
Under review as submission to TMLR

SLM: End-to-end Feature Selection
via Sparse Learnable Masks

Anonymous authors
Paper under double-blind review

Abstract

Feature selection has been widely used to alleviate compute requirements during training,
elucidate model interpretability, and improve model generalizability. We propose SLM –
Sparse Learnable Masks – a canonical approach for end-to-end feature selection that scales
well with respect to both the feature dimension and the number of samples. At the heart
of SLM lies a simple but effective learnable sparse mask, which learns which features to
select, and gives rise to a novel objective that provably maximizes the mutual information
(MI) between the selected features and the labels, which can be derived from a quadratic
relaxation of mutual information from first principles. In addition, we derive a scaling
mechanism that allows SLM to precisely control the number of features selected, through a
novel use of sparsemax. This allows for more effective learning as demonstrated in ablation
studies. Empirically, SLM achieves state-of-the-art results against a variety of competitive
baselines on eight benchmark datasets, often by a significant margin, especially on those
with real-world challenges such as class imbalance.

1 Introduction

In many machine learning scenarios, a significant portion of the input features may be irrelevant to the
output, especially with modern data management tools allowing easy construction of large-scale datasets by
joining features from many different data sources. “Feature selection", or filtering the most relevant features
for the downstream task, is an everlasting problem, with many methods proposed to date and used (Guyon
& Elisseeff, 2003; Li et al., 2017; Dash & Liu, 1997).

Feature selection can bring a multitude of benefits. Smaller number of features can yield superior generalization
and hence better test accuracy, by minimizing reliance on spurious patterns that do not hold consistently
(Sagawa et al., 2020), and not wasting model capacity on less relevant features. In addition, reducing the
number of input features can decrease the computational complexity and cost for deployed models, as the
models need to learn from smaller dimensional input data, and hence require reduced infrastructure. Lastly,
feature selection facilitates interpretability, as it sheds light on which features are most relevant for the
downstream task.

Given the wide applicability of feature selection, how can one select the target number of features in an
efficient, effective way? §2 summarizes numerous approaches. For superior task accuracy, one desired property
is that the feature selection method should consider the predictive model itself, as the optimal set of features
would depend on the mapping between the input data and output labels. Such end-to-end learning methods
have been approached in different ways, such as via sparse regularization and its extensions (Lemhadri et al.,
2019), concrete autoencoders (Abid et al., 2019), or learned stochastic gates (Yamada et al., 2020), among
others. These constitute different ways to tackle the fundamental challenge, making the feature selection
operation differentiable.

In this work, we present SLM – Sparse Learnable Masks – a novel soft approximator for the feature selection
with end-to-end learning. SLM is designed to be scalable and easily-adaptable into a variety of models, and
yields superior task performance. At its heart, SLM learns a sparse mask to filter out non-selected features.
This mask gives rise to a novel mutual information (MI) objective, which provably maximizes the MI between

1

Under review as submission to TMLR

the labels and the selected features, based on a novel quadratic relaxation of the MI (§4). Furthermore, SLM
proposes a scaling mechanism for sparsemax (Martins & Astudillo, 2016) to precisely control the number of
features selected, which when allowed to vary during training, enables more effective learning as demonstrated
in ablation studies. SLM scales well with respect to both the feature dimension and the number of features.
Specifically, as detailed in §4.4, it scales O(n) with respect to the dataset size n, and O(F logF) with respect
to the feature dimension F . SLM can be integrated into any deep learning architecture, given the optimization
is gradient-descent based for joint training. We demonstrate state-of-the-art task performance with SLM,
against a myriad of competitive baseline methods, on nine datasets from wide-ranging domains.

2 Related work

Feature selection methods: Numerous methods have been studied for feature selection, and broadly fall
under three categories (Guyon & Elisseeff, 2003):

• Wrappers recompute the predictive model for each subset of features. As exhaustive search is NP-hard and
computationally intractable, efficient search strategies such as forward selection or backward elimination
have been developed. For instance, HSIC-Lasso (Yamada et al., 2014) proposes a feature-wise kernelized
Lasso for capturing non-linear dependencies. Wrappers are difficult to integrate with modern deep learning,
as the training complexity gets prohibitively large.

