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Abstract

Large language models (LLMs) have become
essential tools for digital task assistance. Their
training relies heavily on the collection of vast
amounts of data, which may include copyright-
protected or sensitive information. Recent stud-
ies on detecting pretraining data in LLMs have
primarily focused on sentence- or paragraph-
level membership inference attacks (MIAs),
usually involving probability analysis of the tar-
get model’s predicted tokens. However, these
methods often exhibit poor accuracy, failing
to account for the semantic importance of tex-
tual content and word significance. To address
these shortcomings, we propose Tag&Tab, a
novel approach for detecting data used in LLM
pretraining. Our method leverages advanced
natural language processing (NLP) techniques
to tag keywords in the input text—a process
we term Tagging. Then, the LLM is used to
obtain probabilities for these keywords and cal-
culate their average log-likelihood to determine
input text membership, a process we refer to
as Tabbing. Our experiments on four bench-
mark datasets (BookMIA, MIMIR, PatentMIA,
and the Pile) and several open-source LLMs of
varying sizes demonstrate an average increase
in AUC scores ranging from 5.3% to 17.6%
over state-of-the-art methods. Tag&Tab not
only sets a new standard for data leakage detec-
tion in LLMs, but its outstanding performance
is a testament to the importance of words in
MIAs on LLMs.

1 Introduction

The rapid advancement of generative artificial in-
telligence (GenAl) in recent years has significantly
shifted the tech industry’s focus toward the devel-
opment of powerful tools such as large language
models (LLMs).

LLMs are now widely used for tasks such as
conversational Al, content generation, and scien-
tific research (Hoang et al., 2019; Nakano et al.,
2021; OpenAl, 2022; Touvron et al., 2023). Their

adoption reflects a broader shift in Al towards large-
scale language understanding.

The widespread use of LLMs has intensified
competition to improve model performance, which
relies on collecting vast amounts of data (Wang
et al., 2023).

To achieve these improvements, LLMs are
primarily trained on open-source datasets ob-
tained from various sources using methods such
as synthetic data generation and web scrap-
ing (Nikolenko, 2021; Khder, 2021). The type
of data collected may include books, code, aca-
demic papers, and medical records (Axon, 2024;
Gaoetal., 2020; Achiam et al., 2023; Touvron et al.,
2023). The methods employed for data collection
raise significant privacy and ethical concerns (Neel
and Chang, 2023; Yao et al., 2024), primarily re-
garding the inclusion of personally identifiable in-
formation (PII) (Lukas et al., 2023) and copyright-
protected contents. (Rahman and Santacana, 2023;
Wu et al., 2024; Axon, 2024).

High-profile lawsuits, such as The New York
Times vs. OpenAl (Times, 2023), highlight the
need for tools that can detect unauthorized use of
data in LLM training (Maini et al., 2024).

Membership inference attacks (MIAs) aim to
identify whether a given text was part of a model’s
training data by exploiting behavioral differences in
how LLMs process seen versus unseen data (e.g.,
higher prediction confidence or lower loss) (Hu
et al., 2022; Carlini et al., 2022a). However, ex-
isting MIAs face several key limitations. First,
most methods rely solely on token-level probabili-
ties, neglecting the semantic importance of words
within the broader context (Yeom et al., 2018; Car-
lini et al., 2021). Second, their performance varies
widely across different models and datasets, of-
ten lacking consistent generalization (Duan et al.,
2024; Maini et al., 2024). Lastly, MIAs are of-
ten evaluated on data that is not independently and
identically distributed (IID), which can lead to the



detection of distribution shifts rather than genuine
membership inference, thereby undermining the
attacks’ reliability (Zhou et al., 2023).

To address the limitations of existing methods,
we introduce Tag&Tab, a novel approach based on
common natural language processing (NLP) meth-
ods that is designed to efficiently and effectively
detect LLMs’ pretraining data. Specifically, our
method aims to determine whether an LLM was
trained on a given text sample, given black-box
access to the target LLM (i.e., can only query the
model).

Building on the work of Lukas et al. (Lukas et al.,
2023), who highlighted the role of named entities
in PII leakage detection, Tag&Tab prioritizes infor-
mative keywords using entropy-based selection.

Tagé&Tab is designed to address the three key
limitations of prior MIA methods. First, rather
than relying solely on token-level perplexity, our
method introduces semantic awareness by prioritiz-
ing meaningful content through keyword selection.
Second, our results demonstrate strong generaliza-
tion across models and datasets, addressing the is-
sue of model inconsistency. Finally, while no MIA
is entirely immune to distribution shifts, our focus
on rare and informative keywords, rather than shal-
low statistical artifacts, provides better resilience
to distributional variations.

Our method consists of the following steps:

1. Preprocessing - Constructing a word entropy
map and filtering certain sentences to ensure
optimal keyword selection.

2. Tagging - Identifying the high-entropy words
in the text and selecting the K words with the
highest entropy value, referred to as keywords.

3. Tabbing - Passing the entire text to the tar-
get LLM and calculating the average log-
likelihood of these K keywords.

4. Inference - Comparing the average log-
likelihood to a threshold to determine the
text’s membership (i.e., whether it was in the
inspected model training set).

