
Collaborative and Efficient Personalization with
Mixtures of Adaptors

Abdulla Jasem Almansoori Samuel Horváth Martin Takáč
Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

firstname.lastname@mbzuai.ac.ae

Heterogenous data is prevalent in real-world federated learning. We propose a
parameter-efficient framework, Federated Low-Rank Adaptive Learning (FLoRAL),
that allows clients to personalize in groups by mixing between low-rank adaptors,
where the mixtures are client-specific. FLoRAL is a model parameterization that
casts personalized federated learning as a multi-task learning problem, with weight
sharing as an implicit regularizer. It is memory-efficient, as the personalized param-
eters (i.e., base model + adaptors) are all federated. Our results show that FLoRAL
can generalize better than a mixture of full models when data are scarce. It can also
consistently personalize better than models with a locally tuned adaptor per client.
This demonstrates the benefits of “federated personalization” and its robustness
against overfitting. We derive the convergence rates and show theoretically that
FLoRAL can lead to better variance reduction of the base model’s gradients. 1

1. Introduction

––––
...

Figure 1: Personalization for client k
by mixing C adaptors.

In Federated Learning (FL), clients serve as decentralized
holders of private data, and they can collaborate via secure
aggregation of model updates, but one of the main chal-
lenges is the heterogeneity of the clients [1]. For example,
heterogeneity can be in terms of data distributions (statistical
heterogeneity) or client capabilities (system heterogeneity)
[2]. In this work, we are interested in a statistical hetero-
geneity where labels are predicted differently across clients.
In particular, this can be viewed under the lens of multi-task
learning [3] or clustering [4] such that there are only a few
ground-truth tasks or clusters across all clients.
The central assumption in our work is that the personalized
models across clients should be similar enough to benefit
from collaboration, but they also need to be sufficiently dif-
ferent and expressive to fit and generalize on their personal
data. The differences between clients can be thought of as
1) statistical in terms of data (e.g., shifts in distributions) or
structural in terms of model (e.g., structured differences in subsets of parameters). To learn these
differences efficiently, we often assume that they are low-complexity differences.
Most approaches maintain that the personalized models are either close in distance to the global
model via proximal regularization [5–8] or meta-learning [9], or that the personalizedmodels belong
to a cluster of models [3, 4]. Other approaches also assume model heterogeneity, where clients might
have a local subset of parameters that are not averaged [10, 11] where it can personalize to the local
task by construction [12]. For example, a specific subset of parameters can be chosen to be the last
layer or some added adaptors.

1Code: https://github.com/zeligism/FLoRAL

Second Conference on Parsimony and Learning (CPAL 2025).

https://github.com/zeligism/FLoRAL

Fine-tuning works particularly well for personalization [13]. One well-known example of efficient
fine-tuning is Low-Rank Adaptors (LoRA) [14], which are used to personalize large language
models on different tasks. The fine-tuning is done on an additive low-rank matrices instead of the
full matrices. Thus, the personalized models differ from the base model only in low-rank matrices.
Inspired by the efficiency of low-rank adaptors in multi-task learning for language models and the
idea that fine-tuning changes parameters along a low-dimensional intrinsic subspace [15, 16], we
use low-rank adaptors in the FL setting and show that they can offer significant improvements with
a relatively small memory budget.
Thus, instead of regularizing the complexity of a personalized model by its proximity to a reference
solution or clustering full models, we explicitly parameterize the personalizedmodels as having a few
common low-rank differences from the global model. This is done by introducing a small number of
low-rank adaptors per layer and a mixture vector per client that mixes between those adaptors. Thus,
it implicitly regularizes the personal models through weight-sharing with low-rank differences. Our
approach explicitly constrains the complexity of the difference between the global model and the
personalized model, and casts the problem of learning these differences as a multi-task learning
problem. Its main benefit is that the low-rank adaptors can also be federated and collaboratively
learned. The number of local personalization parameters per client (i.e., the mixture vectors) is
minimal, which means our approach can be efficiently employed in the cross-device setting.
Contributions Here, we summarize our contributions:
1. We propose the Federated Low-Rank Adaptive Learning (FLoRAL), an efficient and lightweight FL

framework for personalization. It acts as an extension to multi-task learning algorithms that are
specifically designed for FL.

2. Perhaps counter-intuitively, we show experimentally that a model with a mixture of adaptors
can beat a mixture of models, even though the number of parameters is significantly larger, e.g.,
9x larger. Also, a model with a mixture of adaptors on stateless clients (e.g., see Section 5) can
generalize better than a model with a dedicated fine-tuned adaptor on stateful clients. This is a
perfect demonstration of the efficiency of FLoRAL and the benefits of collaborative learning.

3. We release the code for this framework, which includes plug-and-play wrappers for PyTorch
models [17] that are as simple as Floral(model, rank=8, num_clusters=4). We also provide
minimal extensions of Flower client and servermodules [18], making the adoption of ourmethod
in practice and reproducing the experiments seamless and easy.

4. We run various experiments and ablation studies showing that our FLoRAL framework is efficient
given resource constraints in terms of relative parameter increase.

5. We provide the convergence rate for local SGD on a multi-task objective with learnable router
and highlight the difficulties that arise from aggregation mismatch. We also provide an extended
analysis in the appendix showing better variance reduction from weight sharing.

2. Related Work
Multi-task Learning Our problem can be seen as a multi-task learning problem in which the
solutions share a base model. The closest work to ours in this respect is FedEM [3], which works
by assigning to each client a personalized mixture vector that mixes between a small number of
full models such that each model solves one task. FedEM then proceeds with an algorithm based
on expectation maximization. One problem is that their approach assumes that the full models
should be mixed. In contrast, we assume that the mixed components are only the adaptors, which
constitute a small fraction of the model and are thus much more efficient in terms of memory. Other
related works on clustering include IFCA [19], FedSoft [20], and Federated-Clustering [4]. The main
difference from our work is that we only cluster a small component of the whole model, allowing
the clients to benefit from having a shared base model that is learned among all the clients.
Personalization Another approach to personalization is by introducing a proximal regularizer
with respect to a reference model. Ditto [5] is a stateful algorithm that trains the local models by

2

solving a proximal objective with respect to a reference model. The reference model is the FedAvg
solution, which is attained concurrently by solving the non-regularized objective. Meta-learning
approaches, inspired by Finn et al. [21], can extend naturally to personalization. For example, Fallah
et al. [9] propose to solve a local objective that is an approximate solution after one local gradient
step. Meta-learning also assumes that the local solutions are close to the FedAvg solution as they
mimic fine-tuning from the FedAvg solution in some sense. In our approach, we do not assume that
the clients are stateful nor that the FedAvg solution is meaningful or close to any of the local solutions.
We assume that the local models can benefit from collaboration but still allow for personalization via
different mixtures, which is much more memory efficient and can be managed by the server.
LoRA Using mixture of LoRAs in FL is not new due to their popularity. The idea of mixing LoRAs
has been explored recently [22] for language models. SLoRA [23] focuses on parameter-efficient
fine-tuning after federated training and thus does not federate the adaptors. Both FedLoRA [24] and
pFedLoRA [25] assume that the LoRAs are not federated as well, where they both also introduce a
specific two-stage algorithm to train those LoRAs. The federated mixture of experts [26] trains an
ensemble of specialized models, but they specialize in input rather than prediction. FedJETs [27]
uses whole models as experts in addition to a pre-trained feature aggregator as a common expert
that helps the client choose the right expert. Other works explore mixture of LoRAs [28, 29] for
adaptation but in a different, non-collaborative context.
Representation Learning Other successful approaches in FL work by feature, prototype, or rep-
resentation aggregation [30–32], which makes them orthogonal to our work as they work in the
feature space.

3. Preliminary
Notation We denote [N] = {1, 2, . . . , N}.We reserve some indices for specific objects: k ∈ [K] is a
superset index2 denoting the client with K being the number of clients, and c ∈ [C] is a subset index
denoting the cluster with C being the number of clusters. The number of clients in cluster c isKc.
The client sampling distribution is K, or Kc when given cluster c. The number of samples in client
k is Nk, and the total number of samples is N =

∑K
k=1 N

k. We will use bold lowercase characters
to denote vectors, e.g.,w, and uppercase bold characters for matrices, e.g.,W. Further, 1{A} is the
indicator function of event A, and vec(·) is the vectorization operator. A simplex ∆C−1 is a space
such that, for all π ∈ ∆C−1, we have∑C

c=1 πc = 1 and πc ≥ 0,∀c ∈ [C].

3.1. Federated Learning
Federated learning (FL) is a framework for training a model on distributed data sources while the
data remains private and on-premise. Let K be the number of clients and the local loss function for
client k be fk(w). The global objective is

min
w

Ek∼K[f
k(w)], (FL)

where K is a client distribution with support [K]. The functions fk(w) can be stochastic as well. The
most straightforward algorithm for optimizing (FL) is FedAvg [33], which proceeds in a cycle as
follows: 1) send copies of the global model to the participating clients, 2) train the copies locally on
the client’s data, and then 3) send back the copies and aggregate them to get the new global model.
The objective (FL) assumes that a single global model can obtain an optimal solution that works for
all the objectives, which is often not feasible due to heterogeneities in data distribution and system
capabilities [1]. A natural approach would be to consider personalized solutions wk for each client k,
an approach called PersonalizedFL (PFL).

min
{wk}K

k=1

Ek∼K[f
k(wk)] + Γ(w1, · · · ,wK). (PFL)

2In general, we reserve the superset for clients and the subset for clusters.

3

Without the regularizer Γ, the objective would simply amount to local independent training for each
client, so clients do not benefit from collaboration and can suffer from a low availability of data.
Adding the regularizer Γ helps introduce a collaboration incentive or inductive bias. For example,
Ditto [5] adds a proximal regularizer Γ(w1, · · · ,wK ;w∗) = λ

2

∑K
k=1∥wk −w∗∥2, where w∗ is the

solution of (FL). However, this assumes that a single global solution is a good enough center for
all clients, which can be limiting for capturing real-world heterogeneities. An improvement on this
assumption is to introduce more than one center, such that clients belonging to some group are close
to its center. The problem of finding the group centers is called Clustered FL (CFL).
Let C be the number of ground-truth clusters and assume that it is known. Let Kc be the client
sampling distribution of cluster c. We can reformulate the objective to account for clusters as follows

min
{wc}C

c=1

C∑
c=1

Ek∼Kc
[fk(wc)]. (CFL)

We can generalize the previous objectives under one objective by introducing (learnable) client
mixtures πk ∈ ∆C−1 for all k ∈ [K] with regularization Γ, e.g. for weight sharing, which we denote
as Mixed Federated Learning (MFL)

min
{wc}C

c=1,{πk}K
k=1

C∑
c=1

Ek∼K
[
πk
c f

k(wc)
]
+ Γ({wc}Cc=1),

s.t. πk ∈ ∆C−1,∀k ∈ [K], .

(MFL)

We can see that local losses from different clusters are mixed differently according to each client.
From this formulation, we can recover (CFL) by setting Γ(·) = 0 andπk

c = 1{k ∈ supp(Kc)}, whereas
(PFL) can be recovered by setting C = K and πk

c = 1{k ∈ supp(Kc)}.
In our FLoRAL formulation, we use particular form of Γ, where we split wc = [uc,ac] and define

Γ({wc}Cc=1) =

{
0 if ui = uj ∀i, j ∈ [C],

+∞ otherwise.
This weight-sharing across clients is based on the inductive bias that the optimal personalized solu-
tions have low-complexity differences across the population (i.e., differences that could be explained
in a parameter-efficient way). Therefore, in the rest of the paper, we do not use Γ({wc}Cc=1), but we
replace it with explicit parametrization, where wc = (u,ac). We refer to {ac}c∈[C] as adaptors. The
final objective, which we call MFL with Weight Sharing (MFL-WS), is of the form

min
u,{ac}C

c=1,{πk}K
k=1

C∑
c=1

Ek∼K
[
πk
c f

k(u,ac)
]

s.t. πk ∈ ∆C−1,∀k ∈ [K].

(MFL-WS)

In the next section, we discuss the particular choice of adaptors.

3.2. Parameter-Efficient Adaptors
Linear layer Let W ∈ Rdout×din be the base linear layer. The low-rank adaptor with rank r is
L := UV⊤, whereU ∈ Rm×r andV ∈ Rn×r. We initialize L such thatU is random (or initialized
similarly to W) and V is zero. The adaptive layer is then W̃ := W + L = W +UV⊤

Relative parameter budget It is easy to see that the number of parameters in a linear LoRA is
(m+ n)r, which can be much smaller thanmn for small r. We can have a constraint on the number
of parameters relative to the model size, i.e., (m+ n)r ≤ ρmn, where ρ > 0 is the relative parameter
budget per adaptor (e.g., ρ = 0.01 for a maximum of 1% increase in model size per adaptor). Given
a specific ρ based on system’s capabilities, r can be automatically set to be the maximum such that
r ≤ ρmn/(m+n), or just r = ⌊ρmn/(m+n)⌋. We hereafter refer to ρ as the budget and set it to either
1% or 10% in the experiments. Note that, for certain models, it is impossible to satisfy the budget if
ρmn/(m+ n) < 1, so we enforce a minimum rank of 1 as otherwise, there will be no adaptors.

4

Convolution layer Consider a 2D convolution layer. Let W ∈ Rcout×cin×k1×k2 be the base convolu-
tion layer. We similarly introduce a convolution “low-rank” adaptor (ConvLoRA) L = U ∗V, such
that the adaptove layer W̃ becomes (W + L) ∗ x = W ∗ x+ L ∗ x = W ∗ x+U ∗ (V ∗ x), where ∗
is the convolution operator. Note that ConvLoRA is introduced in the official implementation of
[14], but it is a linear LoRA on a matricized convolution. In our case, we can have more than one
way of defining U and V. Depending on what is meant by “rank”, we can either reduce the rank
channel-wise, filter-wise, both, or as a linear layer by matricizing the convolution. We defer the full
details to Appendix G.1, where we show that a novel channel+filter-wise implementation is more
parameter-efficient and performs better. Further details about low-rank constructions of convolution
layers can be found in [34, 35].
Bias Biases are vectors, so a low-rank parameterization would not be possible, and there is no
straightforward way to have a parameter-efficient adaptor except by considering weight-sharing or a
single constant. Due to biases contributing a small percentage of the overall number of parameters in
large models, we consider adaptive biases as b+ Lb with extra biases Lb initialized to 0. Although
this adaptor is not parameter-efficient relative to b, the small impact on the overall parameter count
means that this is not a significant limitation. Moreover, as demonstrated in Appendix H.3, this
approach can be crucial for achieving optimal accuracy.

4. Analysis
In order to connect the analysis with our FLoRAL framework, we can consider a vector parameteriza-
tion of themodel given client k and cluster c as in (MFL-WS).Namely, we havewk

c,t = (uk
t ,a

k
c,t), where

it is understood as the concatenation of the two vectors andwe emphasize that uk
t does not depend on

the cluster. For example, uk
t = vec(Wk

t) can be the base layer and akc,t = (vec(Uk
c,t)⊤ vec(Vk

c,t)
⊤)⊤

can be the LoRA adaptor. The analysis proceeds without assumptions on the form of wk
c,t. In

Appendix C, we show the full analysis on (FML).
Recall πk ∈ ∆C−1 the ground-truth router of client k. In general, the probability of sampling a single
client k is often chosen to be proportional to the number of its data points, i.e., p(k) ∝ Nk (note this is
different from sampling a cohort, which is explained below). On the other hand, the probability that
client k samples cluster c is p(c|k) = πk

c by construction. Since we have p(k, c) = p(c|k)p(k) ∝ πk
cN

k,
we can divide p(k, c) by p(c) =

∑
k p(k, c) to get p(k|c). Overall, we have p(c|k) = πk

c by construction
and p(k) = Nk

N by assumption, so that

p(k, c) =
Nk

N
πk
c , p(c) =

K∑
k=1

Nk

N
πk
c , p(k|c) = πk

cN
k∑K

k′=1 π
k′
c Nk′

. (1)

Notation Denote π̂k
c,t the learned estimate of πk

c at iteration t. Denote pk
c := p(k|c) ∝ πk

cN
k

and similarly p̂k
c,t ∝ π̂k

c,tN
k. Define the aggregation operators Ek|c[w

k
c,t] :=

∑K
k=1 p

k
cw

k
c,t and

Ec|k[w
k
c,t] :=

∑C
c=1 π

k
cw

k
c,t. Additionally, we denote using Ê the same aggregation operators but

taken with respect to p̂k
c,t and π̂k

c,t, respectively.
Recall that the mixed (or personalized) objective of client k is Ec|k[f

k(wk
c,t)] :=

∑C
c=1 π

k
c f

k(wk
c,t).

