
Positional Information Can Emerge Through Causal
Attention Making Nearby Token Embeddings Similar

Even Without Positional Encodings

Chunsheng Zuo
Department of Computer Science

Johns Hopkins University
czuo3@jh.edu

Pavel Guerzhoy
Department of Mathematics

University of Hawai’i at Mānoa
pavel@math.hawaii.edu

Michael Guerzhoy
Division of Engineering Science

University of Toronto
guerzhoy@cs.toronto.edu

Abstract

Transformers with causal attention can solve tasks that require positional informa-
tion without using positional encodings. In this work, we propose and investigate
a new hypothesis about how positional information can be stored without using
explicit positional encoding. We observe that nearby embeddings are more similar
to each other than faraway embeddings, allowing the transformer to potentially
reconstruct the positions of tokens. We show that this pattern can occur in both the
trained and the randomly initialized Transformer models with causal attention and
no positional encodings over a common range of hyperparameters.

1 Introduction

Recent results by Haviv et al. [2022], Kazemnejad et al. [2023], and Chi et al. [2023] suggest that
positional encodings are not necessary when training decoder-only Transformer language models.
These results motivate our investigation of how Transformers might represent positional information
without positional encodings.

As shown in [Tsai et al., 2019] [Zuo and Guerzhoy, 2024], the non-causal attention mechanism is
equivariant to the permutation of the input tokens —- the prediction for input token n+ 1 is invariant
to permutations of tokens 1, 2, ..., n− 1. Therefore, without positional encodings, the causal attention
mechanism is required for the Transformer to consider the order of the input tokens. Chi et al.
[2023] hypothesize that causal attention allows positional information to be stored using the variance
(taken across the indices of the embedding vector – essentially the norm) of the embeddings, which
generally decreases for tokens at larger positions. They argue that the variance will tend to decrease
because, when using causal attention, embeddings n is computed using embeddings 1, 2, ..., n− 1 in
the previous layer, whereas embeddings n + k will be computed using k more input embeddings,
leading to the variance shrinkage for embeddings n+ k.

We identify a different possible way of representing positional information that also arises from the
fact that embeddings at smaller positions is computed using fewer embeddings from the previous
layer compared to those at larger positions. Specifically, we observe that embeddings at nearby
indices will tend to have cosine similarity. This property could, in principle, enable the reconstruction
of a token’s position.

Interpretable AI: Past, Present and Future Workshop at NeurIPS 2024

The rest of the paper is organized as follows. We first briefly review causal attention and establish the
notions of the self-cosine-similarity matrix and the adjacency pattern, which quantify the similarity
between token embeddings (Section 2.1). We then describe the metric and the tasks (Addition,
Reversal, Ordering, and Indexing) that we use in our experiments (Section 3.2). We use them
to examine the existence of the adjacency pattern in a variety of configurations. We report on
experimental results in Section 4.

0 5 10 15 20

0

5

10

15

20

Embeddings (0.39)

0 5 10 15 20

0

5

10

15

20

Init Layer 1 (0.97)

0 5 10 15 20

0

5

10

15

20

Init Layer 2 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 4 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 5 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 6 (1.0)

0 5 10 15 20

0

5

10

15

20

Embeddings (0.54)

0 5 10 15 20

0

5

10

15

20

Trained Layer 1 (0.95)

0 5 10 15 20

0

5

10

15

20

Trained Layer 2 (0.98)

0 5 10 15 20

0

5

10

15

20

Trained Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Trained Layer 4 (0.98)

0 5 10 15 20

0

5

10

15

20

Trained Layer 5 (0.84)

0 5 10 15 20

0

5

10

15

20

Trained Layer 6 (0.91)

0.0

0.5

1.0

0.0

0.5

1.0

0.2

0.5

0.8

1.0

0.0

0.5

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Figure 1: Self-cosine-similarity matrices of randomly initialized (first row) and trained (second row)
6-layer Transformers with causal attention and no positional encodings on the task of Reversal (22).
The matrices are produced using a testing sample of 22 tokens, "rev(8502251258017069)=", as input,
showing results from the embeddings to the output of layer 6 left to right for the initialized and trained
models. The number in the bracket represents the Adjacency Probability Score.

2 Background

2.1 Transformers with causal attention store positional information without positional
encodings

In a Transformer with non-causal attention, an output at the k-th position is agnostic to the change in
positions of the inputs from other positions, a property known as permutation equivariance. Without
positional encodings, permutation equivariance prevents the output of each layer from understanding
the relative positions between any pairs of tokens. Consequently, the model will fail to distinguish
between different ordering of the same input tokens. In contrast, as shown in [Tsai et al., 2019],
Transformers with causal attention are not permutation-equivariant to the input sequence. This
implies the possibility of the success of Haviv et al. [2022] in training causal Transformers without
positional encodings —- non-causal attention could not accomplish that. [Zuo and Guerzhoy, 2024]
demonstrate some of the experimental settings we use in this paper.