• Filters select subsets of variables as a pre-processing step, independent of the predictive model. (Gu et al.,
2012) developed the Fisher score, which selects features to maximize (minimize) the distances between
data points in different (same) classes in the space spanned by the selected features. Principal feature
analysis (PFA) (Lu et al., 2007b) selects features based on principal component analysis. (Pan et al., 2020)
uses adversarial validation to select the features, based on how much their characteristics differ between
training and test splits, as a way to improve robustness. There are also various methods based on MI
maximization (Ding & Peng, 2005), selecting features independent of the predictive model (unlike SLM).
CMIM (Fleuret, 2004) maximizes the conditional MI between selected features and the class labels to
account for feature inter-dependence. On the other hand, JMIM (Bennasar et al., 2015) maximizes the
joint MI between class labels and the selected features, while addressing overconfidence in features that
correlate with already-selected features, with greedy search that selects features one at a time. (Zadeh
et al., 2017) formulates feature selection as a diversity maximization problem using a MI-based metric
amongst features. The fundamental disadvantage of filter-based methods, of not being optimized with the
predictive models, results in them often yielding suboptimal performance.

• Embedded methods combine selection into training and are usually specific to given predictive models.
Lasso regularization (Tibshirani, 1996) employs feature selection by varying the strength of the L1
regularization. (Feng & Simon, 2017) extends this idea by proposing an input-sparse neural network, where
the input weights are penalized using the group Lasso penalty. (Lemhadri et al., 2019) selects only a subset
of the features using input-to-output residual connections, allowing features to have non-zero weights only if
their skip-layer connections are active. Concrete Autoencoder (Abid et al., 2019) proposes an unsupervised
feature selector based on using a concrete selector layer as the encoder and using a standard neural network
as the decoder. FsNet (Singh et al., 2020) uses a concrete random variable for discrete feature selection
in a selector layer and a supervised deep neural network regularized with the reconstruction loss. STG
(Yamada et al., 2020) learns stochastic gates with a probabilistic relaxation of the count of the number of
selected features, it selects features and learns task prediction end-to-end.

Masking in deep neural networks: Masking the input to control information propagation is a commonly-
used approach in deep learning. Attention-based architectures, such as Transformer (Vaswani et al., 2017)
and Perceiver (Jaegle et al., 2021), show strong results across many domains, with learnable key and query
representations, whose alignment yields the masks that control the contribution of corresponding value
representations. While these effectively reweigh the input, they typically do not completely mask out (i.e.
yielding zero attention weight) any part of the input. Towards this end, various works have focused on
bringing sparsity into masking, such as based on thresholding (Zhao et al., 2019) or sparse normalization
(Correia et al., 2019). TabNet (Arik & Pfister, 2019) directly generates sparse attention masks and applies
them sequentially to input data, which can perform sample-dependent feature selection. (Correia et al., 2020)
achieves sparsity in latent distributions in neural networks, by using sparsemax and its structured analogs,

2

Under review as submission to TMLR

allowing for efficient latent variable marginalization. (Lei et al., 2016) and (Bastings et al., 2019) learn
Bernoulli variables, which are analogous to SLM’s feature mask but in a local setting, for extractive rationale
prediction in text. (Paranjape et al., 2020) extends these ideas by proposing to control sparsity by optimizing
the Kullback–Leibler (KL) divergence between the mask distribution and a prior distribution with controllable
sparsity levels. (Guerreiro & Martins, 2021) develops a flexible mask-based rationale extraction mechanism
using a constrained structured prediction algorithm on factor graphs. All these perform sample-wise, not
global, input selection. In this work, our goal is to explore global feature selection. When training and
testing datasets perfectly align in distribution, local feature selection can give superior performance due to its
input-dependence. However, there is rarely such perfect alignment, and global selection provides robustness
benefits when there is distribution shift between training and test datasets, in addition to allowing more
computational efficiency by globally removing features.

3 Methods

Algorithm 1 describes SLM’s end-to-end feature selection and task learning. The predictor fθ can be any
gradient-descent based model, such as an MLP, with a task-specific loss function l such as the cross entropy
for classification or mean absolute error (MAE) for regression. The following sections present SLM’s key
components in detail.

