minimizer of E(Y −
f(X, S))2 on {f ∈ F : mins Es|f(X, s)− f(Ts(X), s′)| = 0} and E0|f(X, 0)− f(T0(X), 1)| =
0, we have(

fT(x
(1), 0), fT(T0(x

(1)), 1)
)
= argmin

(z1,z2):z1=z2

(z1−f⋆(x(1), 0))2+(z2−f⋆(T0(x
(1)), 1))2 (35)

and(
fT(x

(2), 0), fT(T0(x
(2)), 1)

)
= argmin

(z1,z2):z1=z2

(z1−f⋆(x(2), 0))2+(z2−f⋆(T0(x
(2)), 1))2. (36)

Then,

fT(x
(1), 0) =

f⋆(x(1), 0) + f⋆(T0(x
(1)), 1)

2
and

fT(x
(2), 0) =

f⋆(x(2), 0) + f⋆(T0(x
(2)), 1)

2
.

Therefore, we have

fT(x
(1), 0)− fT(x

(2), 0) =
f⋆(x(1), 0) + f⋆(T0(x

(1)), 1)

2
− f⋆(x(2), 0) + f⋆(T0(x

(2)), 1)

2

≥ f⋆(x(1), 0) + f⋆(x(1), 1)

2
− f⋆(x(2), 0) + f⋆(x(2), 1)

2

−
∣∣∣∣f⋆(T0(x

(1)), 1)− f⋆(x(1), 1)

2

∣∣∣∣− ∣∣∣∣f⋆(T0(x
(2)), 1)− f⋆(x(2), 1)

2

∣∣∣∣
>

M0

2
− L

2
(∥x(1) −T0(x

(1))∥+ ∥x(2) −T0(x
(2))∥)

where M0 = f⋆(x(1), 0)− f⋆(x(2), 0) > 0. Hence, we have the assertion.

(s = 1 case)

Fix x(1),x(2) ∈ X1 = X such that (x(1),x(2)) ∈ X 2(f⋆). Note that T−1
0 (x(1)),T−1

0 (x(2)) ∈
X0 = X . Then, similar to the s = 0 case, since fT is the minimizer of E(Y − f(X, S))2 on
{f ∈ F : mins Es|f(X, s)− f(Ts(X), s′)| = 0} and E0|f(X, 0)− f(T0(X), 1)| = 0, we have(

fT(T
−1
0 (x(1)), 0), fT(T0 ◦T−1

0 (x(1)), 1)
)

= argmin
(z1,z2):z1=z2

(z1 − f⋆(T−1
0 (x(1)), 0))2 + (z2 − f⋆(T0 ◦T−1

0 (x(1)), 1))2
(37)
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and (
fT(T

−1
0 (x(2)), 0), fT(T0 ◦T−1

0 (x(2)), 1)
)

= argmin
(z1,z2):z1=z2

(z1 − f⋆(T−1
0 (x(2)), 0))2 + (z2 − f⋆(T0 ◦T−1

0 (x(2)), 1))2.
(38)

Then,

fT(T0 ◦T−1
0 (x(1)), 1) =

f⋆(T−1
0 (x(1)), 0) + f⋆(T0 ◦T−1

0 (x(1)), 1)

2
and

fT(T0 ◦T−1
0 (x(2)), 1) =

f⋆(T−1
0 (x(2)), 0) + f⋆(T0 ◦T−1

0 (x(2)), 1)

2
.

Since T0 ◦T−1
0 is the identity map, we rewrite the above equations as:

fT(x
(1), 1) =

f⋆(T−1
0 (x(1)), 0) + f⋆(x(1), 1)

2

and

fT(x
(2), 1) =

f⋆(T−1
0 (x(2)), 0) + f⋆(x(2), 1)

2
.

