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Abstract

Performative learning addresses the increasingly pervasive situations in which
algorithmic decisions may induce changes in the data distribution as a consequence
of their public deployment. We propose a novel view in which these performative
effects are modelled as push-forward measures. This general framework encom-
passes existing models and enables novel performative gradient estimation methods,
leading to more efficient and scalable learning strategies. For distribution shifts,
unlike previous models which require full specification of the data distribution,
we only assume knowledge of the shift operator that represents the performative
changes. This approach can also be integrated into various change-of-variable-
based models, such as VAEs or normalizing flows. Focusing on classification with
a linear-in-parameters performative effect, we prove the convexity of the perfor-
mative risk under a new set of assumptions. Notably, we do not limit the strength
of performative effects but rather their direction, requiring only that classification
becomes harder when deploying more accurate models. In this case, we also
establish a connection with adversarially robust classification by reformulating the
minimization of the performative risk as a min-max variational problem. Finally,
we illustrate our approach on synthetic and real datasets.

1 Introduction

Machine learning models are increasingly deployed in real-world scenarios where their predic-
tions can influence the users’ behaviors, thereby altering the underlying data distribution. This
phenomenon, though rooted in long-standing economic theory [Morgenstern, 1928, Muth, 1961],
has recently attracted interest in the machine learning community under the name of performative
prediction [Perdomo et al., 2020, Hardt and Mendler-Dünner, 2023]. Consider for instance a social
ranking system: if it consistently favors a particular subpopulation of individuals, user behavior might
shift towards mimicking the main characteristics of this subgroup or, conversely, some features of
this subpopulation can undergo modification as a consequence of the selection by the system, both
effects leading to subtle alterations of the original data distribution. More generally, performative
learning captures dynamics at stake in strategic classification, where individuals are confronted by
algorithmic decisions that impact their life – such as loan acceptance, college admission, probation –
and might thus try to overturn predictions by optimizing some of their features.

This feedback loop, where predictions influence future data, poses new challenges and necessitates
the development of novel approaches within statistical learning theory and practice [Perdomo et al.,
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2020, Jagadeesan et al., 2022, Drusvyatskiy and Xiao, 2023, Hardt and Mendler-Dünner, 2023,
Zezulka and Genin, 2023]. Perdomo et al. [2020] proposed to formalize performative learning as a
generalized risk minimization problem, with the performative risk being defined as

PR(θ) = Eθ[ℓ(Z; θ)], (1)
where ℓ is a loss function, θ a model’s parameters, and Z an observable random variable drawn from
a distribution Pθ also parametrized by θ itself. In light of the difficulty of minimizing PR(θ) directly,
one can define a decoupled performative risk as DPR(θ, θ′) = Eθ[ℓ(Z; θ′)], clarifying the interplay
between the model’s prediction and the distribution change. This can be seen as a Stackelberg game
that stabilizes when neither the modeler (learned parameters) nor the environment (distribution) has
incentive to change their states. Solving the performative learning problem consists in minimizing
this risk under the constraint that θ = θ′, because the testing samples will follow the distribution
corresponding to the deployed model, and thus PR(θ) = DPR(θ, θ). Minimizing DPR(θ, θ′) w.r.t.
θ′ for a fixed θ corresponds to the classical machine learning setting. In contrast, estimating the
performative effect, i.e., knowing how to optimize θ for a given θ′ is more challenging as, per
definition, one can only perform statistics from samples collected for values of the parameters θ for
which the model has already been deployed. Hence, performative learning does require some form
of counterfactual extrapolation, i.e., what will happen to the data distribution when the parameter θ
changes from its current setting?

Hence, instead of focusing on methods finding performatively optimal points, θPO ∈ argminPR(θ),
many previous works, following Perdomo et al. [2020], focus on finding stable points θPS ∈
argminDPR(θPS , θ), through methods that iteratively minimize the empirical risk. This line of
research is appropriate in settings where the performative effect can be tamed. If it is sufficiently
small, explicitly taking into account the performative changes of distribution is not required and
optimal and stable points will be close enough [Perdomo et al., 2020]. However, real use cases do
not always satisfy such strong assumptions (see further discussion in Section 4). In general, stable
points may not be good proxys for performatively optimal points, particularly in settings where the
performative effect cannot be bounded a priori.

Towards this goal, another line of research focuses on finding the optimal points θPO. Izzo et al.
[2022] propose to use Monte Carlo sample-based approximations of the gradient of the performative
risk, ∇θ PR(θ), based on the score function estimator (see Section 2 below). Miller et al. [2021]
use a two-stage approach that deploys random models to estimate the performative effect in the first
stage, and then minimizes the estimated performative risk in the second stage. A drawback of both of
these approaches is the restrictive set of assumptions needed to show that the algorithms converge.
While Izzo et al. [2022] assume the convexity of PR(θ) along with smoothness and boundedness
contitions, Miller et al. [2021] assume that the loss function is simultaneously strongly convex and
smooth. Moreover, the score function estimator of Izzo et al. [2022] necessitates full knowledge of a
parametric form of Pθ, which is unrealistic in practice. Alternatively, Jagadeesan et al. [2022] resort
to derivative-free (or zeroth-order) optimization strategies. However, such an approach is appropriate
only when it is possible to sequentially deploy a large number of model instances, and it does not
scale with the dimension of the parameter θ.

The present work is connected to the second line of the research explored above, where the focus is
on finding the optimal point θPO. Our contributions are as follows.

(i) Model the performative effect as a push-forward operator This novel approach provides a new
explicit expression of the performative gradient. Not only does this approach allow estimation of the
performative gradient in settings where previous methods couldn’t, but we show that in typical use
cases, the variance of this new estimator is significantly smaller.