The objective (MFL) can be stated more succinctly as
min

w1,··· ,wC

Ec,k[f
k(wc)]. (2)

Remark 4.1. Consider a cluster assignment router (i.e., one-hot w.r.t. c). Let k ∼ K and c̄ be its
associated cluster. Then, Ec|k[f

k(wc)] = fk(wc̄) and Ek|c[f
k(wc)] = fc̄(wc̄).

Local SGD With the above notation in hand, we follow the local SGD framework with perturbed
iterates [36]. Note that our work is orthogonal to [37] since they can estimate p(k) with an unbiased
participation indicator variable, whereas we assume that p(k) is known and estimate p(c|k) instead,
which cannot be unbiased itself because of the dependency of the estimate on the optimal objective

5

values. Also, the analysis Pillutla et al. [10] cannot be directly adapted because it is concerned with
a split of global and local variables (i.e., weights and mixture, respectively), whereas we take into
account weight sharing across clusters and train mixtures (i.e., the local parameters) explicitly..
For client k and cluster c, the algorithm starts with the initializationwk

c,0 = Êk|c[w
k
c,0]with π̂k

c,0 = 1/C,
without loss of generality. We define the aggregated gradient as gk

c,t = ∇f it(wk
c,t) for independently

sampled clients it ∼ K every H steps, i.e., it = · · · = it0 for all t ≥ t0 where t0 = t − (t mod H).
Though similar, we will explicitly reserve the random variables it for denoting sampled clients at
time t and k for denoting a “tracking” variable of the expected performance over clients, which
will be independent of it. Let c ∈ [C] and define fc := Eit|c[f

i]. Assume an unbiased estimate
Eit|c[g

k
c,t] = ∇fc(wk

c,t), where we denote Eit|c the expectation with respect to it given c. Let w∗
c be

any point satisfying ∇fc(w∗
c) = 0. We run T gradient steps wk

c,t+1 = wk
c,t − ηtg

k
c,t with a learning

rate ηt. Synchronization happens every H iterations so that wk
c,t+1 = Êk|c[w

k
c,t − ηtg

k
c,t], ∀t such that

(t+ 1) mod H = 0. The algorithm we use in the analysis is the following

wk
c,t+1 =

{
wk

c,t−ηtg
k
c,t, if (t+1) mod H>0

Êk|c,π̂t
[wk

c,t−ηtg
k
c,t], otherwise, (3)

π̂t+1 ∝
{

π̂t, if (t+1) mod H>0

exp(−ηtfc(w
k
c,t+1)), otherwise. (4)

All of the practical implementation details will be discussed in more detail in the next section.
Following the local SGD analysis in [36], we make the following corresponding assumptions.
Assumption 4.2 (L-smoothness and µ-strong convexity). fc is L-smooth and µ-strongly convex. In
other words, ∀w,v ∈ Rd,∀c, the following holds

fc(v)− fc(w)− ⟨∇fc(w),v −w⟩ ≤ L
2 ∥v −w∥, (5)

fc(v)− fc(w)− ⟨∇fc(w),v −w⟩ ≥ µ
2 ∥v −w∥. (6)

Assumption 4.3 (Bounded second moment). ∀w ∈ Rd, ∀c ∈ [C], Eit|c∥∇f it(w)∥2 ≤ G2.
Assumption 4.4 (Bounded variance). ∀w ∈ Rd, ∀c ∈ [C], Eit|c∥∇fc(w)−∇f it(w)∥2 ≤ σ2.

The main quantity of interest in our analysis is the total variation distance ∥δc,t∥1 where δc,t :=
(|p̂k

c,t − pk
c |)Kk=1. We may also refer to it as the aggregation mismatch, or just mismatch.

Using the router update in (4), we can obtain the convergence bound of local SGD but with an extra
O(G

µT) term and a learning rate inversely proportional to max{L,G} instead of L. This seems to
be unavoidable without extra assumptions due to a circular dependency between δc,t and fc(w

k
c,t).

However, we show in Corollary B.5 that local SGD descent is recovered when p̂k
c,t = pk

c . The
convergence rate for this general case can be seen in Theorem B.9.
Here, we present a convergence bound given an assumption on the decrease of ∥δc,t∥21. The exact
bound can be found in Theorem B.10. We defer all proofs to Appendix B.
Theorem 4.5. Consider the setup in Section 4. Let σ̃2 = σ2∥pc∥2, κ = L

µ , and Uc =

mink; p(c)≤πk
c
{p(c)/πk

c }. Initialize π̂k
c,0 = 1/C for all k ∈ [K], and assume |pk

c − p̂k
c,t| ≤ |pk

c − p̂k
c,0|

for all t ≥ 0. Assume that fc(w∗
c) = 0 without loss of generality, and assume that ∥δc,t∥21 ≤ (t+ s)−β∥δc,0∥21

for β ∈ (0, 1). Let ηt ≤ α
t+s with α = 1

µ and s ≥ max{3H, 4κ/Uc}. Then,

Efc(ŵc,T)− fc(w
∗
c) ≤ O

(
σ̃2

µT
+

G2∥δc,0∥21
µT 1+β

+
G2κH2

µT 2

)
. (7)

Observe that we recover local SGD asymptotically when ∥δc,0∥1 = 0 and Uc = 1 (which is the case
for (FL)), or when β → 1 since ∥δc,0∥1 ≤ 2. Observe also that we obtain a general notion of variance
reduction through σ̃2 = σ2∥pc∥2. Indeed, ∥pc∥2 = 1/K in the (FL) case and ∥pc∥2 = 1/Kc for
cluster c in the (CFL) case, where Kc is the number of clients in cluster c.
Note that Uc ≥ p(c) ≈ 1/C for balanced clustered FL problems, but p(c) ≈ p(k) in the worst case
when a cluster contains one client. The difficulty is inherent for such edge cases, but the dependence

6

on U−1
c in the bound appears only in higher-order terms (see Theorem B.10 for the full bound). We

believe that having independent learning rates per client should remove the min in Uc, and a finer
analysis on the quantity p̂k

c,t/p
k
c can bound Uc further from below, but we leave this for future work.

In Appendix C, we extend the analysis to the (FML) case with weight sharing (explained in the
next section). Given fine-grained variances and cluster heterogeneity conditions for which weight
sharing works best, we can demonstrate better variance reduction of the base layer under a trade-off
with cluster heterogeneity (see (32), for example). A better understanding of weight sharing and
the assumptions in Appendix C is an interesting direction for future work.

5. Practical Implementation
Mixture of adaptors The (MFL) objective suggests that any learning algorithm will have to run at
least C forward passes per step for each client, which is necessary for computing the objective. One
way to circumvent that is by “moving” the mixture inside the objective. This allows us to mix the
weights and perform one forward pass. We call this Federated Mixture Learning (FML)3

min
{wc}C

c=1,{πk}K
k=1

Ek∼K

[
fk

(
C∑

c=1

πk
cwc

)]
+ Γ({wc}Cc=1),

s.t. πk ∈ ∆C−1,∀k ∈ [K].

(FML)

Observe that for convex fk, this proxy acts as a lower bound since fk(
∑C

c=1 π
k
cwc) ≤

∑C
c=1 π

k
c f

k (wc)
due to Jensen’s inequality. Thus, for convex losses fk, minimizing (MFL) implies minimizing (FML),
but not vice versa. In this sense, (FML) could be seen as a more general problem, and (MFL) is a
relaxation. We note that this problem is similar to FedEM [3], but we only use K mixture vectors of
size C and we do not have sample-specific weights.
This formulation is especially useful for additive adaptors since the weights can be merged into one.
Also, it allows us to mix the C adaptors and run one forward pass, which is often more efficient
than running C forward passes. This is particularly true for inference, in which the weights can be
merged once so that forward passes come without extra cost. The benefits of weight sharing can also
manifest through better variance reduction, which is demonstrated in Appendix C.
Learning the mixture weights Instead of optimizing πk directly in ∆C−1, we consider the param-
eterization πk = Softmax(θk) for some vector θk ∈ RC . Note that θk is a local parameter and
not aggregated. The cost of storing θk in each client is minimal as it is of size C, which is often
significantly small compared to the model size d. Even if we consider stateless clients, the server
should be able to handle an extra storage and communication budget of θk, which is KC. Note
that the server does not need to know the IDs of the clients and that the clients can learn the θk

from scratch every round, as it is not expensive. Let us consider a scenario where the cost KC is
prohibitive. Suppose the model size is d = 1000 and the client participation ratio is p = 0.1%. The
extra cost for the server will be pKd = K < KC for C > 1. Thus, the prohibitive scenario occurs
only when pd < C, which is often not the case as d is rarely this small (e.g., a 32 by 32 linear layer
with bias has more 1000 parameters), let alone p. The only drawback with stateless clients is the
need to learn θk from scratch every round, which is cheap to learn given the current model.
In Appendix D, we make a connection between the router update in (4) for (MFL) and the gradient
descent update of πk on (FML) under the Softmax parameterization, and show conditions under
which they become equivalent.
FLoRAL problem and algorithm We obtain the FLoRAL problem by employing the weight sharing
regularizer in (MFL-WS) to (FML) and using low-rank adaptors ac. Weight sharing and low-
rankedness are explicit in the parameterization. The algorithm we use to solve (FLoRAL) in practice
is shown in Appendix A and is straightforward. We use simultaneous gradient descent for u and

3The “M” in the acronym follows the position of the mixture in the objective.

7

ac, so we simply write the update in terms of the concatenation wc. One trick we employ to ensure
better convergence is LoRA preconditioning, which is discussed in Appendix E.

6. Experiments
In this section, we compare FLoRAL with 3 methods: (i) FedAvg, which uses the base model only
without adaptors, (ii) Local Adaptor, which uses an adaptor for each client, and (iii) Ensemble, which
uses a mixture of C copies of the base model. The datasets considered have known ground-truth
clusters and are inspired from [4, 19]. Further, we test on the same datasets with only 95% of each
client’s data dropped. This is to demonstrate the benefits of our parsimonious parameterization,
where a large model such as Ensemble might overfit on the local datasets. The results can be seen in
Table 1. Further ablation studies on ρ and C, the adaptors, and the type of ConvLoRAs can be found
in Table 2, Table 3, and Table 4, respectively.
In general, we follow the experimental setup in [4] or [10] and implement our experiments using
PyTorch [17] and Flower [18]. We use the simplest setup possible without any tricks other than
LoRA preconditioning, which is explained in Appendix E. We discuss another trick called LoRA
centering in Appendix F, which we believe is potentially useful. The algorithm we use in practice is
shown in Algorithm 1. Further details can be found in Appendix H.

Table 1: Accuracy of different methods on our tasks. π∗ indicates the use of optimal routing. Full =
100% data, Reduced = 5% data. R = Rotate, LS = Label Shift. Bold = best, italic = second best.

Method π∗
MNIST CIFAR-10 CIFAR-100

Full Reduced Full Reduced Full ReducedR LS R LS R LS R LS
FedAvg 91.5 0.6 25.8 2.4 78.2 0.6 23.2 0.9 64.4 0.3 21.9 0.4 45.6 0.3 18.7 0.4 29.2 1.8 20.7 1.4
Local Adaptor 86.6 0.3 84.5 1.8 47.4 5.4 32.0 2.3 66.3 0.5 68.8 0.5 33.5 0.5 30.8 0.8 85.1 0.8 39.5 2.8
Ensemble ✗ 92.0 0.1 93.8 0.5 66.7 5.3 86.4 0.4 71.0 2.8 46.4 9.2 42.4 0.9 41.7 4.6 86.2 0.0 43.7 3.2
Ensemble ✓ 95.8 0.3 95.6 0.3 88.2 1.4 87.6 1.3 73.7 0.2 73.3 0.1 45.0 0.9 45.1 0.8 92.8 0.3 55.0 0.4

FLoRAL(1%) ✗ 91.3 0.6 89.7 3.2 73.1 3.7 46.0 9.9 65.5 0.4 62.8 8.8 45.2 0.3 44.2 0.9 81.3 0.5 52.2 0.5
FLoRAL(1%) ✓ 93.9 0.8 93.7 0.2 87.5 2.1 87.6 0.5 68.9 0.2 72.2 0.2 47.8 0.9 44.1 0.6 82.4 0.2 53.1 0.4
FLoRAL(10%) ✗ 91.8 1.0 93.1 0.9 75.7 2.3 70.8 7.1 65.1 0.3 56.2 5.5 44.5 0.4 42.1 0.2 87.3 0.3 51.2 1.0
FLoRAL(10%) ✓ 94.5 0.6 94.2 0.2 87.0 0.7 86.9 0.5 69.3 0.5 72.1 0.5 47.2 0.3 42.7 0.3 86.6 0.5 53.9 0.9

Synthetic Consider a regression task where we want to learn y ∈ Rdy given x ∈ Rdx , where
x ∼ N (0, Idx

). We construct two versions of this regression task: one is based on a linear model plus
a personalized LoRA, and the other is based on a similar setup on the first layer of a two-layer ReLU
net. Namely, the target model for client k is

yk
lin(x) =

∑C
c=1 π

k
c (W + αUcV

⊤
c)x, (8)

where W ∈ Rdy×dx , Uc ∈ Rdy×r, Vc ∈ Rdx×r, and α ∈ R. Similarly, consider the 2-layer ReLU
neural net yk

mlp(x) = Φ(yk
lin(x))+ for Φ ∈ Rdy×dy , where we write the ReLU function as (·)+. These

tasks provide a proof of concept for FLoRAL. We discuss these datasets in more detail in Appendix H.1.
The results in Figure 2 show the performances with K = 10 and C = 2 for the linear version and
K = 20 and C = 4 for the MLP version. Note that even the linear task is not easy to solve, and similar
problems have been studied in the mixed linear regression literature, e.g., see [38].

MNIST and CIFAR-10 We test our method on a clustered version of MNIST and CIFAR-10 datasets
in which the clusters are generated according to one of the following tasks: 1) a rotation task, where
each cluster c rotates the image by 2πc/C degrees, and 2) a label shift task, where cluster c shifts
the labels by y 7→ (y + c) mod 10. Following [4], we choose C = 4 and K = 300 for MNIST and
sample 10% of the clients every round, and choose C = 4 andK = 20 for CIFAR-10 and sample all
clients every round. The model for MNIST is a 2-layer ReLU net, whereas for CIFAR-10, it has two
convolution layers followed by a 2-layer ReLU net classifier.

8

Table 2: Ablation of ρ and C.
C ρ

CIFAR-10 CIFAR-100R LS
×0.5 1% 66.5 36.3 48.8
×0.5 10% 66.8 41.6 50.9
×1 1% 70.2 74.1 51.7
×1 10% 71.5 74.2 57.4
×2 1% 69.0 73.8 51.3
×2 10% 70.8 74.1 54.8

0 500 1000 1500 2000 2500 3000
round

10−10
10−8
10−6
10−4

10−2
100

lo
ss
_d
ist
rib

ut
ed

method
fedavg
floral
locallora
ensemble
optimal_router
False
True

0 500 1000 1500 2000 2500 3000
round

10−2

10−1

lo
ss
_d
ist
rib

ut
ed

method
fedavg
floral
locallora
ensemble
optimal_router
False
True

Figure 2: Test loss on linear and MLP synthetic datasets.