2.2 The self-cosine-similarity matrix and the adjacency pattern

The self-cosine-similarity matrix is a method to visualize the similarity between all pairs of vectors
within a sequence of embeddings. To create the self-cosine-similarity matrix C for a sequence of
n token embeddings X ∈ Rn×d of dimension d, we define each entry Dij as the cosine similarity
between the ith and jth token embeddings, namely, Dij = similarity(Xi,Xj). Since the cosine
similarity operation is commutative, Dij = Dji, resulting in the self-cosine-similarity matrix being
diagonally symmetrical.

The adjacency pattern is a pattern we observe in self-cosine-similarity matrices, an indication of
token embeddings at nearby positions having higher similarity than further ones. An example of this
pattern can be found in Figure 1, where the matrix is darker (higher values) closer to the diagonal
and brighter (lower values) further way, indicating that each embedding vector is more similar to
closer ones and less to further ones. We posit that embeddings that exhibit the adjacency pattern
contain positional information, since the position of a token can be approximated by observing which
embeddings are close to which.

The self-cosine-similarity matrix is used in Wang and Chen [2020] to visualize various positional
encodings, some of which, such as the sinusoidal embeddings, demonstrate an adjacency pattern. In
our work, the self-cosine-similarity matrix is applied to the causal attention’s output embeddings
directly to examine their adjacency pattern.

2

3 The adjacency pattern appears in both non-trained and trained
architectures in a variety of configurations

In this section, we explore the settings in which the adjacency pattern in causal Transformers with no
positional encodings (“Causal-NoPE") appears. We define the way we measure the adjacency pattern,
describe the tasks we are using, and provide the experimental details.

3.1 The adjacency probability score

0 10

0

10

Score=0.99

0 10

0

10

Score=0.93

0 10

0

10

Score=0.81

0 10

0

10

Score=0.69

0 10

0

10

Score=0.46

0 10

0

10

Score=0.33

0 10

0

10

Score=0.13

0 10

0

10

Score=0.01

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Figure 2: Synthetic matrices with different adjacency probability score values.

We propose the adjacency probability score as a metric to quantify the intensity of the adjacent
patterns. The score is constructed to correlate with the amount of positional information that can be
inferred from the self-similarity matrix.

We compute the proportion of time that the embeddings of tokens with closer positions have higher
cosine similarity than those farther away, which can be derived directly from the self-cosine-similarity
matrix. Consider the entries at the kth row of a self-cosine-similarity matrix from the 0th column
up to kth column (the column of the diagonal entry), denoted by Ck1,Ck2, . . . ,Ckk. The row-wise
adjacency probability score for this row is defined as:

PAdj,k = P [Cki < Ckj if i < j] =
1(
k
2

) k∑
i=0

i∑
j=0

I[Cki<Ckj] (1)

where I[Cki<Ckj] is 1 when Cki < Ckj and 0 otherwise. The adjacency probability score for the
entire self-cosine-similarity matrix is calculated as the average row-wise adjacency probability score
over all rows. Notice that only the lower triangular portion of the matrix is involved in the calculation
(See Appendix A.1).

3.2 Tasks

We trained Causal-NoPE Transformers for a variety of tasks that require positional information. The
tasks were selected for being trainable from scratch and always requiring positional information.

Addition: The Addition task involves generating the completion of strings like "123+456=".
Following Lee et al. [2024], whose code base we also use, we train NanoGPT to generate the answer
in reverse order. The input length is typically 9 for a sample of 3-digit Addition equation.

Reversal: The Reversal task requires the model to generate the reversed sequence. As an example,
for the prompt "rev(1234)=", in an auto-regressive manner, the model is supposed to output "4“ as
the next token and continue to generate "3", "2", and "1", which ends up completing the prompt as
"rev(1234)=4321". The input length is typically 22 for reversing 16 digits.

Indexing: The Indexing task requires the model to locate the position of the first occurrence of
a number in the sequence. As an example, for the prompt "wherex(134504392,4)=", the model is
supposed to output "2", which is the index for the first occurrence of "4". The input length is typically
19 for reversing 16 digits.

Ordering: Given a sequence of numbers and its reordered version, the Ordering task requires
the model to output the new order of the original indices based on the reordered sequence. As
an example, for the prompt "order(67812,28716)=", the model is supposed to generate the answer
"42130" auto-regressively. The input length is typically 17.