(ii) Convexity for Performative Classification We then focus on the specific task of strategic classi-
fication, as this performative learning problem encompasses various real-use cases with important
societal impact such as college admission or credit decisions. Our second contribution is to provide
new convexity results on the performative risk in this case. Whereas existing results were only
proving convexity under assumptions restricting the performative effect to be small compared to the
(assumed) strong convexity of the loss function ℓ(z; θ), our results leverage structural assumptions on
the performative effect that ensure that the performative risk is convex without any restriction on the
strength of the performative effect.

(iii) Linking Performative and Robust Learning We establish a connexion between performative
learning and adversarially robust learning, paving the way to transferring robustness results to the
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performative learning field. In particular, this result gives new insights on the empirical evidence in
favor of using regularization in the presence of performative effets. Finally, we illustrate our findings
on synthetic and real-world datasets.

2 Push-forward Model for Performative Effects

In this section, we study the general performative learning setting without yet specializing it to the
classification context. In Section 2.1, we introduce the push-forward model of performative learning
and derive the expression of the gradient of the performative risk under this model. In Section 2.2, we
present a reparameterization-based estimator for the gradient of the performative risk, and compare it
to the score function based estimator considered by Izzo et al. [2022].

2.1 The Push-forward Model

We aim to minimize the performative risk defined in eq. (1), where the observation Z is drawn from
the distribution Pθ, which depends on the parameter θ ∈ Rp of the learning model. For this to be
tractable, one needs additional hypotheses on the nature of the performative effect. We propose to
represent the performative effect through a push-forward measure, which matches the intuition of
having an untouched distribution that is steered by the performative effect.

Assumption 1 (Push-forward Performative Model). For a given model parameter θ ∈ Rp, the
samples’ distribution under the performative effect is given by Pθ = φ(·; θ)♯P, where φ(·; θ) is a
differentiable invertible mapping on Rd, depending on θ.

This assumption can be equivalently stated by the probabilistic representation Z d
= φ(U ; θ), where

U ∼ P (the symbol d
= denoting equality in distribution). If P admits a density, then so does Pθ

with density function given by pθ(z) = |Jzψ(z; θ)|p(ψ(z; θ)) where ψ(·; θ) = φ−1(·; θ). In this last
formula, Jzψ(z; θ) refers to the Jacobian matrix where [Jzψ(z; θ)]ij =

∂ψ(z;θ)i
∂zj

.

From an abstract point of view, such a representation of a parametrized family of distributions
exists under very general conditions. However, the above model is more interesting in scenarios
where φ(·; θ) is a simple operator, for instance a linear one, as is the case in most of the examples
considered by Perdomo et al. [2020], Miller et al. [2021], and the dependence with respect to θ
can also be made explicit. This representation is also modular in the sense that φ could be chosen
as the composition φ(u; θ) = φ0(φ1(u; θ)), where φ−1

0 (Z) corresponds to a fixed (not depending
on θ) representation of Z in a feature space and φ1(·; θ) models the performative effect in the
representation space. Although we will not explicitly consider such cases in the rest of the paper,
this representation of the performative effect is particularly attractive when using embedding tools
based on kernels [Hofmann et al., 2008], neural nets (e.g., VAEs [Kingma and Welling, 2013]) or
normalizing flows [Papamakarios et al., 2021, Kobyzev et al., 2021].

This structural assumption on the performative effect yields a new estimator for the performative
gradient, which may be seen as an instance of the "reparametrization trick" used in VAEs, normalizing
flows or by Kucukelbir et al. [2017]. Mohamed et al. [2020] also refer to this approach as "pathwise"
gradient estimation.

Theorem 1 (Performative Risk Gradient). Under Assumption 1, the gradient of the performative risk
is given by

∇θ PR(θ) = Eθ [∇θℓ(Z; θ)] + Eθ
[
JTθ φ(ψ(Z; θ); θ)∇zℓ(Z; θ)

]
, (2)

where ∇zℓ(z; θ) and ∇θℓ(z; θ) denote respectively the gradient with respect to the first and the
second parameter of the loss, and JTθ φ(u; θ) is the transpose of the Jacobian with respect to θ.

Proof. Notice that under assumption 1, we can rewrite the decoupled risk with a change of variable
as DPR(θ, θ′) = E[ℓ(φ(U ; θ); θ′)]. This expression leads to the following.

∇θ PR(θ) = ∇θE[ℓ(φ(U ; θ); θ)] = E
[
∇θℓ(φ(U ; θ); θ) + JTθ φ(U ; θ)∇zℓ(φ(U ; θ)); θ)

]
,

which gives eq. (2) under a change of variable.
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2.2 Estimating the Performative Gradient

From Theorem 1, it is clear that the gradient of performative risk in eq. (2) is composed of two terms
– the first term corresponds to the classical risk minimization, while the second one – which we will
refer to as the performative gradient in the following – captures the performative effect. The first
term can be estimated by 1

n

∑n
i=1∇ℓ(Zi; θ) as usual. For the second term, we propose the following

estimator.

Definition 1 (Reparameterization-based Performative Gradient Estimator). The performative gradient
∇θ DPR(θ, θ′)|θ′=θ admits as unbiased estimator:

ĜRP
θ =

1

n

n∑
i=1

JTθ φ(ψ(Zi; θ); θ)∇zℓ(Zi; θ). (3)

This estimator allows performing gradient descent to minimize the performative risk and thus, if the
performative objective is well behaved, to converge to the performative optimal point. ĜRP

θ should be
compared to the following estimator used by Izzo et al. [2022], which relies on the well-known score
function formula –see [L’Ecuyer, 1991, Kleijnen and Rubinstein, 1996, Mohamed et al., 2020] and
references therein.

ĜSF
θ =

1

n

n∑
i=1

ℓ(Zi; θ)∇θ log pθ(Zi).