CIFAR-100 The CIFAR-100 task is to train a model that is not expressive enough to fit 100 labels yet
expressive enough to fit 10 labels. Thus, we expect that the model would benefit from collaboration
with the right clients. The setup is to divide the 100 labels into C = 10 clusters such that each
cluster has 10 unique labels and then split each cluster uniformly into K/C = 10 clients (so, in
total, K = 100). The model used is VGG-8, a custom-sized model from the VGG-family [39] that is
specifically able to fit 10 labels but not 100. We sample 25 clients every round, which makes the task
harder than [4] and can result in overfitting.
Discussion The results in Figure 9 show the robustness of FLoRAL, particularly when C is larger
than the number of ground-truth clusters. In Table 1, we can see that FLoRAL is always competitive
with the best baseline, which is Ensemble given optimal routers. A particularly interesting case
is the reduced CIFAR-10-R experiments, in which FLoRAL(1%) and FLoRAL(10%) surprisingly
outperform this baseline, even in the optimal routing case. This seems slightly counter-intuitive as
Ensemble is strictly more expressive than FLoRAL.We believe this to be due to the variance reduction
shown in Appendix C.
Note that FLoRAL(ρ) has Cρd extra parameters, whereas Ensemble has (C−1)d. For example, when
d = 1, 000 and C = 4, FLoRAL(1%) adds 40 parameters vs. 3, 000 for Ensemble, and when C = 10,
it is 100 vs. 9, 000. Local Adaptor requires each client to have its own adaptor (i.e., each client has
ρdmemory). Regardless of its feasibility, FLoRAL is shown to leverage the power of collaboration
when Local Adaptor fail to do so. The low accuracies of FLoRAL with learned routing in the reduced
MNIST-LS can be alleviated with more training rounds, e.g., see Appendix H.5 for full plots.
Overall, the results demonstrate that FLoRAL is a collaborative and efficient personalization method,
and it can lead to better generalization in low-data regimes.

7. Conclusion
In this work, we presented a parameter-efficient method for collaborative learning and personaliza-
tion. Here are some future directions we are interested in exploring:
• Is there a principledway to understand the trade-off between parameter-efficiency and the accuracy

gains from increasing ρ or C and how to choose them in practice?
• (FML) can be formulated as a “multimodal optimization” problem [40], or a model class of

mixture-candidate distributions [41]. Can we design more efficient algorithms under this frame-
work with a mixture of structured distributions [42]?

• Would FLoRAL be suitable for federated fine-tuning of language models?
• The router π can route based on its input, as in mixture of experts [43]. It can also be learned per

layer. Preliminary experiments show marginal benefits, but there is still room for exploration.
• We are interested in designing methods for zero-shot generalization to unseen clients based on

FLoRAL. Is it possible to fine-tune the router without labels?

9

References
[1] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-

jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary
Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi,
Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr,
Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and
Sen Zhao. Advances and open problems in federated learning, 2021.

[2] Dashan Gao, Xin Yao, and Qiang Yang. A survey on heterogeneous federated learning, 2022.

[3] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vi-
dal. Federated multi-task learning under a mixture of distributions. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 15434–15447. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
82599a4ec94aca066873c99b4c741ed8-Paper.pdf.

[4] Mariel Werner, Lie He, Sai Praneeth Karimireddy, Michael Jordan, and Martin Jaggi. Provably
personalized and robust federated learning. Transactions on Machine Learning Research, 2023.

[5] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International conference on machine learning, pages 6357–6368.
PMLR, 2021.

[6] Aleksandr Beznosikov, Vadim Sushko, Abdurakhmon Sadiev, and Alexander Gasnikov. Decen-
tralized personalized federated min-max problems. arXiv preprint arXiv:2106.07289, 2021.

[7] Ekaterina Borodich, Aleksandr Beznosikov, Abdurakhmon Sadiev, Vadim Sushko, Nikolay
Savelyev, Martin Takáč, and Alexander Gasnikov. Decentralized personalized federated min-
max problems. arXiv preprint arXiv:2106.07289, 2021.

[8] Abdurakhmon Sadiev, Ekaterina Borodich, Aleksandr Beznosikov, Darina Dvinskikh, Saveliy
Chezhegov, Rachael Tappenden, Martin Takáč, and Alexander Gasnikov. Decentralized person-
alized federated learning: Lower bounds and optimal algorithm for all personalization modes.
EURO Journal on Computational Optimization, 10:100041, 2022.

[9] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A
meta-learning approach, 2020.

[10] Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and
Lin Xiao. Federated learning with partial model personalization. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 17716–17758. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/pillutla22a.html.

[11] Konstantin Mishchenko, Rustem Islamov, Eduard Gorbunov, and Samuel Horváth. Partially
personalized federated learning: Breaking the curse of data heterogeneity, 2023.

[12] Abdulla Jasem Almansoori, Samuel Horváth, and Martin Takáč. PaDPaf: Partial disentangle-
ment with partially-federated GANs. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=vsez76EAV8.

10

https://proceedings.neurips.cc/paper_files/paper/2021/file/82599a4ec94aca066873c99b4c741ed8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82599a4ec94aca066873c99b4c741ed8-Paper.pdf
https://proceedings.mlr.press/v162/pillutla22a.html
https://proceedings.mlr.press/v162/pillutla22a.html
https://openreview.net/forum?id=vsez76EAV8

[13] Gary Cheng, Karan N. Chadha, and John C. Duchi. Fine-tuning is fine in federated learning.
ArXiv, abs/2108.07313, 2021.

[14] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[15] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[16] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf,
EdwardYang, ZachDeVito,Martin Raison, Alykhan Tejani, SasankChilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[18] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, KwingHei Li, Titouan Parcollet, Pedro Porto Buarque deGusmão, andNicholas D.
Lane. Flower: A friendly federated learning research framework, 2022.

[19] AvishekGhosh, JichanChung, Dong Yin, andKannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–19597,
2020.

[20] Chengxi Li, Gang Li, and Pramod K. Varshney. Federated learning with soft clustering. IEEE
Internet of Things Journal, 9(10):7773–7782, 2022. doi: 10.1109/JIOT.2021.3113927.

[21] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks, 2017. URL https://arxiv.org/abs/1703.03400.

[22] Xun Wu, Shaohan Huang, and Furu Wei. MoLE: Mixture of loRA experts. In The Twelfth Inter-
national Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uWvKBCYh4S.

[23] Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H. Ezzeldin, Qingfeng Liu, Kee-Bong Song,
Mostafa El-Khamy, and Salman Avestimehr. Slora: Federated parameter efficient fine-tuning of
language models, 2023.

[24] Xinghao Wu, Xuefeng Liu, Jianwei Niu, Haolin Wang, Shaojie Tang, and Guogang Zhu.
FedloRA: When personalized federated learning meets low-rank adaptation, 2024. URL
https://openreview.net/forum?id=bZh06ptG9r.

[25] LipingYi, HanYu, GangWang, XiaoguangLiu, andXiaoxiao Li. pfedlora: Model-heterogeneous
personalized federated learning with lora tuning, 2024.

[26] Matthias Reisser, Christos Louizos, Efstratios Gavves, and Max Welling. Federated mixture of
experts, 2021.

[27] Chen Dun, Mirian Hipolito Garcia, Guoqing Zheng, Ahmed Hassan Awadallah, Robert Sim,
Anastasios Kyrillidis, and Dimitrios Dimitriadis. Fedjets: Efficient just-in-time personalization
with federated mixture of experts, 2023.

[28] Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi Wang, Tianlong Chen, Lei Shu, Han Lu,
Canoee Liu, Liangchen Luo, Jindong Chen, and Lei Meng. Sira: Sparse mixture of low rank
adaptation, 2023. URL https://arxiv.org/abs/2311.09179.

11

https://arxiv.org/abs/1703.03400
https://openreview.net/forum?id=uWvKBCYh4S
https://openreview.net/forum?id=uWvKBCYh4S
https://openreview.net/forum?id=bZh06ptG9r
https://arxiv.org/abs/2311.09179

[29] Yuqi Yang, Peng-Tao Jiang, Qibin Hou, Hao Zhang, Jinwei Chen, and Bo Li. Multi-task dense
prediction viamixture of low-rank experts. In Proceedings of the IEEE/CVFConference on Computer
Vision and Pattern Recognition (CVPR), pages 27927–27937, June 2024.

[30] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang.
Fedproto: Federated prototype learning across heterogeneous clients, 2022. URL https://
arxiv.org/abs/2105.00243.

[31] A. Tuan Nguyen, Philip Torr, and Ser-Nam Lim. Fedsr: A simple and effective domain gener-
alization method for federated learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=mrt90D00aQX.

[32] Hao Zhang, Chenglin Li, Wenrui Dai, Junni Zou, and Hongkai Xiong. Fedcr: personalized
federated learning based on across-client common representation with conditional mutual
information regularization. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

[33] H. BrendanMcMahan, EiderMoore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2023.

[34] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural
networks with low rank expansions, 2014.

[35] Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolò Fusi. Initialization and regular-
ization of factorized neural layers, 2022.

[36] Sebastian U. Stich. Local sgd converges fast and communicates little, 2019.
[37] Shiqiang Wang and Mingyue Ji. A lightweight method for tackling unknown participation

statistics in federated averaging, 2024. URL https://arxiv.org/abs/2306.03401.
[38] Yanxi Chen, CongMa, H. Vincent Poor, and Yuxin Chen. Learning mixtures of low-rankmodels.

IEEE Transactions on Information Theory, 67(7):4613–4636, 2021. doi: 10.1109/TIT.2021.3065700.
[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition, 2015.
[40] Ka-Chun Wong. Evolutionary multimodal optimization: A short survey, 2015. URL https:

//arxiv.org/abs/1508.00457.
[41] Mohammad Emtiyaz Khan and Håvard Rue. The bayesian learning rule, 2023.
[42] Christos Louizos and Max Welling. Structured and efficient variational deep learning with

matrix gaussian posteriors. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceed-
ings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1708–1716, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/louizos16.html.

[43] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer, 2017.

[44] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory.
Advances in neural information processing systems, 31, 2018.

[45] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal
for strongly convex stochastic optimization. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML’12, page 1571–1578, Madison, WI, USA, 2012.
Omnipress. ISBN 9781450312851.

12

https://arxiv.org/abs/2105.00243
https://arxiv.org/abs/2105.00243
https://openreview.net/forum?id=mrt90D00aQX
https://arxiv.org/abs/2306.03401
https://arxiv.org/abs/1508.00457
https://arxiv.org/abs/1508.00457
https://proceedings.mlr.press/v48/louizos16.html

[46] Tian Tong, Cong Ma, and Yuejie Chi. Accelerating ill-conditioned low-rank matrix estimation
via scaled gradient descent. Journal of Machine Learning Research, 22(150):1–63, 2021.

[47] Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation
models, 2024.

[48] Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding
mixture of experts in deep learning. arXiv preprint arXiv:2208.02813, 2022.

[49] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated
learning on non-iid features via local batch normalization, 2021.

[50] Yanmeng Wang, Qingjiang Shi, and Tsung-Hui Chang. Why batch normalization damage
federated learning on non-iid data?, 2023.

13

A. Algorithm
We show in this section a simplified version of the algorithm we use in practice. The algorithm is
straightforward gradient descent. The only different part is the parameterization of the FLoRAL
model. Note that θk ∈ RC are local parameters or can be learned from scratch every round by (4).

Algorithm 1 Simple FLoRAL Averaging
1: Let wk

c,t = (uk
t ,a

k
c,t)

2: for τ = 0, H, 2H, · · · , ⌊T−1
H ⌋ do ▷ Comm. rounds

3: Sample clients Sτ ∼ K
4: for all k ∈ Sτ in parallel do
5: for t = τ, · · · , τ +H − 1 do ▷ Local epoch
6: π̂k

c,t = exp(θkc,t)/
∑C

c=1 exp(θ
k
c,t)

7: θkc,t+1 = θkc,t − ηt∇θk
c,t
fk(
∑C

c=1 π̂
k
c,tw

k
c,t)

8: wk
c,t+1 = wk

c,t − ηt∇wk
c,t
fk(
∑C

c=1 π̂
k
c,tw

k
c,t)

9: end for
10: end for
11: uk

τ+H ←
∑

k∈Sτ
Nkuk

τ+H∑
k∈Sτ

Nk ▷ Synchronize base layers

12: akc,τ+H ←
∑

k∈Sτ
π̂k

c,τ+HNkak
c,τ+H∑

k∈Sτ
π̂k

c,τ+HNk ▷ Synchronize adaptors
13: end for

B. Proofs
We reiterate the notations part from themain text here for clarity. Let pk

c :=
πk

cN
k∑K

k′=1
πk′

c Nk′
= p(k|c) and

p̂k
c,t :=

π̂k
c,tN

k∑K
k′=1

π̂k′
c,tNk′

. Define the expectation operators Ek|c[w
k
c,t] :=

∑K
k=1 p

k
cw

k
c,t and Ec|k[w

k
c,t] :=∑C

c=1 π
k
cw

k
c,t and similarly for their estimates Êk|c,π̂t

[wk
c,t] and Êc|k,π̂t

[wk
c,t]. We drop π̂k

c,t from the
notation for clarity. We use the variable i to denote client sampling, and i|c should be understood as
randomness in client sampling given cluster c, for example. Finally, let the global function of cluster
c be fc(w) := Ek|c[f

k(w)]. Note the absence of k in the weight.
The analysis roughly follows [36] and differ mostly in the appearance of the total variation distance
between pk

c and p̂k
c,t.

We start by introducing virtual iterates for tracking the aggregated weights (or gradients) with
respect to the true router (or the estimated router) at every time step, which will be mainly useful
for the analysis. These iterates coincide at the synchronization step, in which they become equal by
construction of the algorithm. The iterates are as follows

w̃c,t := Êk|c[w
k
c,t], g̃c,t := Êk|c[∇f it(wk

c,t)], (9)
w̄c,t := Ek|c[w

k
c,t], ḡc,t := Ek|c[∇fc(wk

c,t)], (10)

Note that w̃c,t+1 = w̃c,t − ηtg̃c,t and Eit|c[g̃c,t] = ḡc,t. Hence, using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we
have

Eit|c∥w̃c,t+1 −w∗
c∥2 = Eit|c∥w̃c,t −w∗

c − ηtg̃c,t∥2

= Eit|c∥w̃c,t −w∗
c − ηtg̃c,t − ηtḡc,t + ηtḡc,t∥2

= Eit|c∥w̃c,t −w∗
c − ηtḡc,t∥2︸ ︷︷ ︸

ideal aggregation descent

+η2t Eit|c∥ḡc,t − g̃c,t∥2︸ ︷︷ ︸
gradient aggregation error

+ 2ηt Eit|c⟨w̃c,t −w∗
c − ηtḡc,t, ḡc,t − g̃c,t⟩︸ ︷︷ ︸

correlation error

. (11)

14

In the original local SGD analysis, the correlation error is 0 since we aggregate the sampled gradients
exactly and thus the expectation gives Eit|c[g̃c,t] = ḡc,t. Note that the expectation Eit|c is implicitly
defined Eit|c[·|it−1, · · ·], which would be Eit|c[·|it0−1, · · ·], where t0 = t− (t mod H) since it = · · · =
it0 (because we sample clients every H round).

B.1. Bounding descent
Lemma B.1 (Descent bound 1). Given the setting and the assumptions in Section 4, the following holds

∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 + 2η2t ∥g̃c,t − ḡc,t∥2 + 2LηtÊk|c∥w̃c,t −wk
c,t∥2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c)]

Proof. From the ideal aggregation descent, we have
∥w̃c,t −w∗

c − ηtḡc,t∥2 = ∥w̃c,t −w∗
c∥2 + η2t ∥ḡc,t∥2 − 2ηt⟨w̃c,t −w∗

c , ḡc,t⟩
≤ ∥w̃c,t −w∗

c∥2 + η2tEk|c∥∇fc(wk
c,t)∥2 − 2ηt⟨w̃c,t −w∗

c , ḡc,t⟩,
where we have used Jensen’s inequality 4. As for the correlation error, we can write it as

2ηtEit|c⟨w̃c,t −w∗
c − ηtḡc,t, ḡc,t − g̃c,t⟩ = 2ηt⟨w̃c,t −w∗

c , ḡc,t − g̃c,t⟩ − 2η2t ⟨ḡc,t, ḡc,t − g̃c,t⟩.
We bound −η2t ⟨ḡc,t, ḡc,t − g̃c,t⟩with Young’s inequality 5

−2η2t ⟨ḡc,t, ḡc,t − g̃c,t⟩ ≤ η2t ∥ḡc,t∥2 + η2t ∥ḡc,t − g̃c,t∥2

≤ η2tEk|c∥∇fc(wk
c,t)∥2 + η2t ∥ḡc,t − g̃c,t∥2,

where we have used Jensen’s inequality as before.
Adding everything together, we get

∥w̃c,t+1 −w∗
c∥2 ≤ ∥w̃c,t −w∗

c∥2 + 2η2tEk|c∥∇fc(wk
c,t)∥2 + 2η2t ∥g̃c,t − ḡc,t∥2

− 2ηtÊk|c⟨w̃c,t −w∗
c ,∇fc(wk

c,t)⟩
= ∥w̃c,t −w∗

c∥2 + 2η2tEk|c∥∇fc(wk
c,t)∥2 + 2η2t ∥g̃c,t − ḡc,t∥2

− 2ηtÊk|c⟨w̃c,t −wk
c,t,∇fc(wk

c,t)⟩ − 2ηtÊk|c⟨wk
c,t −w∗

c ,∇fc(wk
c,t)⟩.

