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ABSTRACT

Deep neural networks are being increasingly implemented throughout society in
recent years. It is useful to identify which parameters trigger misclassification in
diagnosing undesirable model behaviors. The concept of parameter saliency is
proposed and used to diagnose convolutional neural networks (CNNs) by rank-
ing convolution filters that may have caused misclassification on the basis of pa-
rameter saliency. It is also shown that fine-tuning the top ranking salient filters
efficiently corrects misidentification on ImageNet. However, there is still a knowl-
edge gap in terms of understanding why parameter saliency ranking can find the
filters inducing misidentification. In this work, we attempt to bridge the gap by an-
alyzing parameter saliency ranking from a statistical viewpoint, namely, extreme
value theory. We first show that the existing work implicitly assumes that the
gradient norm computed for each filter follows a normal distribution. Then, we
clarify the relationship between parameter saliency and the score based on the
peaks-over-threshold (POT) method, which is often used to model extreme values.
Finally, we reformulate parameter saliency in terms of the POT method, where this
reformulation is regarded as statistical anomaly detection and does not require the
implicit assumptions of the existing parameter-saliency formulation. Our experi-
mental results demonstrate that our reformulation can detect malicious filters as
well. Furthermore, we show that the existing parameter saliency method exhibits
a bias against the depth of layers in deep neural networks. In particular, this bias
has the potential to inhibit the discovery of filters that cause misidentification in
situations where domain shift occurs. In contrast, parameter saliency based on
POT shows less of this bias.

1 INTRODUCTION

Deep learning models can perform a variety of tasks in computer vision with high accuracy. Despite
their adoption in many applications, we usually do not have an understanding of the model’s decision
making process. This means there is a potential risk when we use deep learning models for high-
stakes applications. Conventional research on the explainability of deep learning models in computer
vision has focused on generating a saliency map that highlights image pixels inducing a strong
response from the model(Selvaraju et al., 2017; Simonyan et al., 2013; Sundararajan et al., 2017;
Fong & Vedaldi, 2017; Petsiuk et al., 2018). Although this kind of visualization often makes intuitive
sense for humans and partly explains the model behavior, a saliency map is helpless for fixing an
incorrect classification result because it is not linked with the parameter space. Recently, Levin
et al. (2021) proposed ranking convolutional filters according to a score called parameter saliency
for exploring the cause of CNN misclassifications. The parameter saliency reflects strong filter
importance determined by the normalized gradient, and the top-ranked filters are shown to have
a greater relationship with the classification result when modifying the filters. However, there is
a knowledge gap as to why parameter saliency ranking can find filters inducing misidentification.
Additionally, we found in our preliminary experiments that the ranking algorithm has a bias against
the depth of layers in deep neural networks, which can lead to the model yielding mediocre outcomes
in certain situations.

To address the bias problem, we elucidate the concept of parameter saliency from a different perspec-
tive. We first formulate the problem of ranking salient filters in terms of statistical anomaly detection
for parameter-wise saliency profiles. We then analyze the relationship between salient filter ranking
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and the peaks over threshold (POT) (Pickands III, 1975; Grimshaw, 1993) method based on extreme
value theory (EVT) (Haan & Ferreira, 2006) and show that the existing method can be viewed as
a special case of our formulation based on EVT under appropriate assumptions on the gradient dis-
tribution. EVT, a branch of statistics that emerged to handle the maximum and minimum values of
a sequence of data, enables us to estimate the probability of extreme events observed in the tail of
probability distributions.

For the experiments in this work, we compared the effects of modifying salient filters detected by
the existing method and the POT-based method using the same metrics as the original work(Levin
et al., 2021). To further investigate the properties of our reformulaiton, we used datasets such as
MNIST and SVHN in which domain shift occurs and analyzed the top-ranked filter distribution to
clarify the relationship between salient filters and insufficient feature extraction.

In summary, we have made the following contributions.

• We reformulate salient filter ranking as statistical anomaly detection in which parameter
saliency is interpretable as the probability of observing an event.

• We clarify the relationship between salient filter ranking and the POT method in EVT.
• We demonstrate that the POT method operates well even when domain shift occurs, while

an intrinsic bias in the baseline method prevents consistent performance.

2 RELATED WORK

Interpretability and Explainability of Machine Learning Models There are two main ap-
proaches to understanding machine learning models: using intrinsically interpretable models or us-
ing post hoc methods(Molnar, 2022). Models of the first type have a restricted form of architectures,
e.g., decision trees(Frosst & Hinton, 2017) and linear models, that make it possible to interpret the
calculation process. In contrast, the second type of methods are open to arbitrary models and ex-
plain why the model behaves in a specific manner. Counterfactual explanation(Verma et al., 2020)
and LIME(Ribeiro et al., 2016) are two representative examples of this type.

Deepening the Understanding of CNNs CNNs(Simonyan & Zisserman, 2014; He et al., 2016)
have shown an outstanding performance in various computer vision tasks, but they are innately black
boxes. To alleviate this problem, many saliency map generation methods have been proposed to visu-
alize which image pixels are sensitive to the models. Some methods make maximum use of gradient
information(Selvaraju et al., 2017; Simonyan et al., 2013; Sundararajan et al., 2017), while others
perturb or blur the original image to quantify the effect of pixels on classification(Fong & Vedaldi,
2017; Petsiuk et al., 2018). Various criteria have been proposed to evaluate the quality and guar-
antee the validity of saliency maps including sanity check(Adebayo et al., 2018), relevance to the
output score(Samek et al., 2016), and user experience(Alqaraawi et al., 2020). Another line of work
focuses on the roles of convolutional layers and shows that CNNs work as a feature extractor(Bau
et al., 2017; Zeiler & Fergus, 2014).