Notation. Throughout this work, we let X ∈ Rn×d denote the input data, Xsp ∈ Rn×d the selected features,
and msp ∈ Rd the learned sparse feature selection mask. We use � to denote element-wise multiplication
between each input sample and msp: Xsp = X�msp. We let Ft denote the number of selected features at
step t, and N the total training steps. Furthermore, I(X,Y) denotes the mutual information between X and
Y , and Iq(X,Y) is its quadratic relaxation. fθ denotes the task predictor used on the selected features.

Overview of SLM-based feature selection. As outlined in Algorithm 1, SLM first learns a non-sparse
mask m ∈ Rd, which is turned into a sparse vector by applying the sparsemax operator (Martins & Astudillo,
2016), described in §3.1. We present a novel application of sparsemax that provably achieves output sparsity
at desired level exactly, for which we propose dynamically computing a scaling constant for the mask m,
detailed in §3.2. SLM uses the resulting sparse mask to zero out non-selected features. The mask sparsity
gradually increases throughout training to facilitate model convergence (§3.3). Finally, a predictor model
fθ on the selected features is trained using the dataset task loss and a novel mutual information (MI) loss,
which is derived from first principles in §4. The following sections explain the important constitutents of
SLM in detail.

Algorithm 1 Training for SLM-based feature selection.
Input: Input data X with target labels Y
Input: Total training steps N
Initialize: Learnable mask argument m ← all ones vector
for t = 1 to N do

Obtain the number of selected features Ft using Eq 4 in §3.3 for step t.
Compute scaling parameter m for mask argument to control exact mask sparsity, using Lemma 3.2 in

§3.2.
Generate sparse mask msp = sparsemax(m ∗m).
Select and weight input features with mask: Xsp = X�msp. Non-selected features are zeroed out.
Input the selected features into the predictor fθ(Xsp) for the downstream task.
Compute dataset task loss l(Xsp,Y) and MI loss E(Xsp,Y) in Eq 9 from §4.3.
Use the combined loss to update the model parameters θ and m.

3.1 Mask sparsity via projection onto probability simplex

SLM selects features by learning a mask msp ∈ Rd, and zeroing out the features in the input X ∈ Rn×d
whose corresponding mask entries are zero. We use sparsemax normalization (Martins & Astudillo, 2016) to
achieve sparsity in m. Sparsemax achieves sparsity in its output by returning the Euclidean projection of the

3

Under review as submission to TMLR

input vector v ∈ Rd onto the probability simplex ∆d−1 := {f ∈ Rd≥0|
∑
k fk = 1}:

sparsemax(v) := argminp∈∆d−1‖p− v‖2. (1)

We apply sparsemax to the mask argument m ∈ Rd to obtain sparse feature mask:

msp := sparsemax(m). (2)

In particular msp ∈ Rd≥0. Compared to approaches like softmax normalization employed with thresholding,
the probability simplex projection in sparsemax(v) scales the top values in v so they are more equidistributed
over [0, 1]. This equidistribution leads to greater feature weight separation, encouraging the model to
discriminate amongst the features. Additional discussion on the properties of SLM sparsemax can be found
in §A.5.

3.2 Mask scaling to yield desired number of selected features

Following its formulation, sparsemax does not yield a predetermined number of non-zero elements, as the
sparsity depends on the location on the probability simplex ∆d−1 that v projects onto. For a non-uniform
vector v ∈ Rd, we can adjust its projection onto ∆d−1 by multiplying v by a positive scalar. In particular,
a sufficiently large scalar increases the sparsity, while a sufficiently small scalar decreases the sparsity. To
illustrate this, we provide a simple example in Fig 1.
Example 3.1 (Adjusting sparsemax(v) sparsity by scaling). The probability simplex ∆1 in R2 is the line
connecting (0, 1) and (1, 0), with these two points as the simplex boundary. Let v = (x, y) be a point in
R2, and (z, w) its projection onto ∆1. We show that by varying multiplier m, sparsemax(mv) would have
a varying degree of sparsity. The projection (z, w) = sparsemax((x, y)) is the unique point that satisfies
(z, w) = argmin(z,w)(‖y − w‖2 + ‖x− z‖2), (z, w) element-wise positive, and z + w = 1. As we scale (x, y)
with m, sparsemax(m(x, y)) = argmin(z,w)(‖my − w‖2 + ‖mx− z‖2). This projection distance expands to

