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Abstract001

Large language models (LLMs) have become002
essential tools for digital task assistance. Their003
training relies heavily on the collection of vast004
amounts of data, which may include copyright-005
protected or sensitive information. Recent stud-006
ies on detecting pretraining data in LLMs have007
primarily focused on sentence- or paragraph-008
level membership inference attacks (MIAs),009
usually involving probability analysis of the tar-010
get model’s predicted tokens. However, these011
methods often exhibit poor accuracy, failing012
to account for the semantic importance of tex-013
tual content and word significance. To address014
these shortcomings, we propose Tag&Tab, a015
novel approach for detecting data used in LLM016
pretraining. Our method leverages advanced017
natural language processing (NLP) techniques018
to tag keywords in the input text—a process019
we term Tagging. Then, the LLM is used to020
obtain probabilities for these keywords and cal-021
culate their average log-likelihood to determine022
input text membership, a process we refer to023
as Tabbing. Our experiments on four bench-024
mark datasets (BookMIA, MIMIR, PatentMIA,025
and the Pile) and several open-source LLMs of026
varying sizes demonstrate an average increase027
in AUC scores ranging from 5.3% to 17.6%028
over state-of-the-art methods. Tag&Tab not029
only sets a new standard for data leakage detec-030
tion in LLMs, but its outstanding performance031
is a testament to the importance of words in032
MIAs on LLMs.033

1 Introduction034

The rapid advancement of generative artificial in-035

telligence (GenAI) in recent years has significantly036

shifted the tech industry’s focus toward the devel-037

opment of powerful tools such as large language038

models (LLMs).039

LLMs are now widely used for tasks such as040

conversational AI, content generation, and scien-041

tific research (Hoang et al., 2019; Nakano et al.,042

2021; OpenAI, 2022; Touvron et al., 2023). Their043

adoption reflects a broader shift in AI towards large- 044

scale language understanding. 045

The widespread use of LLMs has intensified 046

competition to improve model performance, which 047

relies on collecting vast amounts of data (Wang 048

et al., 2023). 049

To achieve these improvements, LLMs are 050

primarily trained on open-source datasets ob- 051

tained from various sources using methods such 052

as synthetic data generation and web scrap- 053

ing (Nikolenko, 2021; Khder, 2021). The type 054

of data collected may include books, code, aca- 055

demic papers, and medical records (Axon, 2024; 056

Gao et al., 2020; Achiam et al., 2023; Touvron et al., 057

2023). The methods employed for data collection 058

raise significant privacy and ethical concerns (Neel 059

and Chang, 2023; Yao et al., 2024), primarily re- 060

garding the inclusion of personally identifiable in- 061

formation (PII) (Lukas et al., 2023) and copyright- 062

protected contents. (Rahman and Santacana, 2023; 063

Wu et al., 2024; Axon, 2024). 064

High-profile lawsuits, such as The New York 065

Times vs. OpenAI (Times, 2023), highlight the 066

need for tools that can detect unauthorized use of 067

data in LLM training (Maini et al., 2024). 068

Membership inference attacks (MIAs) aim to 069

identify whether a given text was part of a model’s 070

training data by exploiting behavioral differences in 071

how LLMs process seen versus unseen data (e.g., 072

higher prediction confidence or lower loss) (Hu 073

et al., 2022; Carlini et al., 2022a). However, ex- 074

isting MIAs face several key limitations. First, 075

most methods rely solely on token-level probabili- 076

ties, neglecting the semantic importance of words 077

within the broader context (Yeom et al., 2018; Car- 078

lini et al., 2021). Second, their performance varies 079

widely across different models and datasets, of- 080

ten lacking consistent generalization (Duan et al., 081

2024; Maini et al., 2024). Lastly, MIAs are of- 082

ten evaluated on data that is not independently and 083

identically distributed (IID), which can lead to the 084
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detection of distribution shifts rather than genuine085