Importance in parameter-space Pruning for CNN model compression is closely related to the
importance of convolutional filters. Filter importance is estimated via the activation response(He
et al., 2022), the l1 norm of the filter weights (Li et al., 2016), group lasso regularization(Wen et al.,
2016), neuron importance score propagation(Yu et al., 2018), and the mean gradient criterion(Liu &
Wu, 2019). Alternative directions using the importance include updating only a subset of parame-
ters with top-N importance(Sun et al., 2017) and retraining a model by referencing possibly better
parameters(Zhang & Chan, 2019). This kind of work is not limited to computer vision. For example,
in natural language processing, the linguistic roles of neurons have been explored(Bau et al., 2018).

3 PRELIMINARY

3.1 PARAMETER SALIENCY

In this section, we briefly review parameter saliency proposed by Levin et al. (2021). Let (x, y) ∈
(X ,Y) be a pair of a sample and its ground-truth label in a dataset, where X is the input space and
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Figure 1: Distributions of gradient magnitude from different layers in ResNet-50.

Y is the corresponding set of classes. A model with parameters θ can be defined as a function fθ :
X → Y . In most cases, a model is trained so that fθ minimizes a loss function L : F ×X ×Y → R,
where F is the set of models f : X → Y . Our goal is to identify which subset of θ caused the
model’s misclassification. Although there are various model architectures for different tasks, we
mainly discuss how things work on CNNs.

On the hypothesis that parameters with a large gradient magnitude are important, the parameter-wise
saliency profile is defined by sθi(x, y) := |∇θiL(fθ, x, y)|, where θi ∈ R is the i-th element of the
parameter. Each convolutional filter is a subset of the parameters involved in feature extraction, so
averaging the parameter-wise saliency profile within each convolutional filter gives us the filter-wise
saliency profile:

s̄(x, y)j :=
1

|Ij |
∑
i∈Ij

sθi(x, y), (1)

where Ij is the index set of the parameters in the j-th convolutional filter.

Finally, we obtain the parameter saliency, or filter saliency in the case of CNN, by performing the
z-score normalization. This normalization aims to find data-specific salient filters and avoid finding
universally important filters. More precisely, we obtain filter saliency computed with µj and σj

which are the mean parameter-wise saliency profile and the standard deviation for the j-th filter over
the validation set of a dataset such as ImageNet:

ŝ(x, y)j :=
s̄(x, y)j − µj

σj
. (2)

A higher value is considered to make a greater contribution to the misclassification and the ranking
is formed by ordering filters so that filter saliency is in decreasing order. We can attribute misclas-
sification results to parameters, and finding these parameters gives us a chance to diagnose a model
and correct the model behavior.

3.2 INTRODUCTION OF THEOREM OF PICKANDS-BALKEMA-DE HANN

In this section, we explain the essential concept underlying EVT. We included a tutorial in Ap-
pendix C to supplement the minimum necessary knowledge of EVT.

EVT focuses on extreme values and the behavior of tail event and is useful for assessing the prob-
ability of rare events. It is often used to evaluate risks such as once-in-a-century flood risks or the
probability of extreme losses in financial markets. The basic idea behind EVT is that the distribution
of the largest observations from a large dataset converges to one of several specific types of extreme
value distributions. Since using only the maximum value and ignoring the rest of the data result in
the loss of information, the POT method was proposed as a common approach to investigating the
relationship between the frequency and magnitude of extreme events where data points exceeding a
certain threshold are considered to estimate the distribution of extremes.

The Pickands-Balkema-de Haan theorem(Pickands III, 1975; Balkema & De Haan, 1974) is the
most relevant theorem to this paper.
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Theorem 1 (Pickands-Balkema-de Haan). For a large class of random variables X , there exists a
function β(t) : R→ R such that

lim
t→τ

sup
0≤x<τ−t

|P(X − t ≤ x|X > t)−G(x|α, β(t))| = 0, (3)

where τ ∈ R is the finite or infinite right endpoint, and G(x|α, β(t)) is the generalized Pareto
distribution (GPD).

Given a scale parameter α ∈ R and a shape parameter β ∈ R, a GPD is defined as follows:

G(x|α, β) = P(X ≤ x) =

1−
(
1 + βx

α

)− 1
β

β ̸= 0,

1− exp(− x
α ) β = 0.

(4)

This theorem is called the second theorem in EVT and lays the foundation of the POT method.
The method fits a GPD to the tail of the probability distribution with a sufficiently large thresh-
old T , estimating P(X − T ≤ x|X > T ). More specifically, suppose we have N observations
X1, X2, . . . , XN , where Xi ∈ R, and n out of N observations exceed the threshold T . We
denote their indices by JT and let Y be the set of excesses over T . Mathematically, we have
JT = {i |Xi > T} and Y = {Xi − T | i ∈ JT }. We use maximum likelihood estimation with
this Y for finding the GPD. We also approximate P(X > T ) with the empirical distribution func-
tion, i.e., P(X > T ) ≈ n/N . As a result, we can estimate the probability of an observed value that
is larger than the threshold T :

P(X − T > x) = P(X > T )P(X − T > x|X > T ) ≈ n

N
{1−G(x|α, β)} . (5)

4 A CLOSER LOOK AT PARAMETER SALIENCY THROUGH THE LENS OF EVT

First, we describe the motivation for statistically interpreting the existing method. Next, we explain
the reformulation of parameter saliency ranking as statistical anomaly detection. Finally, we provide
a general formulation of parameter saliency ranking based on EVT.

4.1 MOTIVATION

In this work, we explore the following three questions.