Observe that, by Assumption 4.2 and ∇fc(w∗
c) = 0, we have

∥∇fc(wk
c,t)∥2 = ∥∇fc(wk

c,t)−∇fc(w∗
c)∥2 ≤ 2L[fc(w

k
c,t)− fc(w

∗
c)], (12)

and
−⟨wk

c,t −w∗
c ,∇fc(wk

c,t)⟩ ≤ −[fc(wk
c,t)− fc(w

∗
c)]−

µ

2
∥wk

c,t −w∗
c∥2. (13)

We bound ⟨w̃c,t −wk
c,t,∇fc(wk

c,t)⟩with Young’s inequality

−2⟨w̃c,t −wk
c,t,∇fc(wk

c,t)⟩ ≤ 2L∥w̃c,t −wk
c,t∥2 +

1

2L
∥∇fc(wk

c,t)∥2

(12)
≤ 2L∥w̃c,t −wk

c,t∥2 + [fc(w
k
c,t)− fc(w

∗
c)].

We now plug in the results into the main bound
∥w̃c,t+1 −w∗

c∥2 ≤ ∥w̃c,t −w∗
c∥2 + 4Lη2tEk|c[fc(w

k
c,t)− fc(w

∗
c)] + 2η2t ∥g̃c,t − ḡc,t∥2

+ 2ηtLÊk|c∥w̃c,t −wk
c,t∥2 + ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c)])

− 2ηtÊk|c[fc(w
k
c,t)− fc(w

∗
c)]− ηtµÊk|c∥wk

c,t −w∗
c∥2

≤ (1− ηtµ)∥w̃c,t −w∗
c∥2 + 2η2t ∥g̃c,t − ḡc,t∥2 + 2LηtÊk|c∥w̃c,t −wk

c,t∥2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c)],

4f(EX) ≤ Ef(X) for random variable X and convex f .
52⟨a,b⟩ ≤ γ∥a∥2 + γ−1∥b∥2 for γ > 0.

15

where we have used Jensen’s inequality −Êk|c∥wk
c,t −w∗

c∥2 ≤ −∥w̃c,t −w∗
c∥2. This completes the

proof.

Lemma B.2 (Gradient aggregation error). Let δkc,t := |p̂k
c,t − pk

c | and δc,t := (δkc,t)
K
k=1. Then,

Eit|c∥ḡc,t − g̃c,t∥2 ≤ 2σ2∥pc∥2 + 2G2∥δc,t∥21. (14)

Proof. We divide the gradient aggregation error into controllable terms.

∥ḡc,t − g̃c,t∥2 = ∥
K∑

k=1

pk
c∇fc(wk

c,t)− p̂k
c,t∇f it(wk

c,t)∥2

= ∥
K∑

k=1

pk
c (∇fc(wk

c,t)−∇f it(wk
c,t)) + (pk

c − p̂k
c,t)∇f it(wk

c,t)∥2

≤ 2∥
K∑

k=1

pk
c (∇fc(wk

c,t)−∇f it(wk
c,t))∥2 + 2∥

K∑
k=1

δkc,t∇f it(wk
c,t)∥2. (15)

The first term can be bounded by noting Var(
∑K

k=1 ckXk) =
∑K

k=1 c
2
kVar(Xk) for independent Xk,

which holds since we condition on the previous iterates. We use Assumption 4.4 to obtain

Eit|c∥
K∑

k=1

pk
c (∇fc(wk

c,t)−∇f it(wk
c,t))∥2 ≤

K∑
k=1

(pk
c)

2Var(∇f it(wk
c,t)) ≤ σ2∥pc∥2. (16)

The second term can be bounded with Jensen’s inequality and Assumption 4.3. Note it = · · · = it0
for t0 = t− (t mod H) and δkc,t does not depend on it for t ≥ t0 by construction, as shown in (4), so

Eit|c∥
K∑

k=1

δkc,t∇f it(wk
c,t)∥2 ≤ ∥δc,t∥1

K∑
k=1

δkc,tEit|c∥∇f
it(wk

c,t)∥2 ≤ ∥δc,t∥21G2. (17)

Combining (16) and (17) into (15) and taking expectation completes the proof.
Lemma B.3 (Weights second moment). Assume that ηt+1 ≤ ηt and ηt0 ≤ 2ηt, where t0 = t − (t
mod H), i.e., ηt ≤ ηt0 ≤ 2ηt. Then, we have

Eit|cEk|c∥w̄c,t −wk
c,t∥2 ≤ 4η2tH

2G2,

Eit|cÊk|c∥w̃c,t −wk
c,t∥2 ≤ 4η2tH

2G2.

Proof. Let t0 = t − (t mod H) and recall that by synchronization we have wk
c,t0 = w̄c,t0 = w̃c,t0 .

Using E∥X − EX∥2 = E∥X∥2 − ∥EX∥2 with X = wk
c,t −wk

c,t0 , we get
Eit|cEk|c∥w̄c,t −wk

c,t∥2 = Eit|cEk|c∥wk
c,t −wk

c,t0 − (w̄c,t −wk
c,t0)∥

2

= Eit|cEk|c∥wk
c,t −wk

c,t0∥
2 − ∥w̄c,t − w̄c,t0∥2

≤ Eit|cEk|c∥wk
c,t −wk

c,t0∥
2

= Ek|cEit|c∥
t−1∑
τ=t0

ητ∇f iτ (wk
c,τ)∥2

≤ 4η2tH

t−1∑
τ=t0

Ek|cEit|c∥∇f
iτ (wk

c,τ)∥2 (18)

4.3
≤ 4η2tH

2G2,

where (18) uses ηt ≤ ηt0 ≤ 2ηt and ∥∑H
i=1 ai∥2 ≤ H

∑H
i=1∥ai∥2. Note that the bound for

Eit|cÊk|c∥w̃c,t −wk
c,t∥2 follows using the same argument. The assumption about the learning rate

implies that it does not decay by more than some factor (e.g., 1
2) before the next synchronization,

which can be easily satisfied by adding H in the denominator of ηt.

16

Lemma B.4 (Descent bound 2). Assume that ηt+1 ≤ ηt and ηt0 ≤ 2ηt, where t0 = t− (t mod H) and
δc,t defined as in Lemma B.2. Then,

∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 + 4η2t σ
2∥pc∥2 + 4η2tG

2∥δc,t∥21 + 8Lη3tH
2G2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c)].

Proof. The bound follows from applying Lemmas B.2 and B.3 on Lemma B.1.

Discussion Let us stop here and compare this boundwith that of vanilla local SGD. First, we observe
that we retrieve the original variance reduction (up to a constant factor). Next, we see that the directly
incurred cost from aggregation mismatch is G2. The aggregation mismatch also manifests in the
optimality gap in the sense that it “dampens” the guarantee as the aggregation increases, which we
will make more precise later.
In general, the descent lemma above can recover local SGD’s descent lemma in the (FL) setting,
which immediately implies its convergence rate.
Corollary B.5. Lemma B.4 recovers local SGD descent lemma from [36, Lemma 3.1] up to constant factors.

Proof. Since C = 1 in local SGD, this trivially gives “uniform” routing and thus ∥δc,t∥1 = 0, i.e.,
p̂k
c,t = pk

c = 1/K. Note that we have used the same assumptions, so we can apply Lemma B.4 with
ηt ≤ 1

16L to obtain the descent lemma of local SGD up to constant factors (and up to application of
Lemmas B.2 and B.3).

Next, we want to bound the quantity ∥δc,t∥21 given the update (4), and relate the new bound to
Lemma B.4. After that, we can derive the convergence rate with the help of a technical lemma. We
also derive the convergence rate given a slow decay assumption on ∥δc,t∥21, which shows more clearly
the effect of aggregation mismatch on convergence.

B.2. Bounding the total variation distance

The following bound follows from the router update in (4).

Lemma B.6 (Total variation distance bound). Consider the choice π̂k
c,t =

exp(−ηtfc(w
k
c,t))∑C

c′=1
exp(−ηtfc(wk

c′,t))
, and

assume that we can write πk
c =

exp(−η̄fc(w
∗
c))∑C

c′=1
exp(−η̄fc(w∗

c′))
, where fc is bounded below by 0 and η̄ ≥ ηt, ∀t ≥ 0.

Then,

∥δc,t∥21 ≤ 4ηtEk|c[fc(w
k
c,t)− fc(w

∗
c)] + η̄fc(w

∗
c) + 4 logKC + 10Lη3tH

2G2.

Proof. Let t0 = t− (t mod H). We will consider the cases where t = t0 and t > t0 separately.

Case t = t0: Let Ẑk
t =

∑C
c′=1 exp(−ηtfc(wk

c′,t)) be the partition function of client k, so that we can
write π̂k

c,t = exp(−ηtfc(wk
c,t))/Ẑ

k
t . Recall that pk

c = p(k|c) ∝ Nkπk
c , and let Ẑc,t =

∑K
k=1 N

kπ̂k
c,t be

the partition function of cluster c. Equivalently define Zk and Zc,t to be the partition functions of

17

client k and cluster c give the optimal router πk
c , respectively. Observe

∥δc,t∥21 =

(
K∑

k=1

|p̂k
c,t − pk

c |

)2

=

(
K∑

k=1

pk
c |p̂k

c,t/p
k
c − 1|

)2

≤ 2

K∑
k=1

pk
c log

pk
c

p̂k
c,t

= 2

K∑
k=1

pk
c (ηtfc(w

k
c,t)− η̄fc(w

∗
c) + log

Ẑk
t

Zk
+ log

Ẑc,t

Zc
)

≤ 2

K∑
k=1

pk
cηt(fc(w

k
c,t)− fc(w

∗
c)) + log

Ẑk
t

Zk
+ log

Ẑc,t

Zc
, (19)

where we have used Pinsker’s inequality, the router’s expression, and η̄ ≥ ηt.
Using max1≤k≤K{xk} ≤ log

∑K
k=1 exp(xk) ≤ max1≤k≤K{xk}+ logK, we can write

log
Ẑk
t

Zk
= log

C∑
c′=1

exp(−ηtfc(wk
c′,t))− log

C∑
c′=1

exp(−η̄fc(w∗
c′))

≤ max
1≤c′≤C

{−ηtfc(wk
c′,t)} − max

1≤c′≤C
{−η̄fc(w∗

c′)}+ logC

= min
1≤c′≤C

{η̄fc(w∗
c′)} − min

1≤c′≤C
{ηtfc(wk

c′,t)}+ logC, (†)

and using similar arguments, we can show that

log
Ẑc,t

Zc
= log

K∑
k=1

Nkπ̂k
c,t − log

K∑
k=1

Nkπk
c

= log

K∑
k=1

exp(−ηtfc(wk
c,t) + log

Nk

Ẑk
t

)− log

K∑
k=1

exp(−η̄fc(w∗
c) + log

Nk

Zk
)

= min
1≤k≤K

{η̄fc(w∗
c) + log

Zk

Nk
} − min

1≤k≤K
{ηtfc(wk

c,t) + log
Ẑk
t

Nk
}+ logK. (∗)

By properties of the LogSumExp function, we have
− min

1≤c′≤C
{η̄fc(w∗

c′)} ≤ logZk ≤ − min
1≤c′≤C

{η̄fc(w∗
c′)}+ logC,

and similarly with log Ẑk
t and −ηt min1≤c′≤C fc(w

k
c′,t). Observe that − log N

Nk ≤ 0 and
min1≤k≤K{log N

Nk } ≤ logK since the uniform case has the lowest max probability. Now define
the centered function f◦

c (·) := fc(·) − min1≤c′≤C{fc(·)} and note that f◦
c (·) ≤ fc(·). Adding and

subtracting logN to both terms in (∗) and using the expressions above, we can get

log
Ẑc,t

Zc
≤ min

1≤k≤K
{η̄fc(w∗

c) + log
NZk

Nk
} − min

1≤k≤K
{ηtfc(wk

c,t) + log
NẐk

t

Nk
}+ logK

≤ η̄f◦
c (w

∗
c)− min

1≤k≤K
{ηtf◦

c (w
k
c,t)}+ 2 logK + logC. (††)

Combining (†) and (††), we get

log
Ẑk
t

Zk
+ log

Ẑc,t

Zc
≤ η̄fc(w

∗
c)− min

1≤c′≤C
{ηtfc(wk

c′,t)} − min
1≤k≤K

{ηtfc(wk
c,t)}+ 2 logKC

≤ η̄fc(w
∗
c) + 2 logKC.

where the second inequality follows because mini{Ai +Bi} ≤ mini{Ai}+mini{Bi}. Applying this
inequality to the overall bound (19), we have

∥δc,t∥21 ≤ 2ηtEk|c[fc(w
k
c,t)− fc(w

∗
c)] + 2η̄fc(w

∗
c) + 4 logKC. (20)

18

Case t > t0: Note that δc,t = δc,t0 by (4), so we get the same bound (20) but in terms of
t0. If we decompose the function gap Ek|c[fc(w

k
c,t0) − fc(w

∗
c)] = Ek|c[fc(w

k
c,t0) − Eit|cfc(w

k
c,t)] +

Ek|c[Eit|cfc(w
k
c,t)− fc(w

∗
c)], we see that it suffices to bound the first term to be able to write δc,t in

terms of function gap at step t. We can also take the expectations Eit|c out since neither wk
c,t0 nor w∗

c

depend on it = · · · = it0 .
Recall that wk

c,t0 = Ek|c[w
k
c,t0]. Using L-smoothness from Assumption 4.2, we get

Ek,it|c[fc(w
k
c,t0)− fc(w

k
c,t)] ≤ Ek,it|c⟨∇fc(w

k
c,t),w

k
c,t0 −wk

c,t⟩+
L

2
Ek,it|c∥w

k
c,t0 −wk

c,t∥2

(Young)
≤ γ−1Ek|c∥∇fc(wk

c,t)∥2 + (γ +
L

2
)Ek,it|c∥w

k
c,t0 −wk

c,t∥2

(18)
≤ γ−1Ek|c∥∇fc(wk

c,t)∥2 + (γ +
L

2
)4η2tH

2G2

(12)
≤ Ek|c[fc(w

k
c,t)− fc(w

∗
c)] + 10Lη2tH

2G2,

where we have chosen γ := 2L.
We complete the proof by taking the max of both cases, which simply amounts to adding both
cases.

The following descent lemma will be used to get the convergence rate without any assumptions on
∥δc,t∥1 other than what we have in the router update (4).
Lemma B.7 (Descent bound 3). Let the conditions in Lemmas B.4 and B.6 be satisfied. Without loss of
generality, assume that fc(w∗

c) = 0. If ηt ≤ γt

max{ 5
2 ,16G

2,4L} , where γt = min{1,mink∈[K]; pk
c>0{p̂k

c,t/p
k
c}},

then

Eit|c∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 −
1

2
ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c)]

+ 4η2t σ
2∥pc∥2 + 16η2tG

2 logKC + 9η3tLH
2G2.

Proof. We apply Lemma B.6 on Lemma B.4 and rearrange to get
Eit|c∥w̃c,t+1 −w∗

c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗
c∥2 + 4η2t σ

2∥pc∥2 + 16η2tG
2 logKC

+ 40Lη5tH
2G4 + 8Lη3tH

2G2

+ ηt

K∑
k=1

(16η2tG
2pk

c + 4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c)].