membership inference, thereby undermining the086

attacks’ reliability (Zhou et al., 2023).087

To address the limitations of existing methods,088

we introduce Tag&Tab, a novel approach based on089

common natural language processing (NLP) meth-090

ods that is designed to efficiently and effectively091

detect LLMs’ pretraining data. Specifically, our092

method aims to determine whether an LLM was093

trained on a given text sample, given black-box094

access to the target LLM (i.e., can only query the095

model).096

Building on the work of Lukas et al. (Lukas et al.,097

2023), who highlighted the role of named entities098

in PII leakage detection, Tag&Tab prioritizes infor-099

mative keywords using entropy-based selection.100

Tag&Tab is designed to address the three key101

limitations of prior MIA methods. First, rather102

than relying solely on token-level perplexity, our103

method introduces semantic awareness by prioritiz-104

ing meaningful content through keyword selection.105

Second, our results demonstrate strong generaliza-106

tion across models and datasets, addressing the is-107

sue of model inconsistency. Finally, while no MIA108

is entirely immune to distribution shifts, our focus109

on rare and informative keywords, rather than shal-110

low statistical artifacts, provides better resilience111

to distributional variations.112

Our method consists of the following steps:113

1. Preprocessing - Constructing a word entropy114

map and filtering certain sentences to ensure115

optimal keyword selection.116

2. Tagging - Identifying the high-entropy words117

in the text and selecting the K words with the118

highest entropy value, referred to as keywords.119

3. Tabbing - Passing the entire text to the tar-120

get LLM and calculating the average log-121

likelihood of these K keywords.122

4. Inference - Comparing the average log-123

likelihood to a threshold to determine the124

text’s membership (i.e., whether it was in the125

inspected model training set).126

Our method is based on the intuition that a127

higher log-likelihood for challenging-to-predict128

high-entropy keywords suggests the model encoun-129

tered the text during training (Carlini et al., 2022b)130

Based on this intuition, we hypothesize that these131

rare keywords are more likely to be memorized132

by the model and thus serve as effective indica- 133

tors of the text’s membership in the pretraining 134

dataset (Thakkar et al., 2021; Carlini et al., 2019). 135

By selecting a small number of high-entropy key- 136

words, our method captures the most informative 137

text elements while minimizing noise from other 138

word probabilities. 139

We evaluated our method on ten LLMs of vary- 140

ing sizes and across four datasets containing 9 types 141

of textual data. Our results show that Tag&Tab out- 142

performs state-of-the-art (SOTA) MIAs, achieving 143

an average increase in AUC scores ranging from 144

5.3% to 17.6% compared to the best-performing 145

SOTA method across multiple textual data types. 146

The contributions of our paper are as follows: 147

• We propose Tag&Tab, a novel approach for 148

the detection of LLMs’ pretraining data that 149

focuses on the contextual and semantic rele- 150

vance of the words in a text, and opens the 151

door to additional research on MIAs against 152

LLMs. 153

• To our knowledge, this is the first robust 154

reference-free MIA method to achieve high 155

and consistent performance across multiple 156

textual data types and LLMs, outperforming 157

SOTA methods. 158

• Our approach is both resource- and time- 159

efficient. Unlike reference-based attacks that 160

require training a separate model or reference- 161

free methods that depend on auxiliary mod- 162

els (e.g., the Neighbor attack (Mattern et al., 163

2023)), Tag&Tab operates without any addi- 164

tional model training or inference. This mini- 165

mizes computational overhead and simplifies 166

deployment in real-world scenarios. . 167

2 Related Work 168

Membership inference (MI) (Shokri et al., 2017) 169

is a classification task that determines whether a 170

data sample x was part of a model’s training Dtrain 171

of a model f . An attacker receives a sample x 172

and a model f , and applies an attack model A to 173

classify x as a member x ∈ Dtrain if A(f(x)) = 1; 174

otherwise, x is classified as a non-member x /∈ 175

Dtrain. 176

Large language model membership inference 177

is a subdomain of membership inference that has 178

gained increasing research attention. Within this 179

subdomain, detecting pretraining data has been 180
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Figure 1: Illustration of the Tag&Tab method - The process starts by inputting a text (in this example, the input is
the conclusion of the well-known poem “The Road Not Taken" (Frost, 1916)) in the target LLM to obtain its word
probability distribution (word probability). In the tag step, the keywords are selected based on the words’ entropy
value (created in the preprocessing phase). In the tab step, the log-likelihood of the selected keywords is calculated.
Finally, in the infer step, the average log-likelihood of the chosen keywords is compared against a threshold γ to
determine if the text was part of the target LLM’s pretraining data.

the focus of numerous studies exploring different181

methodologies for determining whether specific182

texts were included in an LLM’s training dataset.183

Existing MIAs for LLMs fall into two categories:184

reference-based and reference-free.185

Reference-based (Shokri et al., 2017) meth-186

ods compare a target model’s outputs to those of187

reference models, which are typically trained on188

the same data distribution. One such method is189

LiRA (Carlini et al., 2022a), which estimates the190

likelihood ratio of a target example’s loss under191

models trained with and without the example, using192

Gaussian distributions to simplify the computation.193

In contrast, reference-free methods aim to194

determine membership by applying different195

probability-based calculations on token predictions.196

One such method, the LOSS Attack (Yeom et al.,197

2018), uses model loss values, which in language198

models correspond to text perplexity. Perplexity199

measures how well a probability model predicts a200

sample and is calculated as the exponentiation of201

the negative average log-likelihood per token:202

Perplexity(P ) = exp

(
− 1

N

N∑
i=1

logP (ti | t1, . . . , ti−1)

)
203

where N is the number of tokens, and P (ti |204

t1, . . . , ti−1) is the conditional probability of the205

i-th token given its preceding tokens. The attack206

assumes that lower perplexity indicates a text is207

more familiar to the model, suggesting it was part208

of the training set. The Zlib attack, as presented209

by Carlini et al. (Carlini et al., 2021), infers 210

membership by calculating the ratio of a text’s log- 211

likelihood to its Zlib compression length. Newer 212

attacks, such as the Neighbor attack (Mattern et al., 213

2023), modify selected words in a given text using 214

a different language model to generate ’neighbor’ 215

sentences, then compare the original text’s perplex- 216

ity to that of its neighbors. Although the Neighbor 217

attack showed some success, its computational cost 218

is very high compared to other known methods. 219

More computationally efficient attacks that outper- 220

form the Neighbor attack include Min-K% (Shi 221

et al., 2023), and Min-K%++ (Zhang et al., 2024a), 222

which focus on the least confident model predic- 223

tions. Min-K% calculates the average of the low- 224

est k% probabilities from the model’s output, and 225

Min-K%++ extends this by normalizing token log 226

probabilities using the mean and variance. Lastly, 227

two recently published attacks are RECALL (Xie 228

et al., 2024), which measures the relative change 229

in log-likelihood when conditioning the target text 230

on non-member prefixes, and DC-PDD (Zhang 231

et al., 2024b), which calibrates token probabilities 232

using divergence from a reference corpus, effec- 233

tively mitigating the impact of high-frequency to- 234

kens. While each of these attacks has demonstrated 235

success on some datasets and models, their perfor- 236

mance remains inconsistent across different studies. 237

However, recent research performed by Maini et 238

al. (Maini et al., 2024) showed that aggregating the 239

results of multiple MIAs improves the accuracy of 240

dataset membership inference. While promising, 241
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these findings suggest that the success of this aggre-242