1. Does the distribution of each filter’s saliency follow a normal distrbution? It assumes in
the z-score normalization that the data follow a normal distribution. However, the gradient
norm may not be assumed to be normally distributed.

2. Can each filter’s saliency be used as a ranking score in the same line when each filter
may follow a different distribution? The normalized values from different distributions as
in fig. 1 are used for sorting filters. However, different distributions have different probabil-
ities of obtaining the same value; thus, the rankings can not necessarily reflect the authentic
relation of anomalies among the filters.

3. What bias would occur in the above case? If the distribution is heavy-tailed, large data
points occur relatively frequently. This significantly affects the sample mean and variance,
which can be extremely large for certain samples due to these outliers and induce bias.

In seeking answers to the questions, we explain below how parameter saliency ranking can be un-
derstood in terms of statistical anomaly detection and EVT.

4.2 STATISTICAL INTERPRETATION

We provide a novel interpretation of parameter saliency ranking in terms of statistical abnormal
detection where our goal is to identify the filters that have statistically more abnormal filter-wise
saliency profiles. We first consider the statistical meaning of parameter saliency because it is rea-
sonable to assume that an unusual saliency profile is formulated by the rarity of the value, i.e., the
probability of taking the value of the saliency profile. More formally, we assume that filter-wise
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saliency profile for the j-th filter S̄j follows a probability distribution S̄j ∼ Pj(S̄j). Given an input
that the model classified incorrectly, we compute the saliency profile for the j-th filter and obtain s̄j .
Then, we construct a ranking of filters so that filters with a smaller value of P(S̄j > s̄j) are higher
in the ranking.

We show below that comparing filter saliency is equivalent to comparing the probability of the
observed filter-wise saliency profile under the assumption that the filter-wise saliency profile follows
a normal distribution.

Proposition 1. Suppose S̄j is a random variable that follows the normal distributionN (µj , σj) for
any j, where µj ∈ R and σj ∈ R equal to the mean and the standard deviation respectively. We
define Ŝj by Ŝj = (S̄j−µj)/σj . Let s̄j be a sample from each distribution and ŝj be the normalized
value of s̄j , i.e., ŝj = (s̄j − µj)/σj . Then, for any pair of the normalized values (ŝj , ŝj′), the
following holds:

ŝj ≤ ŝj′ ⇐⇒ P(S̄j > s̄j) ≤ P(S̄j′ > s̄j′). (6)

The proof is in Appendix B. Proposition. 1 tells us that the baseline method compares the proba-
bility of a filter-wise saliency profile and becomes one solution in our formulation. However, the
assumption required here might be too strong and unrealistic in practice, so we want to weaken the
assumption.

4.3 PARAMETER SALIENCY ESTIMATION VIA POT

In revisiting our primary objective, we aim to identify the filters in a CNN that induce misclas-
sification. To achieve this, we need a method that can quantitatively evaluate the filters inducing
misclassification. Ideally, the metrics should (i) be comparable across different layers using the
same criteria, (ii) have few assumptions behind them, and (iii) be easily interpreted. Here we
seek an evaluation method that embodies these three ideal properties.

We assume that filters inducing misclassification for a particular image have unique characteristics
specific to that image. These characteristics can be formulated as a higher probability of being
an anomalous filter compared to other correctly classified images. This probabilistic representation
seems rational for expressing abnormality and useful in terms of interpretability. Furthermore, when
formalizing abnormality in terms of probability, it is common in statistical anomaly detection to use
a tail probability, i.e., the probability that exceeds a specific threshold. In this case, EVT is more
useful than traditional statistical methods.

EVT is designed to derive detailed insights about extreme values and their stochastic behavior from
data with a limited sample size, in contrust to traditional statistical methods that require large sam-
ples to capture such features. Since extreme events, by their nature, are rarely observed, amassing
a large amount of these events for analysis can be difficult. Similarly, the anomalous behavior of
filters causing misclassification can also be considered a rare event. Furthermore, the POT method
focuses on data points that surpass a specific threshold within a dataset. This enables us to estimate
the probability of extreme events without using all the data points, thus maximizing the information
extracted from a restricted sample.

Require: (x1, y1) . . . (xN , yN ), (xw, yw)
Ensure: Salient Filter Ranking

1: S̄ ← []
2: for i← 1 to N do
3: Calculate s̄i for (xi, yi) by Eq. 1
4: S̄.append(̄si)
5: end for
6: Estimate α, β from S̄ using (Siffer et al.,

2017)
7: Calculate s̄w for (xw, yw) by Eq. 1
8: Calculate pw for s̄w using (α,β) and Eq. 5
9: salient_filter_ranking← argsort(pw)

Figure 2: Detecting Salient Filters with POT

In this work, we reformulate the rarity of each
filter’s saliency profile according to the prob-
ability P(X > x) by using the POT method,
which we call POT-saliency.

Since EVT provide results for the tail behav-
ior of various probability distributions, we can
evaluate extreme value probabilities without as-
suming a specific distribution. Therefore, the
most important advantage of this method is that
it does not require the assumption of a normal
distribution for the distribution when calculat-
ing a score for each filter, which allows for a
unified analysis even among different strata us-
ing the same criteria.
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Figure 2 shows our salient filter ranking algorithm with POT. Let R be a real space and L be the
total number of convolution filters. The bold variables in Fig. 2 are all L-dimensional real vectors,
i.e., s̄i,α,β,p ∈ RL, where the j-th element in each vector is the value corresponding to the j-th
convolution filter. Denote by N the number of images in the validation set in the dataset. First,
we calculate the saliency profiles for convolution filters, s̄j (j = 1, . . . , N), according to Eq. 1 for
each image in the validation set, (x1, y1) . . . (xN , yN ). Then, we perform the maximum likelihood
estimation of the GPD parameters, α and β in Eq. 4 , using the profiles (̄s1, . . . , s̄N ). When a
misclassified input is discovered, where xw and yw denote the misclassified input and its true label,
we calculate the saliency profile of each filter for xw and store the saliency profiles that exceed the
corresponding threshold. Then we compute the probability according to Eq. 5 for the filters with
their saliency profile above the threshold. Finally, we can obtain the desired ranking by sorting these
probabilities in ascending order. For the flowchart of the algorithm, please refer to the Fig. 6 in the
Appendix. We used the maximum likelihood estimation of GPD parameters from the work by (Siffer
et al., 2017) for our implementation and the threshold for each filter was set to the 90-th percentile
value of the observed saliency profiles on the validation set of the dataset.