While both ĜRP
θ and ĜSF

θ estimate the same quantity ∇θ DPR(θ, θ′)|θ′=θ, ĜRP
θ has two distinct

advantages over ĜSF
θ . First, computing ĜSF

θ requires access to the analytical form of pθ, which
is fairly unrealistic in a learning scenario, whereas our estimator ĜRP

θ only requires knowledge of
φ, paving the way for a semi-parametric approach in which the performative effect is modelled
explicitly, but not the distribution of the data. For general maps φ, ĜRP

θ still requires to use the inverse
mapping ψ, however this is not required in situations where the Jacobian Jθ φ(u; θ) does not depend
on u. Specifically, when φ is a shift operator, one obtains a very simple expression for ĜRP

θ as shown
in the following example.

Example 1 (Shift Operator). If the performative effect can be modelled by a shift operator, i.e.,
φ(U ; θ) = U +Π(θ), the ĜRP

θ estimator is given by:

ĜRP
θ = JTθ Π(θ)

1

n

n∑
i=1

∇zℓ(Zi; θ),

where Jθ Π(θ) is the Jacobian of the performative shift Π(θ).

In addition to removing the need to know pθ, a second advantage of ĜRP
θ is that it can lead to

significant decrease of the variance of the estimates, as illustrated by the following example.

Example 2 (Perfomative Gaussian Mean estimation). Let ℓ(z; θ) = ∥z − θ∥2/2, and Z d
= U +Πθ,

that is, Π(θ) = Πθ is a linear shift operator. We will assume U ∼ N (0, σ2Id), so that pθ(z) ∝
exp[−∥z − Πθ∥2/(2σ2)], where Π represents the performative effect. The gradient of DPR(θ, θ′)
w.r.t. the distributional parameter θ is given both by

∇θ DPR(θ, θ′) = Eθ[ΠT∇zℓ(Z; θ′)] = ΠTEθ[Z − θ′] = ΠTE[U + a] (reparameterization)

= Eθ[ℓ(Z; θ′)∇θ log pθ(z)] = ΠT
1

2σ2
E
[
∥U + a∥2U

]
(score function)

where a = Πθ − θ′. Hence, in this case ĜRP
θ = ΠT 1

n

∑n
i=1(Ui + a), while ĜSF

θ =

ΠT 1
2nσ2

∑n
i=1 ∥Ui + a∥2Ui. Both of these expressions have equal expectation ΠT (Πθ − θ′) which

corresponds to the gradient of DPR(θ, θ′) w.r.t. θ. However, the reparametrization estimator ĜRP
θ

has covariance σ2ΠTΠ/n while the score-based estimator ĜSF
θ has covariance:

1

n
ΠT
(
(d2 + 6d+ 8)σ2 + 2(d+ 4)∥a∥2 + ∥a∥4/σ2

4
Id + aaT

)
Π.
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The details of this computation can be found in appendix A.1. Both estimators are unbiased but
note that while ĜRP

θ would always be an unbiased estimator of the performative gradient without
any further assumption on the distribution of U , the unbiasedness of ĜSFθ relies on the fact that U is
Gaussian. ĜRPθ has a covariance that does not depend on θ, θ′ nor on the dimension d. In contrast,
ĜSFθ ’s covariance includes a factor that increases with d2, making it unreliable in high dimensions. It
also includes additional terms that grow with the norm of Πθ − θ′, so the estimator becomes less
reliable when the performative effect is strong.

One could argue that the previous result does not provide a fair comparison between both estimators,
as GSF ’s variance can be reduced by subtracting a baseline. Indeed, G̃SF

θ = 1
n

∑n
i=1(ℓ(Zi; θ) −

m)∇θ log pθ(Zi) is also an unbiased estimator of the gradient of the performative effect (for any
choice of the baseline m), as the score function has, by definition, zero expectation. Tuning m
properly may reduce the variance by creating a so-called control variate —see, e.g., Greensmith
et al. [2004] for the use of this principle in policy gradient methods. However, similar calculations
(detailed in appendix A.1) show that the minimum covariance that can be achieved by subtracting a
baseline is

1

n
ΠT
((
(1 + d/2)σ2 + ∥a∥2

)
Id + aaT

)
Π,

which is still larger than the covariance of ĜRP
θ by a factor that grows with the model dimension d.

The fact that the reparameterization-based estimator is preferable when considering the Gaussian
distribution with quadratic loss function was observed before by Mohamed et al. [2020] in the scalar
case. The above computations however show that the difference between the two approaches gets
more and more significant as the dimension increases. The case of other distribution/loss function
combination still needs to be investigated.

3 Classification under Performative Shift

In this section, we specialize to the setting of binary classification which encompasses various
machine learning applications where performative effects are expected. Usually, this setting involves
a desirable class and an undesirable one. For example, the desirable class might represent college
admission, loan acceptance, no-spam email, or probation. In this setting, one can also expect that
individuals belonging to the favored class – we designate this as class 1 – do not need to alter their
features, or only with small changes. On the contrary, individuals with negative predictions – in class
0 – have an incentive to modify their features, resulting in a significant performative effect.

We particularize the arguments introduced in section 2 to the setting of binary classification, by fixing
z = (x, y), with a covariate vector x ∈ Rd and a label y ∈ {0, 1}. As is done classically —see, e.g.,
[Bach, 2024], we further assume that the classifier fθ(x) is a real valued function that depends on a
parameter θ ∈ Rp and that a convex loss surrogate Φ is used, such that the loss function ℓ(z; θ) is
equal to Φ((−1)yfθ(x)). We model the performative effect as label-dependent push forward models,
i.e., that, under Pθ,

X|Y=1
d
= φ1(U1; θ) and X|Y=0

d
= φ0(U0; θ),

where φ1 and φ0 represent the performative changes affecting class-conditional distributions of
classes 0 and 1 respectively. If the classifier fθ(x) is sufficiently expressive, changes such that
φ1 = φ0 will not create performative effects. We thus focus on scenarios where the performative
changes affect each class-dependent distribution differently. For concreteness, we will assume the
following.