In order to have a meaningful convergence of the optimality gap, we have to bound it from above, so
we should have

pk
c (16η

2
tG

2 + 8Lηt − 1) + pk
c − p̂k

c,t < −A, (21)
for some A > 0.
Suppose pk

c > p̂k
c,t, and recall that c is given, so we fix it. Write rkt := p̂k

c,t/p
k
c < 1. Then, pk

c − p̂k
c,t =

(1 − rkt)p
k
c < pk

c , so that (21) becomes pk
c (16η

2
tG

2 + 4Lηt − rkt) < −A. If we set ηt ≤ B
max{16G2,4L}

for some B > 0, we would have pk
c (Bηt +B − rkt) < −A, implying that

ηt <
1

B
(rkt −B −A/pk

c) =
p̂k
c,t −A

Bpk
c

− 1.

Setting A = (1− (η̄ + 1)(rkt)
−1B)p̂k

c,t > 0 gives ηt < η̄, where η̄ is some strict upper bound of ηt for
all t, but we should also have (η̄ + 1)(rkt)

−1B < 1 ⇐⇒ B <
rkt
η̄+1 . Thus, we set B :=

rkt
η̄+2 , getting

A =
1

2
p̂k
c,t, ηt ≤

rkt
(η̄ + 2)max{16G2, 4L}

. (22)

19

Now, if pk
c ≤ p̂k

c,t with ηt ≤ D
max{16G2,4L} for some D > 0, (21) would imply ηt <

1−A
Dpk

c
− 1, so that

A = (1 − (η̄ + 1)D)pk
c > 0 gives ηt < η̄ but under the condition D < 1

η̄+1 . Thus, setting D := 1
η̄+2

gives the same setting in (22) with 1 instead of rkt . Thus, for all k ∈ [K], we should have

ηt ≤
min{1, rkt }

(η̄ + 2)max{16G2, 4L}
.

We can restrict the denominator to max{1, 16G2, 4L} without loss of generality. Then, we can upper
bound ηt ≤ 1

(η̄+2) <
1
2 , so that η̄ = 1

2 suffices for this choice.

Overall, we have ηt ≤ min{1,mink∈[K]{p̂k
c,t/p

k
c}}

max{ 5
2 ,16G

2,4L} , and using (21) with A = 1
2 p̂

k
c,t, we get

Eit|c∥w̃c,t+1 −w∗
c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗

c∥2 −
1

2
ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c)]

+ 4η2t σ
2∥pc∥2 + 16η2tG

2 logKC + 8Lη3tH
2G2 + 40Lη5tH

2G4.

Given our choice of ηt, we note that 40Lη5tH2G4 ≤ Lη4tH
2G2 ≤ Lη3tH

2G2, which completes the
proof.

Discussion Note that the learning rate is not as strict as it may look. First of all, note that p̂k
c,t < pk

c

is the case of interest, as otherwise, γt = 1. Taking the minimum for k such that pk
c > 0 makes sense

because p̂k
c,t ≥ pk

c = 0, so γt = 1.
Now assume that p̂k

c,t ≤ pk
c for all t. The lowest value γt can attain is when pk

c = 1 and p̂k
c,t is very

small. This can happen, for example, when a cluster has one client. However, a uniform initialization
for the routers would have that

π̂k
c,0 = 1/C =⇒ p̂k

c,0 =
p(k)π̂k

c,0∑K
k′=1 p(k

′)π̂k′
c,0

= p(k).

Since pk
c =

p(k)πk
c

p(c) , we would then have p̂k
c,0/p

k
c = p(c)

πk
c
≤ 1 since we assumed p̂k

c,t ≤ pk
c .

Suppose πk
c = 1. If ∑K

k=1 π
k
c = 1, i.e., the number of clients in cluster c is 1, then we cannot

improve p̂k
c,0/p

k
c = p(k) any further. This can be even worse if there is one data point for client k.

However, these extreme heterogeneity scenarios are inherently difficult, so it is better to capture this
heterogeneity with some term, particularly when πk

c ≥ p(c), which follows from p̂k
c,t ≤ pk

c .
For example, assume that πk

c ≤ U−1
c p(c) for all k such that πk

c ≥ p(c), so that Uc ∈ [p(c), 1]. In other
words, we can choose Uc = mink; p(c)≤πk

c
{p(c)/πk

c }. This implies that p̂k
c,0/p

k
c = p(c)

πk
c
≥ Uc.

The value Uc is a uniformity measure, so that a larger Uc denotes a more uniform allocation of clients
in cluster c. For example, if Uc = 1, then, for all k such that πk

c ≥ p(c), we have πk
c = p(c). On the

other hand, if Uc = p(c), then it is possible for some clients k to have πk
c = 1, or in the worst case,

p(c) = p(k)when only one client is in cluster c (remember that clients with πk
c < p(c) are ignored).

When cluster sizes are comparable, we have p(c) ≈ 1/C, meaning that Uc ≥ 1/C.
Thus, in general, with uniform router initialization and when |pk

c − p̂k
c,t| ≤ |pk

c − p̂k
c,0| (which is a

mild restriction to ensure p̂k
c,0/p

k
c is smaller than p̂k

c,0/p
k
c), we have

Uc = min
k; p(c)≤πk

c

{p(c)/πk
c } ≤ min{1, min

k∈[K]
{p(k)/pk

c}} ≤ γt ≤ 1. (23)

Regarding the min operator in Uc, it is only required because it is a uniform learning rate for all
clients, so it must converge for the worst client, which is the client with the least amount of data (i.e.,
lowest p(k)). Thus, we believe that this can be removed when considering learning rates per client.
We leave this analysis for future work.

20

B.3. Convergence rates
In order to get convergence rates from descent lemmas, we make use of the following useful lemma,
which is based on [44, Lemma 3.3].
Lemma B.8. Let {at}t≥0, {bt}t≥0, and {ct}t≥0, be arbitrary non-negative sequences such that

at+1 ≤ (1− µηt)at − ηtbt + η2t ct.

Let ηt = α
t+s for t ≥ 0 and s ≥ 1, and choose α = 1

µ . Then, we have the following inequality

T−1∑
t=0

bt ≤ (s− 1)µa0 +

T−1∑
t=0

ηtct.

Proof. Let rt := 1− µηt. Then,
at+1 ≤ rtat − ηtbt + η2t ct

≤ rtrt−1at−1 − ηtbt − rtηt−1bt−1 + η2t ct + rtη
2
t−1ct−1

≤ −ηtbt − rtηt−1bt−1 − rtrt−1ηt−2bt−2

+ η2t ct + rtη
2
t−1ct−1 + rtrt−1η

2
t−2ct−2 + rtrt−1rt−2at−2

≤ · · ·

=⇒ aT+1 ≤ r0:Ta0 +

T∑
t=0

rt+1:T ηt(−bt + ηtct),

where we denote rt1:t2 :=
∏t2

t=t1
rt, which defaults to 1 when t1 > t2.

Observe that
t2∑

t=t1

ηt =

t2∑
t=t1

α

t+ s
≥ α

∫ t2

t=t1

1

t+ s
= α log

t2 + s

t1 + s
.

Hence,

rt1:t2 =

t2∏
t=t1

(1− µηt) ≤
t2∏

t=t1

exp(−µηt) = exp(−µ
t2∑

t=t1

ηt) ≤
(
t1 + s

t2 + s

)µα

.

We can confirm that for α = 1/µ, we have

r−1
t ηt =

(
t+ s

t+ s− µα

)(
α

t+ s

)
=

α

t+ s− 1
= ηt−1,

so that rt = ηt

ηt−1
. This implies rt1:t2 =

ηt2

ηt1−1
= t1+s−1

t2+s ≤
t1+s
t2+s , so the inequality above is almost tight

when α = 1/µ (loose by a multiplicative factor of t1+s
t1+s−1). This also implies that ηT = ηT−1rT =

· · · = ηtrt+1:T = · · · = η0r1:T . so we can factor these terms out and divide both sides by ηT . Hence,
we have r0:T

ηT
= r0

η0
= (s− 1)µ, and by observing that 0 ≤ aT+1

ηT
, we can get the desired bound.

Now we are ready to prove the main theoretical results of the paper.
Theorem B.9 (Convergence rate). Consider the setup in Section 4. Let σ̃2 = σ2∥pc∥2, κ = L

µ , and
Uc = mink; p(c)≤πk

c
{p(c)/πk

c }. Initialize π̂k
c,0 = 1/C for all k ∈ [K], and assume |pk

c − p̂k
c,t| ≤

|pk
c − p̂k

c,0| for all t ≥ 0. Assume that fc(w
∗
c) = 0, without loss of generality. Let ηt ≤ α

t+s

with α = 1
µ and s ≥ max{3H, 4κ/Uc, 16G

2/µUc}. Consider the weighted average after T iterations
ŵc,T := 1∑T−1

t=0 wt

∑T−1
t=0 wtw̃c,t with wt = (t+ s)2. Then, the following holds

Efc(ŵc,T)− fc(w
∗
c) ≤ (8σ̃2 + 32G2 logKC)(

1

µT
+

2s− 1

µT 2
)

+
18κH2G2

µT 2
+

24(s− 1)s2G2

µT 3
.

21

If L ≥ 4G2, we have the following asymptotic bound

Efc(ŵc,T)− fc(w
∗
c) ≤ O

(
1

µT
+

κ/Uc +H

µT 2

)
σ̃2 +O

(
logKC

µT
+

κH2

µT 2
+

(κ/Uc)
3 +H3

µT 3

)
G2.

Proof. Note that ηt satisfies Lemma B.7 by construction of s and (23). It also satisfies Lemma B.3
since for t ∈ [t0, t0 +H), we have ηt

ηt+H
= t+s+H

t+s ≤ 2 because s+ t ≥ s ≥ H .
Let {wt}t≥0 be a non-negative (averaging) sequence. We use Lemma B.8 on Lemma B.7 with

at = wtEit|c∥w̃c,t −w∗
c∥2, bt =

wt

2
fc(w̃c,t)− fc(w

∗
c), ct = wt(A+Bηt),

where A = 4σ2∥pc∥2 + 16G2 logKC and B = 9LH2G2. Note fc(w̃c,t) − fc(w
∗
c) ≤ Êk|c[fc(w

k
c,t) −

fc(w
∗
c)] by Jensen’s inequality. Thus,

T−1∑
t=0

wtEit|c[fc(w̄c,t)− fc(w
∗
c)] ≤ 2(s− 1)µw0a0 + 2A

T−1∑
t=0

wtηt + 2B

T−1∑
t=0

wtη
2
t .

From the expression above, it makes sense to choose wt = (t+ s)2. Indeed,
T−1∑
t=0

wtηt =

T−1∑
t=0

α(t+ s) =
T (T − 1)

2µ
+

Ts

µ
, and

T−1∑
t=0

wtη
2
t =

T−1∑
t=0

α2 =
T

µ2
.

Hence, using Jensen’s inequality with ŵc,T := 1∑T−1
t=0 wt

∑T−1
t=0 wtw̄c,t and letting D = ∥w̃c,0 −w∗

c∥,
we have with the tower property of conditional expectations that

Efc(ŵc,T)− fc(w
∗
c) ≤

2(s− 1)s2µD2∑T−1
t=0 wt

+ 2A(
T (T − 1) + 2Ts

2µ
∑T−1

t=0 wt

) + 2B
T

µ2
∑T−1

t=0 wt

.

We bound 1∑T−1
t=0 wt

using the fact∑T−1
t=0 wt =

1
3T

3 + (s− 1
2)T

2 + (s2 − s+ 1
6)T ≥

1
3T

3. Using this
bound and plugging in A and B, we get

Efc(ŵc,T)− fc(w
∗
c) ≤

6(s− 1)s2µD2

T 3
+ (8σ2∥pc∥2 + 32G2 logKC)(

1

µT
+

2s− 1

µT 2
)

+
18LH2G2

µ2T 2
.

We use µE∥w̃c,0 −w∗
c∥ ≤ 2G [45, Lemma 2] and tower property of conditional expectation in terms

of Eit|c to get the desired bound.

Discussion Note that in Theorem B.9, we have ηt depending on G2 and the bound has an extra
O(G

2 logKC
µT) term in the asymptotic bound, which comes from Lemma B.6, where we bounded

∥δc,t∥21 using (4). Furthermore, the terms Uc appear in our analysis, but we explain that they do not
affect the recovery of local SGD rates. Indeed, in the (FL) case, Uc ≥ p(c) = 1 since C = 1. Even if
we have C copies of (FL) with p(c) = 1/C, since p(k|c) = p(k), we would still have Uc = 1 (see the
definition in (23)). In the (CFL) case, if we have similar cluster sizes and client sizes, then Uc = 1/C,
which is the (linear) price to pay for learning the clusters given the uniform router initialization. This
dependence can be reduced further by taking into the decay of p̂k

c,t/p
k
c instead of assuming uniform

router initialization and non-increasing p̂k
c,t/p

k
c in t, but we leave such an analysis for future work.

We now prove a stronger convergence rate given a stronger assumption on the decrease of ∥δc,t∥21.
Namely, we assume that ∥δc,t∥21 ≤ (t + s)−β∥δc,0∥21 for β ∈ (0, 1). This convergence rate does not
require a dependence on G2 in the learning rate, and it weakens O(G2 logKC

µT) proportionally to β.
This particular range of the exponent of β maintains the extra term in the asymptotic rate with an
explicit dependence on β. The exponent is bounded above by 1 for technical convenience, and we
believe this condition can be easily removed. In any case, exponents of 1 or larger would make the
extra terms incurred from ∥δc,t∥21 disappear asymptotically. Indeed, the original rate of local SGD
can be exactly recovered when ∥δc,t∥21 decays quickly (where Uc = 1 as explained above). We now
state the stronger convergence rate.

22

Theorem B.10 (Convergence Rate with decreasing ∥δc,t∥21). Consider the setup in Section 4. Let
σ̃2 = σ2∥pc∥2, κ = L

µ , and Uc = mink; p(c)≤πk
c
{p(c)/πk

c }. Initialize π̂k
c,0 = 1/C for all k ∈ [K], and

assume |pk
c − p̂k

c,t| ≤ |pk
c − p̂k

c,0| for all t ≥ 0. Assume that fc(w∗
c) = 0 without loss of generality, and

assume that ∥δc,t∥21 ≤ (t+s)−β∥δc,0∥21 for β ∈ (0, 1). Let ηt ≤ α
t+s with α = 1

µ and s ≥ max{3H, 4κ/Uc}.
Consider the weighted average after T iterations ŵc,T := 1∑T−1

t=0 wt

∑T−1
t=0 wtw̃c,t with wt = (t+ s)2. Then,

Efc(ŵc,T)− fc(w
∗
c) ≤ 12σ̃2(

1

µT
+

2s− 1

µT 2
) + 48G2 ∥δc,0∥21

µT 1+β

+ 24G2 (s− 1 + 2∥δc,0∥21s−β)s2

µT 3
+ 48LH2G2 1

µ2T 2
.

Asymptotically,

Efc(ŵc,T)− fc(w
∗
c) ≤ O

(
1

µT
+

κ/Uc +H

µT 2

)
σ̃2 +O

(
κH2

µT 2
+

(κ/Uc)
3 +H3

µT 3

)
G2

+O
(

1

µT 1+β
+

(κ/Uc)
2−β +H2−β

µT 3

)
∥δc,0∥21G2.

Proof. Recall Lemma B.4
∥w̃c,t+1 −w∗

c∥2 ≤ (1− ηtµ)∥w̃c,t −w∗
c∥2 + 4η2t σ

2∥pc∥2 + 4η2tG
2∥δc,t∥21 + 8Lη3tH

2G2

+ ηt

K∑
k=1

(4Lηtp
k
c − p̂k

c,t)[fc(w
k
c,t)− fc(w

∗
c)].

We use the exact same reasoning in Lemma B.7 to get that ηt ≤ min{1,mink∈[K]{p̂k
c,t/p

k
c}

max{5/2,4L} . Our choice of
ηt already satisfies this rate from (23), and it clearly satisfies Lemma B.3 by construction of s. Thus,
the overall bound becomes

1

2
fc(w̃c,t)− fc(w

∗
c) ≤

1

2
ηtÊk|c[fc(w

k
c,t)− fc(w

∗
c)]

≤ (1− ηtµ)∥w̃c,t −w∗
c∥2 + 4η2t σ

2∥pc∥2 + 4η2tG
2∥δc,t∥21 + 8Lη3tH

2G2.