5 EXPERIMENT

In this section, we empirically analyzed the differences between POT-sailency and existing methods.
In particular, we investigated what biases might occur and what problems the existing method might
cause.

Levin et al. (2021) proposed two evaluation methods for quantitatively measuring the effect of de-
tected filters: pruning and fine-tuning. For the pruning-based evaluation, we set all values in the filter
to zero instead of actually modifying the model architectures. These removed filters will no longer
affect the classification result because convolution is performed through the sum of the Hadamard
product between the window of an input and the convolutional filters. In contrast, in the fine-tuning-
based evaluation, we update the salient filters where it is assumed that if we correctly identify the
filters causing misclassification, fine-tuning them would improve performance. For these experi-
ments, we used the pretrained ResNet-50 provided by PyTorch framework as in Levin et al. (2021).
The results of VGG and ViT are also shown in the Appendix.

5.1 EMPIRICAL ANALYSIS IN IMAGENET

We analyzed the original saliency and POT-saliency ranking methods in terms of two evaluation
methods. We applied them to the ImageNet validation set. This experiment follows the one in Levin
et al. (2021).

5.1.1 FILTER-PRUNING-BASED EVALUATION

Starting from the top of the ranking of filters, we gradually turned off the filter and measured model
performance according to the metrics by pruning up to 50 filters. After all the incorrectly classified
samples in the ImageNet validation set were processed, we average the results and the values are
reported for each metric. We made comparisons among the original saliency ranking method, the
POT-saliency ranking method, and a random-selection method in which we randomly chosed the
convolution filters.

As shown in Fig. 3, both the original and POT-saliency methods share the same tendency to re-
duce the incorrect class confidence and increase correct class confidence and have almost the same
ability to identify salient filters. Incorrect class confidence dropped by 25% when 50 salient filters
were turned off, although choosing random filters did not decrease the confidence much. Also, we
observed that the correct class confidence rose faster when salient filters were eliminated. These
results suggest that the wrong classification is more or less due to these salient filters. The percent-
age of corrected samples for the POT-saliency method is higher than the random method as well,
reaching 12%.

It is worth noting that zeroing out random filters helps the model classify well, and there are a couple
of possible reasons for this. First, randomly chosen filters can include salient filters and these salient
filters have an influence on the output. this hypothesis is consistent with the experiment conducted
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Figure 3: Comparisons on metrics among three methods. The POT method and baseline method
have show the ability to drop incorrect class confidence.

Figure 4: The POT method and baseline method have almost the same ability to detect malfunction-
ing filters in terms of one step fine-tuning.

by Levin et al. (2021), where neither correct nor incorrect class confidence changed when the least
salient filters found by the baseline method were removed. Second, convolutional filters whose
values are set to 0 could begin to equally contribute to the output for all the classes, leading to more
evenly distributed confidence.

5.1.2 FILTER FINE-TUNING EVALUATION

We performed one step fine-tuning of ResNet-50 and observed the behavior change. For one step
fine-tuning, we set the learning rate to 0.001 and multiplied this value to the gradients and subtracted
the values from the original parameter values. We used the same metrics to measure the effect as
in the filter pruning. One step fine-tuning may seem odd at first sight; however, we argue that fine-
tuning for one step has several advantages over usual fine-tuning. Firstly, salient filter ranking will
change after the modification of model parameters. Once the parameters in a filter are updated, the
distributions of the gradient magnitude will be different. This forces us to compute the parameters
for new GPDs and redo the whole process again. Therefore, one step fine-tuning can reduce the com-
putation and is more practical. Secondly, the use of one step fine-tuning provides greater flexibility
in selecting the number of filters for the model, thus enabling us to find the best configuration. After
we compute the gradients and save them, we can easily increase or decrease the number of fine-
tuned filters, because each parameter can be expressed by θi or θi−λ∇θiL(fθ, x, y), where λ is the
learning rate. In contrast, if we perform normal fine-tuning, which needs several update operations,
the gradient after the first update is dependent on the number of fine-tuned filters, and therefore we
would need to start fine-tuning from scratch if we want to change the number of fine-tuned filters.

We conducted the experiment on the ImageNet validation set using the same GPD parameters com-
puted previously for each filter, and compared our method to the baseline method. Figure 4 shows
the result for the original and POT-saliency methods on the ImageNet validation set. It is clear that
both methods transfer the confidence in the originally misclassified class to that of the correct class.
In addition, we can see that half of the misclassified images is correctly classified after performing
one step fine-tuning to 25 filters.
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Figure 5: Comparison among three methods when ResNet-18 is trained using MNIST and used on
SVHN. We evaluate them with the same metrics as before.