Our method is based on the intuition that a
higher log-likelihood for challenging-to-predict
high-entropy keywords suggests the model encoun-
tered the text during training (Carlini et al., 2022b)
Based on this intuition, we hypothesize that these
rare keywords are more likely to be memorized

by the model and thus serve as effective indica-
tors of the text’s membership in the pretraining
dataset (Thakkar et al., 2021; Carlini et al., 2019).
By selecting a small number of high-entropy key-
words, our method captures the most informative
text elements while minimizing noise from other
word probabilities.

We evaluated our method on ten LLMs of vary-
ing sizes and across four datasets containing 9 types
of textual data. Our results show that Tag&Tab out-
performs state-of-the-art (SOTA) MIAs, achieving
an average increase in AUC scores ranging from
5.3% to 17.6% compared to the best-performing
SOTA method across multiple textual data types.
The contributions of our paper are as follows:

* We propose Tag&Tab, a novel approach for
the detection of LLMs’ pretraining data that
focuses on the contextual and semantic rele-
vance of the words in a text, and opens the
door to additional research on MIAs against
LLMs.

* To our knowledge, this is the first robust
reference-free MIA method to achieve high
and consistent performance across multiple
textual data types and LLMs, outperforming
SOTA methods.

* Our approach is both resource- and time-
efficient. Unlike reference-based attacks that
require training a separate model or reference-
free methods that depend on auxiliary mod-
els (e.g., the Neighbor attack (Mattern et al.,
2023)), Tag&Tab operates without any addi-
tional model training or inference. This mini-
mizes computational overhead and simplifies
deployment in real-world scenarios. .

2 Related Work

Membership inference (MI) (Shokri et al., 2017)
is a classification task that determines whether a
data sample = was part of a model’s training Dyy4in
of a model f. An attacker receives a sample x
and a model f, and applies an attack model A to
classify x as a member = € Dy if A(f(z)) = 1;
otherwise, x is classified as a non-member = ¢
Dtrain-

Large language model membership inference
is a subdomain of membership inference that has
gained increasing research attention. Within this
subdomain, detecting pretraining data has been
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Figure 1: Illustration of the Tag&Tab method - The process starts by inputting a text (in this example, the input is
the conclusion of the well-known poem “The Road Not Taken" (Frost, 1916)) in the target LLM to obtain its word
probability distribution (word probability). In the tag step, the keywords are selected based on the words’ entropy
value (created in the preprocessing phase). In the tab step, the log-likelihood of the selected keywords is calculated.
Finally, in the infer step, the average log-likelihood of the chosen keywords is compared against a threshold v to
determine if the text was part of the target LLM’s pretraining data.

the focus of numerous studies exploring different
methodologies for determining whether specific
texts were included in an LLM’s training dataset.
Existing MIAs for LLMs fall into two categories:
reference-based and reference-free.

Reference-based (Shokri et al., 2017) meth-
ods compare a target model’s outputs to those of
reference models, which are typically trained on
the same data distribution. One such method is
LiRA (Carlini et al., 2022a), which estimates the
likelihood ratio of a target example’s loss under
models trained with and without the example, using
Gaussian distributions to simplify the computation.

In contrast, reference-free methods aim to
determine membership by applying different
probability-based calculations on token predictions.
One such method, the LOSS Attack (Yeom et al.,
2018), uses model loss values, which in language
models correspond to text perplexity. Perplexity
measures how well a probability model predicts a
sample and is calculated as the exponentiation of
the negative average log-likelihood per token:

N
Perplexity(P) = exp <]if Z log P(t; | t1,. .- ,t¢1)>

=1

where N is the number of tokens, and P(t; |
t1,...,t;—1) is the conditional probability of the
t-th token given its preceding tokens. The attack
assumes that lower perplexity indicates a text is
more familiar to the model, suggesting it was part
of the training set. The ZIib attack, as presented

by Carlini et al. (Carlini et al., 2021), infers
membership by calculating the ratio of a text’s log-
likelihood to its Zlib compression length. Newer
attacks, such as the Neighbor attack (Mattern et al.,
2023), modify selected words in a given text using
a different language model to generate ’neighbor’
sentences, then compare the original text’s perplex-
ity to that of its neighbors. Although the Neighbor
attack showed some success, its computational cost
is very high compared to other known methods.
More computationally efficient attacks that outper-
form the Neighbor attack include Min-K% (Shi
et al., 2023), and Min-K%++ (Zhang et al., 2024a),
which focus on the least confident model predic-
tions. Min-K% calculates the average of the low-
est k% probabilities from the model’s output, and
Min-K%++ extends this by normalizing token log
probabilities using the mean and variance. Lastly,
two recently published attacks are RECALL (Xie
et al., 2024), which measures the relative change
in log-likelihood when conditioning the target text
on non-member prefixes, and DC-PDD (Zhang
et al., 2024b), which calibrates token probabilities
using divergence from a reference corpus, effec-
tively mitigating the impact of high-frequency to-
kens. While each of these attacks has demonstrated
success on some datasets and models, their perfor-
mance remains inconsistent across different studies.
However, recent research performed by Maini et
al. (Maini et al., 2024) showed that aggregating the
results of multiple MIAs improves the accuracy of
dataset membership inference. While promising,



these findings suggest that the success of this aggre-
gated approach in real-world scenarios depends on
improved MIAs, meaning attacks achieving AUC
scores above 0.5.