Therefore, we have

fT(x
(1), 1)− fT(x

(2), 1) =
f⋆(x(1), 1) + f⋆(T−1

0 (x(1)), 0)

2
− f⋆(x(2), 1) + f⋆(T−1

0 (x(2)), 0)

2

≥ f⋆(x(1), 1) + f⋆(x(1), 0)

2
− f⋆(x(2), 1) + f⋆(x(2), 0)

2

−
∣∣∣∣f⋆(T−1

0 (x(1)), 0)− f⋆(x(1), 0)

2

∣∣∣∣− ∣∣∣∣f⋆(T−1
0 (x(2)), 0)− f⋆(x(2), 0)

2

∣∣∣∣
>

M1

2
− L

2
(∥x(1) −T−1

0 (x(1))∥+ ∥x(2) −T−1
0 (x(2))∥)

where M1 = f⋆(x(1), 1)− f⋆(x(2), 1) > 0. Hence, we have the assertion.

□
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C.4 REMARK RELATED TO PROPOSITION 3.3

How to use F∆MDP(δ; {T⋆
0,ϵ}, {T⋆

1,ϵ}) when γ is large. We can use F∆MDP(δ; {T⋆
0,ϵ}, {T⋆

1,ϵ})
to eliminate undesirable group-fair models. We first choose a target group fairness measure ∆ (e.g.,
widely-used measures such as ∆DP,∆DP) and set the fairness level α ≥ 0. Then, we search for
accurate models on F∆(α) ∩ F∆MDP(δ; {T⋆

0,ϵ}, {T⋆
1,ϵ}) for δ > α. Here, α controls the group

fairness while δ controls other fairness such as subset/within-group fairness.

C.5 COMPARISON WITH FRL

We here compare FTM and FRL with details as Section 3.4 discussed briefly.

Fair Representation Learning (FRL) algorithm aims at searching a fair representation space (Zemel
et al., 2013) in the sense that the distributions of the encoded representation vector on each sensitive
group are similar. After learning the fair representation, FRL constructs a fair model by applying a
supervised learning algorithm to the fair representation space. Initiated by Edwards & Storkey (2016),
various FRL algorithms have been developed (Madras et al., 2018; Zhang et al., 2018) motivated by
the adversarial-learning technique used in GAN (Goodfellow et al., 2014).

The matching function Ts in FTM can be interpreted as a fair representation encoder, where the
representation space is Xs′ . Conversely, we can construct a matching function from given fair
representation encoders Es, s ∈ {0, 1} by letting Ts = E−1

s′ ◦ Es, provided that E−1
s′ exists.

Moreover, if Es is a barycentric mapping, which lies on the path of the OT map (Villani, 2008;
Santambrogio, 2015), then Ts = E−1

s′ ◦ Es becomes the OT map. Thus, FTM is a variant of FRL
that uses barycentric mapping as the representation encoder. On the other hand, there is a difference
in how they achieve a given level of fairness: FTM sets (or tunes) δ to control fairness under ϵ ≈ 0,
whereas FRL sets ϵ to control fairness under δ = 0. There is a clear advantage of FTM over FRL:
while the prediction model of FRL is a map from the representation space to the output space, the
prediction model of FTM is a map from the input space to the output space. Thus, FTM offers more
flexibility in model selection. See Section 4.3 for more discussion.

In fact, Gordaliza et al. (2019) proposed to use the barycentric mapping explicitly for FRL. FTM has
several advantages compared to the algorithm of Gordaliza et al. (2019): (1) It obtains the barycentric
mapping in a coupling form using the training data only, requiring recalculation of the coupling
during inference. In contrast, FTM obtains the matching function in a functional form, resulting in
more direct and convenient inference. (2) FTM is empirically superior to Gordaliza et al. (2019). That
is, we conduct a numerical comparison with ‘FRL-bary’ in the ablation study, which is a variant of
Gordaliza et al. (2019), using the relaxed OT (barycentric) map. FRL-bary is alternatively considered
because it cannot infer a single test datum. See Section 4.4 and Figure 8.