d(z, w) := ‖my − w‖2 + ‖mx− z‖2

= m2y2 − 2myw + w2 +m2x2 − 2mxz + z2

Hence, d(0, 1)− d(0.5, 0.5) = mx−my + 0.5 (where (0.5, 0.5) is the midpoint of the simplex), which means
that for any (x, y) and m with y > x, sparsemax(m(x, y)) is closer to (0, 1) ∈ ∆1 whenever m > 1/(2(y − x)),
and closer to (0.5, 0.5) otherwise. Since projection is linear, this means varying the multiplier m varies the
sparsity of sparsemax((x, y)). Figure 1 illustrates a concrete instance of scaling in the 2D case.

This example conveys the intuition that larger multipliers lead to sparser outputs. More generally, one can
show:
Lemma 3.2. Given a non-uniform vector v ∈ Rd, to obtain F nonzero elements in sparsemax(v), v should
be multiplied with the scalar

m =


(∑F+1

i=1 v(i) − (F + 1) · v(F+1)

)−1
if |sparsemax(v) > 0| > F(∑F

i=1 v(i) − F · v(F)

)−1
if |sparsemax(v) > 0| < F,

(3)

where v(1) ≥ v(2) . . . ≥ v(d) denote sorted elements of v in descending order.

The proof can be found in §A.3. Lemma 3.2 allows us to scale the mask to achieve the desired number of
non-zero features. Note that since sparsemax has a particular Fenchel-Young loss (Blondel et al., 2020),
scaling its argument by m is equivalent to scaling the regularizer by 1/m in the Fenchel-Young formulation
(Blondel et al., 2020; Peters et al., 2019).

3.3 Tempering feature sparsity to facilitate convergence

Starting training on only a randomly selected subset of features likely leads to suboptimal learning in the
initial steps, and if feature selection converges before the predictor converges, the predictor would be trained

4

Under review as submission to TMLR

Figure 1: Mask scaling for sparsemax: We show an illustrative example on how varying the multiplier varies
the sparsity. Scaling v from the black to the red point moves its projection (green dotted line) onto ∆1 closer
to the simplex boundary, increasing sparsemax(v) sparsity, as the x coordinate of the projection becomes 0.
The orange dotted line indicates the path of scaling by a constant. Example 3.1 contains concrete calculations
demonstrating this phenomenon.

with suboptimal features. To alleviate these and improve training stability, we propose gradually decreasing
the number of features selected until reaching the target FN :

Ft =
{
F0 − t/Ntmp(F0 − FN) if t < Ntmp

FN if t ≥ Ntmp,
(4)

where Ft is the number of selected features at step t, Ntmp is the tempering threshold. In our experiments, we
simply set Ntmp = N/2 as it’s observed to be a reasonable value across a wide range of datasets (as before N
denotes the total number of training steps). To further stabilize training, instead of continuously decreasing
the number of features, we decrease the number of features at five evenly spaced steps. This tempering allows
the model to learn from more than the final target number of features during training – an advantage not
shared by baseline methods. Furthermore, learning from all features initially likely provides a more robust
initialization compared to starting learning with the target number of features, as the randomness in the
initial selection is seldom optimal.

4 Mutual information maximization

As an inductive bias to the model that accounts for sample labels during feature selection, we propose to
maximize the mutual information (MI) between the distribution of the selected features and the distribution
of the labels. Specifically, we condition the MI on the probability that a feature is selected, as given by the
mask m. This stands in contrast to prior MI-based feature selection works such as (Fleuret, 2004; Bennasar
et al., 2015), which yield binary decisions on whether to select a feature.