Common models for evaluating MIAs on LLMs
include open-source models with known pretrain-
ing data. One such model is LLaMA 1 (Touvron
etal., 2023), created by Meta, which was trained on
a mixture of publicly available datasets, including
certain subsets of the Pile such as C4, GitHub, and
many more, according to Meta’s original paper and
the MIMIR dataset (Duan et al., 2024).

The open-source Pythia model suite (Biderman
et al., 2023), which includes eight LL.Ms ranging
from 70M to 12B parameters. These models were
trained on data including the Pile dataset, with all
models processing the public data in the same order
during training.

3 Method

We introduce Tag & Tab, a novel resource- and time-
efficient method for identifying data used to pre-
train LLMs. Tag&Tab applies common NLP tech-
niques to tag keywords in the pretraining data and
predict their occurrence using the target LLM.

Our method strategically selects words from the
input that should be challenging for the LLM to
predict. Successful prediction may indicate that
the model previously learned the input’s content
during pretraining. In Tag&Tab, words are selected
according to their entropy values. A high entropy
value indicates that a word is less common in the
input text compared to other words. Since LLMs
tend to memorize rare or unique pretraining data,
high-entropy words are more likely to be mem-
orized (Carlini et al., 2022b), particularly in the
context of their preceding words. Thus, the LLM is
likely to assign higher probabilities to these words
if it was trained on them, compared to high-entropy
words in unfamiliar contexts.

Tag&Tab selects K words with the highest en-
tropy value in a sentence, which are referred to as
keywords. By selecting a small number of infor-
mative keywords, we aim to capture the semantic
importance of the pretraining content. This ap-
proach hinges on a hypothesis that only K selected
keywords are needed to accurately predict the mem-
bership of the entire input text in the pretraining
data, minimizing noise from other words in the
input text (Shi et al., 2023).

Tag&Tab operates under black-box constraints,

meaning we can observe token probabilities from a
given input but lack access to the model’s weights,
which is standard practice in MIAs (Truex et al.,
2019; Hu et al., 2022; Mattern et al., 2023; Zhang
et al., 2024a).

The Tag&Tab method consists of four stages,
which are illustrated in Figure 1:

1. Preprocessing - First, the word entropy map
is constructed using the Python package word-
freq (Speer, 2022), which provides frequency
estimates for words in a specified language.
The entropy for each word is calculated using
the formula:

E(w;) = p(w;) - logy p(w;)

In the preprocessing stage, the text is also split
into individual sentences, using segmentation
tools (e.g., the NLTK package (Bird et al.,
2009)). To avoid selecting less informative
keywords due to insufficient sentence length,
sentences with fewer than a specified number
of words are filtered out.

2. Tagging - From each sentence S in the text
file T', K keywords are selected, targeting
named entities (e.g., people, organizations,
locations) and words with high entropy val-
ues. This selection is based on the word
entropy map for high-entropy words, and
named entities are identified during this pro-
cess. Named entities are identified using tools
such as spaCy (Honnibal and Montani, 2017).
The final set of keywords consists of the union
of the named entities and the high-entropy
words.

3. Tabbing - This stage mimics the auto-
completion feature found in interfaces like
a command line, where it predicts and fills
in the rest of the command based on the con-
text of the preceding input. Using the tar-
get model M, we compute the log-likelihood
of the entire text, then focus on the previ-
ously identified keywords. For each sentence
S € T consisting of n words w1, wo, . . ., Wy,
where each word w; is decomposed into to-
kens, denoted as w; = t;,,%s,, ..., t;,, token
ti;, given its preceding tokens, is calcu-
lated as log pas(ti |tiy, ..., ti;_;). We de-
fine the log-likelihood of a word w; us-
ing the log-likelihood of its first token ¢;,



given its preceding tokens, expressed as
logpM(til ’t117t127 R 7ti—1j)- As a result,
we obtain:

log par(wi | -) = logpar(tiy | -)

The method selects the K keywords from S
and computes the average log-likelihood of
the keywords:

Keywords’ Prob(S) = % Z

w; EKeywords(S)

log pas (wil-)

4. Inferring - In this stage, the method calcu-
lates the average probability of the keywords
across all sentences in text T’ and compares it
to a predetermined threshold ~, to determine
membership.

4 Evaluation

This section presents a detailed evaluation of
Tag&Tab’s effectiveness. The experiments were
conducted on a single NVIDIA RTX 6000 GPU,
running for nearly three days in total across all
models and datasets. We used the default parame-
ter settings of widely adopted libraries, including
spaCy and NLTK.

4.1 Model Comparison

To compare Tag&Tab with other reference-free
baseline detection methods, we examined various
open-source LLMs, including LLaMA 1 (7B, 13B,
30B) (Touvron et al., 2023), Pythia (160M, 1.4B,
2.8B, 6.9B, 12B) (Biderman et al., 2023), and
Qwen-1.5-14B (Cloud, 2024). Additionally, we
included GPT-3.5 Turbo! (trained on data up to
September 20212), given partial knowledge of its
training on known books, as discussed in previous
studies (Shi et al., 2023; Chang et al., 2023). Our
black-box assumption still holds because the Ope-
nAl API exposes token-level log probabilities for
this model. LLaMA 1 and Pythia are well-suited
for MIA evaluation due to their transparency re-
garding pretraining datasets, unlike newer models
such as LLaMA 2 and 3, which lack such trans-
parency.