Assumption 2. Pθ(Y = 1) = ρ is fixed and not subject to performative effects.

Assumption 3. φ1 does not depend on θ, and for simplicity, we assume it is the identity function.

Assumption 4. φ0(u0; θ) = u0 +Π(θ) is a shift operator.

Assumption 2 is a consequence of the intuitive property that even if the distribution is modified, the
ground truth labels are not impacted by the performative effect. Assumption 3 allows to focus on
the performative effect on the unfavored class and simplifies the presentation but could be easily
relaxed. Finally, assumption 4 is restricting the performative change to a shift, which does simplify
the problem but still corresponds to a realistic model for feature alteration.
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It is important to stress that, despite the fact that this performative effect is modelled as a shift, the
joint distribution of Z = (X,Y ) does not belong to the location-scale family discussed by Miller
et al. [2021]. Under these assumptions, the decoupled performative risk takes the following form:

DPR(θ, θ′) = Eθ
[
Φ
(
(−1)Y fθ′(X)

)]
= ρE [Φ(fθ′(U1))]+(1−ρ)E [Φ(−fθ′(U0 +Π(θ)))] , (4)

where the performative effect is only manifested in the second term, which corresponds to class 0.
Remark 1 (Localization of the Performative Shift). In eq. (4), we refer to U0 which corresponds to
the covariates of the second class in the absence of performative effect, i.e., when θ = 0. However,
for a shift operator, for any value of θ̄, one may equivalently write that, under Pθ, X d

= φ(Uθ̄; θ),
where φ(u; θ) = u+Π(θ)−Π(θ̄) and Uθ̄ is distributed under Pθ̄. Thus eq. (4) can equivalently be
rewritten by taking expectation under an arbitrary parameter value θ̄, upon defining the performative
effect as Uθ̄ +Π(θ)−Π(θ̄) and the linear model as fθ(x) = xT (θ − θ̄).

4 Convexity of Performative Risk

Identification of the cases in which the performative risk PR(θ) is convex is an important step towards
generalizing results obtained in the context of traditional (ie., non performative) learning theory.
Existing results mainly exploit the fact that if the loss function is strongly convex, a sufficiently small
performative effect cannot break this convexity. For this reason, it is often assumed [Miller et al.,
2021, Hardt and Mendler-Dünner, 2023] that the change in the distributions has a bounded sensitivity
with respect to the parameters, using the 1-Wasserstein distance:

W1 (Pθ, Pθ′) ⩽ ε ∥θ − θ′∥2 .
Note that in our setting, such ϵ exists and corresponds to the operator norm of Π(θ). In order to
preserve convexity, it is then needed that ϵ ⩽ µ/2L when the risk is L-smooth and µ-strongly convex.
The pricing model, considered by Izzo et al. [2022], is a very simple example showing that the
performative risk can be convex while not fulfilling this criterion.
Example 3 (Pricing Model). Given a fixed set of d resources, the pricing model aims at finding the
prices θ ∈ Rd for the d ressources that maximize the overall profit given the elasticity of the demand
level:

ℓ(z; θ) = −zT θ with Z d
= φ(U ; θ) = U −Πθ, (5)

where Π is a diagonal matrix with positive elements, encoding the elasticity of the demand level to a
raise in price of each resource, and µ = E[U ] contains the baseline demand levels for each resource.

In this example, the performative risk PR(θ) = −
∑d
i=1(µi−Πiiθi)θi is a strongly convex quadratic

function minimized at θ⋆i = µi/(2Πii). In contrast, the decoupled performative risk DPR(θ, θ′) =
−(α−Πθ)T θ′ is still convex, but not strongly convex in θ and is always minimized in θ′ at infinity.
Despite its simplicity, this example is thus not covered by existing theorems, and retraining procedures
considered by Perdomo et al. [2020] fail by diverging.

Moreover, this example highlights that requiring a small sensitivity for the performative effect does
not match the true convexity conditions. The performative risk is indeed strongly convex as long as
the Πii are positive, irrespectively of their magnitude. In contrast, in this example, the performative
risk would become non-convex if one of the Πii were negative, even with a small magnitude.

This motivates the search for related phenomenons in the classification context, by looking at
conditions for ensuring the convexity of eq. (4). Indeed, we show that in the classification setting, one
can also observe convexity without restriction on the magnitude of the performative effect. For this, we
consider the case of linearly parameterized models, which we denote for simplicity by fθ(x) = xT θ.
Note that, as discussed in Section 2, our model of performative effect is composable and hence, we
could also consider the more general linearly parameterized model in which fθ(x) = ψ(x)T θ, with a
linear-in-the-parameter performative effect in the feature space such that ψ(X) = U + Π(θ). For
ease of notation, we stick to the case where ψ is the identity function in the following. Using standard
arguments, the choice of a convex loss surrogate Φ then entails that DPR(θ, θ′) is a convex function
of θ′. For the same reason, if Π(θ) = Πθ is a linear-in-parameters shift operator, DPR(θ, θ′) is
also convex in θ. Note however that, unless there is no performative effect (i.e., if Π = 0), eq. (4)
is not jointly convex in (θ, θ′). The following result show that it is nonetheless the case that the
performative risk PR(θ) = DPR(θ, θ) is convex under the condition that Π is a positive semidefinite
matrix (see proof in appendix A.2).
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Theorem 2 (Convexity of Classification Performative Risk). Under assumptions 2 to 4, for linearly
parameterized classifier fθ(x) = xT θ and linear shift operator Π(θ) = Πθ, the performative risk
PR(θ) is convex when Π is a positive semidefinite matrix and one of the following conditions holds.