C.6 EXTENSION OF FTM TO EQUAL OPPORTUNITY

MDP and FTM algorithm formulated in Section 3.3 is easily extended to equal opportunity by
replacing the definition of groups. That is, once we obtain (relaxed) OT maps between PX|S=0,Y=1

and PX|S=1,Y=1 at the first step, then we can similarly train FTM classifier using the (relaxed) OT
maps as matching functions in the second step. Furthermore, all the theoretical results shown in this
paper would hold clearly, which guarantees that the trained classifier satisfies equal opportunity at a
certain level. However, the label information Y is required to train the matching function for equal
opportunity while it is not for demographic parity.
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C.7 COMPARISON WITH THE INDIVIDUAL FAIRNESS

Since the main idea of the MDP and FTM is to treat two individuals from different sensitive groups
similarly, it may seem that there is a connection with the concept of individual fairness. However, a
clear distinction between the two is that FTM aims to treat two individuals similarly from different
sensitive groups only in order to achieve group fairness, while the individual fairness requires to treat
similar individuals similarly regardless of sensitive attribute (even it is unknown). That is, similar
individuals in FTM can be dissimilar in view of individual fairness, especially when the two sensitive
groups are significantly different.

Even though similar individuals in FTM is different from those in view of individual fairness, FTM
empirically improves individual fairness compared to other strong group-fair models (e.g., FRL
methods). The empirical results are reported in Table 3. For the measure of individual fairness, we
use the consistency (Con) from Yurochkin et al. (2020); Yurochkin & Sun (2021), which is the ratio
of consistently predicted labels when we only flip the sensitive variable among the input variables.

Table 3: Individual fairness: comparison of FTM and FRL algorithms with respect to individual
fairness. The bold faces are the best consistency, and underlined ones are the second placers. Given a
fixed ∆DP, FTM achieves higher levels of the individual fairness than baselines in most cases.

Measure Unfair
FRL

FTMDataset AE-MMD LAFTR sIPM-LFR
(∆DP)

Adult Acc 0.845 0.787 0.797 0.801 0.820
(≈ 0.060) Con 0.882 0.921 0.936 0.918 0.965

German Acc 0.743 0.729 0.721 0.721 0.738
(≈ 0.050) Con 0.957 0.960 0.955 0.940 0.963

COMPAS Acc 0.677 0.576 0.629 0.630 0.661
(≈ 0.120) Con 0.899 0.913 0.891 0.902 0.918

Dutch Acc 0.824 0.767 0.755 0.758 0.784
(≈ 0.030) Con 0.844 0.963 0.957 0.959 0.973

Law Acc 0.898 0.885 0.886 0.888 0.888
(≈ 0.040) Con 0.955 0.992 0.996 0.997 0.996

C.8 COMPARISON WITH FLIPTEST

In this section, we provide a concrete comparison between FTM and FlipTest (Black et al., 2020), as
shortly discussed in Section 3.4.

For a given prediction model f and s ∈ {0, 1}, FlipTest first finds two sets of individuals whose
predictions are flipped, as defined by F+(f ; s) := {i : si = s, I(f(xi, s) > 0) > I(f(T̂s(xi), s

′) >

0)} and F−(f ; s) := {i : si = s, I(f(xi, s) > 0) < I(f(T̂s(xi), s
′) > 0)}, where T̂s, s ∈

{0, 1} are the optimal transport map. Using these sets, FlipTest can measure the unfairness of f as
|F+(f ; s)| − |F−(f ; s)|.
The regularization term induced by FlipTest would be formulated as:∣∣∣En,s (I(f(X, s) > 0))− En,s

(
I(f(T̂s(X), s′) > 0)

)∣∣∣
or ∣∣∣En,s (f(X, s))− En,s

(
f(T̂s(X), s′)

)∣∣∣ ,
which is completely different from our regularization term:

REGs(f) = En,s|f(X, s)− f(T̂s(X), s′)|.
The former is the difference of the expectations, while the later is the expectation of the (absolute)
differences. This seemingly tiny difference would make big differences in many ways. For example,
the measure of FlipTest would not imply the strong group fairness, while our regularization term does
(i.e., Proposition 2.1). Moreover, it would not be clear whether the measure of FlipTest improves
better subset/within-group fairness.
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D IMPLEMENTATION DETAILS

Detailed descriptions for the implementation of the experiments are provided.