"https://platform.openai.com/docs/models/gpt-3-5-turbo
“https://learn.microsoft.com/en-us/azure/ai-
services/openai/concepts/models

4.2 Dataset Comparison

The experiments were conducted on the Book-
MIA3 (Shi et al., 2023), The Pile* (Gao et al.,
2020), and MIMIR® (Duan et al., 2024) datasets,
meeting the requirement that MIA evaluation
datasets should be as comprehensive and diverse
as possible (Duan et al., 2024), covering diverse
text types while maintaining consistent distribution
between training and test sets.

The Pile is a collection of diverse textual sources
designed to train and evaluate LLMs using open-
source data, from which we used 10,000 samples
each for training and testing from each domain.
BookMIA evaluates MIAs on books known to have
been memorized by GPT-3.5 Turbo, along with
newly published books from 2023, using 5,000
samples each for the member and non-member sets.
Notably, 34 of the 50 'member’ books in BookMIA
overlap with the Gutenberg dataset, which was also
part of the training corpora for models like Pythia
and LLaMA 1. MIMIR is a dataset built from The
Pile, designed to evaluate memorization in LLMs.
It contains data known to have been used in train-
ing across all Pythia model sizes, offering a unified
benchmark for assessing membership inference. In
our evaluation, we utilized around 2,000 samples
per domain, combining approximately 1,000 ’mem-
ber’ and 1,000 *non-member’ samples.

Finally, we ran a dedicated non-Latin evaluation
on the Chinese-language PatentMIA (Zhang et al.,
2024b) corpus with the Qwen1.5-14B model. The
setup and results are discussed in Appendix A.4.

It is important to note that we opted not to evalu-
ate our method on the WikiMIA dataset® (Shi et al.,
2023), as recent publications (e.g., (Maini et al.,
2024)) questioned the reliability of the data, due to
temporal shifts in writing styles and an insufficient
number of samples.

4.3 Evaluation Approach

To assess our method’s performance, we followed
a systematic process that begins with the input
dataset. Each text file in the dataset is processed,
with every sentence truncated to a maximum of
2,048 tokens to ensure a consistent input size. Sen-
tences with fewer than seven words are excluded.
We identify and save the top-K keywords for every

Swww. huggingface.co/datasets/swj0419/BookMIA
*www . huggingface.co/datasets/monology/
pile-uncopyrighted/viewer/default/validation
Swww . huggingface.co/datasets/iamgroot42/mimir
Swww.huggingface.co/datasets/swj0419/WikiMIA


www.huggingface.co/datasets/swj0419/BookMIA
www.huggingface.co/datasets/monology/pile-uncopyrighted/viewer/default/validation
www.huggingface.co/datasets/monology/pile-uncopyrighted/viewer/default/validation
www.huggingface.co/datasets/iamgroot42/mimir

sentence based on their entropy values. We docu-
mented the outcomes of selecting 1 to 10 keywords
per sentence.

After selecting the top-k keywords, the entire
text is processed by the target model, which out-
puts probability distributions for each token. Then
we average the log-likelihoods of all tokens in the
keywords, conditioned on their preceding tokens,
assessing the model’s familiarity with the entire
keyword.

Following Carlini et al.’s evaluation process (Car-
lini et al., 2022a), we set a threshold to assess attack
performance, focusing on TPR at low FPR, denoted
as T@F.

We also report the area under the ROC curve
(AUC score) to provide a clearer measure of de-
tection performance. The AUC score quantifies
the overall performance of a classification method
by considering TPRs and FPRs at all classification
thresholds. Since AUC offers a comprehensive,
threshold-independent evaluation metric, we do
not need to determine a specific threshold  for our
method.

To simulate a real-world application, Ap-
pendix A.3 details how we pick a working thresh-
old v when only non—-member data from the same
domain are available. The appendix further shows
that applying this book-derived threshold to a differ-
ent domain (mathematics) degrades performance,
so v must be recalibrated for every model—-dataset
pair.

4.4 Comparison with Baseline Methods

To benchmark Tag&Tab’s performance, we com-
pared it with SOTA reference-free methods for
detecting pretraining data. The baseline meth-
ods included LOSS Attack, Zlib Attack, Neigh-
bor Attack, Min-K% Prob, Min-K%++ Prob, Max-
K%Prob, RECALL, DC-PDD. A detailed descrip-
tion of these attacks can be found in the Related
Work section.

5 Results

This section presents two case studies using
Tag&Tab, each examining a different aspect of pre-
training data detection in LLMs. Each case study
is evaluated using AUC and TPR at a low FPR of
5% (T@F=5%).

Throughout this section, we report results for
Tag&Tab using K = 4 and K = 10, as
these values yielded the most consistent and high-

performing outcomes across models and datasets.
This choice is supported by the analysis presented
later in Figure 2, which shows that Tag&Tab per-
forms robustly for values of K between 4 and
10, with minimal performance variation—making
the method resilient to non-optimal keyword selec-
tions.

The reported results are based on a single run,
as we observed minimal variation across multiple
runs.