gated approach in real-world scenarios depends on243

improved MIAs, meaning attacks achieving AUC244

scores above 0.5.245

Common models for evaluating MIAs on LLMs246

include open-source models with known pretrain-247

ing data. One such model is LLaMA 1 (Touvron248

et al., 2023), created by Meta, which was trained on249

a mixture of publicly available datasets, including250

certain subsets of the Pile such as C4, GitHub, and251

many more, according to Meta’s original paper and252

the MIMIR dataset (Duan et al., 2024).253

The open-source Pythia model suite (Biderman254

et al., 2023), which includes eight LLMs ranging255

from 70M to 12B parameters. These models were256

trained on data including the Pile dataset, with all257

models processing the public data in the same order258

during training.259

3 Method260

We introduce Tag&Tab, a novel resource- and time-261

efficient method for identifying data used to pre-262

train LLMs. Tag&Tab applies common NLP tech-263

niques to tag keywords in the pretraining data and264

predict their occurrence using the target LLM.265

Our method strategically selects words from the266

input that should be challenging for the LLM to267

predict. Successful prediction may indicate that268

the model previously learned the input’s content269

during pretraining. In Tag&Tab, words are selected270

according to their entropy values. A high entropy271

value indicates that a word is less common in the272

input text compared to other words. Since LLMs273

tend to memorize rare or unique pretraining data,274

high-entropy words are more likely to be mem-275

orized (Carlini et al., 2022b), particularly in the276

context of their preceding words. Thus, the LLM is277

likely to assign higher probabilities to these words278

if it was trained on them, compared to high-entropy279

words in unfamiliar contexts.280

Tag&Tab selects K words with the highest en-281

tropy value in a sentence, which are referred to as282

keywords. By selecting a small number of infor-283

mative keywords, we aim to capture the semantic284

importance of the pretraining content. This ap-285

proach hinges on a hypothesis that only K selected286

keywords are needed to accurately predict the mem-287

bership of the entire input text in the pretraining288

data, minimizing noise from other words in the289

input text (Shi et al., 2023).290

Tag&Tab operates under black-box constraints,291

meaning we can observe token probabilities from a 292

given input but lack access to the model’s weights, 293

which is standard practice in MIAs (Truex et al., 294

2019; Hu et al., 2022; Mattern et al., 2023; Zhang 295

et al., 2024a). 296

The Tag&Tab method consists of four stages, 297

which are illustrated in Figure 1: 298

1. Preprocessing - First, the word entropy map 299

is constructed using the Python package word- 300

freq (Speer, 2022), which provides frequency 301

estimates for words in a specified language. 302

The entropy for each word is calculated using 303

the formula: 304

E(wi) = p(wi) · log2 p(wi) 305

In the preprocessing stage, the text is also split 306

into individual sentences, using segmentation 307

tools (e.g., the NLTK package (Bird et al., 308

2009)). To avoid selecting less informative 309

keywords due to insufficient sentence length, 310

sentences with fewer than a specified number 311

of words are filtered out. 312

2. Tagging - From each sentence S in the text 313

file T , K keywords are selected, targeting 314

named entities (e.g., people, organizations, 315

locations) and words with high entropy val- 316

ues. This selection is based on the word 317

entropy map for high-entropy words, and 318

named entities are identified during this pro- 319

cess. Named entities are identified using tools 320

such as spaCy (Honnibal and Montani, 2017). 321

The final set of keywords consists of the union 322

of the named entities and the high-entropy 323

words. 324

3. Tabbing - This stage mimics the auto- 325

completion feature found in interfaces like 326

a command line, where it predicts and fills 327

in the rest of the command based on the con- 328

text of the preceding input. Using the tar- 329

get model M , we compute the log-likelihood 330

of the entire text, then focus on the previ- 331

ously identified keywords. For each sentence 332

S ∈ T consisting of n words w1, w2, . . . , wn, 333

where each word wi is decomposed into to- 334

kens, denoted as wi = ti1 , ti2 , . . . , tim ,token 335

tij , given its preceding tokens, is calcu- 336

lated as log pM (tij |ti1 , . . . , tij−1). We de- 337

fine the log-likelihood of a word wi us- 338

ing the log-likelihood of its first token ti1 339
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given its preceding tokens, expressed as340

log pM (ti1 |t11 , t12 , . . . , ti−1j ). As a result,341

we obtain:342

log pM (wi | ·) = log pM (ti1 | ·)343

The method selects the K keywords from S344

and computes the average log-likelihood of345

the keywords:346

Keywords’ Prob(S) =
1

K

∑
wi∈Keywords(S)

log pM (wi|·)347

4. Inferring - In this stage, the method calcu-348

lates the average probability of the keywords349

across all sentences in text T and compares it350

to a predetermined threshold γ, to determine351

membership.352

4 Evaluation353

This section presents a detailed evaluation of354

Tag&Tab’s effectiveness. The experiments were355

conducted on a single NVIDIA RTX 6000 GPU,356

running for nearly three days in total across all357

models and datasets. We used the default parame-358

ter settings of widely adopted libraries, including359

spaCy and NLTK.360

4.1 Model Comparison361

To compare Tag&Tab with other reference-free362

baseline detection methods, we examined various363

open-source LLMs, including LLaMA 1 (7B, 13B,364

30B) (Touvron et al., 2023), Pythia (160M, 1.4B,365

2.8B, 6.9B, 12B) (Biderman et al., 2023), and366

Qwen-1.5-14B (Cloud, 2024). Additionally, we367

included GPT-3.5 Turbo1 (trained on data up to368

September 20212), given partial knowledge of its369

training on known books, as discussed in previous370

studies (Shi et al., 2023; Chang et al., 2023). Our371

black-box assumption still holds because the Ope-372

nAI API exposes token-level log probabilities for373

this model. LLaMA 1 and Pythia are well-suited374

for MIA evaluation due to their transparency re-375

garding pretraining datasets, unlike newer models376

such as LLaMA 2 and 3, which lack such trans-377

parency.378

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://learn.microsoft.com/en-us/azure/ai-