3

3.3 Experimental setup

We first want to examine whether the adjacency pattern persists for models trained for different
tasks that require positional information. We train the baseline 6-layer NanoGPT with 10.6 million
parameters on each of the tasks. By default, all models are initialized by the normal distribution
N (0, 0.02). The training for each configuration is repeated for 5 different random seeds. Each task
has 20000 training and 20000 testing samples. The rest of the training configurations follow the
work by Lee et al. [2024] that trained the NanoGPT model to converge on the 3-digit Addition task.
All experiments are conducted using an NVIDIA RTX4090 graphics card, with each trial being
approximately 15 minutes.

Additionally, we want to compare different configurations of the model, particularly the number of
layers and hidden dimensions. We choose the task of reversal and train models with 6, 12, and 24
layers and 192, 384, and 768 hidden dimensions, respectively, with the same train-test split. Unless
further specified, the most trained models have reached above 90% accuracy in the testing set.

4 Results

Tasks Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Addition (9) Init 0.48± 0.09 1.00± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

Addition (9) Trained 0.49± 0.06 0.96± 0.04 0.98± 0.01 1.00± 0.01 0.99± 0.01 0.91± 0.03 0.81± 0.04

Ordering (18) Init 0.52± 0.05 0.98± 0.05 0.99± 0.05 0.99± 0.06 0.99± 0.05 0.99± 0.05 1.00± 0.04

Ordering (18) Trained 0.55± 0.04 0.85± 0.07 0.99± 0.05 0.94± 0.05 0.73± 0.04 0.84± 0.05 0.77± 0.07

Reversal (22) Init 0.54± 0.07 0.97± 0.11 0.98± 0.09 0.98± 0.09 0.99± 0.08 0.98± 0.08 0.99± 0.07

Reversal (22) Trained 0.58± 0.07 0.90± 0.10 0.96± 0.06 0.99± 0.07 0.90± 0.07 0.80± 0.06 0.79± 0.09

Indexing (20) Init 0.51± 0.05 0.99± 0.05 1.00± 0.04 1.00± 0.04 1.00± 0.04 1.00± 0.04 1.00± 0.04

Indexing (20) Trained 0.57± 0.04 0.82± 0.06 0.97± 0.04 0.95± 0.04 0.87± 0.05 0.82± 0.05 0.87± 0.05

Table 1: Layer-wise adjacency probability score (mean ± standard deviation) for the 4 tasks, with
initialization and trained results, each averaged over 256 samples. The number in the bracket beside
each task indicates the length (maximum and most frequent) of the equations in the task.

Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Layers

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 P
ro

ba
bi

lit
y

0.51

0.99 0.99 0.99 0.99 0.99 1.00

0.55

0.88
0.97 0.97

0.87 0.84 0.81

Comparison of Init and Trained States Across Layers

Init
Trained

Figure 3: The layer-wise adjacency probability score for randomly initialized and trained models
averaged over the 4 tasks, correspond to the values presented in Table 1

4.1 Random initialization produces the adjacency pattern

We computed the self-cosine-similarity matrix and the adjacency score across settings. We use the
sample in Figure 1 to represent the general samples that we see. In Figure 1, while there is no
adjacency pattern in the matrices of the zeroth layer (i.e., the token embeddings), the adjacency
pattern starts to appear in the output of the first attention layer and continues in the rest of the layers.
The adjacency probability scores in the zeroth layer (i.e., the token embeddings) —- 0.39 and 0.54

4

for the randomly initialized and trained models respectively —- are much lower than in the other
layers (where the minimum is 0.84). In those upper layers, the embeddings have been through at least
1 layer of causal attention. Hence, one layer of causal attention could be sufficient to generate the
adjacency pattern.

Layers Embeddings Layer 1 Layer 2 Layer 3 Layer n-2 Layer n-1 Layer n
6 0.38± 0.10 0.90± 0.17 0.95± 0.15 0.96± 0.13 0.84± 0.11 0.76± 0.11 0.93± 0.16
12 0.49± 0.09 0.90± 0.17 0.93± 0.08 0.96± 0.11 0.86± 0.11 0.81± 0.08 0.84± 0.09
24 0.51± 0.10 0.84± 0.15 0.94± 0.09 0.84± 0.10 0.90± 0.10 0.78± 0.09 0.75± 0.09

Table 2: Layer-wise adjacency probability score (mean ± standard deviation) for models with
different numbers of layers trained on the Reversal (22) task, each averaged over 256 samples.

Dimensions Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
192 0.49± 0.11 0.93± 0.17 0.96± 0.14 0.96± 0.14 0.92± 0.14 0.81± 0.12 0.73± 0.11
384 0.38± 0.10 0.90± 0.17 0.95± 0.15 0.96± 0.13 0.84± 0.11 0.76± 0.11 0.93± 0.16
768 0.50± 0.11 0.96± 0.15 0.96± 0.15 0.95± 0.15 0.94± 0.15 0.90± 0.12 0.93± 0.15

Table 3: Layer-wise adjacency probability score for models with different numbers of hidden
dimensions trained on the Reversal (22) task, averaged over 256 samples. The only configuration that
did not achieve over 90% test accuracy is the model with 192 dimensions, which has an accuracy of
56%. Yet, we observed that in most cases where the model makes an error, the majority of digits are
correct, with only a few being incorrect.