5.1 Case Study 1: Detecting Specific
Pretraining Data in LLMs

This case study focuses on the precision of detect-
ing specific pretraining data in LLMs. We designed
a targeted attack to infer whether copyrighted data
was part of the model’s pretraining. Unlike Case
Study 2, member and non-member data come from
different sources. Using the BookMIA dataset, we
simulate partial knowledge of a model’s pretraining
data to infer specific text files suspected of being
included in the target model’s training set. For
validation, we selected non-members from books
published after the target model’s release, thus en-
suring they were not part of its pretraining data.
To determine the optimal number of keywords to
select, we evaluate the results by selecting between
1 and 10 keywords from each sentence The results
shown in Figure 2 demonstrate that the optimal
number of keywords required to ensure effective
detection depends on the model architecture. As
observed, for different sizes of the LLaMa 1 mod-
els, the optimal number of keywords ranged from
2 to 3, while for the Pythia models and GPT-3.5
turbo, the optimal number of tagged keywords was
7. The best results across all models were achieved
with K = 4, yielding an average AUC score of 0.8.
Table 1 summarizes the results of Tag&Tab and
reference-free baseline attacks.
The main insights from these results are as follows:

* Tag&Tab outperforms all other attacks in
AUC, with an average improvement of
5.3%—-17.6% over baseline methods when
K =4.

* Tag&Tab (K = 4) outperforms other at-
tacks in T@F=5% on LLaMa-7B and LLaMa-
13B models. However, for most other mod-
els, the DC-DPP attack performs better, with
Tag&Tab consistently ranking second.



Method LLaMa-7b LLaMa-13b LLaMa-30b Pythia-6.9b Pythia-12b GPT-3.5 Average
AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5
Neighbor 0.65 0.27 0.71 038 090 0.73 0.65 026 0.71 036 0.96 088 0.76 0.48
Loss 0.59 0.25 0.70 043 0.89 0.74 0.62 0.24 0.69 0.32 097 090 0.74 048
Zlib 0.53 0.22 0.67 042 0.89 074 055 0.19 0.61 025 096 088 0.70 0.45
Min-20.0% Prob 0.61 0.24 0.70 042 0.87 0.70 0.65 0.25 0.70 0.34 095 0.86 0.75 047
MinK++-20.0% Prob 0.60 0.23 0.68 0.38 0.78 0.60 0.59 0.20 0.56 0.20 095 0.86 0.69 0.41
Max-20.0% Prob 0.51 0.15 0.66 034 0.87 0.69 051 0.13 059 020 096 091 0.68 0.40
ReCaLL 0.58 022 070 042 0.84 064 066 0.29 0.72 0.37 0.74 050 0.70 0.41
DC-PDD 0.61 0.27 0.71 047 0.88 0.77 0.68 034 074 044 095 089 0.76 0.53
Ours (Tag&Tab K=4) 0.69 0.28 0.78 048 091 0.76 0.72 030 0.75 036 0.97 090 0.80 0.51
Ours (Tag&Tab K=10) 0.67 0.26 0.77 046 091 0.77 0.72 030 0.76 036 096 0.87 0.80 0.50

Table 1: Detection of data from the BookMIA dataset used in pretraining seven models using Tag&Tab and six
baseline MIAs, evaluated in terms of AUC and T@F=5%. All results are reported as decimal fractions. The last
two rows compare the Tag&Tab method when selecting four and ten keywords. The best results are bolded, and

second-best are underscored.
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Figure 2: AUC scores as a function of the number of
tagged keywords for the examined models on the Book-
MIA dataset. Yellow dots indicate optimal performance:
2-3 keywords for LLaMa 1, 7 for Pythia and GPT-3.5
turbo, and 4 on average (AVG).

¢ As the size of the tested LLM increases, the
AUC scores of the MIAs also increase due to
the model’s memorization capacity (Carlini
et al., 2022b). This can be seen in the results
for Tag&Tab which achieved very high AUC
scores: (1) 0.91 on LLaMa-30b compared to
0.69 on LLaMa-7b, (2) 0.75 on Pythia-12b
compared to 0.72 Pythia-6.9b, and (3) 0.97 on
GPT-3.5 Turbo, the largest model tested.

5.2 Case Study 2: Detecting Various Types of
Pretraining Data in LLMs

This case study evaluates Tag&Tab’s effectiveness
and robustness in detecting different types of pre-
training data in LLMs. We evaluate our method on
various sizes of the Pythia model and compare its
effectiveness against baseline attacks on seven text

types in the Pile dataset. Table 2 summarizes the
results obtained when targeting five Pythia model
sizes ranging from 160M to 12B parameters, tested
with two configurations of tagged keywords: 4 and
10.

The main insights from these results are as follows:

* Tag&Tab (K = 4) outperforms all baseline
methods on average across the evaluated mod-
els, establishing itself as the most effective ap-
proach overall. Tag&Tab (K = 10) ranks as
the second-best method, demonstrating strong
performance but falling short of the results
achieved with K = 4.

* Notably, Tag&Tab (K = 4) achieves either
the best or second-best results in the majority
of textual data types that were tested. Even
when it does not lead, its performance remains
competitive, offering a robust alternative to
the leading method.