services/openai/concepts/models

4.2 Dataset Comparison 379

The experiments were conducted on the Book- 380

MIA3 (Shi et al., 2023), The Pile4 (Gao et al., 381

2020), and MIMIR5 (Duan et al., 2024) datasets, 382

meeting the requirement that MIA evaluation 383

datasets should be as comprehensive and diverse 384

as possible (Duan et al., 2024), covering diverse 385

text types while maintaining consistent distribution 386

between training and test sets. 387

The Pile is a collection of diverse textual sources 388

designed to train and evaluate LLMs using open- 389

source data, from which we used 10,000 samples 390

each for training and testing from each domain. 391

BookMIA evaluates MIAs on books known to have 392

been memorized by GPT-3.5 Turbo, along with 393

newly published books from 2023, using 5,000 394

samples each for the member and non-member sets. 395

Notably, 34 of the 50 ’member’ books in BookMIA 396

overlap with the Gutenberg dataset, which was also 397

part of the training corpora for models like Pythia 398

and LLaMA 1. MIMIR is a dataset built from The 399

Pile, designed to evaluate memorization in LLMs. 400

It contains data known to have been used in train- 401

ing across all Pythia model sizes, offering a unified 402

benchmark for assessing membership inference. In 403

our evaluation, we utilized around 2,000 samples 404

per domain, combining approximately 1,000 ’mem- 405

ber’ and 1,000 ’non-member’ samples. 406

Finally, we ran a dedicated non-Latin evaluation 407

on the Chinese-language PatentMIA (Zhang et al., 408

2024b) corpus with the Qwen1.5-14B model. The 409

setup and results are discussed in Appendix A.4. 410

It is important to note that we opted not to evalu- 411

ate our method on the WikiMIA dataset6 (Shi et al., 412

2023), as recent publications (e.g., (Maini et al., 413

2024)) questioned the reliability of the data, due to 414

temporal shifts in writing styles and an insufficient 415

number of samples. 416

4.3 Evaluation Approach 417

To assess our method’s performance, we followed 418

a systematic process that begins with the input 419

dataset. Each text file in the dataset is processed, 420

with every sentence truncated to a maximum of 421

2,048 tokens to ensure a consistent input size. Sen- 422

tences with fewer than seven words are excluded. 423

We identify and save the top-K keywords for every 424

3www.huggingface.co/datasets/swj0419/BookMIA
4www.huggingface.co/datasets/monology/

pile-uncopyrighted/viewer/default/validation
5www.huggingface.co/datasets/iamgroot42/mimir
6www.huggingface.co/datasets/swj0419/WikiMIA
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sentence based on their entropy values. We docu-425