Let X denote the random variable representing the features, and Y the random variable representing the
labels, with value spaces X ∈ X and Y ∈ Y . We let X and Y be discrete, following a long line of research on
mutual information and entropy estimation that focuses on the case where the random variables live in the
discrete space (Paninski, 2003; Kraskov et al., 2004; Valiant & Valiant, 2011; Han et al., 2015; Jiao et al., 2015;
Wu & Yang, 2016), this is because 1) many variables in machine learning are indeed discrete, e.g. vocabulary
index in NLP, categorical variables such as nationality, gender, etc, and 2) MI estimation in the continuous
case can be reduced to the discrete case via binning and taking a limit (Paninski, 2003; Kraskov et al., 2004).

Feature selection methods based on maximizing either the conditional or the joint MI between selected
features and labels require the computation of an exponential number of probabilities, the optimization of
which is intractable (Fleuret, 2004). Therefore, we propose an end-to-end differentiable, quadratic relaxation

5

Under review as submission to TMLR

for MI. When we model X and Y as random variables, their MI I(X,Y) can be defined and reformulated as:

I(X,Y) :=
∑

x∈X

∑
y∈Y

PX,Y (x, y) log PX,Y (x, y)
PX(x)PY (y)

=
(∑

x∈X

∑
y∈Y

PX,Y (x, y) log PX,Y (x, y)
PX(x)

)
−
∑

y∈Y
PY (y) logPY (y), (5)

where the second step derives from marginalizing over X . Since the second term above does not depend on
features X, it can be ignored during optimization.

4.1 Quadratic relaxation

We propose a quadratic relaxation Iq(X,Y) of Eq 5 to simplify I(X,Y) and its optimization, while retaining
much of its properties:

Iq(X,Y) :=
(∑

x∈X

∑
y∈Y

PX,Y (x, y)2/PX(x)
)
−
∑

y∈Y
PY (y)2. (6)

Here, terms of the form p log q are relaxed to pq. Note that both p log q and pq are convex with respect
to p and q, and hence have the same correlation behavior with respect to p and q. From an optimiza-
tion perspective, Iq(X,Y) is a good approximation of I(X,Y) where PX,Y (X,Y)/PX(x) and PY (y) in
Eq 6 lie in the neighborhood (1−δ, 1+δ). In this neighborhood, using Taylor expansion: log(q)= log(q0) +
(q−q0)/q0−(q−q0)2/2q2

0+ · · · When q0=1, this becomes log(q)≈(q−1)−(q−1)2/2= − 3/2+2q−q2/2, hence,
p log(q) has the second order approximation −3p/2+2pq (or −3p/2+2p2 when p=q). Applying this to Eq 5,
p is PX,Y (x, y) in the first term and PY (y) in the second. Since both PX,Y (x, y) and PY (y) are probabilities,
and hence must sum to 1 across the label space for any given sample, the linear term −3p/2 does not affect
gradient descent optimization. Normalization is a hard constraint enforced during training that supersedes
this linear term in the objective. Therefore, during optimization, PX,Y (x, y) log(PX,Y (x, y)/PX(x)) and
PX,Y (x, y)2/PX(x), and thus Iq(X,Y) and I(X,Y), agree on their second order approximation. Note that
the proposed relaxation is a variant of the commonly-used quadratic approximation based on Taylor’s theorem
(Shafer, 1974; Hsieh et al., 2011).

4.2 Relating MI Iq(X,Y) to model error E(X,Y)

Next we connect Iq(X,Y) with the model’s predictions using Lagrange multipliers. Let R(x, y) : X×Y → [0, 1]
denote the model’s probability output for sample x and outcome y. Below, we model the discrete label case,
e.g. for classification; the case where labels are continuous can be done by first discretizing the continuous
label space (Fleuret, 2004), and then taking the limit as the discretization becomes infinitesimal. §A.4
contains further details. First, we define the quadratic error term E(X,Y) in terms of R(x, y), and expand:

E(X,Y) :=
∑

x∈X ,y∈Y
PX,Y (x, y)

(
(1−R(x, y))2 +

∑
y′∈Y\y

R(x, y′)2
)

=
∑

x∈X ,y∈Y
PX,Y (x, y)

(
1− 2R(x, y) +R(x, y)2 +

∑
y′∈Y\y

R(x, y′)2
)

=
∑

x∈X ,y∈Y
PX,Y (x, y)− 2

∑
x∈X ,y∈Y

PX,Y (x, y)R(x, y)

+
∑

x∈X ,y∈Y,y′∈Y
PX,Y (x, y)R(x, y′)2 / Combine last two terms and expand.