* While Tag&Tab (K = 10) selects more key-
words, increasing the number of probabilities
considered for text membership inference, its
results are consistently lower than those of
Tag&Tab when K = 4. This supports the
hypothesis that selecting a smaller number of
keywords allows the method to extract noise-
free information from the model.

‘We also observe that certain formal texts, such
as mathematical proofs, may contain fewer named
entities or conventional keywords. However, they
often feature domain-specific terminology or sym-
bolic expressions that carry strong membership
signals. This is evidenced by our results on the



Table 2: Comparison of AUC results for Tag&Tab and baseline methods on the MIMIR and Pile benchmarks.
The upper table presents the best results from Tag&Tab and baseline methods across four MIMIR datasets, while
the lower table shows the best results for four Pile datasets. The best results for each dataset and model size are
highlighted in bold, and the second-best AUC is underscored.

Method DM Mathematics Github Pile CC C4

160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 69B 12B 160M 14B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 2B
Loss 085 0.76 0.84 0.68 0.86 0.80 0.85 0.86 0.88 0.88 0.53 0.54 0.54 0.55 0.55 050 051 0.51 051 0.51
Zlib 0.68 0.59 0.66 0.55 0.69 0.84 0.88 0.89 0.90 090 0.51 0.53 053 0.54 0.54 051 051 0.51 051 0.51
Min-20% Prob 0.61 053 0.70 0.50 0.82 0.80 0.85 0.86 0.88 0.88 0.52 0.53 0.54 0.55 0.55 0.51 051 0.51 051 0.50
Max-20% Prob 0.63 0.67 0.61 058 0.51 0.78 0.85 0.85 0.87 086 052 0.53 0.53 0.53 0.54 051 050 0.50 0.50 0.50
Min-K++-20% Prob 0.81 0.79 0.66 0.81 0.73 0.57 057 0.61 0.63 0.66 0.51 050 0.52 0.53 0.53 0.52 051 0.51 0.50 0.50
RECALL 0.80 0.73 0.78 0.64 0.86 0.79 0.76 0.74 0.71 0.72 0.53 0.54 0.54 0.55 0.55 0.51 051 0.51 051 0.51
DC-PDD 090 0.86 0.86 0.85 0.86 0.87 091 092 093 093 0.54 0.55 0.56 0.57 0.57 051 051 0.51 051 0.51
Ours (Tag&Tab K=4) 096 0.96 0.96 095 0.95 0.78 0.82 0.83 0.84 085 0.54 0.56 0.56 0.57 0.57 0.53 0.52 0.52 0.52 0.51
Ours (Tag&Tab K=10) 0.92 0.92 0.93 092 0.95 0.79 0.83 0.84 0.85 0.86 0.55 0.56 0.56 0.57 0.56 0.53 0.52 0.52 0.52 0.51
Method Ubuntu IRC Gutenberg EuroParl Average

160M 1.4B 2.8B 69B 12B 160M 14B 2.8B 6.9B 12B 160M 1.4B 2.8B 69B 12B 160M 14B 2.8B 6.9B 12B
Loss 0.63 0.59 0.60 0.58 0.58 0.53 0.53 0.53 0.53 053 052 052 050 0.52 051 0.67 0.67 0.69 0.66 0.70
Zlib 052 052 0.53 054 0.54 0.53 0.60 053 053 053 051 051 050 051 051 0.63 063 0.65 0.62 0.66
Min-20% Prob 0.58 0.57 052 0.51 052 0.53 053 053 0.53 060 0.53 0.54 0.52 0.50 051 0.61 0.61 0.65 0.61 0.69
Max-20% Prob 0.69 0.69 0.71 0.68 0.67 0.67 0.73 0.60 0.67 0.67 0.53 0.54 0.55 053 0.55 0.61 0.64 0.62 0.62 0.60
Min-K++-20% Prob 0.52 051 0.52 054 0.61 0.67 0.60 0.60 0.60 0.60 0.54 0.53 051 0.51 0.51 0.60 059 0.57 0.62 0.61
RECALL 0.72 0.64 0.69 0.64 0.60 0.53 0.80 0.67 0.73 0.80 0.51 0.51 051 0.55 0.57 0.67 0.64 0.65 0.62 0.68
DC-PDD 0.58 0.53 0.53 0.53 0.53 0.53 0.60 0.60 0.53 0.53 0.51 0.52 050 0.51 0.54 0.70 0.70 0.72 0.71 0.70
Ours (Tag&Tab K=4)  0.64 0.65 0.64 0.66 0.64 0.67 0.67 0.67 0.67 0.67 0.55 0.54 0.55 0.54 0.56 0.70 0.72 0.73 0.72 0.73
Ours (Tag&Tab K=10) 0.61 0.63 0.62 0.61 0.62 0.60 0.67 0.67 0.67 0.67 0.56 0.54 0.55 0.54 0.55 0.70 0.71 0.73 0.72 0.72

DM Mathematics subset (Table 2), where Tag&Tab
maintained SOTA performance, achieving an AUC
between 0.95 and 0.96.

Despite outperforming baseline MIAs, the AUC
achieved by Tag&Tab can still be relatively low
in certain cases, hovering around 0.55. However,
recent research by Maini et al. (Maini et al., 2024)
shows that aggregating multiple MIAs improves
dataset membership inference accuracy, emphasiz-
ing the need for better attacks that achieve AUC
over 0.5 for improved aggregated attack perfor-
mance. Tag&Tab meets this criterion, making it a
valuable component in an ensemble of MIAs for
enhanced inference accuracy.