mented the outcomes of selecting 1 to 10 keywords426

per sentence.427

After selecting the top-k keywords, the entire428

text is processed by the target model, which out-429

puts probability distributions for each token. Then430

we average the log-likelihoods of all tokens in the431

keywords, conditioned on their preceding tokens,432

assessing the model’s familiarity with the entire433

keyword.434

Following Carlini et al.’s evaluation process (Car-435

lini et al., 2022a), we set a threshold to assess attack436

performance, focusing on TPR at low FPR, denoted437

as T@F.438

We also report the area under the ROC curve439

(AUC score) to provide a clearer measure of de-440

tection performance. The AUC score quantifies441

the overall performance of a classification method442

by considering TPRs and FPRs at all classification443

thresholds. Since AUC offers a comprehensive,444

threshold-independent evaluation metric, we do445

not need to determine a specific threshold γ for our446

method.447

To simulate a real-world application, Ap-448

pendix A.3 details how we pick a working thresh-449

old γ when only non–member data from the same450

domain are available. The appendix further shows451

that applying this book-derived threshold to a differ-452

ent domain (mathematics) degrades performance,453

so γ must be recalibrated for every model–dataset454

pair.455

4.4 Comparison with Baseline Methods456

To benchmark Tag&Tab’s performance, we com-457

pared it with SOTA reference-free methods for458

detecting pretraining data. The baseline meth-459

ods included LOSS Attack, Zlib Attack, Neigh-460

bor Attack, Min-K% Prob, Min-K%++ Prob, Max-461

K%Prob, RECALL, DC-PDD. A detailed descrip-462

tion of these attacks can be found in the Related463

Work section.464

5 Results465

This section presents two case studies using466

Tag&Tab, each examining a different aspect of pre-467

training data detection in LLMs. Each case study468

is evaluated using AUC and TPR at a low FPR of469

5% (T@F=5%).470

Throughout this section, we report results for471

Tag&Tab using K = 4 and K = 10, as472

these values yielded the most consistent and high-473

performing outcomes across models and datasets. 474

This choice is supported by the analysis presented 475

later in Figure 2, which shows that Tag&Tab per- 476

forms robustly for values of K between 4 and 477

10, with minimal performance variation—making 478

the method resilient to non-optimal keyword selec- 479

tions. 480

The reported results are based on a single run, 481

as we observed minimal variation across multiple 482

runs. 483

5.1 Case Study 1: Detecting Specific 484

Pretraining Data in LLMs 485

This case study focuses on the precision of detect- 486

ing specific pretraining data in LLMs. We designed 487

a targeted attack to infer whether copyrighted data 488

was part of the model’s pretraining. Unlike Case 489

Study 2, member and non-member data come from 490

different sources. Using the BookMIA dataset, we 491

simulate partial knowledge of a model’s pretraining 492

data to infer specific text files suspected of being 493

included in the target model’s training set. For 494

validation, we selected non-members from books 495

published after the target model’s release, thus en- 496

suring they were not part of its pretraining data. 497

To determine the optimal number of keywords to 498

select, we evaluate the results by selecting between 499

1 and 10 keywords from each sentence The results 500

shown in Figure 2 demonstrate that the optimal 501

number of keywords required to ensure effective 502

detection depends on the model architecture. As 503

observed, for different sizes of the LLaMa 1 mod- 504

els, the optimal number of keywords ranged from 505

2 to 3, while for the Pythia models and GPT-3.5 506

turbo, the optimal number of tagged keywords was 507

7. The best results across all models were achieved 508

with K = 4, yielding an average AUC score of 0.8. 509

Table 1 summarizes the results of Tag&Tab and 510

reference-free baseline attacks. 511

The main insights from these results are as follows: 512

• Tag&Tab outperforms all other attacks in 513

AUC, with an average improvement of 514

5.3%–17.6% over baseline methods when 515

K = 4. 516

• Tag&Tab (K = 4) outperforms other at- 517

tacks in T@F=5% on LLaMa-7B and LLaMa- 518

13B models. However, for most other mod- 519

els, the DC-DPP attack performs better, with 520

Tag&Tab consistently ranking second. 521
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Method LLaMa-7b LLaMa-13b LLaMa-30b Pythia-6.9b Pythia-12b GPT-3.5 Average

AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5

Neighbor 0.65 0.27 0.71 0.38 0.90 0.73 0.65 0.26 0.71 0.36 0.96 0.88 0.76 0.48
Loss 0.59 0.25 0.70 0.43 0.89 0.74 0.62 0.24 0.69 0.32 0.97 0.90 0.74 0.48
Zlib 0.53 0.22 0.67 0.42 0.89 0.74 0.55 0.19 0.61 0.25 0.96 0.88 0.70 0.45
Min-20.0% Prob 0.61 0.24 0.70 0.42 0.87 0.70 0.65 0.25 0.70 0.34 0.95 0.86 0.75 0.47
MinK++-20.0% Prob 0.60 0.23 0.68 0.38 0.78 0.60 0.59 0.20 0.56 0.20 0.95 0.86 0.69 0.41
Max-20.0% Prob 0.51 0.15 0.66 0.34 0.87 0.69 0.51 0.13 0.59 0.20 0.96 0.91 0.68 0.40
ReCaLL 0.58 0.22 0.70 0.42 0.84 0.64 0.66 0.29 0.72 0.37 0.74 0.50 0.70 0.41
DC-PDD 0.61 0.27 0.71 0.47 0.88 0.77 0.68 0.34 0.74 0.44 0.95 0.89 0.76 0.53

Ours (Tag&Tab K=4) 0.69 0.28 0.78 0.48 0.91 0.76 0.72 0.30 0.75 0.36 0.97 0.90 0.80 0.51
Ours (Tag&Tab K=10) 0.67 0.26 0.77 0.46 0.91 0.77 0.72 0.30 0.76 0.36 0.96 0.87 0.80 0.50

Table 1: Detection of data from the BookMIA dataset used in pretraining seven models using Tag&Tab and six
baseline MIAs, evaluated in terms of AUC and T@F=5%. All results are reported as decimal fractions. The last
two rows compare the Tag&Tab method when selecting four and ten keywords. The best results are bolded, and
second-best are underscored.

1 2 3 4 5 6 7 8 9 10
Number of Tagged Keywords

60

65

70

75

80

85

90

95

AU
C

Model
LLaMa1-7b
LLaMa1-13b
LLaMa1-30b
Pythia-6.9b
Pythia-12b
GPT-3.5 Turbo
Average

Figure 2: AUC scores as a function of the number of
tagged keywords for the examined models on the Book-
MIA dataset. Yellow dots indicate optimal performance:
2-3 keywords for LLaMa 1, 7 for Pythia and GPT-3.5
turbo, and 4 on average (AVG).