(a) Φ is the quadratic loss function;

(b) Φ is a convex non increasing function (such as hinge, logistic or exp loss).

This theorem allows us to extend the known convexity results to losses that are not strongly convex,
and to performative effects with arbitrary magnitude.

1.5 1.0 0.5 0.0 0.5 1.0
0

1.5

1.0
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0.0
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Figure 1: Profile risk for classifying two Gaussian centered in µ0 = (0, 0) and µ1 = (−1, 1) with
quadratic loss and various values of λ for the diagonal coefficients of Π. The performative risk
remains convex as long as Π is positive semidefinite i.e. λ ≥ 0, and becomes non-convex whenever
some of the λi are negative.

Remark 2 (Generalization to Performative Effect Affecting Both Classes). One could remove
assumption 3 to allow class 1 to change under performative effect. The convexity of PR(θ) remains
if φ1(u; θ) = u−Π1θ, where Π1 is a positive semidefinite matrix. Similarly, the classification task
becomes harder with performative effects and the performative risk is convex.

5 Connection with Robustness and Regularization

In order to enforce strong convexity of the loss function ℓ(·; θ), previous works on performative
prediction have considered the use of an additional regularization term —see, e.g., Section 5.2 of
[Perdomo et al., 2020] where logistic regression is used with a ridge regularizer. When doing so,
it has been observed empirically that the retraining method performs quite well. To build on this
observation, we show below that for linear-in-the-parameter performative effects that tends to make
the classification task harder, the performative optimum may indeed be interpreted as a regularized
version of the base classification problem. This regularization does not take the form of and additive
penalty but can be interpreted as the solution of a specific adversarially robust classification objective.
In this section, we use the slightly stronger assumption that Π is a symmetric positive definite matrix,
in order to ensure that both ∥v∥Π = (vTΠv)1/2 and ∥v∥Π−1 = (vTΠ−1v)1/2 are norms on Rd.

Theorem 3 (Variational Formulation of the performative Risk). Under assumptions 2 to 4, for
linearly parameterized classifiers fθ(x) = xT θ and linear shift operators Π(θ) = Πθ, and assuming
that Φ is a convex non increasing function and that Π is symmetric positive definite, the performative
risk may be rewritten as

PR(θ) = ρE[Φ(UT1 θ)] + (1− ρ)E
[

max
{∆U0:∥∆U0∥Π−1≤∥θ∥Π}

Φ(−(U0 +∆U0)
T θ)

]
. (6)

Intuitively, for a classification-calibrated loss function [Bartlett et al., 2006, Bach, 2024] and classes
with identical covariances, we expect θ to align with the direction of µ1(θ)− µ0(θ), so that, when Π
is positive definite, the performative shift Πθ has itself a positive dot product with µ1(θ) − µ0(θ).
The reformulation of the performative risk in eq. (6) formalizes this intuition by showing that the
performative optimum is associated to an adversarially robust classification task [Goodfellow et al.,
2015, Madry et al., 2018, Ribeiro et al., 2023] in which the points of class 0 are allowed to shift
towards those of class 1, so as to increase the overall loss. Compared to objectives found in the robust
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classification literature, the specificity of eq. (6) lies in the fact that the tolerance (or budget) on the
adversarial displacement ∆U0 depends on both Π and θ.

To understand the role played by the ∥ · ∥Π and ∥ · ∥Π−1 norms, consider the particular case where
only a subset of the variables have a performative effect, i.e., if we let θ and U0 be partitioned into

θ =

(
θp
. . .
θs

)
and U0 =

(
U0,p

. . .
U0,s

)
,

with Πp = γI and Πs = ϵI , one obtains, letting ϵ tend to zero, that the performative risk is equal to

PR(θ) = ρE[Φ(UT1 θ)]+ (1−ρ)E
[

max
{∆U0,p:∥∆U0,p∥≤γ∥θp∥}

Φ
(
−(UT0,sθs + (U0,p +∆U0,p)

T θp)
)]
.

The above expression shows that in this case, only the coordinates subject to the performative effect
appear in the adversarial reformulation.

In the proof of Theorem 3 (see appendix A.3), we observe that the second term of eq. (6) may also
be rewritten as (1− ρ)E[Φ(−UT0 θ − ∥θ∥2Π)]. Similarly to the case studied by Ribeiro et al. [2023],
the term ∥θ∥2Π that appears inside the surrogate loss function Φ has a regularization effect. Note
however that it is not equivalent to the use of a standard ridge regression penalty on θ. The following
theorem provides a bound on the performative optimum that highlights the role played by Π on the
significance of this regularization effect.

Theorem 4 (Regularization Bound). Define µi = E[Ui]. Under assumptions 2 to 4, for linearly
parameterized classifiers fθ(x) = xT θ and linear drift operators Π(θ) = Πθ, when Φ is a convex
non increasing function and Π a symmetric positive definite matrix, the minimizer θ∗ of PR(θ)
satisfies the following condition.

∥θ∗∥Π ≤
∥Π− 1

2 (ρµ1 − (1− ρ)µ0)∥
1− ρ

. (7)

Theorem 4 shows that the performative optimum has a smaller value in ∥ · ∥Π norm when the
performative effect is stronger, that is, when Π gets larger. In the particular case where Π = γI ,
eq. (7) rewrites as γ1/2∥θ∗∥ ≤ γ−1/2∥ρµ1− (1−ρ)µ0∥/(1−ρ) and thus larger values of γ decrease
the r.h.s. while the l.h.s. increases for identical values of ∥θ∗∥, showing that ∥θ∗∥ has to decrease to
zero.