D.1 DATASETS

Table 4: The description of each real dataset: Adult, German, COMPAS, Dutch, and Law. X is the
input vector, S is the sensitive attribute, Y is the target label information, and d is the dimension of
X. (Train/Test) data sizes are the number of samples.

Dataset Variable Description Dataset Variable Description

Adult

X Personal attributes

German

X Personal attributes
S Gender S Gender
Y Outcome over $50k Y Credit score is good
d 101 d 60

Train data size 30,136 Train data size 800
Test data size 15,086 Test data size 200

COMPAS

X Personal attributes

Dutch

X Personal attributes
S Race S Gender
Y Recidivism within 2 years Y Occupation is high-level
d 399 d 58

Train data size 4,933 Train data size 48,336
Test data size 1,234 Test data size 12,084

Law

X Personal attributes
S Race
Y Passing exam on the 1st try
d 19

Train data size 16,638
Test data size 4,160

Table 4 provides the summaries of the five datasets. For the references for downloading, we provide
the URLs as follows.

1. Adult: the Adult income dataset (Dua & Graff, 2017) (abbr. Adult) can be downloaded from
the UCI repository4.

2. German: the German credit dataset (Dua & Graff, 2017) (abbr. German) can downloaded
from the UCI repository5.

3. COMPAS: the COMPAS dataset (abbr. COMPAS) can downloaded from the official GitHub
of propublica6.

4. Dutch: the Dutch census dataset (abbr. Dutch) can downloaded from the public Github of
(Quy et al., 2022) 7.

5. Law: the Law school dataset (abbr. Law) can downloaded from the public Github of (Quy
et al., 2022) 8.

For Adult, German, and COMPAS, we follow the pre-processing of AIF360 (Bellamy et al., 2018)’s
implementation 9, For the remaining two datasets (i.e., Dutch and Law), we follow the pre-processing
of (Quy et al., 2022)’s Github10. Except for Adult dataset, whose test dataset is already split, we
randomly select 20% of the whole data as the test data. For all datasets, we split each training data
into 8:2 splits randomly and used the latter one for validation to choose the best iteration step during
training.

4https://archive.ics.uci.edu/ml/datasets/adult
5https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
6https://github.com/propublica/compas-analysis/
7https://github.com/tailequy/fairness dataset/tree/main/experiments/data/dutch.csv
8https://github.com/tailequy/fairness dataset/tree/main/experiments/data/law school clean.csv
9https://aif360.readthedocs.io/en/stable/

10https://github.com/tailequy/fairness dataset/tree/main/experiments/data/
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D.2 BASELINE METHODS

FRL Recall that the unsupervised FRL algorithm obtains a fair autoencoder Ds ◦Es for s = 0, 1
by learning fair representation space via eliminating sensitive information.

1. AE-MMD: This method learns autoencoders with MMD regularization on the representation
space. It can be interpreted as a variant of two existing methods: FPCA (Lee et al., 2022),
which learns linear fair representations by PCA with MMD regularization, and MMD-B-
Fair (Deka & Sutherland, 2023), which learns non-linear fair representations with MMD
regularization in a supervised manner, respectively. Note that VFAE (Louizos et al., 2015)
also uses MMD regularization but with VAE (Kingma & Welling, 2013).

2. LAFTR (Madras et al., 2018): This algorithm is an advanced version of ALFR (Edwards
& Storkey, 2016), which learns fair representation using adversarial learning, in that the
cross-entropy loss for the adversarial network is replaced by smooth L1 loss.

3. sIPM-LFR (Kim et al., 2022): Similar to LAFTR, the adversarial network is to separate
representations by the sensitive variable, whose architecture is just a combination of sigmoid
function and linear projection so that the training becomes more simple and stable. That is,
it uses an IPM, not a divergence as LAFTR and ALFR has done.

In-processing

1. Reg: This method is a simple regularizing approach that minimizes cross-entropy + λ∆DP
for some λ > 0. In (Chuang & Mroueh, 2021), they call this algorithm GapReg. This is also
similar to the approach of (Donini et al., 2018) in the sense that the model is learned with a
constraint having a given level of ∆DP.