To better understand our method’s performance,
in Appendix A.1, we examined the impact of our
method’s tagging stage by comparing the selec-
tion of the highest K entropy words with a random
token selection, observing that prioritizing the high-
est K entropy words significantly enhances perfor-
mance across all models, resulting in superior AUC
scores.

Finally, Appendix A.2 reports extra experiments
on our tagging choices. Replacing our keywords
with random tokens drops accuracy, confirming
the value of informed selection. Using only
named-entity tokens or only high-entropy tokens

each improves on baselines, but combining the two
as Tag&Tab gives the strongest results. We also
tried ranking tokens with TF-IDF instead of en-
tropy, which led to noticeably lower performance.

6 Conclusion

We present Tag&Tab, a novel black-box method
for detecting pretraining data in LLMs. By focus-
ing on the semantic and contextual relevance of
words, the method enhances detection capabilities.
Tag&Tab outperforms SOTA attacks and consis-
tently achieves high performance across diverse
textual data types. Our comprehensive evaluation
spans eight textual data types from three datasets
(the Pile, MIMIR, and BookMIA) and six LLMs
of varying sizes and architectures (LLaMa 1-7b,
13b, 30b, Pythia-160m, 1.4b, 2.4b, 6.9b, 12b, GPT-
3.5 Turbo). Our study confirms that the selection
of high-entropy keywords improves membership
inference attack results, further validating our ap-
proach. Future work could extend Tag&Tab by
considering keyword context and placement within
documents. Additionally, developing new MIAs
that leverage advanced NLP techniques to assess
word significance could further improve the detec-
tion of pretraining data in LLMs.



7 Limitations

While Tag&Tab demonstrates strong performance
in detecting pretraining data in LLMs, it has several
limitations:

1. Effectiveness  Against  Fine-Tuning:
Tag&Tab is less effective in benchmark
settings where MIAs are evaluated on models
fine-tuned specifically on entire documents.
This fine-tuning process involves targeted
adaptation to a small set of documents, ampli-
fying memorization across the entire input.
In these evaluation scenarios, methods that
consider a larger portion of the input text by
aggregating probabilities from many tokens
tend to achieve better inference performance,
as they can capture memorization signals
spread throughout the entire document. In
contrast, Tag&Tab focuses on a small set of
informative keywords, making it less suited
for scenarios where fine-tuning amplifies
memorization uniformly across all tokens.
It is important to note that this evaluation
setup does not reflect realistic pretraining data
detection, where memorization patterns are
typically more localized and sparse.

2. Language Generalization: As shown in our
experiments, Tag&Tab’s effectiveness is cur-
rently limited to English texts. When ap-
plied to other languages, such as Chinese, the
method’s performance degrades. Extending
Tag&Tab to multilingual settings requires fur-
ther adaptation of the tagging process.

3. Black-Box and Training Data Trans-
parency: Tag&Tab assumes black-box access
to LLMs that provide token-level probability
outputs. While this is common for many com-
mercial APIs, it is not guaranteed for all mod-
els. Furthermore, newer open-source LLMs
often do not disclose their exact pretraining
datasets, making it challenging to construct re-
liable member and non-member sets for eval-
uation. This lack of transparency affects the
applicability and benchmarking of MIAs, in-
cluding ours, on recent models.

8 Ethical Considerations

Our primary goal is to improve the detection of sen-
sitive pretraining data in LLMs, addressing critical
issues like copyright violations and data misuse.

However, we acknowledge that as an MIA tech-
nique, this method could be misused to compro-
mise privacy or extract sensitive information from
models.

To mitigate these risks, we carefully selected the
datasets used in our evaluations, ensuring they are
publicly available and free of personally identifi-
able information (PII) or other private data. Ad-
ditionally, our research follows ethical guidelines
and emphasizes the importance of transparency in
model training and evaluation.
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A Appendix

Our code is available in our anonymous GitHub
repository .

A.1 The Impact of our Word Selection
Method

In Figure 3 we demonstrate the impact of our word
selection method, Tag, which selects the highest

"https://anonymous.4open.science/r/Tag-Tab-
OE80/README.md
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K entropy words, compared to a random selec-
tion of words using the same Tab algorithm. The
dataset used for this evaluation was BookMIA. For
each model, we presented 10 results using the Tag
method (Blue) and 10 results using a random selec-
tion of words (Orange). The results indicate that
selecting the highest K entropy words improves
performance across all models. The Tag method
achieved an average AUC of 0.8, compared to an
average AUC of 0.64 with a random selection of
K words. This demonstrates the effectiveness of
the Tag method in enhancing model performance
by focusing on high-entropy words.

A.2 Ablation Study: Alternative Word
Selection Strategies

To further analyze the contribution of individual
word selection strategies, we conducted an ablation
study comparing several variants of our method
on the BookMIA dataset. Specifically, we evalu-
ated the following alternatives to the full Tag&Tab
method, all using K = 4 selected keywords:

* Entropy-Only: selecting the 4 highest en-
tropy tokens per sentence.

* NER-Only: selecting the first 4 named enti-
ties identified via spaCy per sentence.