5.1.3 DISCUSSION: IS IT REASONABLE TO EVALUATE RANKING USING IMAGENET?

Considering the results of the experiments in the previous section, we can see that original and POT-
saliency ranking successfully detects the filters inducing misclassification and that modifying these
filters works positively for each input. However, we can also guess that manipulating parameters
in the latter part of the convolutional layers is more likely to yield better changes in the results
compared with manipulating the parameters of the former part. In fact, Kirichenko et al. (2022)
showed that retraining the last layer can help ImageNet-trained models perform well on spurious
correlation benchmarks. Although the last layer of CNNs is a linear layer, we presume that the same
phenomenon would occur if we retrain the filters that belong to the convolutional layers in the latter
half.

The ResNet architecture consists of five groups of convolutional layers: conv1, conv2_x, conv3_x,
conv4_x, and conv5_x(He et al., 2016). The numbers of filters in these groups are listed in the
following table. From tab. 3 in the appendix, we decided to focus on conv5_x, which contains nearly
half of the filters. We constructed a simple algorithm: when a model makes a misclassification, we
choose filters with higher gradient from conv5_x and perform one-step fine-tuning on them.

To evaluate the conv5_x fine-tuning approach, we conducted an experiment using the same setup
as in sec. 5.1.2. Interestingly, the performance after fine-tuning filters in conv5_x outperforms both
the original and POT-saliency methods by 5 to 10% for all the metrics as shown in Fig. 4. For this
result, we hypothesized that, when training on ImageNet, which is huge in size and consists of a
wide variety of classes, useful feature extractors are learned, so that fine-tuning can be reconciled by
simply fine-tuning the the filters in conv_5, rather than by the filters in the feature extractors. Even
if some filters in the feature extractor actually need to be modified, it is not possible in this situation
to clarify whether they have been found. Therefore, in the next section, we propose evaluating each
method in the domain shift problem setting, where the feature extractor filters clearly need to be
modified.

5.2 EMPIRICAL ANALYSIS IN DOMAIN SHIFT

To find out whether conv5_x fine-tuning can operate well under any condition, we used datasets that
show domain shift to ensure that CNNs as a feature extractor can only perform poorly. Domain
shift is a common challenge in machine learning when the source domain and the target domain
differ significantly. There are multiple possible triggers that give rise to the problem, one of which
is the different feature space for the source and target domains. For example, we can intuitively
understand that most models trained only with the MNIST dataset cannot extract useful features
when they are used on the SVHN dataset as shown in Fig. 7 in Appendix. Since convolutional layers
are involved in different types of feature extraction(Zeiler & Fergus, 2014), we expect the cause of
misclassifications to be distributed among various convolutional layers.

We conducted our experiments with the MNIST and SVHN datasets. We trained ResNet-18 from
scratch with MNIST dataset and applied our method to the SVHN training set to approximate the
distributions of filter saliency. Then we analyzed where the top ranking filters are from. We did not
use the pretrained model so as to avoid using models that already have a decent feature extractor.
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Figure 5 shows how the performance changed on incorrectly classified images after fine-tuning. As
we can see, modifying the filters in conv5_x only was not effective at all, changing almost nothing
across all of the metrics. Interestingly, the POT method showed a better performance than the base-
line method, which is a different result from that in Fig. 4. Especially, the POT method decreased
the incorrect class confidence by up to 6%, whereas the baseline achieves only 2%, showing superior
capability of discovering filters that contribute to misclassifications.

5.3 BIAS BEHIND SALIENT FILTERS: WHAT CAUSES PERFORMANCE DIFFERENCE BETWEEN
POT-SALIENCY AND ORIGINAL SALIENCY?

In previous section, we explored the performance difference among various approaches. Now, we
want to figure out where it comes from. For this purpose, we analyze the distribution of the chosen
filters. More specifically, we counted how many times each filter ranked in the top 20 or 25, aggre-
gated the results within the five groups, and calculated the proportion to clarify the general trends.
As we can see from the results in Tables 1 and 2, POT-saliency ranking chose filters that belong to
a wide range of layers, while original saliency ranking mainly chose conv5_x filters. This indicates
that our method successfully reveals the fact that the model trained with MNIST is not capturing
important features.

Table 1: Rate (%) of top-20 salient filters
of ResNet-18 from each group on SVHN.

baseline POT
conv1 0 7.5

conv2_x 0.5 2.3
conv3_x 1.0 19.8
conv4_x 2.5 31.0
conv5_x 96.0 40.0

Table 2: Rate (%) of top-25 salient filters
of ResNet-50 from each group on ImageNet.

baseline POT
conv1 0.1 7.2

conv2_x 0.6 24.8
conv3_x 1.5 2.1
conv4_x 24.2 15.1
conv5_x 73.6 50.8

These findings suggest that the baseline method is biased to choose filters from later groups such as
conv5_x. To illuminate what causes this bias, we go back to the original saliency ranking method
itself. The score for ranking generation is computed by performing the z-score normalization to pa-
rameter saliency, or filter saliency in the case of CNNs. Since ResNet adopts ReLU as an activation
function, the gradient accumulates and grows bigger during the course of backpropagation unless
the norm of weights is restricted to be small. Thus, the mean gradient is larger for conv1 and smaller
for conv5_x, and the larger the mean value, the more likely it is to increase the standard deviation.
In fact, as Fig. 10 in the appendix shows, the mean and std of the gradient gradually decreases from
conv1 to conv5_x for ResNet-50. We divide the saliency profile by std when calculating the score,
and this operation is presumably what introduces the bias.

6 CONCLUSION

We explored the parameter saliency for a CNN through the lens of EVT and provided POT-saliency.
We analyzed the property of the original and POT-saliency ranking methods and found that the
POT-saliency ranking method chooses from a wide range of convolutional layers while the baseline
method has a bias to choose from the later part of the layers. We believe that this novel application
of EVT in deep learning has the potential to open up new fields.
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Figure 6: A flowchart illustrating how POT-saliency method works.