4.2 Adjacency pattern across different models and datasets

The adjacency probability scores of models trained on various tasks and with different numbers of
hidden dimensions and the number of layers are listed in Tables 1, 2, and 3. Each column of the table
indicates the location where the embeddings are taken to produce the self-cosine-similarity matrices.
Figure 3 presents the adjacency probability scores for the embeddings at each layer, averaged across
different tasks. For Table 2, and 3, without loss of generality, we present the ablation study results
for the Reversal (22) task because we observed that the effect of having different numbers of layers
and embedding is the same across different tasks.

For most configurations, the adjacency probability scores spike up from around 50% in the token
embeddings to more than 80% at the first layer and maintain in the rest. This is consistent regardless
of the task type, the training state (initialized/trained), the number of layers, and the dimensions. As a
general trend, the adjacency score is the highest for output embeddings in the second layer, while
declines gradually from there to the end.

4.3 The adjacency pattern across different initializaitons

We further test different initialization schemes, showing that the adjacency pattern is robust for
the commonly used initialization schemes. Table 4 and Table 5 show the results for the adjacency
probability scores obtained in models initialized by Normal distribution with different means (µinit ∈
{0, 4, 8}) and different standard deviations (µinit ∈ {0.002, 0.02, 0.2}). The highlighted adjacency
probability scores indicate a lack of discernible adjacency patterns qualitatively. The adjacency
pattern is missing when the mean and the standard deviation are large enough (µinit = 4 and
σinit = 0.2), which are not typical values for initialization. It can be inferred that the mean has a
smaller influence than the variance, since the first layer for the model with µinit = 4 can still produce
the adjacency pattern. Yet, it is likely that the large µinit only causes the variance after the first layer
to be large, which is why the adjacency pattern for the rest of the layers is removed.

µinit Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0 0.39± 0.10 0.92± 0.17 0.94± 0.18 0.95± 0.17 0.95± 0.15 0.95± 0.17 0.95± 0.17
4 0.46± 0.15 0.91± 0.18 0.95± 0.10 0.93± 0.06 0.95± 0.07 0.95± 0.08 0.96± 0.06
8 0.36± 0.11 0.91± 0.18 0.54 ± 0.09 0.41 ± 0.04 0.46 ± 0.06 0.51 ± 0.08 0.60 ± 0.11

Table 4: Layer-wise adjacency probability score for models initialized by Gaussian distribution with
different means µinit, averaged over 256 samples from the Reversal (22) tasks.

5

σinit Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.002 0.36± 0.11 0.93± 0.17 0.93± 0.19 0.95± 0.14 0.94± 0.16 0.95± 0.16 0.94± 0.17
0.02 0.39± 0.10 0.92± 0.17 0.94± 0.18 0.95± 0.17 0.95± 0.15 0.95± 0.17 0.95± 0.17
0.2 0.35± 0.10 0.43 ± 0.09 0.49 ± 0.08 0.54 ± 0.09 0.59 ± 0.12 0.57 ± 0.12 0.65 ± 0.13

Table 5: Layer-wise adjacency probability score for models initialized by Gaussian distribution with
different standard deviation σinit, averaged over 256 samples from the Reversal (22) tasks.

5 Discussion

0 4 8 12 16

0

4

8

12

16

Embeddings (0.54)

0 4 8 12 16

0

4

8

12

16

Init Layer 1 (0.55)

0 4 8 12 16

0

4

8

12

16

Init Layer 2 (0.53)

0 4 8 12 16

0

4

8

12

16

Init Layer 3 (0.47)

0 4 8 12 16

0

4

8

12

16

Init Layer 4 (0.52)

0 4 8 12 16

0

4

8

12

16

Init Layer 5 (0.43)

0 4 8 12 16

0

4

8

12

16

Init Layer 6 (0.53)

0 4 8 12 16

0

4

8

12

16

Embeddings (0.5)

0 4 8 12 16

0

4

8

12

16

Trained Layer 1 (0.48)

0 4 8 12 16

0

4

8

12

16

Trained Layer 2 (0.5)

0 4 8 12 16

0

4

8

12

16

Trained Layer 3 (0.46)

0 4 8 12 16

0

4

8

12

16

Trained Layer 4 (0.43)

0 4 8 12 16

0

4

8

12

16

Trained Layer 5 (0.51)

0 4 8 12 16

0

4

8

12

16

Trained Layer 6 (0.57)

0.0

0.5

1.0

0.0

0.5

1.0

1.0

1.0

1.0

1.0

0.0

0.5

1.0

1.0

1.0

1.0

1.0

0.2

0.5

0.8

1.0

1.0

1.0

1.0

0.8

0.9

1.0

1.0

1.0

1.0

0.9

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Figure 4: Self-cosine-similarity matrices of randomly initialized (first row) and trained (second row)
6-layer Transformers with normal attention and learned absolute positional encodings on the task of In-
dexing (20). The matrices are produced using a testing sample of 20 tokens, "wherex(299517340,9)=",
as input.