* TF-IDF: selecting the top 4 tokens with the
highest TF-IDF scores per sentence.

We evaluated these variants across all tested
models except GPT-3.5 Turbo, including LLaMa-
7B, LLaMa-13B, LLaMa-30B, Pythia-6.9B, and
Pythia-12B.

The results, summarized in Table 3, show that
both Entropy-Only and NER-Only achieve com-
petitive performance, slightly below the combined
Tag&Tab method. The TF-IDF variant performed
notably worse, confirming that high-entropy and
named-entity tokens are more effective indicators
of membership when used together. These find-
ings validate our design choice of combining both
strategies for optimal pretraining data detection.

A.3 Threshold Calibration
A.3.1 Calibrating v with No Member Labels

In a realistic “zero-knowledge” setting, we assume
no access to the model’s training data, but we can
still collect data that were definitely not seen dur-
ing training. This includes texts published after the
model’s release or synthetically generated samples.
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Figure 3: Comparison of Tag&Tab’s keyword selection against random selection across different K values. For each
model, we report AUC scores when selecting between 1 and 10 keywords per text using the Tag&Tab entropy-based
method (blue) and a random selection baseline (orange). Each bar represents the AUC achieved for a specific K
value. Results are shown for all evaluated models on the BookMIA dataset, including GPT-3.5 Turbo, as well as
the overall average (AVG). The plot highlights the consistent advantage of high-entropy keyword selection across

varying K values and model sizes.

Table 3: AUC scores of Tag&Tab and its ablated variants on the BookMIA dataset, all with K = 4 selected tokens.

Method LLaMa-7B LLaMa-13B LLaMa-30B Pythia-6.9B Pythia-12B
Tag&Tab 0.69 0.78 0.91 0.72 0.75
Entropy-Only 0.67 0.76 0.89 0.70 0.73
NER-Only 0.62 0.72 0.85 0.68 0.73
TF-IDF 0.60 0.68 0.81 0.65 0.67

To calibrate the decision threshold ~, we compute
Tagé&Tab scores on a set of known non-member
samples and select v based on the upper tail of the
score distribution (e.g., the 95" percentile). This
threshold is then used to flag samples that appear
“member-like” relative to the known non-members.
Using BookMIA with LLaMA-30B and K =4, this
approach yielded v ~ 0.0392, resulting in 0.85
AUC on the test split, a modest drop from the 0.91
AUC achieved when member labels were avail-
able. Although performance was slightly lower, the
method still achieved strong results, demonstrating
its potential for practical real-world applications
even under limited knowledge conditions.

A.3.2 Domain Mismatch Test

To check the transferability of the threshold, we ap-
plied the same v = 0.0392 to a maths corpus from
MIMIR (DM Mathematics). Performance dropped
sharply (AUC < 0.60), showing that score distri-
butions differ across domains. The same effect ap-
pears when switching models: each model-dataset
pair needs its own calibrated threshold.

12

A.3.3 Recommendation

Thresholds should be recalibrated whenever the
target model or data domain changes. A small,
trustworthy non-member dev set from the intended
domain is sufficient; no labelled members are re-
quired.

A.4 Generalization to Chinese Texts

To test whether Tag&Tab can generalize to a
non-Latin language with a fundamentally dif-
ferent structure, we evaluated it on a Chinese
text using the PatentMIA dataset (Zhang et al.,
2024b), which contains patents sourced from
Google Patents (Google, 2006). This evaluation
was performed using the Qwen1.5-14B model®, an
open-source LLM developed by Alibaba Cloud,
optimized for Chinese and multilingual understand-
ing (Cloud, 2024). The method still achieved a
meaningful signal (AUC = 0.6), but it did not sur-
pass the strongest baseline (DC-PDD, 0.69 AUC).
We attribute this gap to structural differences be-
tween Chinese and English, such as the absence
of explicit word boundaries and different entropy

8https://huggingface.co/Qwen/Qwen1.5-14B



distributions, which diminish the effectiveness of
our current keyword—entropy heuristic.

A.5 Robustness to Adversarial and
Distributional Perturbations

To evaluate the robustness of Tag&Tab against mi-
nor textual modifications, we conducted an exper-
iment where 2-5 words per sample in the Book-
MIA dataset were replaced with suitable synonyms.
These changes preserved the original meaning
while altering the lexical form, simulating both
adversarial-style perturbations and natural distribu-
tion shifts.

We evaluated the impact of these modifications
across LLaMA-7B, LLaMA-13B, LLaMA-30B,
Pythia-6.9B, and Pythia-12B models. In all cases,
we used Tag&Tab with K = 4 keywords.

The results, presented in Table 4, show that
Tag&Tab exhibits only a minor performance drop
of 1-2% in AUC across all models. These find-
ings confirm that the method remains effective
even when the exact data distribution is unknown,
demonstrating resilience to small-scale semantic-
preserving shifts.

Table 4: Robustness of Tag&Tab (K=4) under synonym-
based perturbations on the BookMIA dataset.

Model Original AUC Perturbed AUC
LLaMa-7B 0.69 0.68
LLaMa-13B 0.78 0.76
LLaMa-30B 0.91 0.89
Pythia-6.9B 0.72 0.71
Pythia-12B 0.75 0.73
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