• As the size of the tested LLM increases, the522

AUC scores of the MIAs also increase due to523

the model’s memorization capacity (Carlini524

et al., 2022b). This can be seen in the results525

for Tag&Tab which achieved very high AUC526

scores: (1) 0.91 on LLaMa-30b compared to527

0.69 on LLaMa-7b, (2) 0.75 on Pythia-12b528

compared to 0.72 Pythia-6.9b, and (3) 0.97 on529

GPT-3.5 Turbo, the largest model tested.530

5.2 Case Study 2: Detecting Various Types of531

Pretraining Data in LLMs532

This case study evaluates Tag&Tab’s effectiveness533

and robustness in detecting different types of pre-534

training data in LLMs. We evaluate our method on535

various sizes of the Pythia model and compare its536

effectiveness against baseline attacks on seven text537

types in the Pile dataset. Table 2 summarizes the 538

results obtained when targeting five Pythia model 539

sizes ranging from 160M to 12B parameters, tested 540

with two configurations of tagged keywords: 4 and 541

10. 542

The main insights from these results are as follows: 543

• Tag&Tab (K = 4) outperforms all baseline 544

methods on average across the evaluated mod- 545

els, establishing itself as the most effective ap- 546

proach overall. Tag&Tab (K = 10) ranks as 547

the second-best method, demonstrating strong 548

performance but falling short of the results 549

achieved with K = 4. 550

• Notably, Tag&Tab (K = 4) achieves either 551

the best or second-best results in the majority 552

of textual data types that were tested. Even 553

when it does not lead, its performance remains 554

competitive, offering a robust alternative to 555

the leading method. 556

• While Tag&Tab (K = 10) selects more key- 557

words, increasing the number of probabilities 558

considered for text membership inference, its 559

results are consistently lower than those of 560

Tag&Tab when K = 4. This supports the 561

hypothesis that selecting a smaller number of 562

keywords allows the method to extract noise- 563

free information from the model. 564

We also observe that certain formal texts, such 565

as mathematical proofs, may contain fewer named 566

entities or conventional keywords. However, they 567

often feature domain-specific terminology or sym- 568

bolic expressions that carry strong membership 569

signals. This is evidenced by our results on the 570
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Table 2: Comparison of AUC results for Tag&Tab and baseline methods on the MIMIR and Pile benchmarks.
The upper table presents the best results from Tag&Tab and baseline methods across four MIMIR datasets, while
the lower table shows the best results for four Pile datasets. The best results for each dataset and model size are
highlighted in bold, and the second-best AUC is underscored.

Method
DM Mathematics Github Pile CC C4

160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B

Loss 0.85 0.76 0.84 0.68 0.86 0.80 0.85 0.86 0.88 0.88 0.53 0.54 0.54 0.55 0.55 0.50 0.51 0.51 0.51 0.51
Zlib 0.68 0.59 0.66 0.55 0.69 0.84 0.88 0.89 0.90 0.90 0.51 0.53 0.53 0.54 0.54 0.51 0.51 0.51 0.51 0.51
Min-20% Prob 0.61 0.53 0.70 0.50 0.82 0.80 0.85 0.86 0.88 0.88 0.52 0.53 0.54 0.55 0.55 0.51 0.51 0.51 0.51 0.50
Max-20% Prob 0.63 0.67 0.61 0.58 0.51 0.78 0.85 0.85 0.87 0.86 0.52 0.53 0.53 0.53 0.54 0.51 0.50 0.50 0.50 0.50
Min-K++-20% Prob 0.81 0.79 0.66 0.81 0.73 0.57 0.57 0.61 0.63 0.66 0.51 0.50 0.52 0.53 0.53 0.52 0.51 0.51 0.50 0.50
RECALL 0.80 0.73 0.78 0.64 0.86 0.79 0.76 0.74 0.71 0.72 0.53 0.54 0.54 0.55 0.55 0.51 0.51 0.51 0.51 0.51
DC-PDD 0.90 0.86 0.86 0.85 0.86 0.87 0.91 0.92 0.93 0.93 0.54 0.55 0.56 0.57 0.57 0.51 0.51 0.51 0.51 0.51

Ours (Tag&Tab K=4) 0.96 0.96 0.96 0.95 0.95 0.78 0.82 0.83 0.84 0.85 0.54 0.56 0.56 0.57 0.57 0.53 0.52 0.52 0.52 0.51
Ours (Tag&Tab K=10) 0.92 0.92 0.93 0.92 0.95 0.79 0.83 0.84 0.85 0.86 0.55 0.56 0.56 0.57 0.56 0.53 0.52 0.52 0.52 0.51

Method
Ubuntu IRC Gutenberg EuroParl Average

160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B

Loss 0.63 0.59 0.60 0.58 0.58 0.53 0.53 0.53 0.53 0.53 0.52 0.52 0.50 0.52 0.51 0.67 0.67 0.69 0.66 0.70
Zlib 0.52 0.52 0.53 0.54 0.54 0.53 0.60 0.53 0.53 0.53 0.51 0.51 0.50 0.51 0.51 0.63 0.63 0.65 0.62 0.66
Min-20% Prob 0.58 0.57 0.52 0.51 0.52 0.53 0.53 0.53 0.53 0.60 0.53 0.54 0.52 0.50 0.51 0.61 0.61 0.65 0.61 0.69
Max-20% Prob 0.69 0.69 0.71 0.68 0.67 0.67 0.73 0.60 0.67 0.67 0.53 0.54 0.55 0.53 0.55 0.61 0.64 0.62 0.62 0.60
Min-K++-20% Prob 0.52 0.51 0.52 0.54 0.61 0.67 0.60 0.60 0.60 0.60 0.54 0.53 0.51 0.51 0.51 0.60 0.59 0.57 0.62 0.61
RECALL 0.72 0.64 0.69 0.64 0.60 0.53 0.80 0.67 0.73 0.80 0.51 0.51 0.51 0.55 0.57 0.67 0.64 0.65 0.62 0.68
DC-PDD 0.58 0.53 0.53 0.53 0.53 0.53 0.60 0.60 0.53 0.53 0.51 0.52 0.50 0.51 0.54 0.70 0.70 0.72 0.71 0.70

Ours (Tag&Tab K=4) 0.64 0.65 0.64 0.66 0.64 0.67 0.67 0.67 0.67 0.67 0.55 0.54 0.55 0.54 0.56 0.70 0.72 0.73 0.72 0.73
Ours (Tag&Tab K=10) 0.61 0.63 0.62 0.61 0.62 0.60 0.67 0.67 0.67 0.67 0.56 0.54 0.55 0.54 0.55 0.70 0.71 0.73 0.72 0.72