= 1− 2
∑

x∈X ,y∈Y
PX,Y (x, y)R(x, y) +

∑
x∈X ,y′∈Y

PX(x)R(x, y′)2 /Marginalize. (7)

Theorem 4.1. Let X and Y denote the random variables representing the features and labels, respectively,
and Y the value space for Y , then minimizing the optimum error E(X,Y) in the model space {f : X → Y } is
equivalent to maximizing the quadratic relaxation of mutual information Iq(X,Y). More specifically,

min
f :X→Y

E(X,Y) = 1−
∑

y∈Y
PY (y)2 − Iq(X,Y).

6

Under review as submission to TMLR

The proof utilizes Lagrange multipliers to solve for the optimal model predictions in terms of PX,Y (x, y) and
PX(x), this can then be used to express the optimum objective E(X,Y) as a function of Iq(X,Y). The full
proof can be found in §A.4.

4.3 Application to feature selection

Now, we apply this finding concretely to feature selection, by selecting a given number of features that minimize
E(X,Y). Given a dataset, let I denote the index set of the dataset samples, J the index set of the features,
and L the set of possible labels. Let S ⊂ J denote the index set of features selected, XSi the random variable
representing a selected subset of features for the ith sample, and Yi the random variable representing the label
for the ith sample. Then, the joint probability can be written as PX,Y (x, y) = |{i ∈ I|XSi = x, Yi = y}|/|I|.
Plugging this into the definition of E(X,Y) we obtain:

E(X,Y) :=
∑

x∈X ,y∈Y
PX,Y (x, y)

(
(1−R(x, y))2 +

∑
y 6=Yi

R(x, y′)2
)

=
∑

x∈X ,y∈Y

|{i ∈ I | XSi = x, Yi = y}|
|I|

(
(1−R(XSi , Yi))2 +

∑
y 6=Yi

R(XSi , y)2
)

=
∑

i∈I

(
(1−R(XSi , Yi))2 +

∑
y 6=Yi

R(XSi , y)2/|I|
)

(8)

During training, Eq. 8 is minimized under the following consistency constraint: for two samples i1 and i2
that have the same values in the selected features, i.e. XSi1 = XSi2 , their model predictions must be the
same, i.e. R(XSi1 , Yi1) = R(XSi2 , Yi2). To encourage the model to satisfy this constraint, we turn it into a soft
consistency regularization term rcs, converting constrained optimization to unconstrained optimization with
regularization:

rcs :=
∑
{i1,i2}∈I2,i1<i2

P (XSi1 = XSi2)
(
R(XSi1 , Yi1)−R(XSi2 , Yi2)

)2
,

where P (XSi1 = XSi2) is the probability that the samples Xi1 and Xi2 take the same values in the selected
feature set S.

Let the learned mask consists of probabilities m = {pj}j∈J , i.e. pj is the probability that feature j is selected,
then P (XSi1 = XSi2) =

∏
X

(j)
i1
6=X(j)

i2
(1− pj), i.e. P (XSi1 = XSi2) is the product over probabilities that feature

j is not selected, if Xi1 and Xi2 differ at feature j. (The difference in a feature that is not selected does
not contribute to P (XSi1 = XSi2)). In this probabilistic form, the consistency regularizer also encourages the
selection of features with diverse ranges, since it encourages high pj for the features with many X(j)

i1
6= X

(j)
i2

pairs. Therefore, the regularized objective to maximize the MI I(X,Y) between the selected features and the
labels becomes:

E(X,Y) =
∑

i∈I

(
(1−R(XSi , Yi))2 +

∑
y 6=Yi

R(XSi , y)2
)
/|I|+ rcs, (9)

where
rcs =

∑
{i1,i2}∈I2,i1<i2

(∏
X

(j)
i1
6=X(j)

i2

(1− pj)
(
R(XSi1 , Yi1)−R(XSi2 , Yi2)

)2)
. (10)

In practice, rcs can be enforced batch-wise, and can be efficiently vectorized for the parallel computation of
all X(j)

i1
6= X

(j)
i2

pairs per batch using tensor operations. Note that since R(XSi , Yi) are just model predictions,
and pj are learned feature mask probabilities, each component in E(X,Y) is easily accessible. When the
labels are in the continuous space, the minimization objective with the consistency regularizer is derived the
exact the same way to yield:

E(X,Y) =
∑

i∈I

(
Yi −R(XSi)

)2
/|I|+ rcs.