6 Experiments

In this section1, we test the performance of our algorithm Reparametrization-based Performative
Gradient (RPPerfGD) with respect to existing algorithms. Three baselines were introduced in
Perdomo et al. [2020]. First, Repeated Risk Minimization (RRM) computes at each step the next θ to
minimize the non-performative risk, leading to the update rule θt+1 = argminθ′ DPR(θt, θ′). In
practice, we found that this algorithm is unstable as soon as performative effects become significant.
We thus report separately the results obtained with this algorithm in appendix B.2. A second
baseline is Repeated Gradient Descent (RGD), which ignores the performative effect but limits itself
to a gradient step towards this minimization θt+1 = θt − η ∇θ′ DPR(θ, θ′)|θ′=θ. In numerical
experiments, it is often chosen to add a regularizer to the objective function, which is particularly
interesting in the context of performative learning, as discussed in section 5. Hence, we report
Regularized Repeated Gradient Descent (RRGD), that corresponds to the repeated gradient with a
loss function including an additional ridge penalty on θ, leading to a more conservative behavior
that is also more robust to performative effects. Finally, we also compare to the Score Function
Performative Gradient Descent (SFPerfGD) which estimates the performative part of the gradient
using the ĜRP

θ estimator based on the score-function approach (see section 2). This was previously
used in small dimensions in Miller et al. [2021].

1The code is available at https://github.com/totilas/PerfOpti
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Figure 2: (a) Logistic regression to classify two Gaussian distributions centered in (0, 0) and
(−1,−1) and different magnitudes of performative effects γ. We report the accuracy for three
different magnitudes of the performative effects, from no performative effect (γ = 0) to a strong
one (γ = 1). (b) we report the position of the parameter θ in its 2D-space, starting from (0, 0)
and following different paths depending on the algorithm. (c) Accuracy of a classification with
quadratic loss on two Gaussian distributions of dimension 7 with various levels of variance σ of the
distributions. (d) Same experiments but using the learnt Π for RPPerfGD. (e) In this case, distance
between the true matrix Π and the estimated version. Note that in RGD and RRGD the estimation of
Π is not used in the algorithm. (f) Logistic regression for the Housing dataset with various magnitude
of performative shift λ on the coordinates 0, 4 and 6. Accuracy is averaged over 20 runs.

Influence of the performative effect In fig. 2b, we illustrate how taking into account the perfor-
mative effect allows to mitigate regimes with strong distribution shift. We generate two Gaussian
distributions, one fixed for class 1 and one moving with mean µ(θ)T = −(1, 1)+γθT diag(0.1, 0.9),
where γ is the magnitude parameter effect. We learn a logistic regression and report the accuracy of
the predictions as well as the trajectory of the parameter in (θ1, θ2)-space. As expected, when there is
no performative effect (γ = 0), all methods are equivalent. As soon as there are performative effects,
Performative gradient takes advantage over other methods. RRGD proposes an interesting tradeoff in
terms of performance: agnostic to the performative effect, it still moderates its value and thus the
magnitude of the performative effect.

Stability of the estimator In fig. 2c, we illustrate the result of example 2, by training a classifier
with the square loss, showing that the score-based estimator used in SFPerfGD becomes unstable
in high dimensions. We use Gaussian distributions of dimension 7 with two dimensions subject to
performative effects. We vary the variance of the distributions. When the scale σ is small, the variance
of the estimator increases to the point of making learning impossible with unstable trajectories of the
parameter θ. Even when the scale is small enough to ensure convergence, RPPerfGD provides faster
convergence illustrating its better scalability for high dimensions.

Estimation of Π We estimate Π in fig. 2d and fig. 2e by running a ridge regression along the
successive deployments of the model as described in Algorithm 1: the ridge penalty ensures that
initially the estimate of Π is close to zero making the RPPerfGD updates very similar to those of
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RGD and it is easy to check that order d deployments are enough to obtain a non void estimate of Π.
While this plug-in approach is not guaranteed to converge from a theoretical standpoint, we observe
results that very similar to the case where Π is fully known.

Houses price prediction To simulative performative effects from a dataset, we follow the method-
ology of Perdomo et al. [2020], by shifting the coordinate i of a factor λθi if the i-th coordinate
could be easily modified, and keeping its real value intact otherwise. We use the binarized version of
the Housing dataset2, where the outcome is whether the price is high or not. Assuming that a seller
wants to obtain a high price, the high price is the favored class. Some characteristics are harder to
tamper with such as the location or the income, whereas other can be slightly adjusted such as the
household and the number of bedrooms (a room could be promoted bedroom). Coordinates 0, 4 and 6
are thus shifted while other remains identical. We see that when the magnitude of the shift increases,
RPPerfGD outperforms RGD. In particular, it seems that RPPerfGD succeeds in converging faster
than the non performative approach.

Algorithm 1: RPPerfGD with Π learning
Input :Stepsize η, regularizer λ, starting θ0, Loss ℓ
Output :Parameters θK and diagonal matrix ΠK

1 Π0 ← 0d×d // initialize Π as a zero matrix of size d× d
2 for k ∈ {0, . . . ,K − 1} do
3 Receive n samples {xik}ni=1 ∼ D(θk) with n0 samples of label −1 denoted (x0,k)k
4 Compute ∇1 ← 1

n

∑n
i=1∇θℓ(xik, θk)// Non performative part of the gradient

5 Compute ∇2 ← 1
nΠ

⊤
k

∑n0

i=1∇xℓ(xi0,k, θk)// Performative part of the gradient
over negative samples

6 θk+1 ← θk − η(∇1 +∇2) // Gradient Descent step
7 Πk+1 ← argmin

∑k
j=1

∑n0

l=1 ∥xl0,j − µ̂−Πθj∥2 + λ∥Π∥2 // µ̂ is the estimated
mean of the class

7 Conclusion

In this work, we have investigated the consequences of assuming a novel, more explicit, model for
performative effects under the form of a push-forward shift of distribution. We have demonstrated
that it comes with practically important consequences, such as enabling more reliable performative
gradient estimation in large dimensional models.