We can now invoke Lemma B.8 with
at = wtEit|c∥w̃c,t −w∗

c∥2, bt =
wt

2
Eit|c[fc(w̄c,t)− fc(w

∗
c)], ct = wt(At +Bηt),

where {wt}t≥0 is an averaging sequence, At = 4σ2∥pc∥2 + 4G2∥δc,t∥21, and B = 8LH2G2. Thus,
T−1∑
t=0

wtEit|c[fc(w̄c,t)− fc(w
∗
c)] ≤ 2(s− 1)µw0a0 + 2

T−1∑
t=0

wtηtAt + 2

T−1∑
t=0

wtη
2
tB.

We choose wt = (t+ s)2 as in Theorem B.9 and use the assumption that ∥δc,t∥21 ≤ (t+ s)−β∥δc,0∥21
for β ∈ (0, 1) to get

T−1∑
t=0

wtηtAt = α

T−1∑
t=0

(t+ s)At = 4ασ2∥pc∥2
T−1∑
t=0

(t+ s) + 4αG2
T−1∑
t=0

(t+ s)∥δc,t∥21

= 4ασ2∥pc∥2(
T (T − 1)

2
+ Ts) + 4αG2∥δc,0∥21

T−1∑
t=0

(t+ s)1−β .

Furthermore,
T−1∑
t=0

(t+ s)1−β ≤
∫ T

0

(t+ s)1−βdt =
1

2− β
((T + s)2−β − s2−β) ≤ (T + s)2−β .

23

Hence,
T−1∑
t=0

wtηtAt ≤ 2ασ2∥pc∥2T (T + 2s− 1) + 8αG2∥δc,0∥21(T 2−β + s2−β),

where we have used (T + s)2−β ≤ 2max{T, s}2−β ≤ 2(T 2−β + s2−β).
On the other hand, using∑T−1

t=0
1

(t+s)β
≤ T , we get

T−1∑
t=0

wtη
2
tB ≤ 8α2LH2G2T.

Using the averaging ŵc,T := 1∑T−1
t=0 wt

∑T−1
t=0 wtw̄c,t, the fact that∑T−1

t=0 wt ≥ 1
3T

3, and µE∥w̃c,0 −
w∗

c∥ ≤ 2G, as in Theorem B.9, we overall have

Efc(ŵc,T)− fc(w
∗
c) ≤ 24G2 (s− 1)s2

µT 3
+ 12σ2∥pc∥2

T + 2s− 1

µT 2

+ 48G2∥δc,0∥21
T 2−β + s2−β

µT 3
+ 48LH2G2 1

µ2T 2
,

which completes the proof after rearranging the terms.

Remark B.11. Given uniform router initialization, we have ∥δc,0∥1 =
∑K

k=1|p(k)−pk
c | =

∑K
k=1 p

k
c (1−

p(k)/pk
c) ≤ (1− Uc).

C. Extending the analysis to (FML) with Weight Sharing
In this section, we show the benefits of weight sharing in the (FML) case. We now consider iterates
that track the full expectation Ek,c instead of Ek|c.

w̃t := Êk,c[w
k
c,t], g̃t := Êk,c[∇f it(wk

c,t)], (24)
w̄t := Ek,c[w

k
c,t], ḡt := Ek,c[∇fc(wk

c,t)], (25)
Note that we have assumed that Eit|c∇f it(wk

c,t) = ∇fc(wk
c,t). However, we make an important

distinction here. In the previous analysis in Appendix B, we have written the expectation Eit|c, but,
in fact, this c is not the same as the c in Ek,c. The expectations Ek,c and Êk,c track the aggregated
iterates, whereas Eit,c takes expectation with respect to client sampling, which is independent of the
tracking variables. Thus, in order to make the distinction clear, we write the sampled cluster variable
as z and write the expectation with respect to sampling as Eit,z , so that p(it, z = c) =

∑
k∈it

p(k)πk
c

(recall that p(k, c) = p(k)p(c|k) = p(k)πk
c).

Now we introduce finer variance and heterogeneity assumptions that help us achieve even better
variance reduction.
Assumption C.1 (Bounded variance of base model and adaptors). For any c ∈ [C] and k ∈ [K], and
given weight sharing wc = (u,ac) ∈ Rd, we have

Eit|z=c∥∇ac
f it(wc)−∇ac

fc(wc)∥2 ≤ σ2
c , (26)

Eit,z∥∇uf
it(wc)− Ec′∇ufc′(wc)∥2 ≤ σ̄2. (27)

Assumption C.2 (Bounded heterogeneity of base model and adaptors). For t ≥ 0, synchronization
steps t0 mod H = 0, weight sharing wk

c,t = (uk
t ,a

k
c,t) ∈ Rd, there exist ∆, ζ > 0 such that

Ek,c∥∇ufc(w
k
c,t)− Ec′∇ufc′(w

k
c,t)∥2 ≤ ∆2, (28)

Êc∥akc,t0 − Êc[a
k
c,t0]∥

2 − 2Êc⟨akc,t0 − Êc[a
k
c,t0], Êc′∇afc′(w

k
c,t0:t)⟩ ≤ ζÊit,c′∥∇afc′(w

k
c,t0:t)∥

2. (29)

24

These assumptions do have practical relevance, especially when the fine variance quantities are
smaller than the one used in Assumption 4.4. Namely, (26), which is a straightforward adaptation of
Assumption 4.4, bounds the variance of the sampled adaptors’ gradients separately (per cluster). On
the other hand, (27) bounds the variance of the base model’s gradient from the averaged objective
across clusters. We expect both of these bounds to be tighter than the variance of the fullmodel’s
gradient per cluster separately.
As for Assumption C.2, the weight sharing structure should be justified when the condition holds
for small ∆. The first assumption (28) bounds the (aggregated) variance of the base gradient across
clusters, which can be close to 0 with weight sharing and small adaptors. The second assumption
says that the correlation between the adaptor’s signal and the gradient signal is strong enough. In
particular, it should be greater than the variance of the adaptors minus some multiple of the gradient
norm (of the sum of steps, which decays due to ηt) . This assumption is a technical convenience to
avoid bounding the adaptors’s variance directly by some fixed constant, which would introduce an
undesirable fixed terms in the convergence rate and would require bounded adaptors.
These assumptions help us have a more principled approach towards the practice of weight sharing
and the design of adaptors. For example, we discuss a LoRA-centering procedure in Appendix F
partly inspired from (29). Overall, the above assumptions decompose the variance and heterogeneity
errors in a way that makes the benefits of weight sharing manifest, which is especially true using
Assumption C.2.

C.1. Analysis
Wewill now show that an extension of the previous analysis in Appendix B using the aforementioned
quantities and assumptions is possible and can lead to better variance reduction.
In the following lemma, we will make use of the quantity w∗ := Ec[w

∗
c] =

∑C
c=1 p(c)w

∗
c , where p(c)

is the overall probability of cluster c, e.g., see (1). This quantity is not a real optimum, but rather an
analytical tool. Indeed, by Jensen’s inequality, we canwrite ∥w̃t−w∗∥2 ≤ ∥uk

t −u∗
t ∥2+Ec∥akc,t−a∗c,t∥2

whenwk
c,t = (uk

t ,a
k
c,t). Thus, obtaining a upper bound on the optimality gap using terms ∥w̃t−w∗∥2

suffices as it implies the upper bound of interest.
Lemma C.3 (Descent bound with weight sharing). Define p := (p(k))Kk=1 (indexed as pk) and πc =
(πk

c)
K
k=1. Let δkt = (|πk

c − π̂k
c,t|)Cc=1 and w∗ := Ec[w

∗
c]. Consider the setting and assumptions in Section 4,

and let Assumption C.1 and Assumption C.2 hold with ζ ≥ 1, without loss of generality. Then,

∥w̃t+1 −w∗∥2 ≤ (1− ηtµ)∥w̃t −w∗∥2 + ηt

K∑
k=1

C∑
c=1

pk(4Lηtπ
k
c − π̂k

c,t)[fc(w
k
c,t)− fc(w

∗t)]

+ 4η2t (G
2Ek∥δkt ∥21 + Ec[∥pc∥2σ2

c] + 2σ̄2
C∑

c=1

∥p⊙ πc∥2 + 2∆2)

+ 16ζLη3tH
2G2.

Proof. As in (11), the descent can be bounded as
Eit,z∥w̃t+1 −w∗∥2 = Eit,z∥w̃t −w∗ − ηtḡt∥2 + η2tEit,z∥ḡc,t − g̃t∥2

+ 2ηtEit,z⟨w̃t −w∗ − ηtḡt, ḡt − g̃t⟩.
From the ideal aggregation descent, we have

∥w̃t −w∗ − ηtḡt∥2 = ∥w̃t −w∗∥2 + η2t ∥ḡt∥2 − 2ηt⟨w̃t −w∗, ḡt⟩
≤ ∥w̃t −w∗∥2 + η2tEk,c∥∇fc(wk

c,t)∥2 − 2ηt⟨w̃t −w∗, ḡt⟩.
As for the correlation error, we use Young’s inequality and Jensen’s inequality as before

2ηt⟨w̃t −w∗ − ηtḡt, ḡt − g̃t⟩ = 2ηt⟨w̃t −w∗, ḡt − g̃t⟩ − 2η2t ⟨ḡt, ḡt − g̃t⟩
≤ 2ηt⟨w̃t −w∗, ḡt − g̃t⟩+ η2tEk,c∥∇fc(wk

c,t)∥2 + η2t ∥ḡt − g̃t∥2.

25

Adding everything together (and skipping Eit,z for clarity), we get
∥w̃t+1 −w∗∥2 ≤ ∥w̃t −w∗∥2 + 2η2tEk,c∥∇fc(wk

c,t)∥2 + 2η2t ∥g̃t − ḡt∥2

− 2ηtÊk,c⟨w̃t −wk
c,t,∇fc(wk

c,t)⟩ − 2ηtÊk,c⟨wk
c,t −w∗,∇fc(wk

c,t)⟩
(12)+(13)
≤ ∥w̃t −w∗∥2 + 2η2t ∥g̃t − ḡt∥2 − 2ηtÊk,c⟨w̃t −wk

c,t,∇fc(wk
c,t)⟩

+ ηt

K∑
k=1

C∑
c=1

pk(4Lηtπ
k
c − 2π̂k

c,t)[fc(w
k
c,t)− fc(w

∗)]− ηtµÊk,c∥wk
c,t −w∗∥2

≤ (1− ηtµ)∥w̃t −w∗∥2 + 2η2t ∥g̃t − ḡt∥2 + 2LηtÊk,c∥w̃t −wk
c,t∥2

+ ηt

K∑
k=1

C∑
c=1

pk(4Lηtπ
k
c − π̂k

c,t)[fc(w
k
c,t)− fc(w

∗)],

where the last inequality uses Jensen’s inequality and Young’s inequality.
The optimality gap can be bounded by − 1

2p
kπ̂k

c,t as in Lemma B.7 given a learning rate with a
numerator min{1,mink∈[K]{pkπ̂k

c,t/p
kπk

c }} = mink;πk
c>π̂k

c,t
{π̂k

c,t/π
k
c } this time, which allows us to

obtain a bound in terms of Êc[fc(w̃c,t)− fc(w
∗
c)].

The term Êk,c∥w̃t −wk
c,t∥2 can be bounded with Lemma B.3 by adding and subtracting Êk,c[w

k
c,t0] =

w̃t0 (recall Êk,c[u
k
c,t0] = uk

c,t0 and Êk|c[a
k
c,t0] = akc,t0), applying Var(X) ≤ E[X2], using Assump-

tion C.2, and then following the proof as before
Eit,zÊk,c∥wk

c,t − w̃t∥2 = Eit,zÊk,c∥wk
c,t − w̃t0 − (w̃t − w̃t0)∥2

≤ Eit,zÊk,c∥wk
c,t − w̃t0∥2

= Eit,zÊk,c∥wk
c,t0 − w̃t0 −

t−1∑
τ=t0

ητ∇f iτ (wk
c,τ)∥2

= Êc∥akc,t0 − Êc[a
k
c,t0]∥

2 − 2

t−1∑
τ=t0

ητ Êc⟨akc,t0 − Êc[a
k
c,t0], Êz[∇afz(w

k
c,τ)]⟩

+ Êk,cEit,z∥
t−1∑
τ=t0

ητ∇f iτ (wk
c,τ)∥2

(29)
≤ (1 + ζ)Êk,cEit,z∥

t−1∑
τ=t0

ητ∇f iτ (wk
c,τ)∥2

(18)
≤ 4(1 + ζ)η2tH

2G2

It remains to bound ∥g̃t − ḡt∥2. This is where the benefits of weight sharing will mainly manifest.
We start bounding ∥g̃t − ḡt∥2 as in Lemma B.2

Eit,z∥ḡt − g̃t∥2 ≤ 2Eit,z∥Ek,c[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

+ 2Eit,z∥
K∑

k=1

C∑
c=1

p(k)(πk
c − π̂k

c,t)[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

≤ 2Eit,z∥Ek,c[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

+ 2

K∑
k=1

p(k)Eit,z∥
C∑

c=1

(πk
c − π̂k

c,t)[∇fc(wk
c,t)−∇f it(wk

c,t)]∥2

17
≤ 2Eit,z∥Ek,c[∇fc(wk

c,t)−∇f it(wk
c,t)]∥2 + 2G2Ek∥δkt ∥21.

By noting that ∥(u,ac)∥2 = ∥u∥2 + ∥ac∥2, the first term can be decomposed further
2Eit,z∥Ek,c[∇fc(wk

c,t)−∇f it(wk
c,t)]∥2 = 2Eit,z∥Ek,c[∇ufc(w

k
c,t)−∇uf

it(wk
c,t)]∥2

+ 2Eit,z∥Ek,c[∇ac
fc(w

k
c,t)−∇ac

f it(wk
c,t)]∥2.

26

The adaptor’s term can be bounded as follows
2Eit,z∥Ek,c[∇ac

fc(w
k
c,t)−∇ac

f it(wk
c,t)]∥2

(Jensen)
≤ 2

C∑
c=1

p(c)EzEit|z=c∥
K∑

k=1

pk
c

(
∇ac

fc(w
k
c,t)−∇ac

f it(wk
c,t)
)
∥2

(26)
≤ 2

C∑
c=1

p(c)∥pc∥2σ2
c ,

For the base model’s term, we decompose it further
2Eit,z∥Ek,c[

(
∇ufc(w

k
c,t)−∇uf

it(wk
c,t)]

)
∥2

≤ 4Eit,z∥Ek,c[∇ufc(w
k
c,t)− Ec′∇ufc′(w

k
c,t)]∥2 (*)

+ 4Eit,z∥Ek,c[Ec′∇ufc′(w
k
c,t)−∇uf

it(wk
c,t)]∥2. (**)

Observe that we can write Ec′ [∇ufc′(w
k
c,t)] = Eit′,z′ [∇uf

it
′
(wk

c,t)], so that

(∗∗) = 4Varit,z

(
K∑

k=1

C∑
c=1

pkπk
c∇uf

it(wk
c,t)

)
(27)
≤ 4σ̄2

C∑
c=1

∥p⊙ πc∥2.

As for (∗),
(∗)

(Jensen)
≤ 4Ek,c∥∇ufc(w

k
c,t)− Ec′∇ufc′(w

k
c,t)]∥2

(28)
≤ 4∆2,

Adding the bounds for gradient error, we get

Eit,z∥ḡt − g̃t∥2 ≤ 2G2Ek∥δkt ∥21 + 2Ec[∥pc∥2σ2
c] + 4σ̄2

C∑
c=1

∥p⊙ πc∥2 + 4∆2. (30)

We complete the proof by adding everything together and setting ζ ≥ 1.

Convergence rate The convergence rate will be almost identical to the main one except for some
additional terms from our new assumptions and a finer, more precise total variation distance term,
which would introduce a logC term instead of a logKC using the same steps as in Lemma B.6. Note
that ζ could be chosen proportionally to η−1

t and still maintain convergence. As for the optimality
gap, we would get it in terms of Êc[fc(w̃c,t) − fc(w

∗
c)], as it is not possible to move the Êc inside

with Jensen’s inequality since it is an average of different functions and not one function. We believe
this can be remedied by a careful use of perturbed iterates Ek,c[Êc′fc′(w

k
c,t)], but we make no claims.