Our analysis is done with random variables X and Y to apply tools from probability theory. The data
samples X and labels Y can be thought of as samples drawn from the distributions to which X and Y belong,
where in the limit with infinitely many samples X and Y perfectly reflect these distributions.

7

Under review as submission to TMLR

4.4 SLM Computational complexity

As above, let h be the hidden dimension, n denote the number of samples, b the batch size, and N the
total number of train steps; let F0 be the total number of features, and FN the target number of features.
We first discuss the complexity of individual components. The sparsemax operation is dominated by
sorting, and hence has complexity O(F0 logF0) per sample, with an overall complexity of O(nF0 logF0).
The consistency regularizer rcs in the MI-maximizing objective E(X,Y) has complexity O(nbFN), as the
calculation

∏
X

(j)
i1
6=X

(j)
i2

(1− pj)
(
R(XSi1 ,Yi1)−R(XSi2 ,Yi2)

)2 in Eq 10 occurs over the selected feature index
set j ∈ S, and is done between each sample and others in its batch. The non-regularizer component in
E(X,Y) has complexity nc, where c is the constant for the number of discrete or binned labels. Assuming
an MLP classifier with h hidden units, which has complexity O(nh2), the overall algorithm has complexity
O(nF0 logF0 +nbFN +nc+nh2), making SLM amenable to scaling to a large number of features. In addition,
SLM amortizes the cost of feature selection across batches throughout training, making it more scalable with
respect to the number of samples. This is in contrast to PFA (Lu et al., 2007a) or many other MI-based
methods such as CMIM (Fleuret, 2004) or JMIM (Bennasar et al., 2015), which place the memory and
compute burden of selection for the entire dataset in the same step.

5 Experiments

5.1 Datasets and Settings

We present the efficacy of SLM in feature selection on wide range of datasets from numerous domains. For
all experiments, we ensure fair comparison by employing similar hyperparameter search space and budget –
to search for hyperparameters such as batch size and learning rate for each baseline method and dataset,
we conduct an extensive random search within the search grid, by randomly generating a value within a
conceivable range. We run a total of 300 trials for each method-dataset combination to ensure sufficient
coverage, and tune all hyperparameters based on the validation accuracy. This process is chosen as it closely
resembles model benchmarking and selection in real-world applications. The Appendix includes a myriad of
additional experiments: on selected feature interpretability (§A.6), compute timings (§A.7) and synthetic
data experiments (§A.8) to demonstrate SLM’s scalability, as well as comparison with further end-to-end
baselines (§A.9).

We benchmark on a variety of real-world datasets across many domains, including computer vision, biological
data, financial data, etc. Concretely, we benchmark on Mice, MNIST, Fashion-MNIST, Isolet, Coil-20,
Activity, Ames Housing, and IEEE-CIS Fraud datasets. We use a 70-10-20 train/validation/test split; and
when available, we use the exact same train/validation/test samples as (Lemhadri et al., 2019) for fair
comparison. We give further detailed descriptions in §A.1. Cross entropy is used as the optimization objective
for classification tasks, and MAE is used as the optimization objective for regression.