2. Adv (Zhang et al., 2018): This algorithm is an in-processing method that regularizes the
model outputs with an adversarial network so that the adversarial network prevents the
model outputs from predicting sensitive variables.

3. Fair-Mixup (Chuang & Mroueh, 2021): This algorithm is an in-processing method that
regularizes the model output’s path to achieve low levels of ∆DP.

4. Reduction (Agarwal et al., 2018): This algorithm is an in-processing method that learns a
fair classifier with the lowest empirical fairness level ∆DP.

D.3 TRAINING AND INFERENCE PROTOCOL

To control ϵ and δ, we alter the constraints in STEP 1 and 2 by adding regularizations as follows.

(STEP 1) At the first step, for each s = 0, 1, we train the matching network T̂s = T̂n,s as

T̂s := argmin
T∈T DNN

n

En,s

(
∥X−T(X)∥2

)
+ λT dHDNN

n
(T#Pn,s,Pn,s′) (39)

for a transporting hyper-parameter λT > 0 (practically, we set λT = 100.0 in all experiments). Note
that λT takes the role of ϵ. To select the best matching function network during training (STEP 1),
we select the best epoch when the loss on the validation data is the lowest. Once we select the best
matching network, we learn FTM classifier.

(STEP 2) For the second step, we train the (empirical) FTM classifier f̂FTM
s as

f̂ FTM
s := argmin

f∈F
En (l(Y, f(X, S))) + λF REGs(f) (40)

with a fair hyper-parameter λF > 0.

Note that λF take the role δ. To select the best classifier during training (STEP 2), we select the
best iteration step when the Acc−∆DP is the highest on the validation data following (Edwards &
Storkey, 2016; Madras et al., 2018; Kim et al., 2022). After that, we choose the final classifier from
{f̂ FTM

0 , f̂ FTM
1 } which has better Acc−∆DP than the other one on validation data.
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After selecting the final classifier, we infer the model performance on test data. We repeat this
procedure with five random model initial parameters five times, then report the mean result and
standard errors over the five test results. We repeat STEP 2 by varying λF s in an appropriate range to
draw Pareto-front lines.

D.4 HYPERPARAMETER SELECTION AND MODEL ARCHITECTURES

FTM The selected hyperparameters for FTM of each dataset are described in Table 5 in below.

Table 5: Training hyperparameters on each dataset.

Dataset Adult German COMPAS Dutch Law

Batch size 1024 64 64 1024 1024
Learning rates of (Ts, f ) (1e-3, 1e-4) (5e-3, 1e-3) (5e-3, 1e-3) (5e-3, 1e-3) (5e-3, 1e-3)

Epochs of learning Ts 200 500 500 500 500
Iterations of learning f 500
Evaluation frequency 50

Optimizer Adam (Kingma & Ba, 2014)

We set F , Ts and H from {1-layer MLP, 2-layer MLP, 3-layer MLP}. Then, we found the best
combination of the three architectures as described below. For the OT map function class Ts,
we consider two-layer MLP with LeakyReLU activation (slope = 0.2) and a Dropout layer after
the first layer. All numbers of nodes at each layer are equal to the input dimension. For MMD,
we compute the average of 5 MMDs induced by Gaussian kernel k(x,y) := e−∥x−y∥2/2σ2

with
σ = 0.01, 0.1, 1.0, 10.0, 100.0. For the classifier in Figure 4, we consider a single-layer MLP with
ReLU activation. All numbers of nodes of each layer are equal to the input dimension. For the
classifier in Figure 7, we consider the linear classifier.

When computing the transport cost, for each categorical input variable, we encode it to the one-hot
vector divided by the number of the categories to make the influence of categorical input variables on
the transport cost of the (relaxed) OT map as equal as possible.