In the classification case, we observed that when the change of distribution is given by a linear-in-
parameters shift, the performative risk is convex under relatively general assumptions. It would be
interesting to study how these results may extend to non-linear models for the performative effect.

Finally, we have shown that certain kinds of performative effect induce implicit regularization of the
risk minimization problem. Moreover, this regularization effect can alternatively be viewed through
the lens of adversarial robustness. It would be useful to explore whether this reformulation can be
used to optimize the performative risk without an explicit model for the performative effect.
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A Supplementary Material

A.1 Proofs for Example 2

Using the notations of Example 2 the score function estimator may we written as ΠT 1
2σ2G, where

G = ∥U + a∥2U with U ∼ N (0, σ2Id) and a ∈ Rd is a deterministic vector depending on the
parameters θ, θ′ and the performative effect. To compute the expectation and covariance matrix of G
we will use Isserlis’ (or Wick’s probability) theorem which state that

(a) E[Ui1 . . . Ui2m+1
] = 0, for any {i1, . . . , i2m+1} ∈ {1, . . . , d}2m+1

(b)
E[Ui1 . . . Ui2m ] = σ2m

∑
{j1,k1},...,{jm,km}∈P({i1,...,i2m})

δj1k1 . . . δjmkm

where P({i1, . . . , i2m}) denotes all the distinct ways of partitioning {i1, . . . , i2m} into
non-overlapping (unordered) pairs and δ is the Kronecker delta. It is easily checked that
the number of partitions in P({i1, . . . , i2m}) is equal to

(
2m
m

)
m!
2m which is also equal to the

product of all odd numbers between 1 and 2m− 1.

For the expectation, E[G] = E[(∥U∥2 + ∥a∥2 + 2aTU)U ] = 2E(UUT )a = 2σ2a, as the expansion
of all other terms would involve and odd number of coordinates of U .

Let M = E[GGT ], we have

Mij = E

[
d∑
k=1

(Uk + ak)
2

d∑
l=1

(Ul + al)
2UiUj

]

= E

[
d∑
k=1

d∑
l=1

(
U2
kU

2
l + U2

ka
2
l + U2

l a
2
k + 4alakUkUl + a2ka

2
l

)
UiUj

]
omitting terms in the expansion that involve and odd number of coordinates of U (which have 0
expectation). Now, we apply Isserlis’ theorem to each term in this decomposition, starting with the
lowest order (rightmost) ones:

E

[
d∑
k=1

d∑
l=1

a2ka
2
lUiUj

]
= ∥a∥4σ2δij

E

[
d∑
k=1

d∑
l=1

4alakUkUlUiUj

]
= 4σ4

d∑
k=1

d∑
l=1

alak(δijδkl + δikδjl + δilδjk) = 4σ4(∥a∥2 + 2aiaj)δij

E

[
d∑
k=1

d∑
l=1

U2
kUiUja

2
l

]
= σ4∥a∥2

(
d∑
k=1

(δij + 2δkiδkj)

)
= σ4∥a∥2(d+ 2)δij

E

[
d∑
k=1

d∑
l=1

U2
kU

2
l UiUj

]
= σ6 (δij + 2δilδjl + 2δikδjk + 2δklδij + 8δklδkiδij) = σ6(d2 + 6d+ 8)δij

where the last decomposition is obtained by examination of the
(
6
3

)
3!
23 = 15 possible partitions of

{k, k, l, l, i, j} in 3 pairs of indices. Putting all together, one obtains

M =
(
(d2 + 6d+ 8)σ6 + 2(d+ 4)∥a∥2σ4 + ∥a∥4σ2

)
Id + 8σ4aaT

which yields

Cov(G) =
(
(d2 + 6d+ 8)σ6 + 2(d+ 4)∥a∥2σ4 + ∥a∥4σ2

)
Id + 4σ4aaT (8)

Subtracting a scalar baseline m yields the estimator G̃ = (∥U + a∥2 −m)U which has the same
expectation as G. In terms of covariances, one has

Cov(G̃) = Cov(G) +m2Id − 2mE
(
∥U + a∥2UUT

)
12



The rightmost expression, when expanded, features terms have already been met in the computation
above and it is easy to check that

E
(
∥U + a∥2UUT

)
= ((d+ 2)σ4 + ∥a∥2σ2)Id

Hence,
Cov(G̃) = Cov(G) +

(
m2 − 2m((d+ 2)σ4 + ∥a∥2σ2)

)
Id

In the above equation, the scalar term m2 − 2m((d + 2)σ4 + ∥a∥2σ2) is minimized by choosing
m = (d + 2)σ2 + ∥a∥2 and is equal to −

(
(d+ 2)σ2 + ∥a∥2

)2
σ2, which, combined with eq. (8)

yields
Cov(G̃) ≥

(
2(d+ 2)σ6 + 4∥a∥2σ4

)
Id + 4σ4aaT (9)

A.2 Proof of Theorem 2

Proof. For (a), eq. (4) may be rewritten as

PR(θ) = ρE[(UT1 θ − 1)2] + (1− ρ)E[((U0 +Πθ)T θ + 1)2]

Denoting E(Ui) = µi and Covθ(Ui) = Σi, for i ∈ {0, 1}, one has

PR(θ) = ρE[((U1 − µ1)
T θ − (1− µT1 θ))2] + (1− ρ)E[((U0 − µ0)

T θ + (µ0 +Πθ)T θ + 1)2]

= ρ[∥θ∥2Σ1
+ (1− µT1 θ)2] + (1− ρ)[∥θ∥2Σ0

+ ((µ0 +Πθ)T θ + 1)2]

Both squared norms are convex as well as the squares of, respectively, an affine function and a convex
second order polynomial (as Π is positive semidefinite).