5.1 Is the adjacency pattern unique to causal attention

Yes. We also applied a self-cosine-similarity matrix to Transformers with normal attention and
confirmed that there is no adjacency pattern. An example is shown in Fig 4, where the self-cosine-
similarity matrices look random and the adjacency scores are low. There is a learned absolute
positional embedding added to the token embeddings of this model only to let the model converge.

5.2 The origin of the adjacency pattern

Though we haven’t had a formal proof to determine the sufficient and necessary condition of the
adjacency pattern, our analysis roughly points out two conditions. The first is to have a small variance
in the attention weight, creating something we call the "averaging effect". The second is to have
distinctive value vectors. Further details are in Appendix A.2.

6 Conclusions and future work

In Transformers with causal attention and no positional encodings, the adjacency pattern can occur for
models with a wide range of hyperparameters, including the number of layers, hidden dimensions, and
initialization schemes. It exists in the output embeddings of the Transformer’s first causal attention
layer and persists throughout the rest of the layers. For randomly initialized weights, the adjacency
pattern can be observed for various initializations, especially for the ones commonly occurring in
practice. For trained models, it is typical that the adjacency pattern in the first few layers is more
prominent than in later ones, which we consider reasonable because knowing enough positional
information in the earlier layers may allow the models to focus on other more contextual information
required by the tasks in later layers.

References
T.-C. Chi, T.-H. Fan, L.-W. Chen, A. I. Rudnicky, and P. J. Ramadge. Latent positional information

is in the self-attention variance of transformer language models without positional embeddings.
arXiv preprint arXiv:2305.13571, 2023.

6

A. Haviv, O. Ram, O. Press, P. Izsak, and O. Levy. Transformer language models without positional
encodings still learn positional information. arXiv preprint arXiv:2203.16634, 2022.

A. Kazemnejad, I. Padhi, K. N. Ramamurthy, P. Das, and S. Reddy. The impact of positional encoding
on length generalization in transformers. arXiv preprint arXiv:2305.19466, 2023.

N. Lee, K. Sreenivasan, J. D. Lee, K. Lee, and D. Papailiopoulos. Teaching arithmetic to small
transformers. International Conference on Learning Representations, 2024.

Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov. Transformer dissection:
An unified understanding for transformer’s attention via the lens of kernel. In K. Inui, J. Jiang,
V. Ng, and X. Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4344–4353, Hong Kong, China, Nov. 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1443. URL https://aclanthology.
org/D19-1443.

Y.-A. Wang and Y.-N. Chen. What do position embeddings learn? an empirical study of pre-trained
language model positional encoding. arXiv preprint arXiv:2010.04903, 2020.

C. Zuo and M. Guerzhoy. Breaking symmetry when training transformers. NAACL Student Research
Workshop, 2024.

A Appendix / supplemental material

A.1 More about the adjacency probability score

We only consider each row up to the diagonal because, for causal attention, each self-cosine-similarity
matrix S ∈ Rn×n of size n contains n sub-matrices, from S1 ∈ R1×1 to Sn ∈ Rn×n. For a sub-
matrix of length k ∈ [1, .., n], it is formed by embeddings resulting exactly from the first k out of
n tokens of the original sequence. Therefore, each row-wise adjacency probability score at row k
measures the last row of sub-matrix Sk. Another way to think of this is that causal attention at the
current token only considers anything before it. Hence, we measure just the adjacency probability
score for anything up to the current token, which is up to the diagonal of each row.

Figure 2 demonstrates different adjacency probability scores with their respective sample matrix.
A higher adjacency probability score can be interpreted as the model being more likely to know
the exact ordering of other tokens before a certain token. Meanwhile, although a zero adjacency
probability score will also allow the model to know the token order oppositely, it is unachievable in a
self-cosine-similarity matrix unless all embeddings are the same. For random matrices, the adjacency
probability score is about 0.5.

A.2 How the adjacency pattern arises

In this section of the appendix, we want to provide some evidence to show that small variances inside
the model weights facilitate high adjacency scores inside the causal attention’s output embeddings.
The Lemma 3 in Chi et al. [2023] also indicates that the initialized Transformers with causal attention
typically have small variances in each row of the attention matrix. However, while Chi et al. [2023]
are using Lemma 3 for their prove of the decreasing variance in the output embeddings of the
causal attention, we would like to use Lemma 3 differently to show that the adjacency pattern in the
self-cosine-similarity in the Transformer also relies on this.