FRL For FRL, we basically follow the training protocol and hyperparameter selection as done
in Madras et al. (2018); Kim et al. (2022). At this time only, let Ts be the encoder network class.
For the FRL, we set F , Ts and H from {1-layer MLP, 2-layer MLP, 3-layer MLP}. Then, we select
the best combination of the three architectures: 1-layer MLP with ReLU activation for F , 2-layer
MLP with LeakyReLU activation (slope = 0.2) for Ts, and 2-layer MLP with ReLU activation
for H (for LAFTR). For AE-MMD, for which we do not use the discriminator network H, we
compute the average of 5 MMDs as done in FTM. Adam optimizer is used with learning rate from
{0.0001, 0.001, 0.01}. To select the best classifier during training, we select the best iteration step
when the Acc−∆DP is the highest on the validation data following Edwards & Storkey (2016);
Madras et al. (2018); Kim et al. (2022) as done for FTM.

In-processing For in-processing methods, we use the same architecture as FTM and FRL methods
used. That is, the prediction model network is chosen as a single-layer MLP with ReLU activation.
Adam optimizer is used with learning rate from {0.0001, 0.001, 0.01}. To select the best classifier
during training, we select the best iteration step when the Acc−∆DP is the highest on the validation
data following Edwards & Storkey (2016); Madras et al. (2018); Kim et al. (2022) as done for FTM.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COMPARISON WITH GROUP-FAIR ALGORITHMS (SECTION 4.2)

Subset fairness We provide Figure 5 for the remaining four datasets with the subset fairness
measure: subset ∆DP. We found that FTM has a relatively smaller number of outliers than other
baseline algorithms which implies that FTM attains higher subset fairness.

Figure 5: Boxplots of the levels of ∆DP on randomly generated subsets for remaining four datasets
(Adult, German, Dutch, Law).

Within-group fairness We provide Table 6, which is a copy of Table 1 with standard errors.

Table 6: A copy of Table 1 with standard errors.

Dataset Adult German COMPAS Dutch Law

∆DP : Unfair → Fair 0.19 → 0.10 0.09 → 0.04 0.19 → 0.10 0.34 → 0.14 0.17 → 0.07

Sensitive attribute S 0 1 0 1 0 1 0 1 0 1

FRL

AE-MMD 0.771 0.872 0.651 0.779 0.436 0.463 0.825 0.929 0.790 0.585
s.e. 0.038 0.026 0.052 0.018 0.022 0.023 0.002 0.003 0.037 0.019

LAFTR 0.710 0.876 0.677 0.772 0.457 0.468 0.835 0.912 0.820 0.703
s.e. 0.030 0.015 0.052 0.018 0.018 0.023 0.001 0.011 0.041 0.007

sIPM-LFR 0.745 0.880 0.698 0.809 0.402 0.587 0.794 0.920 0.674 0.710
s.e. 0.010 0.025 0.005 0.021 0.003 0.006 0.012 0.024 0.015 0.019

In-processing

Reg 0.907 0.885 0.852 0.863 0.852 0.792 0.950 0.916 0.867 0.553
s.e. 0.006 0.017 0.011 0.006 0.031 0.015 0.008 0.004 0.003 0.002
Adv 0.885 0.845 0.840 0.804 0.795 0.742 0.944 0.927 0.867 0.599
s.e. 0.008 0.011 0.010 0.004 0.003 0.007 0.004 0.012 0.026 0.051

Fair-Mixup 0.894 0.905 0.829 0.758 0.904 0.812 0.953 0.907 0.781 0.653
s.e. 0.015 0.002 0.001 0.023 0.031 0.000 0.002 0.003 0.012 0.006

Reduction 0.905 0.890 0.840 0.851 0.848 0.800 0.950 0.916 0.867 0.583
s.e. 0.008 0.002 0.011 0.024 0.014 0.052 0.019 0.023 0.019 0.015

FTM 0.921 0.945 0.836 0.906 0.907 0.864 0.931 0.975 0.915 0.738
s.e. 0.002 0.003 0.038 0.010 0.004 0.006 0.001 0.001 0.012 0.019

In Table 7, we further provide the 2× 2 tables comparing the prediction results of the unfair model
and the seven group-fair models for the five datasets. Individuals whose Ŷ = 1 for the unfair model
but Ŷ = 0 for the fair model are thought to be treated unfairly in the context of within-group fairness.
It is clear that the number of unfairly treated individuals for FTM is much less than those of baseline
methods in six cases and competitive in four cases.
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Table 7: 2× 2 tables comparing the prediction results of the unfair model and the seven group-fair
models for the five datasets. Individuals whose Ŷ = 1 for the unfair model but Ŷ = 0 for the fair
model are those treated unfairly in view of within-group fairness. Bold faces are the best ones (the
smallest number of within-group unfairness), and underlined ones are the second placers.