DM Mathematics subset (Table 2), where Tag&Tab571

maintained SOTA performance, achieving an AUC572

between 0.95 and 0.96.573

Despite outperforming baseline MIAs, the AUC574

achieved by Tag&Tab can still be relatively low575

in certain cases, hovering around 0.55. However,576

recent research by Maini et al. (Maini et al., 2024)577

shows that aggregating multiple MIAs improves578

dataset membership inference accuracy, emphasiz-579

ing the need for better attacks that achieve AUC580

over 0.5 for improved aggregated attack perfor-581

mance. Tag&Tab meets this criterion, making it a582

valuable component in an ensemble of MIAs for583

enhanced inference accuracy.584

To better understand our method’s performance,585

in Appendix A.1, we examined the impact of our586

method’s tagging stage by comparing the selec-587

tion of the highest K entropy words with a random588

token selection, observing that prioritizing the high-589

est K entropy words significantly enhances perfor-590

mance across all models, resulting in superior AUC591

scores.592

Finally, Appendix A.2 reports extra experiments593

on our tagging choices. Replacing our keywords594

with random tokens drops accuracy, confirming595

the value of informed selection. Using only596

named-entity tokens or only high-entropy tokens597

each improves on baselines, but combining the two 598

as Tag&Tab gives the strongest results. We also 599

tried ranking tokens with TF-IDF instead of en- 600

tropy, which led to noticeably lower performance. 601

6 Conclusion 602

We present Tag&Tab, a novel black-box method 603

for detecting pretraining data in LLMs. By focus- 604

ing on the semantic and contextual relevance of 605

words, the method enhances detection capabilities. 606

Tag&Tab outperforms SOTA attacks and consis- 607

tently achieves high performance across diverse 608

textual data types. Our comprehensive evaluation 609

spans eight textual data types from three datasets 610

(the Pile, MIMIR, and BookMIA) and six LLMs 611

of varying sizes and architectures (LLaMa 1-7b, 612

13b, 30b, Pythia-160m, 1.4b, 2.4b, 6.9b, 12b, GPT- 613

3.5 Turbo). Our study confirms that the selection 614

of high-entropy keywords improves membership 615

inference attack results, further validating our ap- 616

proach. Future work could extend Tag&Tab by 617

considering keyword context and placement within 618

documents. Additionally, developing new MIAs 619

that leverage advanced NLP techniques to assess 620

word significance could further improve the detec- 621

tion of pretraining data in LLMs. 622
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7 Limitations623

While Tag&Tab demonstrates strong performance624

in detecting pretraining data in LLMs, it has several625

limitations:626

1. Effectiveness Against Fine-Tuning:627

Tag&Tab is less effective in benchmark628

settings where MIAs are evaluated on models629

fine-tuned specifically on entire documents.630

This fine-tuning process involves targeted631

adaptation to a small set of documents, ampli-632

fying memorization across the entire input.633

In these evaluation scenarios, methods that634

consider a larger portion of the input text by635

aggregating probabilities from many tokens636

tend to achieve better inference performance,637

as they can capture memorization signals638

spread throughout the entire document. In639

contrast, Tag&Tab focuses on a small set of640

informative keywords, making it less suited641

for scenarios where fine-tuning amplifies642

memorization uniformly across all tokens.643

It is important to note that this evaluation644

setup does not reflect realistic pretraining data645

detection, where memorization patterns are646

typically more localized and sparse.647

2. Language Generalization: As shown in our648

experiments, Tag&Tab’s effectiveness is cur-649

rently limited to English texts. When ap-650

plied to other languages, such as Chinese, the651

method’s performance degrades. Extending652

Tag&Tab to multilingual settings requires fur-653

ther adaptation of the tagging process.654

3. Black-Box and Training Data Trans-655

parency: Tag&Tab assumes black-box access656

to LLMs that provide token-level probability657

outputs. While this is common for many com-658

mercial APIs, it is not guaranteed for all mod-659

els. Furthermore, newer open-source LLMs660

often do not disclose their exact pretraining661

datasets, making it challenging to construct re-662

liable member and non-member sets for eval-663

uation. This lack of transparency affects the664

applicability and benchmarking of MIAs, in-665

cluding ours, on recent models.666

8 Ethical Considerations667

Our primary goal is to improve the detection of sen-668

sitive pretraining data in LLMs, addressing critical669

issues like copyright violations and data misuse.670

However, we acknowledge that as an MIA tech- 671

nique, this method could be misused to compro- 672

mise privacy or extract sensitive information from 673

models. 674

To mitigate these risks, we carefully selected the 675

datasets used in our evaluations, ensuring they are 676

publicly available and free of personally identifi- 677

able information (PII) or other private data. Ad- 678

ditionally, our research follows ethical guidelines 679

and emphasizes the importance of transparency in 680

model training and evaluation. 681
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A Appendix878