A.2.1 Empirical evidence

The following is a possible origin of the adjacency pattern. It is the way that the vectors at positions
k− 1, k, and k+1 are computed–the linear combinations of the value vector sets {e1, e2, . . . , ek−1},
{e1, e2, . . . , ek−1, ek}, and {e1, e2, . . . , ek−1, ek, ek+1}, respectively–that gives rise to this property.
This claim originates from our empirical simulation of the attention output embeddings’ computation
at initialization.

7

https://aclanthology.org/D19-1443
https://aclanthology.org/D19-1443

We first simulate the value vectors used in attention by a set of random normal 128-dimensional
vectors {v1, ..., vk} and the causal attention weights at the 4th, 5th, and 6th row by the following i.i.d.
random coefficient sets {α1, α2, α3, α4}, {β1, β2, β3, β4}, {γ1, γ2, γ3, γ4 γ5 γ6}. We then mimic
the attention output embeddings at token positions 4, 5, and 6 by the following linear combination
of vectors: a =

(∑4
i=1 αivj , b =

∑5
i=1 βivj , c =

∑6
i=1 γivj

)
. Denote the consine similarity as

"sim". We want to determine the condition for sim(a, b) to be consistently higher than sim(a, c), as
well as for sim(c, b) to be higher than sim(c, a). We simulate with a range of standard deviations
σinit from the set {0.001, 0.01, 0.11, 10, 100}, and for each we repeat for 10000 trials and record
sim(a, b)− sim(a, c) and sim(c, b)− sim(c, a) for each trial. The resulting histogram is plotted
in Fig 5, where the first and second rows are for sim(a, b)− sim(a, c) and sim(c, b)− sim(c, a),
respectively. The distribution is narrow and above zero for only small values of σinit, corresponding
to the condition that allows sim(a, b) to be consistently higher than sim(a, c) (same for sim(c, b)
and sim(c, a). This also corroborates with the experimental results in Table 5.

0.1 0.0 0.1
0

50

100

150

200

250

300

Init Std=0.001 (0.11, 0.00)

0.1 0.0 0.1
0

100

200

300

Init Std=0.01 (0.11, 0.00)

0.2 0.0 0.2
0

50

100

150

200

250

300

Init Std=0.1 (0.11, 0.04)

1.0 0.5 0.0 0.5 1.0
0

50

100

150

200

250

Init Std=1 (0.06, 0.35)

1.0 0.5 0.0 0.5 1.0
0

200

400

600

800

1000

Init Std=10 (0.02, 0.58)

1.0 0.5 0.0 0.5 1.0
0

500

1000

1500

Init Std=100 (0.02, 0.58)

0.1 0.0 0.1
0

50

100

150

200

250

300

Init Std=0.001 (0.11, 0.00)

0.1 0.0 0.1
0

100

200

300

Init Std=0.01 (0.11, 0.00)

0.2 0.0 0.2
0

100

200

300

Init Std=0.1 (0.11, 0.02)

1.0 0.5 0.0 0.5 1.0
0

100

200

300

Init Std=1 (0.05, 0.31)

1.0 0.5 0.0 0.5 1.0
0

250

500

750

1000

1250

1500
Init Std=10 (-0.00, 0.54)

1.0 0.5 0.0 0.5 1.0
0

500

1000

1500

2000

Init Std=100 (0.01, 0.56)

Figure 5: Histograms on the differences between the cosine similarity of nearby tokens and further
ones.

A.2.2 The averaging effect provably arises in the first layer

Here, we show that we can expect that, in the second layer (i.e., the first layer after the embeddings),
the angle between embedding k + t and embedding k + t + 1 is smaller than the angle between
embedding k + t and embedding k + t+ 2, implying an adjacency pattern.

Assume that the embeddings {e1, e2, ..., ek, ..., en} are high-dimensional and normalized, and there-
fore approximately orthogonal. We are computing the next layer, with coefficients α, α′, β, and
β′.

We would like to show that the angle between
∑k+t

i=1 αiei and
∑k+t+1

i=1 βiei would tend to be smaller
than the angle between

∑k+t
i=1 αiei and

∑k+t+2
i=1 β′

iei. The weights α, β, and β′, which correspond to
the attention weight in a causal architecture, would all sum to 1:

∑k
i=1 αi =

∑k+t
i=1 βi =

∑k+t+1
i=1 β′

i
= 1.

Instead of the angles, we compute the dot products, and show that we can expect the difference
between the dot products to be positive, namely

(
k+1∑
i=1

αivi ·
k+t∑
i=1

βivi

)
−

(
k+1∑
i=1

αivi ·
k+t+1∑
i=1

β′
ivi

)
> 0.