For (b), examining

PR(θ) = ρE[Φ(UT1 θ)] + (1− ρ)E[Φ(−(U0 +Πθ)T θ)] (10)

one observes that

• Φ(uT1 θ) is convex by our assumption on Φ (for any value of u1);

• (u0 + Πθ)T θ is a convex second order (multivariate) polynomial in θ when Π is positive
semidefinite and v 7→ Φ(−v) is convex non decreasing, hence Φ(−(u0 + Πθ)T θ) is also
convex.

Thus PR(θ) is also convex in θ as the expectation of convex functions.

A.3 Proof of Theorem 3

Proof. To obtain eq. (6), as v 7→ Φ(−v) is non decreasing, one has

max
{∆u0:∥∆u0∥Π−1≤∥θ∥Π}

Φ
(
−(u0 +∆u0)

T θ
)
= Φ

(
−uT0 θ − max

{∆u0:∥∆u0∥Π−1≤∥θ∥Π}
(∆u0)

T θ

)
for any outcome u0 of the random variable U0. The maximization occurs for ∆u0 = Πθ, which does
not depend on u0, leading to (∆u0)

T θ = ∥θ∥2Π and thus

max
{∆U0:∥∆U0∥Π−1≤∥θ∥Π}

Φ
(
−(U0 +∆U0)

T θ
)
= Φ

(
−UT0 θ − ∥θ∥2Π

)
whose expectation is recognized as the second term of eq. (10).

A.4 Proof of Theorem 4

Proof. Recall from the proof of Theorem 2 that the performative risk can be rewritten as follows.

PR(θ) = ρE[Φ(UT1 θ)] + (1− ρ)E[Φ(−(U0 +Πθ)T θ)]

= ρE[Φ(UT1 θ)] + (1− ρ)E[Φ(−UT0 θ − ∥θ∥2Π)]
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Let µρ = ρµ1 − (1− ρ)µo. We have,

Φ(0) = PR(0) ≥ PR(θ∗)

= ρE[Φ(UT1 θ∗)] + (1− ρ)E[Φ(−UT0 θ∗ − ∥θ∗∥2Π)]
≥ ρΦ(E[UT1 θ∗]) + (1− ρ)Φ(E[−UT0 θ∗ − ∥θ∗∥2Π])
= ρΦ(µT1 θ

∗) + (1− ρ)Φ(−µT0 θ∗ − ∥θ∗∥2Π)
≥ Φ

(
ρµT1 θ

∗ − (1− ρ)(µT0 θ∗ + ∥θ∗∥2Π)
)

= Φ
(
µTρ θ

∗ − (1− ρ)∥θ∗∥2Π
)

where we have successively used Jensen’s inequality and the convexity of Φ. Since Φ is non-
increasing, we must have 0 ≤ µTρ θ∗ − (1− ρ)∥θ∗∥2Π. Denoting β = Π

1
2 θ∗, it holds that

(1− ρ)∥β∥2 ≤ µTρΠ− 1
2 β ≤ ∥Π− 1

2µρ∥∥β∥

where that last inequality is obtained using Cauchy–Schwarz. Hence, ∥θ∗∥Π = ∥β∥ ≤ ∥µT
ρ Π− 1

2 ∥
1−ρ .

B Numerical Experiments

B.1 Full parameters list

In this section, we report all the parameters needed to reproduce the figures in the paper. Note that we
always use the same step size for all the methods. This choice stems from the fact that the methods
are equivalent (up to the regularization parameter) when there is no performative effect.

Table 1: Parameters used for figure fig. 2b
Parameter Value
Number of iterations (num_iter) 100
Sample size (n) 1000
Scale (σ) 0.5
Average number of iterations (num_iter_average) 100
Step size (step_size) 0.1
Regularization parameter (λ) 3× 10−2

Table 2: Parameters used for figure fig. 2c
Parameter Value
Number of iterations (num_iter) 25
Sample size (n) 1000
Initial scale (scale0) 0.5
Transition probability matrix (Π) diag([0.1, 3, 0, 0, 0, 0, 0])
Mean of class 0 (µ) [1 2 0.5 0.5 0 0 0]
Average number of iterations (num_iter_average) 100
Step size (step_size) 0.1
Regularization parameter (λ) 10−1

B.2 Repeated Risk Minimization

In this section, we report the same learning tasks as those reported in the main text, but for Repeated
Risk Minimization (RRM). In every setting, as soon as the performative effect is not negligible,
the technique diverges. To ensure the readability of the figure and avoid shrinking the differences
between the other algorithms, we report it separately.
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Table 3: Parameters used for fig. 2f
Parameter Value
Number of iterations (num_iter) 15
Sample size (n) 18000
Number of runs (n_runs) 20
Step size (step_size) 0.2
Regularization parameter (λ) 5× 10−3
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Figure 3: (a) Learning a logistic regression between two Gaussian distributions centered in (0, 0)
and (−1, 1) and different magnitude of performative effects γ. (b) Accuracy of a classification with
quadratic loss on two Gaussian of dimension 7 with various level of noise σ
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: The experiments are described in section 6. Additional choice of parameters
are reported in appendix A.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: the code will be publicly released after publication

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The detailed parameters are in Appendix (appendix B). The choice of parame-
ters are quite limited as the studied models have very simple architecture

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All figures report standard deviation over the runs, as stated in legend.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The experiments are only using small datasets so all runs were done on a single
laptop where the time of execution is very small (few seconds per run).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is conform to the NeurIPS code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical and should not have directly any societal impacts. In
fact, raising the attention on the feedback loop that might occurs in performative learning
could lead to a positive societal impact, if better understood.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

16

https://neurips.cc/public/EthicsGuidelines


Answer: [Yes]
Justification: We only reuse one dataset (Housing) and we cite it.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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