Dataset Adult German COMPAS Dutch Law

Unfair
S = 0 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1

AE-MMD Ŷ = 0 4483 56 7 5 328 95 4079 179 11 107
Ŷ = 1 125 238 9 48 180 197 35 1726 2 538

LAFTR Ŷ = 0 4525 15 7 5 358 65 4117 141 19 117
Ŷ = 1 120 248 8 49 203 173 30 1731 2 540

sIPM-LFR Ŷ = 0 4520 20 7 5 370 53 4001 257 11 107
Ŷ = 1 119 247 10 47 170 207 26 1735 1 541

Reg Ŷ = 0 4400 139 8 4 402 23 4055 201 15 103
Ŷ = 1 120 243 5 52 177 200 19 1742 1 539

Adv Ŷ = 0 4501 38 10 2 399 26 4005 251 20 98
Ŷ = 1 128 235 11 46 162 215 13 1748 4 536

Fair-Mixup Ŷ = 0 4489 50 10 2 389 36 4015 241 21 97
Ŷ = 1 130 233 6 51 180 197 15 1746 2 538

Reduction Ŷ = 0 4527 12 6 6 401 22 4005 251 11 105
Ŷ = 1 122 241 10 47 160 216 19 1742 1 541

FTM Ŷ = 0 4532 7 8 4 411 12 3993 265 10 106
Ŷ = 1 118 245 1 56 161 215 9 1752 1 541

Dataset Adult German COMPAS Dutch Law

Unfair
S = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1

AE-MMD Ŷ = 0 7423 131 11 7 267 70 2218 12 1167 1168
Ŷ = 1 820 1810 15 98 65 35 1048 2787 1171 3498

LAFTR Ŷ = 0 7366 187 10 8 288 47 2212 18 1167 1177
Ŷ = 1 691 1939 13 100 73 27 1069 2766 1179 3470

sIPM-LFR Ŷ = 0 7440 113 11 7 301 34 2220 11 1167 1177
Ŷ = 1 901 1729 10 103 50 51 923 2912 1201 3458

Reg Ŷ = 0 7519 24 9 9 312 23 2222 11 1168 1176
Ŷ = 1 1072 1559 18 95 59 42 915 2920 1205 3454

Adv Ŷ = 0 7376 177 8 10 317 18 2228 3 1167 1167
Ŷ = 1 1080 1575 6 107 55 46 902 2933 1173 3497

Fair-Mixup Ŷ = 0 7559 32 12 6 324 11 2220 11 1167 1167
Ŷ = 1 983 1672 5 108 52 49 947 2888 1201 3458

Reduction Ŷ = 0 7535 18 11 7 300 35 2220 11 1167 1167
Ŷ = 1 1060 1571 8 105 48 53 890 2945 1158 3512

FTM Ŷ = 0 7540 13 11 7 327 8 2229 2 1167 1167
Ŷ = 1 1063 1568 3 110 47 54 895 2940 1170 3500
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Accuracy We provide the comparison of Acc under fixed level of ∆DP in the top panel of Figure
8. The bottom panel of Figure 8 provides the relative change of FTM’s Acc compared to averaged
Acc of all baselines.

Table 8: Comparison of Accs under given levels of fairness.