Indeed, the difference between the left and right sides is

8

k+1∑
i=1

αivi ·
k+t+1∑
j=1

(βj − β′
j)vj

≈
k+1∑
i=1

αi(βi − β′
i)vi · vi

≈ ||v||
k+1∑
i=1

αi(βi − β′
i) > 0,

where the approximate equalities follows from the approximate orthogonality of large n-dimensional
vectors normalized to norm 1.

A.2.3 The norm alone may not be sufficient for Accurate Positional Information

Tasks Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Addition (9) Init 0.47± 0.05 0.92± 0.04 0.96± 0.03 0.96± 0.04 0.98± 0.02 0.96± 0.03 0.93± 0.06

Addition (9) Trained 0.46± 0.04 0.91± 0.01 0.91± 0.03 0.63± 0.06 0.82± 0.04 0.79± 0.02 0.54± 0.04

Ordering (18) Init 0.47± 0.05 0.91± 0.03 0.96± 0.03 0.99± 0.01 0.98± 0.02 0.98± 0.02 0.94± 0.05

Ordering (18) Trained 0.41± 0.02 0.87± 0.02 0.84± 0.13 0.86± 0.04 0.67± 0.05 0.58± 0.05 0.49± 0.04

Reversal (22) Init 0.49± 0.02 0.78± 0.06 0.88± 0.08 0.84± 0.10 0.83± 0.12 0.95± 0.05 0.93± 0.07

Reversal (22) Trained 0.51± 0.02 0.90± 0.02 0.84± 0.06 0.78± 0.04 0.75± 0.05 0.70± 0.05 0.53± 0.05

Indexing (20) Init 0.51± 0.08 0.90± 0.05 0.94± 0.03 0.97± 0.03 0.96± 0.03 0.96± 0.02 0.96± 0.03

Indexing (20) Trained 0.52± 0.02 0.86± 0.03 0.96± 0.03 0.93± 0.03 0.82± 0.05 0.73± 0.06 0.67± 0.06

Table 6: Layer-wise adjacency probability score of the norm of embeddings (mean ± standard
deviation) for the 4 tasks, with initialization and trained results. The number in the bracket beside
each task indicates the input length involved in the task.

0 5 10 15 20

0

5

10

15

20

Embeddings (0.54)

0 5 10 15 20

0

5

10

15

20

Init Layer 1 (0.98)

0 5 10 15 20

0

5

10

15

20

Init Layer 2 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 4 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 5 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 6 (1.0)

0 5 10 15 20

0

5

10

15

20

Embeddings (0.58)

0 5 10 15 20

0

5

10

15

20

Trained Layer 1 (0.94)

0 5 10 15 20

0

5

10

15

20

Trained Layer 2 (0.97)

0 5 10 15 20

0

5

10

15

20

Trained Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Trained Layer 4 (0.92)

0 5 10 15 20

0

5

10

15

20

Trained Layer 5 (0.85)

0 5 10 15 20

0

5

10

15

20

Trained Layer 6 (0.86)

0.0

0.5

1.0

0.0

0.5

1.0

0.2

0.5

0.8

1.0

0.2

0.5

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

Figure 6: Layer-wise self-cosine-similarity matrices of randomly initialized (first row) and trained
(second row) Causal-NoPE Transformers on the task of ordering, with "rev(1849364897192906)="
as the input.

A.3 More visualizations of experimental results

What mean and standard deviation do not show directly is the true distribution of the adjacency
pattern in the sample. To determine if there are clusters of samples that exhibit extremely low to
extremely high values, we check the distributions of the adjacency scores for all configurations.
Typically, we observe distributions like the ones in Figure 9. In this example, while the distributions
of adjacency scores concentrate around 1 for the untrained model, after training, only the adjacency
scores for layer 2 and layer 3 distribute densely and closely to 1. In particular, the adjacency scores
are the highest and most concentrated in layer 3 of the trained model, to an extent that matches the
ones in the untrained model. We interpret these observations as an indication that the model learns to
keep the adjacency pattern in earlier layers and gradually discard it in later ones.

9

0 10 20

0.38

0.40

0.42
Embeddings (0.45, 0.0)

0 10 20
2

4

6

Init Layer 1 (0.91, 0.0)

0 10 20

5

6

7

8
Init Layer 2 (0.99, 0.0)

0 10 20

5

6

7

8
Init Layer 3 (1.0, 0.0)

0 10 20

6

7

Init Layer 4 (0.97, 0.0)

0 10 20

6

7

Init Layer 5 (0.98, 0.0)

0 10 20

6

7

Init Layer 6 (0.99, 0.0)

0 10 20

0.65

0.70

0.75

0.80
Embeddings (0.66, 0.0)

0 10 20

5

10

Trained Layer 1 (1.0, 0.0)

0 10 20

6

7

Trained Layer 2 (0.67, 0.0)

0 10 20

5

6

7

8
Trained Layer 3 (0.98, 0.0)

0 10 20

6

8

Trained Layer 4 (0.95, 0.0)

0 10 20

7

8

Trained Layer 5 (0.6, 0.0)

0 10 20

9

10

11

Trained Layer 6 (0.3, 0.0)

Figure 7: Layer-wise embedding norms for randomly initialized (first row) and trained (second row)
Causal-NoPE Transformers on the task of Reversal (22), with "rev(1849364897192906)=" as the
input.