Finally, recall that ∥w̃t−w∗∥2 ≤ ∥uk
t −u∗

t ∥2+Ec∥akc,t−a∗c,t∥2 whenwk
c,t = (uk

t ,a
k
c,t), so that a bound

on the perturbed iterates suffices.
Overall, we believe that obtaining a convergence rate from Lemma C.3 is straightforward given the
main results in Theorem B.9 and Theorem B.10 and is not interesting in itself, so we shall omit it.

C.2. Benefits of Weight Sharing
Using the above lemma, we will show the benefits of weight-sharing on some idealized examples
with well-balanced client datasets and cluster sizes. First, recall the gradient aggregation error in
(30)

Eit,z∥ḡt − g̃t∥2 ≤ 2G2Ek∥δkt ∥21 + 2Ec[∥pc∥2σ2
c] + 4σ̄2

C∑
c=1

∥p⊙ πc∥2 + 4∆2.

This descent bound follows from using the perturbed iterates in (24) and (25) and using Assump-
tion C.1 and Assumption C.2. We now present examples based on (FL) and (CFL).

27

Remark C.4. Consider a balanced FL problem with C = 1 andNk = N/K. Clearly, πk
c = 1 for all k ∈

[K], so we trivially have δkt = 0. Furthermore, pc = 1/K, so ∥pc∥2 = 1
K , and∑C

c=1∥p⊙πc∥2 = 1/K.
Finally,∆2 = 0. Thus,

Eit,z∥ḡt − g̃t∥2 ≤
4σ̄2 + 2σ2

1

K
,

which is the original variance reduction. Considering C (independent) copies with πk
c = 1/C and a

uniform router initialization π̂k
c,0 = 1/C, and assuming that the variances of the adaptors are similar,

i.e., σ2
1 = · · · = σ2

C , we get

Eit,z∥ḡt − g̃t∥2 ≤
4σ̄2

KC
+

2σ2
1

K
, (31)

where we can see the benefits of reducing the base model’s variance by averaging further across
C copies of (FL) problems with independent sampling. Indeed, if σ2

c = σ2
1 for all c ∈ [C], then we

would have σ2
1/K, but the full 1/KC factor remains for the base model.

Remark C.5. Consider a balanced clustered problem with Nk = N/K and πk
c = 1{k ∈ c}, so that

p(k) = 1
K and p(c) = Kc

K , where Kc =
∑K

k=1 1{k ∈ c}. Then, we have pk
c = p(c|k)p(k)/p(c) =

1{k∈c}
Kc

, so ∥pc∥2 = 1
Kc

. Similarly, Ec[∥pc∥2σ2
c] =

∑C
c=1 σ2

c

K . Furthermore, we have∑C
c=1∥p⊙ pc∥2 =∑C

c=1

∑K
k=1

1{k∈c}
K2 =

∑C
c=1

Kc

K2 = 1
K . Thus, when σ2

1 = · · · = σ2
C , we have

Eit,z∥ḡt − g̃t∥2 ≤
4σ̄2

K
+

2σ2
1

K/C
+ 2G2Ek∥δkt ∥21 + 4∆2. (32)

Now consider a uniform router initialization πk
c = 1/C. Note δk0 = (|1{k ∈ c} − 1/C|)Cc=1, so

∥δk0∥21 = (C−1
C +(C−1) 1

C)2 = 4 (C−1)2

C2 . As for∆2, we can only assume that it is close to 0. Otherwise,
the use of weight sharing will not be motivated.

We can see from the clustered example that understanding the trade-off between the reduction in
variances (via weight sharing) and the increase of ∆ heterogeneity is important and allows for more
principled mechanisms of weight sharing, which would be an interesting direction to explore.

D. Router Update

D.1. Derivation of router update for (MFL)

The update in (4) looks different from the one we use in practice. Indeed, consider the πk that
minimizes (MFL) for each k ∈ [K], i.e., πk = argminπ

∑C
c=1 πcf

k(wk
c,t). This is trivially πk = ec̄

where ei is basis vector of the i-th coordinate and c̄ = argmink∈[K] f
k(wk

c,t), i.e., πk is one-hot at the
lowest loss. Thus, πk will always lie at one of the vertices of ∆C−1.
However, consider now (MFL) with negative entropy regularization for the routers Γ(πk) =∑C

c=1 π
k
c logπ

k
c . We have

πk
t = argmin

π∈∆C−1

C∑
c=1

πcf
k(wk

c,t) + λent
C∑

c=1

πc logπc

= argmin
πc≥0

C∑
c=1

πcf
k(wk

c,t) + λent
C∑

c=1

πc logπc + λsim(
C∑

c=1

πc − 1)

=⇒ λent logπk
c,t = −fk(wk

c,t)− λentC − λsimC.

28

Let λ = λsim
λent

. We either have λsim = 0 or∑C
c=1 π

k
c,t = 1, so

1 =

C∑
c=1

πk
c,t =

C∑
c=1

exp(−λ−1
entf

k(wk
c,t)− C − λC)

exp(λC) =

C∑
c=1

exp(−λ−1
entf

k(wk
c,t)− C)

λ =
1

C
log

C∑
c=1

exp(−λ−1
entf

k(wk
c,t)− C) =⇒ πk

c,t =
exp(−λ−1

entf
k(wk

c,t))∑C
c=1 exp(−λ

−1
entfk(wk

c,t))
.

The above implies that the update (4) is, indeed, solving the following subproblem

argmin
π∈∆C−1

C∑
c=1

πcf
k(wk

c,t) +
1

ηt

C∑
c=1

πc logπc. (33)

D.2. Connection to gradient descent on a Softmax-parameterized router
Here we show that using the router parameterization π̂c ∝ exp θc and the update in Algorithm 1
produces similar updates to (4) up to second-order terms in the exponent given a uniform router.
We first note that π̂c is invariant to constant shifts in θc under the parameterization given above. This
equivalently means that π̂c is invariant to constant multiplications (as it is always normalized). Note
that we do not make use of the time index t as we will be concerned with a single update across
cluster indices c, and since k is arbitrary, we drop it for clarity.
First, we rederive the Jacobian of Softmax, i.e., ∂π̂c′

∂θc
where π̂c =

exp θc∑C
c=1 exp θc

. Using the fact that the
gradient of LogSumExp is Softmax, i.e., ∂

∂θc
log
∑C

c=1 exp θc = π̂c, we get
∂π̂c′

∂θc
=

∂ log π̂c′

∂θc
π̂c′ = (δcc′ − π̂c)π̂c′ ,

where δcc′ equals 1 if c = c′, 0 otherwise.
Let ŵ :=

∑C
c=1 π̂cwc. The gradient of (FML) with respect to θc is

∂

∂θc
f(ŵ) =

C∑
c′=1

⟨∇f(ŵ),wc′⟩
∂π̂c′

∂θc

=

C∑
c′=1

⟨∇f(ŵ),wc′⟩(δcc′ − π̂c)π̂c′

= ⟨∇f(ŵ),

C∑
c′=1

δcc′π̂c′wc′⟩ − ⟨∇f(ŵ),

C∑
c′=1

π̂cπ̂c′wc′⟩

= π̂c⟨∇f(ŵ),wc − ŵ⟩.
Using Taylor series expansion, we get

∂

∂θc
f(ŵ) = π̂c⟨∇f(ŵ),wc − ŵ⟩ = π̂c(f(wc)− f(ŵ))− π̂cΩ(∥wc − ŵ∥2).

If we assume low curvature and π̂−1
c = Ω(∥wc − ŵ∥2) for π̂c > 0, then the approximation becomes

exact up to Θ(1). In other words, as the difference between cluster c and the mixture increases,
i.e., ∥wc − ŵ∥2 becomes larger, we need π̂c to decrease at least as quickly so that it balances the
second-order term out.
Let us simply assume that ⟨∇f(ŵ),wc−ŵ⟩ ≈ f(wc)−f(ŵ) and that we reset θc before every update
so that π̂c = 1/C. Recall that θc is invariant to constant shifts. Thus, the step above will be

θc − η
∂

∂θc
f(ŵ) ≈ θc − ηπ̂c(f(wc)− f(ŵ)) = − η

C
f(wc)+

η

C
f(ŵ) +

1

C︸ ︷︷ ︸
do not depend on c

. (34)

29

This implies that π̂c ∝ exp(− η
C f(wc)) since θc is shift-invariant, which is equal to (4) with the

learning rate multiplied by C. In fact, we can remove router resetting, but it will then be related to
the momentum-like router update π̂c,t+1 ∝ π̂c,t exp(−ηf(wc,t)) for a properly scaled η with respect
to∑t

τ=0 π̂c,τ . We leave this exposition for another work.
It should be noted that ignoring the second-order terms is not trivial. Nonetheless, it allowed us to
make a direct connection between the updates we use in practice to the theory. We also understand
now that the Softmax-parameterization is inferior when the curvature is high or when the mixed
weights are far from the "active" clusters (wc with large π̂c). The second case happens, for example,
when ŵ is in the origin and w1 and w2 are far and opposite to each other with π̂1 = π̂2, but
this ambiguity is inherent. Thus, we conclude that the main difficulty that could face a Softmax-
parameterized router trained with gradient descent is high curvature, which is a sound conclusion
since the log-weights are linear approximations of the function objectives.

E. Preconditioning LoRAs
Consider the gradient of a linear adaptive layerW+L = W+UV⊤. LetGU := ∇Uf(W+UV⊤) be
the gradient w.r.t. parameter U, and similarly for V and W. Note that GW = G := ∇f(W +UV⊤)
because ∂(W +UV⊤)/∂W = I.

UV⊤ ← (U− ηtGU)(V − ηtGV)⊤

= UV⊤ − ηt(UG⊤
V +GUV⊤) +O(η2t)

= UV⊤ − ηt(UU⊤G+GVV⊤) +O(η2t),

where we used the chain rule,GU = GV andGV = GU. For linear layers, we consider a specific
preconditioner designed for low-rank estimation [46].

GU ← GU(V⊤V + ϵI)−1, GV ← GV(U⊤U+ ϵI)−1, (35)
for some small ϵ > 0. We note that this idea has also been recently explored in the context of LoRAs
[47]. The problem of learning a mixture of LoRAs can be ill-conditioned since they can learn at
different rates, so we normalize their gradients to help them learn at the same rate [48]. Note that,
as ϵ→ 0, the scale of the dynamics ofUV⊤ follows that ofW, i.e.,UV⊤ − ηt(PUG+GPV), where
PU := U(U⊤U)−1U⊤ is the projection matrix onto the column space of U, and similarly for V.
For convolution layers, we scale by the Frobenius norm of the preconditioner instead, as the problem
would otherwise involve finding the deconvolution of the preconditioner, which is out of the scope
of this work. Since U⊤U and UU⊤ have the same eigenvalues and thus the same norms, the change
inUV⊤ will be proportional to UU⊤

∥UU⊤∥F
G+G VV⊤

∥VV⊤∥F
.

F. Centering LoRAs
The condition (29) in Assumption C.2 is intuitive as a practical implementation detail. Indeed,
Suppose that we have C = 2, and at synchronization, we have u = 5, a1 = 4, and a2 = 6. If the
model is u+

∑
c πcac, then an equivalent parameterization is u = 10, a1 = −1, and a2 = 1, which

has less variation across a1 and a2. What we have done is simply the following
u← u+ Ec[ac],

ac ← ac − Ec[ac],∀c ∈ [C],

where p(c) = 1/2. Since we have additive personalization, it is always possible to add and subtract
arbitrary constants that will still yield the same parameterizations. Choosing Ec[ac]would simply
center the adaptors around zero.
In case of LoRAs, this is not exactly as straightforward as it might seem. Consider a LoRA ac =
(Uc,Vc), for example. The update ac = (Uc − Ec[Uc],Vc − Ec[Vc])would not really preserve the
parameterization. We should, in fact, have thatUcV

⊤
c ← UcV

⊤
c − Ec[UcV

⊤
c]. It remains to get the

30

values of Uc and Vc individually after the reparameterization. We can take the closest such values
by minimizing the quantity

argmin
U,V

∥UV⊤ − (UcV
⊤
c − Ec[UcV

⊤
c])∥2

But the solution is straightforward, as it is precisely the truncated SVD ofUcV
⊤
c −Ec[UcV

⊤
c] (which

is not unique). Namely,

U,Σ,V⊤ ← Trunc-SVDr(UcV
⊤
c − Ec[UcV

⊤
c]), Uc ← UΣ1/p, Vc ← VΣ1/q, (36)

where r is the original rank ofUc andVc, and p and q are chosen such that 1/p+1/q = 1. The choice
p = 2 and q = 2 is standard, but it is not exactly clear how to optimally choose p and q in case of
LoRAs or in training FLoRAL models.

G. Adaptors

G.1. Convolution layer
Here, we explain some of the implementations of ConvLoRAs. In our experiments, we choose the
channel+filter ConvLoRA, also called Balanced 2D, because it is the most parameter-efficient and
have the best performance as per Table 3.
Channel-wise We define U ∈ Rcout×r×k1×k2 and V ∈ Rr×cin×1×1. Let us assume that cout ≤ cin,
without loss of generality. This could be seen as a linear transformation U of the cin filters to r
filters, followed by the a convolution layerV that is similar to the original one, except that it operates
on r filters instead. The order of the linear transformation and convolution can also be reversed
adaptively so that the number of parameters is minimized. In general, the given construction is more
economical in terms of added parameters when cout ≤ cin. This operation can be written as

Lchannel
ijab :=

r∑
k=1

UikabVkj11, (37)

and the number of its parameters is (coutk1k2 + cin)r.
Filter-wise The filter size of the convolution layer (k1, k2) can be reduced to rank-1 filters by two
consecutive convolutions with filter sizes (k1, 1) and (1, k2). Thus, for rank-r filters, we define
U ∈ Rcout×rcout×1×k2 andV ∈ Rrcout×cin×k1×1 as if we are decomposing the filter as a sum of rank-1
matrices. Thus, with some abuse of notation, we get the following low-rank layer

Lfilter
ijab :=

r∑
k=1

Ui(rj+k)1bV(rj+k)ja1. (38)

It is understood here that the evaluation of what is between the parenthesis gives the index of a
single dimension. This adaptor has (coutk2 + cink1)coutr parameters, which is significantly more
than the channel-wise LoRA.
Channel+filter-wise : In case we want to combine channel-wise and filter-wise low-rank adaptation
for channel-wise low rank rc and filter-wise low rank rf , we define U ∈ Rcout×rfrc×1×k2 and V ∈
Rrfrc×cin×k1×1, and the adaptive layer becomes

Lmix
ijab :=

rc∑
kc=1

rf−1∑
kf=0

Ui(rfkc+kf)1bB(rfkc+kf)ja1 =

rfrc∑
k=1

Uik1bVkja1. (39)

Letting r := rfrc, this formulation has (coutk2 + cink1)r parameters, which is an order of cout less
parameters. In general, we always set rf = 1 as filters are usually small. It is sufficient to beat the
channel-wise implementation as can will be seen in Section 3.2.

31

Reshaped linear : We can use a regular linear LoRA by stacking the filter dimension of the convolu-
tion layer on the input or output channels, adding the LoRA, and then reshaping the layer back into
the original shape. In other words, we haveU ∈ Rcoutk1k2×r andV ∈ Rr×cin , and the convolution
LoRA would be

Lconv
ijab := Llinear

(k1k2i+k2a+b)j . (40)
This layer has (coutk1k2 + cin)r, exactly like the channel-wise LoRA.
In our implementation, we choose the channel+filter option as it is the most parameter-efficient.
Indeed, let cmax := max(cin, cout) and cmin := min(cin, cout), and let kmax and kmin be defined
similarly. Note that we can always construct a channel+filter-wise ConvLoRA such that it has
(cminkmax+cmaxkmin)r parameters. Thus, one can check that this is less than (cminkmaxkmin+cmax)r
only when we have cmax/cmin ≤ kmax, which is likely satisfied as the standard for most architectures
is to have cmax/cmin ≤ 2, and clearly kmax ≥ 2.
We can constrain the number of parameters similarly to the linear layer as (cminkmax+ cmaxkmin)r ≤
ρcmincmaxkminkmax. Indeed, if cmax = cmin and kmax = kmin, we have r ≤ ρcmaxkmax/2. The
split of kernel sizes among the two layers can be done adaptively such that r is maximized. In the
experiment section, we refer to channel-wise ConvLoRAs methods where r is maximized given ρ,
and similarly for the channel+filter-wise ConvLoRAs methods where r is maximized given ρ, which
we denote as Balanced 2D ConvLoRA. We show the comparisons in Figure 11 and Table 3.