Figure 7: Visualization of digits in MNIST dataset (left) and SVHN dataset (right). SVHN digits
come with colors, diverse computer fonts and various background from streets, while MNIST digits
have black background only.

A ARCHITECTURAL DIFFERENCES

We performed one-step fine-tuning for multiple CNN architectures such as VGG19. For this task,
we set the learning rate to be 0.001 just as Sec. 5.1.2. The results are shown below. Figure 8 tells us
that our method is effective for not only the ResNet architecture, but also other CNN architectures.

Figure 8: Comparisons on metrics for VGG19.

We also conducted this experiment on Vision Transformer. Since its architecture fundamentally
differs from CNN, we needed to determine parameters corresponding to convolutional filters. We
considered the parameters Wk,Wq, and Wv , which perform linear transformations to the input to
obtain vectors of query, key, and value, to be particularly relevant to feature extraction. We treated
the average magnitude of gradients for these parameters as parameter saliency. Similar to previous
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Table 3: The number of filters in each group of convolutional layers for ResNet architecture.

model name conv1 conv2_x conv3_x conv4_x conv5_x
ResNet-18 64 256 512 1024 2048
ResNet-50 64 1152 3072 9216 9216

experiments, we conducted experiments using the ImageNet validation set and used a learning rate
of 0.001. The architecture is ViT-B-16. The results shown in Fig. 9 tell us that the POT-saliency
method is not limited to CNNs only.

Figure 9: Comparisons on metrics for Vision Transformer.

B PROOF OF PROPOSITION 1

Since we have S̄j ∼ N (µj , σj), Ŝj follows the standard normal distribution:

Ŝj ∼ N (0, 1). (7)

The standard normal distribution has the following complementary error function erfc : R→ [0, 1]:

erfc(x) =
2√
π

∫ ∞

x

e−t2dt, (8)

and we have P(Ŝj > x) = erfc(x) for any j. The derivative of the complementary error function
with respect to x is

d erfc

dx
(x) = − 2√

π
e−x2

. (9)

The function erfc(x) is monotonically decreasing, and therefore if ŝj ≤ ŝj′ holds true, we also have
P(Ŝj > ŝj) ≤ P(Ŝj′ > ŝj′) and vice versa. Lastly, we have

P(Ŝ > ŝ) = P
(
S̄ − µ

σ
>

s̄− µ

σ

)
= P(S̄ > s̄), (10)

and this concludes the proof.

C TUTORIAL FOR EXTREME VALUE THEORY

For those who are unfamiliar with the extreme value theory, we give a summary of (a) the motivation,
(b) two main theorems, and (c) some methods to model extreme values. It would be especially
helpful to understand the assumption necessary for the POT method.

13
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Figure 10: The mean and std of parameter saliency for ResNet-50 on ImageNet validation set.

C.1 TWO MAIN THEOREMS

As described before, we try to model the maximum value of sequential data Mn =
max{X1, X2, ..., Xn}, where the data points are i.i.d.. To measure the potential value of it, we
want to know the probability P(Mn ≤ z) for some large value z ∈ R. The value can be transformed
with the distribution function F as follows:

P(Mn ≤ z) = P(X1 ≤ z)× · · · × P(Xn ≤ z)

= {F (z)}n. (11)

If the distribution F is well-known and can be expressed by an equation, we achieve our goal.
However, in most of the case, this is not true. Thus, we need to approximate Fn. One problem
arising here is that as n increases, {F (z)}n converges 0 if z < τ , where τ is the right end point of
the distribution F . Avoiding this problem requires the linear normalization with two sequences of
constants {an > 0} and {bn}:

M∗
n =

Mn − bn
an

, (12)

and we analyze M∗
n instead.

The first theorem handles possible distributions for P(M∗
n ≤ z) to converge as n→∞.

Theorem 2. If there exists {an > 0} and {bn} such that P
(

Mn−bn
an

≤ z
)

converges in law to G(z)

as n→∞, Then G is one of the following three distribution functions:

1. G(z) = exp {− exp
[
−
(
z−b
a

)]
};

2. G(z) =

{
0 z ≤ b,

exp
{
−
(
z−b
a

)−α
}

z > b;

3. G(z) =

{
exp

{
−
[
−
(
z−b
a

)α]}
z < b,

1 z ≥ b,

where a > 0 and α > 0.

These distributions are the families of Gumbel, Fréchet, and Weibull distributions. The three classes
of distributions are together called extreme value distributions (EVD). These families are known to
be represented uniformly and is called generalized extreme value (GEV) distributioin:

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
}
, (13)
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where z is constrained on 1 + ξ
(
z−µ
σ

)
> 0. The Gumbel distribution corresponds to ξ → 0, and

ξ > 0 and ξ < 0 are the cases for the Fréchet, and the Weibull distributions, respectively.

Now, we know that the unknown distribution for M∗
n can be approximated by a GEV distribution,

so we have reduced the approximation problem to the parameter estimation problem. We originally
want to know the behavior of maxMn, but we can achieve this if we can estimate parameters
because Mn also follows the GEV distribution:

P(Mn ≤ z) = P(M∗
n ≤ (z − bn)/an) ≈ G((z − bn)/an). (14)

One popular method is called the block maxima method, where we divide a sequence of data into
several blocks, obtain the maximum value in each block, and fits the GEV distribution. we do not
introduce the parameter estimation techniques because it is beyond scope of this paper, but many
approaches, such as maximum likelihood estimation, have been developed so far.