Our code is available in our anonymous GitHub879

repository 7.880

A.1 The Impact of our Word Selection881

Method882

In Figure 3 we demonstrate the impact of our word883

selection method, Tag, which selects the highest884

7https://anonymous.4open.science/r/Tag-Tab-
0E80/README.md

K entropy words, compared to a random selec- 885

tion of words using the same Tab algorithm. The 886

dataset used for this evaluation was BookMIA. For 887

each model, we presented 10 results using the Tag 888

method (Blue) and 10 results using a random selec- 889

tion of words (Orange). The results indicate that 890

selecting the highest K entropy words improves 891

performance across all models. The Tag method 892

achieved an average AUC of 0.8, compared to an 893

average AUC of 0.64 with a random selection of 894

K words. This demonstrates the effectiveness of 895

the Tag method in enhancing model performance 896

by focusing on high-entropy words. 897

A.2 Ablation Study: Alternative Word 898

Selection Strategies 899

To further analyze the contribution of individual 900

word selection strategies, we conducted an ablation 901

study comparing several variants of our method 902

on the BookMIA dataset. Specifically, we evalu- 903

ated the following alternatives to the full Tag&Tab 904

method, all using K = 4 selected keywords: 905

• Entropy-Only: selecting the 4 highest en- 906

tropy tokens per sentence. 907

• NER-Only: selecting the first 4 named enti- 908

ties identified via spaCy per sentence. 909

• TF-IDF: selecting the top 4 tokens with the 910

highest TF-IDF scores per sentence. 911

We evaluated these variants across all tested 912

models except GPT-3.5 Turbo, including LLaMa- 913

7B, LLaMa-13B, LLaMa-30B, Pythia-6.9B, and 914

Pythia-12B. 915

The results, summarized in Table 3, show that 916

both Entropy-Only and NER-Only achieve com- 917

petitive performance, slightly below the combined 918

Tag&Tab method. The TF-IDF variant performed 919

notably worse, confirming that high-entropy and 920

named-entity tokens are more effective indicators 921

of membership when used together. These find- 922

ings validate our design choice of combining both 923

strategies for optimal pretraining data detection. 924

A.3 Threshold Calibration 925

A.3.1 Calibrating γ with No Member Labels 926

In a realistic “zero-knowledge” setting, we assume 927

no access to the model’s training data, but we can 928

still collect data that were definitely not seen dur- 929

ing training. This includes texts published after the 930

model’s release or synthetically generated samples. 931
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Figure 3: Comparison of Tag&Tab’s keyword selection against random selection across different K values. For each
model, we report AUC scores when selecting between 1 and 10 keywords per text using the Tag&Tab entropy-based
method (blue) and a random selection baseline (orange). Each bar represents the AUC achieved for a specific K
value. Results are shown for all evaluated models on the BookMIA dataset, including GPT-3.5 Turbo, as well as
the overall average (AVG). The plot highlights the consistent advantage of high-entropy keyword selection across
varying K values and model sizes.

Table 3: AUC scores of Tag&Tab and its ablated variants on the BookMIA dataset, all with K = 4 selected tokens.

Method LLaMa-7B LLaMa-13B LLaMa-30B Pythia-6.9B Pythia-12B

Tag&Tab 0.69 0.78 0.91 0.72 0.75
Entropy-Only 0.67 0.76 0.89 0.70 0.73
NER-Only 0.62 0.72 0.85 0.68 0.73
TF-IDF 0.60 0.68 0.81 0.65 0.67

To calibrate the decision threshold γ, we compute932

Tag&Tab scores on a set of known non-member933

samples and select γ based on the upper tail of the934

score distribution (e.g., the 95th percentile). This935

threshold is then used to flag samples that appear936

“member-like” relative to the known non-members.937

Using BookMIA with LLaMA-30B and K=4, this938

approach yielded γ ≈ 0.0392, resulting in 0.85939

AUC on the test split, a modest drop from the 0.91940

AUC achieved when member labels were avail-941

able. Although performance was slightly lower, the942

method still achieved strong results, demonstrating943

its potential for practical real-world applications944

even under limited knowledge conditions.945

A.3.2 Domain Mismatch Test946

To check the transferability of the threshold, we ap-947

plied the same γ = 0.0392 to a maths corpus from948

MIMIR (DM Mathematics). Performance dropped949

sharply (AUC < 0.60), showing that score distri-950

butions differ across domains. The same effect ap-951

pears when switching models: each model–dataset952

pair needs its own calibrated threshold.953

A.3.3 Recommendation 954

Thresholds should be recalibrated whenever the 955

target model or data domain changes. A small, 956

trustworthy non-member dev set from the intended 957

domain is sufficient; no labelled members are re- 958

quired. 959

A.4 Generalization to Chinese Texts 960

To test whether Tag&Tab can generalize to a 961

non-Latin language with a fundamentally dif- 962

ferent structure, we evaluated it on a Chinese 963

text using the PatentMIA dataset (Zhang et al., 964

2024b), which contains patents sourced from 965

Google Patents (Google, 2006). This evaluation 966

was performed using the Qwen1.5-14B model8, an 967

open-source LLM developed by Alibaba Cloud, 968

optimized for Chinese and multilingual understand- 969

ing (Cloud, 2024). The method still achieved a 970

meaningful signal (AUC = 0.6), but it did not sur- 971

pass the strongest baseline (DC-PDD, 0.69 AUC). 972

We attribute this gap to structural differences be- 973

tween Chinese and English, such as the absence 974

of explicit word boundaries and different entropy 975

8https://huggingface.co/Qwen/Qwen1.5-14B
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distributions, which diminish the effectiveness of976

our current keyword–entropy heuristic.977

A.5 Robustness to Adversarial and978

Distributional Perturbations979

To evaluate the robustness of Tag&Tab against mi-980

nor textual modifications, we conducted an exper-981

iment where 2–5 words per sample in the Book-982

MIA dataset were replaced with suitable synonyms.983

These changes preserved the original meaning984

while altering the lexical form, simulating both985

adversarial-style perturbations and natural distribu-986

tion shifts.987

We evaluated the impact of these modifications988

across LLaMA-7B, LLaMA-13B, LLaMA-30B,989

Pythia-6.9B, and Pythia-12B models. In all cases,990

we used Tag&Tab with K = 4 keywords.991

The results, presented in Table 4, show that992

Tag&Tab exhibits only a minor performance drop993

of 1–2% in AUC across all models. These find-994

ings confirm that the method remains effective995

even when the exact data distribution is unknown,996

demonstrating resilience to small-scale semantic-997

preserving shifts.998

Table 4: Robustness of Tag&Tab (K=4) under synonym-
based perturbations on the BookMIA dataset.

Model Original AUC Perturbed AUC

LLaMa-7B 0.69 0.68
LLaMa-13B 0.78 0.76
LLaMa-30B 0.91 0.89
Pythia-6.9B 0.72 0.71
Pythia-12B 0.75 0.73
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