G.2. Normalization Layers
We consider adaptors to batch normalization, instance normalization, layer normalization, and
group normalization. All of these normalization layers start by normalizing a hidden vector of some
layer h along specific dimensions to get ĥ and then take a Hadamard product along the normalized
dimension as γ ⊙ ĥ (ignoring bias). We propose a simple adaptor Lγ that has the same shape
and works in exactly the same manner but is initialized to zero. The adaptive output will then be
(γ + Lγ)⊙ ĥ, which is initially equal to the non-adaptive output.
One normalization layer that requires a more thorough treatment is batch normalization. This is
because it normalizes hwith respect to running statistics calculated from previous batches, so the
adaptor would need to normalize with respect to the same running statistics if we want to maintain
the same additive form of the output under the same scale.
We now show a simple reparameterization of the BatchNorA that normalizes h with respect to the
adaptor statistics but trains its parameters with respect to the main statistics. This ensures that the
gradient of the adaptor has the same scale as the original gradient. This is useful because we are
interested in the federated learning case where those parameters are federated, but the statistics are
local. Note that this is not the same as FedBN [49], where both the parameters and the statistics are
local.
Batch NorA We will show here a batch norm adaptor that might be of interest to the readers, which
is left here in the appendix as it is still in the exploratory stage. Preliminary experiments show decent
improvements, as can be seen from Figure 3.
First, recall batch normalization

BN(x; γ, β) =
x− µ̂(x)√
σ̂2(x) + ϵ

γ + β,

where x ∈ RB×d for batch size B and dimension d, µ̂(x) ∈ Rd and σ̂2(x) ∈ Rd are the batch mean
and variance (or statistics, for short), γ ∈ Rd and β ∈ Rd are learnable parameters, and ϵ is a small
number for numerical stability. Here, it is understood that the operation is applied on x batch-wise.
Often, batch statistics are estimated with a running (exponential) average during training, and then
fixed during evaluation.
When we are faced with multiple tasks or non-iid data distributions, batch normalization layers can
actually hurt performance because the batch statistics can be inaccurate and might not necessarily

32

converge [50]. We would like to introduce an adaptor for batch norm layers Li = [γi, βi], so an
intuitive implementation would be as follows:

BN-Adaptori(x; γ, β, γi, βi) = BN(x; γ, β) + BNi(x; γi, βi),

where both γi and βi are initialized to 0 so that it is equivalent to the original case at initialization.
However, we want to ensure that our choice of γi and βi is invariant to the local batch statistics. In
other words, we want γi to behave as a perturbation to γ, and similarly for βi. Let us set ϵ = 0. Now,
observe that

BN-Adaptori(x) =
x− µ̂(x)√

σ̂2(x)
γ +

x− µ̂i(x)√
σ̂2
i (x)

γi + β + βi

=
x− µ̂(x)√

σ̂2(x)
γ +

√
σ̂2(x)√
σ̂2
i (x)

x− µ̂i(x)√
σ̂2(x)

γi + β + βi

=
x− µ̂(x)√

σ̂2(x)
γ +

√
σ̂2(x)√
σ̂2
i (x)

(
x− µ̂(x)√

σ̂2(x)
− µ̂i(x)− µ̂(x)√

σ̂2(x)

)
γi + β + βi.

Let m̂i :=
µ̂i(x)−µ̂(x)√

σ̂2(x)
be the (normalized) mean shift w.r.t. the global mean and ŝi :=

σ̂i(x)
σ̂(x) be the

relative deviation w.r.t. the global deviation. We can rewrite the above expression as

BN-Adaptori(x) =
x− µ̂(x)√

σ̂2(x)
γ + ŝ−1

i

(
x− µ̂(x)√

σ̂2(x)
− m̂i

)
γi + β + βi

=
x− µ̂(x)√

σ̂2(x)
(γ + ŝ−1

i γi)− m̂iŝ
−1
i γi + β + βi.

Thus, consider a reparameterization γ̃i := ŝiγi and β̃i := βi + m̂iγi so that LoRA-BNi(x) =

BN(x; γ, β) + BNi(x; γ̃i, β̃i). We would then have that

BN-Adaptori(x) =
x− µ̂(x)√

σ̂2(x)
(γ + ŝ−1

i γ̃i) + m̂iŝ
−1
i γ̃i + β + β̃i

=
x− µ̂(x)√

σ̂2(x)
(γ + γi) + β + βi.

Therefore, a reparameterization that is invariant to local batch statistics would be as follows

γi −→
σ̂i(x)

σ̂(x)
γi, βi −→ βi +

µ̂i(x)− µ̂(x)√
σ̂2(x)

sg(γi), (41)

where we used the stop gradient operator sg(γi) to emphasize that γi is given in βi’s parameterization
(i.e., would not pass its gradients through βi). Note that this γi is not the reparameterized one. It is
helpful to think of the expressions on the RHS of the arrows in (41) as arguments to the batch norm
function, and that γi and βi are parameters to be optimized.
Experiment Consider the following small adjustment to the synthetic MLP task. For each client
k, we first take a fixed sample of xk, compute the hidden vectors, and then normalize them before
feeding them to the activation function and final layer. The normalization is critically dependent
on the sampled xk for each client. This construction makes the problem more amenable to a batch
normalization layer after the first layer, so we use this model and consider Batch-NorA. In addition,
we consider use batch normalization in the VGG-8 model we originally used for CIFAR-100.
The results in Figure 3 are decent and show that the particular setting of reparameterized Batch-NorA
Appendix G.2 with local statistics can offer good improvements. We note that the reparameterization
is equivalent to normalization with respect to the main batch norm and then rescaling and shifting
with respect to the adaptor’s parameters. The convenience of this reparameterization is that it does
not require any adjustment to the batch norm layer in the adaptor, and the reparameterization can
be seamlessly done with PyTorch’s parameterization module.

33

0 500 1000 1500 2000 2500 3000
round

10−1

6×10−2

2×10−1

3×10−1

lo
ss
_d
ist
rib

ut
ed

batchnorm_adaptor
none
regular
reparameterized
batchnorm_stats
federated
local

Figure 3: Loss on Synthetic MLP + BN dataset.

H. Extra Experimental Details
In this section, we show extra experimental details and show missing tables and figures.

H.1. Synthetic Linear
Consider a regression task where we want to learn y ∈ Rdy given x ∈ Rdx , where x ∼ N (0, Idx

). We
construct two versions of this regression task: one is based on a linear model plus a personalized
LoRA, and the other is based on a similar setup on the first layer of a two-layer ReLU net. For
both problems, we sample the parameters of the dataset element-wise from the normal distribution
N (0, 1√

din
), where din is the input dimension of the layer.

The target and the model are such that

yk(x) =

C∑
c=1

πk
c (W + αUcV

⊤
c)x, ŷk(x) =

C∑
c=1

π̂k
c (Ŵ

k + Ûk
c (V̂

k
c)

⊤)x, (42)

whereW ∈ Rdy×dx ,Uc ∈ Rdy×r,Vc ∈ Rdx×r, and α ∈ R, and similarly for the trained parameters.
The ground-truth model is designed such that the clients share a common structure without making
any assumption about the distances of the personal solutions to the solution of (FL). Notice that α
can make the personal solutions arbitrarily far from W, yet they differ in rank r only. For example, a
simple construction would be W = I and Uc = Vc = ec, where ei is the standard basis vector of
the i-th coordinate (e.g., e1 = (1, 0, · · ·)⊤). As for the ground-truth router assignment, we consider
a diagonal assignment such that πk

c = δ(k mod C)c, so clientsmk are in the same cluster for positive
integers m.
For each client k, we take a fixed sample of xk and yk of sizeNk such thatNk < d, but∑K

k=1 N
k > d,

where d = dydx is the original model size. This is to make it difficult for the model to fit Ŵ locally
due to under-parameterization. Thus, collaboration is important to generalize well, but collaboration
with the wrong clients can be detrimental. For this dataset, we chose Nk ≈ 0.25d. The objective for
this regression task is the MSE loss 1

2∥ŷ
k(x)− yk∥2..

H.2. Synthetic MLP
Consider a 2-layer ReLU neural net, or multi-layer perceptron (MLP) for short6

yk := Φ

(
C∑

c=1

πk
c (W +UcV

⊤
c)x

)
+

, (43)

6We write the ReLU function as (·)+.

34

Table 3: Ablation of ConvLoRAs.
ConvLoRA CIFAR-10 CIFAR-100R LS
Balanced 2D 70.2 74.1 51.7
In Layer 67.6 73.5 49.1
Out Layer 68.5 74.0 51.9
None 67.6 73.9 50.8

Table 4: Ablation of adaptors.
Adaptors Bias CIFAR-10 CIFAR-100R LS

ConvLoRA ✗ 69.8 72.7 45.1
✓ 67.6 73.4 45.8

LoRA ✗ 68.7 73.7 46.6
✓ 67.6 73.9 50.8

Both ✗ 68.9 73.3 47.9
✓ 70.2 74.1 51.7

None ✗ 64.6 21.9 12.1
✓ 64.6 21.9 12.1

Table 5: Metadata of the considered federated datasets (K = # of clients, C = # of clusters, p = ratio
of sampled clients per round).

Dataset K C p Model
Synthetic Linear 10 2 100% Linear (42)
Synthetic MLP 20 4 100% MLP (43)
MNIST 300 4 10% MLP
CIFAR-10 20 4 100% 2×Conv→MLP
CIFAR-100 100 10 50% VGG-8

where now W ∈ Rdh×dx , Uc ∈ Rdh×r, Vc ∈ Rdx×r, and Φ ∈ Rdy×dh for some hidden dimension
dh, and a diagonal router assignment πk

c = δ(k mod C)c. We use normal initialization with variance
proportional to the input dimension of the layer.
The regression model has the exact same form. However, the hidden dimension is wider, i.e., it is
mdh for some integer m ≥ 1. This is mainly because we want to control for the effect of not being
able to fit the target model (we set m = 2 in our experiments). We also have Nk ≈ 0.5d, which is
twice as many data points than the linear task as this task is more difficult.

H.3. Ablation and Hyperparameters

Adaptors. We study the effect of removing each of the adaptors introduced in Section 3.2. We chose
the CIFAR-10 with both tasks and CIFAR-100 for the ablation study of the LoRAs, ConvLoRAs, and
bias adaptors. We show in Figure 9 and Table 4 that the full combination of LoRA, ConvLoRA, and
adaptive biases can consistently achieve the top accuracy.
ρ and C. In Table 2, we see that choosing C to be less than the number of ground-truth clusters
can hurt performance. On the other hand, using a significantly larger C can hurt performance for
smaller ρ, but a larger ρ fixes this by reaching similar accuracies to the case where we know the exact
number of ground-truth clusters. We can also see the plots in Figure 10.
ConvLoRA. We compare the different methods for implementing ConvLoRAs as proposed in
Section 3.2. We propose to balance the channels and the kernel sizes such that we achieve the
most parameter-efficient ConvLoRA, which we refer to as Balanced 2D as it is specific to the two
dimensional case. On the other hand, we can balance only the channels and fix the kernel sizes to
either the in layer or the out layer. We show in Table 3 and Figure 11 that the Balanced 2D case is
consistently the best option given a fixed ρ. Recall that MNIST and CIFAR-10 have 4 ground-truth
clusters, and CIFAR-100 have 10.

H.4. Datasets Meta-data

See Table 5.

35

0 100 200 300 400 500
round

100

lo
ss

_d
ist

rib
ut

ed
Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

0 250 500 750 1000 1250 1500
round

100

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

Figure 4: Test loss on MNIST-R (left = Full, right = Reduced).

0 100 200 300 400 500
round

100

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

0 250 500 750 1000 1250 1500
round

100

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

Figure 5: Test loss on MNIST-LS (left = Full, right = Reduced).

H.5. Missing Figures
In this section, we simply showmissing figures from our experiments for completeness. In particular,
we show plots of the aggregated testing loss per client, which shows how the other methods overfit
in comparison to FLoRAL, especially in the low-data regime.

0 100 200 300 400 500
round

100

2 × 100

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

0 250 500 750 1000 1250 1500
round

2 × 100

3 × 100

4 × 100

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

Figure 6: Test loss on CIFAR-10-R (left = Full, right = Reduced).

36

0 100 200 300 400 500
round

100

2 × 100
lo

ss
_d

ist
rib

ut
ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

0 250 500 750 1000 1250 1500
round

2 × 100

3 × 100

4 × 100

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

Figure 7: Test loss on CIFAR-10-LS (left = Full, right = Reduced).

0 100 200 300 400 500
round

100

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

0 250 500 750 1000 1250 1500
round

101

lo
ss

_d
ist

rib
ut

ed

Method
FedAvg
Local Adaptor
Ensemble
FLoRAL(1%)
FLoRAL(10%)
Optimal π
False
True

Figure 8: Test loss on CIFAR-100 (left = Full, right = Reduced).

0 100 200 300 400 500
round

30

40

50

60

70

ac
c_
di
st
rib

ut
ed active_loras

none
linear
conv
linear+conv
bias
False
True

0 100 200 300 400 500
round

20

30

40

50

60

70

ac
c_
di
st
rib

ut
ed

active_loras
none
linear
conv
linear+conv
bias
False
True

0 100 200 300 400 500
round

0

10

20

30

40

50

ac
c_
di
st
rib

ut
ed

active_loras
none
linear
conv
linear+conv
bias
False
True

Figure 9: Ablation study of FLoRAL Adaptors (left: CIFAR-10-R, middle: CIFAR-10-LS, right: CIFAR-
100).

0 100 200 300 400 500
round

30

40

50

60

70

ac
c_
di
st
rib

ut
ed

num_clusters
2
4
8
rank
0.01
0.05

0 100 200 300 400 500
round

20

30

40

50

60

70

ac
c_
di
st
rib

ut
ed

num_clusters
2
4
8
rank
0.01
0.05

0 100 200 300 400 500
round

0

10

20

30

40

50

60

ac
c_
di
st
rib

ut
ed

num_clusters
5
10
20
rank
0.01
0.05

Figure 10: Varying ρ and C (left: CIFAR-10-R, middle: CIFAR-10-LS, right: CIFAR-100).

0 100 200 300 400 500
round

30

40

50

60

70

ac
c_
di
st
rib

ut
ed

balanced
balanced_2d
in
none
out

0 100 200 300 400 500
round

20

30

40

50

60

70

ac
c_
di
st
rib

ut
ed

balanced
balanced_2d
in
none
out

0 100 200 300 400 500
round

0

10

20

30

40

50

ac
c_
di
st
rib

ut
ed

balanced
balanced_2d
in
none
out

Figure 11: Accuracy of ConvLoRA as described in Appendix H.3 (left: CIFAR-10-R, middle: CIFAR-
10-LS, right: CIFAR-100).

37

	-1em. Introduction
	-1em. Related Work
	-1em. Preliminary
	-1em. Federated Learning
	-1em. Parameter-Efficient Adaptors

	-1em. Analysis
	-1em. Practical Implementation
	-1em. Experiments
	-1em. Conclusion
	-1em. Algorithm
	-1em. Proofs
	-1em. Bounding descent
	-1em. Bounding the total variation distance
	-1em. Convergence rates

	-1em. Extending the analysis to (FML) with Weight Sharing
	-1em. Analysis
	-1em. Benefits of Weight Sharing

	-1em. Router Update
	-1em. Derivation of router update for (MFL)
	-1em. Connection to gradient descent on a Softmax-parameterized router

	-1em. Preconditioning LoRAs
	-1em. Centering LoRAs
	-1em. Adaptors
	-1em. Convolution layer
	-1em. Normalization Layers

	-1em. Extra Experimental Details
	-1em. Synthetic Linear
	-1em. Synthetic MLP
	-1em. Ablation and Hyperparameters
	-1em. Datasets Meta-data
	-1em. Missing Figures