A shortcoming of block maxima is that the method does not necessarily use extreme values, which
are inherently scarce. The threshold-based method arises to avoid such a problem. In this case,
values that exceeded a high threshold T are considered to be extreme. The target of analysis changes
to the probability:

P{X > T + x|X > T} = 1− F (T + x)

1− F (T )
, (15)

where x > 0 is the exceedance from the threshold. Again, we deals with the unknown distribution
F . The second main theorem is Thm. 1 as described in Sec. 3.2, but we can now state the theorem
more clearly with Thm. 2.

Theorem 3. Let X1, X2, ... be a sequence of i.i.d. random variables with the same distribution F ,
and Mn = max {X1, ..., Xn}. Suppose F satisfies Thm. 2:

P(Mn ≤ z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
}
,

for some µ, σ > 0 and ξ.
Then, for sufficiently large T , we have

H(x) = 1−
(
1 +

ξx

σ̂

)− 1
ξ

, (16)

where x ∈ {x > 0 and (1 + ξx/σ̂) > 0} and σ̂ = σ + ξ(T − µ).

The distribution of Eq. 16 is called the generalized pareto distribution. We can observe the close
relationship between the GEV distribution and the generalized pareto distribution: they share the
same ξ, and σ̂ can be calculated from µ and σ of the GEV distribution.

An outline proof is the following.

Proof. From the assumption, we have

P(Mn ≤ z) = {F (z)}n = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
}
. (17)

Taking the logarithm of the right equation gives

n logF (z) ≈ −
[
1 + ξ

(
z − µ

σ

)]−1/ξ

. (18)

Considering Taylor expansion around F (z) = 1, where z is large enough, we obtain the equation
logF (z) ≈ −{1− F (z)}. Substitution into Eq. 18 yields

1− F (z) ≈ 1

n

[
1 + ξ

(
z − µ

σ

)]−1/ξ

. (19)
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Finally, from Eq. 15 and Eq. 19, we obtain

P{X > T + x|X > T} ≈

[
1 + ξ

(
T+x−µ

σ

)]−1/ξ

[
1 + ξ

(
T−µ
σ

)]−1/ξ

=

1 + ξ
(

T−µ
σ

)
+ ξ x

σ

1 + ξ
(

T−µ
σ

)


−1/ξ

=

[
1 +

ξx

σ̂

]−1/ξ

, (20)

where σ̂ = σ + ξ(T − µ).

C.2 MAXIMUM LIKELIHOOD ESTIMATION

we have described the connection between the two main theorems. In this section, we will explain
how we can estimate the parameters for a generalized pareto distribution with maximum likelihood
estimation. The probability density function for it is in the form:

f(x|ξ, σ̂) = 1

σ̂

(
1 +

ξx

σ̂

)−(1+ 1
ξ )

. (21)

The likelihood function is defined as L(ξ, σ̂) = ΠNt
i=1f(xi|ξ, σ̂), where Nt is the number of data

points that exceed the threshold. Therefore, we want to maximize

logL(ξ, σ̂) = −Nt log σ̂ −
(
1 +

1

ξ

) Nt∑
i=1

log

(
1 +

ξxi

σ̂

)
. (22)

For the maximum likelihood estimation, it is necessary to have its partial derivatives with respect to
ξ and σ̂ equal to 0:

∂L

∂σ̂
= 0, (23)

∂L

∂ξ
= 0. (24)

Solving this problem requires numerical optimization, so the answers can be numerically unstable.
One technique called the Grimshaw’s trick mitigates this problem.

∂L

∂σ̂
= −Nt

σ̂
−
(
1 +

1

ξ

) Nt∑
i=1

1

1 + ξxi/σ̂

(
−ξxi

σ̂2

)

= −Nt

σ̂
+

(
1 +

1

ξ

)
1

σ̂

Nt∑
i=1

ξxi/σ̂ + 1− 1

1 + ξxi/σ̂

=
Nt

ξσ̂
−
(
1 +

1

ξ

)
1

σ̂

Nt∑
i=1

1

1 + ξxi/σ̂
= 0; (25)

∂L

∂ξ
=

1

ξ2

Nt∑
i=1

log

(
1 +

ξxi

σ̂

)
−
(
1 +

1

ξ

) Nt∑
i=1

xi/σ̂

1 + ξxi/σ̂

=
1

ξ2

Nt∑
i=1

log

(
1 +

ξxi

σ̂

)
−
(
1 +

1

ξ

)
1

ξ

Nt∑
i=1

ξxi/σ̂ + 1− 1

1 + ξxi/σ̂

=
1

ξ2

Nt∑
i=1

log

(
1 +

ξxi

σ̂

)
−
(
1 +

1

ξ

)
Nt

ξ
+

(
1 +

1

ξ

)
1

ξ

Nt∑
i=1

1

1 + ξxi/σ̂
= 0. (26)
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Multiplying σ̂ to Eq. 25 and ξ to Eq. 26 yields

Nt

ξ
−
(
1 +

1

ξ

) Nt∑
i=1

1

1 + ξxi/σ̂
= 0, (27)

1

ξ

Nt∑
i=1

log

(
1 +

ξxi

σ̂

)
−Nt −

Nt

ξ
+

(
1 +

1

ξ

) Nt∑
i=1

1

1 + ξxi/σ̂
= 0. (28)

Adding the two equations gives:

ξ =
1

Nt

Nt∑
i=1

log

(
1 +

ξxi

σ̂

)
. (29)

Here we use the change of variables by the equation θ = ξ
σ̂ . Note that both ξ and σ̂ can be calculated

through:

ξ =
1

Nt

Nt∑
i=1

log (1 + θxi), (30)

σ̂ =
ξ

θ
. (31)