0 4 8 12 16

0

4

8

12

16

Embeddings (0.36)

0 4 8 12 16

0

4

8

12

16

Init Layer 1 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 2 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 3 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 4 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 5 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 6 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 7 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 8 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 9 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 10 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 11 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 12 (1.0)

0 4 8 12 16

0

4

8

12

16

Embeddings (0.39)

0 4 8 12 16

0

4

8

12

16

Trained Layer 1 (0.77)

0 4 8 12 16

0

4

8

12

16

Trained Layer 2 (0.73)

0 4 8 12 16

0

4

8

12

16

Trained Layer 3 (0.86)

0 4 8 12 16

0

4

8

12

16

Trained Layer 4 (0.85)

0 4 8 12 16

0

4

8

12

16

Trained Layer 5 (0.91)

0 4 8 12 16

0

4

8

12

16

Trained Layer 6 (0.86)

0 4 8 12 16

0

4

8

12

16

Trained Layer 7 (0.88)

0 4 8 12 16

0

4

8

12

16

Trained Layer 8 (0.79)

0 4 8 12 16

0

4

8

12

16

Trained Layer 9 (0.91)

0 4 8 12 16

0

4

8

12

16

Trained Layer 10 (0.83)

0 4 8 12 16

0

4

8

12

16

Trained Layer 11 (0.77)

0 4 8 12 16

0

4

8

12

16

Trained Layer 12 (0.77)

0.0

0.5

1.0

0.0

0.5

1.0

0.4

0.6

0.8

1.0

0.0

0.5

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.2

0.5

0.8

1.0

0.7

0.8

0.9

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Figure 8: Self-cosine-similarity matrices of randomly initialized (first row) and trained (second row)
12-layer Transformers with causal attention and no positional encodings on the task of Indexing.
The matrices are produced using a testing sample of 22 tokens, "wherex(8483561,8)=0", as input,
showing results from the embeddings to the output of layer 12 left to right for the initialized and
trained models. The number in the bracket represents the adjacency probability score.

1 0 10

20

40

Embeddings (0.51, 0.05)

1 0 10

100

200

Init Layer 1 (0.99, 0.05)

1 0 10

100

200

Init Layer 2 (1.0, 0.04)

1 0 10

100

200

Init Layer 3 (1.0, 0.04)

1 0 10

100

200

Init Layer 4 (1.0, 0.04)

1 0 10

100

200

Init Layer 5 (1.0, 0.04)

1 0 10

100

200

Init Layer 6 (1.0, 0.04)

1 0 10

20

40

60

Embeddings (0.57, 0.04)

1 0 10

20

40

60

Trained Layer 1 (0.82, 0.06)

1 0 10

100

200

Trained Layer 2 (0.97, 0.04)

1 0 10

100

200

Trained Layer 3 (0.95, 0.04)

1 0 10

20

40

Trained Layer 4 (0.87, 0.05)

1 0 10

20

40
Trained Layer 5 (0.82, 0.05)

1 0 10

20

40

Trained Layer 6 (0.87, 0.05)

Figure 9: Distribution of Adjacency Probability Score for a model before and after training
("Init"/"Trained") on the indexing task. The sample size of the histograms is 256. The two numbers
inside the brackets of the subplot titles are the distribution’s mean and standard deviation. Notice that
the 7 pairs of means and standard deviations for the trained model (the second row) correspond to the
values presented in Table 1 for the indexing task.

10

	Introduction
	Background
	Transformers with causal attention store positional information without positional encodings
	The self-cosine-similarity matrix and the adjacency pattern

	The adjacency pattern appears in both non-trained and trained architectures in a variety of configurations
	The adjacency probability score
	Tasks
	Experimental setup

	Results
	Random initialization produces the adjacency pattern
	Adjacency pattern across different models and datasets
	The adjacency pattern across different initializaitons

	Discussion
	Is the adjacency pattern unique to causal attention
	The origin of the adjacency pattern

	Conclusions and future work
	Appendix / supplemental material
	More about the adjacency probability score
	How the adjacency pattern arises
	Empirical evidence
	The averaging effect provably arises in the first layer
	The norm alone may not be sufficient for Accurate Positional Information

	More visualizations of experimental results