Dataset (∆DP) Unfair FRL In-processing FTMAE-MMD LAFTR sIPM-LFR Fair-Reg Fair-Adv Fair-Mixup Reduction

Adult (≈ 0.060) 0.845 0.787 0.797 0.801 0.832 0.824 0.834 0.833 0.820

German (≈ 0.050) 0.743 0.729 0.721 0.721 0.740 0.748 0.734 0.735 0.738

COMPAS (≈ 0.120) 0.677 0.576 0.629 0.630 0.666 0.677 0.660 0.647 0.661

Dutch (≈ 0.030) 0.824 0.767 0.755 0.758 0.799 0.791 0.789 0.690 0.784

Law (≈ 0.040) 0.898 0.885 0.886 0.888 0.887 0.886 0.886 0.886 0.888

Dataset Adult German COMPAS Dutch Law Average

Relative change of accuracy -1.3% -0.4% -1.1% -1.2% +0.2% -0.8%
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E.2 COMPARISON WITH FRL (SECTION 4.3)

We provide Figure 6, which is a copy of Figure 4 of larger size with standard error bands.

Figure 6: Larger plots of Figure 4 with standard error bands. The grid of plots becomes 3×5 → 5×3.
—: FTM, —: AE-MMD, —: LAFTR, —: sIPM-LFR.
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For the results of fairness-accuracy trade-offs, see Figure 7, which presents Pareto-front lines.

Figure 7: Linear classifier: fairness-accuracy trade-offs (1st column: Fairness = ∆DP, 2nd column:
Fairness = ∆DP, 3rd column: Fairness = ∆SDP) represented by Pareto-front lines on (1st row) Adult,
(2nd row) German, (3rd row) COMPAS, (4th row) Dutch, and (5th row) Law dataset. —: FTM, —:
AE-MMD, —: LAFTR, —: sIPM-LFR.
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E.3 ABLATION STUDY (SECTION 4.4)

Comparison methods

1. FTM-coupling
One can alternatively use the optimal coupling instead of the OT map for the matching
function. We call this method FTM-coupling. However, since the computational complexity
of finding the optimal coupling strongly depends on the sample size and dimension, it is not
preferable in practice.

2. FRL-bary
The FRL-bary is an FRL with the smallest transport cost. That is, we train the fair encoder
by minimizing the transport cost instead of the reconstruction error. Since it is equivalent to
searching the barycenter of two conditional distributions, we name it FRL-bary. We control
the IPM between two representation distributions to obtain the fairness-accuracy trade-off.

3. FRL-match
The FRL-match is a variant of FRL in that we use the learned fair autoencoder for matching.
That is, once we obtain a fair encoder via running an FRL algorithm, we feed the encoded
representation to the decoder of the opposite group. The output is now considered as the
matched input of the representation’s original input. Then, we train a classifier by the
matching algorithm, considering the reversely decoded inputs as matched inputs. That is, for
all x(0) having s = 0, we map it to x(1,FRL) := D1 ◦E0(x

(0)) with pre-trained autoencoders
Ds ◦Es, s = 0, 1 by the unsupervised FRL algorithm. Do the same matching for all x(1)

having s = 1. Then, we replace T̂s(x) in the regularizer REG(f) in STEP 2 by each
x(s,FRL).

Results The results of ablation experiments for the five datasets are in Figure 8.

For FTM-coupling, we observe similar performances on Adult and Dutch datasets, but FTM beats
FTM-coupling with large margins on COMPAS and German datasets. We guess the sample size is
insufficient to obtain the optimal coupling close to the true one.

For FRL-bary, we expected the performance of FTM and FRL-bary to be not much different. However,
we observe that the practical performances of FRL-bary are not better than that of FTM.

For FRL-match, we found that the autoencoder networks used in FRL are not properly utilized as
a matching function because certain lower levels of fairness are not achieved on Adult and Dutch
datasets. Furthermore, the performances are worse or never better than that of FTM.
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Figure 8: Comparison of accuracy-fairness trade-offs of FTM vs. FTM-coupling, FRL-bary, and
FRL-match on Adult (1st row), German (2nd row), COMPAS (3rd row), Dutch (4th row), and Law
(5th row) datasets. —: FTM, —: FTM-coupling, —: FRL-bary, —: FRL-match.
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