Therefore, our goal becomes finding the optimal θ. The first step is to transform the log of likelihood
function logL(ξ, σ̂) with θ:

logL(ξ, σ̂) = −Nt log σ̂ −
(
1 +

1

ξ

) Nt∑
i=1

log

(
1 +

ξxi

σ̂

)
= −Nt log

ξ

θ
−
(
1 +

1

ξ

)
Ntξ (∵ Eq. 30)

= −Nt log

(
1

θ

1

Nt

Nt∑
i=1

log (1 + θxi)

)
−

Nt∑
i=1

log (1 + θxi)−Nt. (32)

The derivative of this function with respect to θ is:

dL

dθ
= −Nt

− 1
θ2

1
Nt

∑Nt

i=1 log (1 + θxi) +
1
θ

1
Nt

∑Nt

i=1
xi

1+θxi

1
θ

1
Nt

∑Nt

i=1 log (1 + θxi)
−

Nt∑
i=1

xi

1 + θxi

=
Nt

θ
−Nt

∑Nt

i=1
1
θ
θxi+1−1
1+θxi∑Nt

i=1 log (1 + θxi)
−

Nt∑
i=1

1

θ

θxi + 1− 1

1 + θxi

=
Nt

θ
−Nt

Nt

θ + 1
θ

∑Nt

i=1
1

1+θxi∑Nt

i=1 log (1 + θxi)
−

(
Nt

θ
− 1

θ

Nt∑
i=1

1

1 + θxi

)

= −Nt

θ

Nt +
∑Nt

i=1
1

1+θxi∑Nt

i=1 log (1 + θxi)
+

1

θ

Nt∑
i=1

1

1 + θxi
. (33)

Here, we assume that Nt is a positive number. Otherwise, we cannot estimate the probability dis-
tribution because no values exceed the threshold. The optimal θ should satisfy dL

dθ = 0, which
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yields:

−Nt

θ

Nt +
∑Nt

i=1
1

1+θxi∑Nt

i=1 log (1 + θxi)
+

1

θ

Nt∑
i=1

1

1 + θxi
= 0 (34)

Nt +

Nt∑
i=1

1

1 + θxi
− 1

Nt

(
Nt∑
i=1

1

1 + θxi

)(
Nt∑
i=1

log (1 + θxi)

)
= 0 (35)

Nt −

(
Nt∑
i=1

1

1 + θxi

)(
1− 1

Nt

Nt∑
i=1

log (1 + θxi)

)
= 0 (36)(

1

Nt

Nt∑
i=1

1

1 + θxi

)(
1− 1

Nt

Nt∑
i=1

log (1 + θxi)

)
− 1 = 0. (37)

Calculating the GPD parameters ξ, σ̂ is now reduced to solving the Eq. 37. This is the full picture
of the Grimshaw’s trick. It can be shown that the equation has at least one solution other than θ = 0
if the derivative of the left hand side of Eq. 37 equals to 0 at θ = 0.

The lower bound for θ is given by

θ > − 1

maxi xi
, (38)

because 1 + θxi should be positive for any i. Grimshaw shows the upper bound for θ:

θ <
2(x̄−mini xi)

(mini xi)2
, (39)

where x̄ is the mean of x1, · · · , xNt . Therefore, the implementation must find all the possible roots
for the Eq. 37 and choose the optimal value according to logL(θ).

D ADDITIONAL EXPERIMENTS

We conducted two additional domain-shift experiments. One is the ImageNet-C(Hendrycks & Diet-
terich, 2019) where various generated corruptions are applied to the ImageNet validation set. The
other is PACS dataset. The PACS dataset consists of images from 7 classes, where P stands for
photo, A for art, C for cartoons, and S for sketch. The dataset has 9,991 images in total.

D.1 IMAGENET-C

For this experiment, we used the same pretrained ResNet50 as Sec. 5.1.2, and also the POT param-
eters are identical. The results are shown in Fig. 11. For the types of corruption, we chose gaussian
noise, snow, pixelate, and contrast. In this scenario, We can see similar performance across all the
corruptions. Since the ImageNet dataset is such a large dataset, the pretrained model is likely to
have a good feature extractor. Thus, the bias of choosing filters from the latter part of convolutional
layers behind (Levin et al., 2021)’s method has less influence.

D.2 PACS DATASET

In addition to the MNIST and SVHN datasets, we also used the PACS dataset(Li et al., 2017) to
examine the behavior of ResNet-18 when the filters were fine-tuned according to the POT-saliency
method, the (Levin et al., 2021)’s method and the conv5_x method. We again started from non-
pretrained ResNet18 and trained with 0.001 of learning rate with Adam. When training, we choose
three source domains from P, A, C, and S and split images into training and validation set. Then,
we used the remaining domain to conduct the evaluation. Henceforth, We will represent the domain
used for evaluation in the last letter. For example, when we write PCSA, it means that we use art
images for evaluation and train a model with photo, cartoon, and sketch images. The following four
figures show the results.

In PACS and PASC, we can clearly see the difference between the POT method and (Levin et al.,
2021)’s method, while PCSA and ACSP show the similar tendency. One possible reason for this
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(a) gaussian noise

(b) snow

(c) pixelate

(d) contrast

Figure 11: The results of evaluation on ImageNet-c dataset.
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(a) PACS

(b) PASC

(c) PCSA

(d) ACSP

Figure 12: The results of evaluation on PACS permutation.

tendency can be found in the feature distribution of the PACS images in Fig. 13. We see photo and
art painting images share the feature distribution, but cartoon and sketch images are independent
and distant from the rest. When sketch and cartoon images are used for evaluation (i.e., PACS and
PASC), the feature extractor must be changed so that they can successfully classify the images. In
this case, the POT method shows less bias and outperforms the (Levin et al., 2021)’s method.
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Figure 13: Distribution of features in PACS photos from (Li et al., 2017)
.
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