We benchmark SLM against a variety of competitive methods. The mutual information (MI) based feature
selection baseline uses entropy estimation from k-nearest neighbors distances as described in (Kraskov et al.,
2004; Ross, 2014) to estimate MI. Tree-based methods yield Gini importance scores, which can be used
for feature selection. For this we benchmark two commonly used methods: random forest (RF) (Breiman,
2001), an ensemble of independent trees, and XGBoost (Chen & Guestrin, 2016), a scalable end-to-end
tree boosting system. We furthermore benchmark against methods as discussed in §2: LassoNet (Lemhadri
et al., 2019), which uses residual connections to allow the network to learn whether to use any given feature in
a particular layer; feature importance ranking based on the Fischer score (Gu et al., 2012); principal feature
analysis (PFA) (Lu et al., 2007a), a PCA-based method; and HSIC-Lasso (Yamada et al., 2014), which
uses kernel learning to find non-linear feature interactions. Lastly, we benchmark against linear regression,
where feature importance is determined by the learned feature coefficients. When available, we use results
from (Lemhadri et al., 2019). For consistency and fairness, each baseline method uses the same input as SLM
to select features, which are then passed to an MLP to compute the task metric.

8

Under review as submission to TMLR

Method Mice↑ MNIST↑ Fashion↑ Isolet↑ Coil-20↑ Activity↑ Ames↓ Fraud↑
All-features 0.990 0.928 0.833 0.953 0.996 0.956 0.283 0.782
SLM (ours) 0.981 0.953 0.835 0.919 0.996 0.947 0.274 0.911
Fisher 0.944 0.813 0.671 0.793 0.986 0.769 0.286 0.743
HSIC-Lasso 0.958 0.870 0.785 0.877 0.972 0.829 0.273 0.846
PFA 0.939 0.873 0.793 0.863 0.975 0.779 0.356 0.852
XGBoost 0.968 0.913 0.832 0.879 0.986 0.926 0.403 0.872
MI 0.949 0.882 0.645 0.751 0.976 0.883 0.335 0.711
Linear 0.982 0.452 0.787 0.760 0.983 0.914 0.318 0.871
Anova 0.995 0.113 0.719 0.811 0.986 0.901 0.358 0.744
RF 0.967 0.928 0.829 0.892 0.993 0.893 0.303 0.773
Lassonet 0.958 0.873 0.800 0.885 0.991 0.849 0.342 0.842

Table 1: Test performance on real-world benchmarks with 50 selected features. SLM outperforms competitive
baselines. The metrics reported are AUC for Fraud, since there is a high class imbalance; hence AUC is
reported; the median MAE on standard-normalized labels is reported for Ames; and accuracy is reported on
all other datasets. The arrow next to each dataset indicates whether a higher or lower value is more optimal.
These test results are selected based on the best validation set performance during 300 hyperparameter grid
search trials.

5.2 Task performance with feature selection

There is a rich body of work that assign importance to individual features (Lundberg & Lee, 2017; Shrikumar
et al., 2017; Zintgraf et al., 2017; Chang et al., 2019). We consider feature importance to be measured by
contribution towards the task metric, as accurate predictor performance is typically the end goal, and the
importance of each individual feature is not always well-defined due to feature interactions. Therefore, we
focus on benchmarking task predictive accuracy given the selected features as the metric.

First, we study selecting a fixed number of features across a wide range of high dimensional datasets (most
with >400 features) and feature selection methods. We consistently choose 50 selected features, as this
represents a small fraction of the total features for most datasets, as often done in practice. This number
is kept consistent without tuning for any given method, to avoid favoring any given one. Table 1 shows
that the SLM consistently yields competitive performance, outperforming all methods in all cases except on
Mice and Ames, for which the performance is saturated due to small numbers of original features, making
feature selection less relevant. Most feature selection methods are not consistent in their performance. On the
other hand, SLM’s strong performance is consistent – across wide range of datasets, SLM selects the features
accurately. Interestingly, we observe that there are cases where SLM even outperforms the baseline of using
all features, which can likely be attributed to superior generalization when the limited model capacity is
focused on the most salient features. Especially for datasets that are non i.i.d. in nature, feature selection
can be a strong inductive bias integrated in the architecture, that can yield superior generalization.

Method Test AUC on Fraud Detection ↑
20 features 50 features 100 features

SLM (ours) 89.32 91.06 91.75
Anova 71.81 74.41 82.91
RF 72.16 77.29 78.72
Linear 84.32 87.11 87.46
MI 65.37 71.05 74.91
XGBoost 85.45 87.24 81.67

Table 2: Test AUC on the Fraud Detection dataset (Kaggle, 2022) at different feature selection levels: 20, 50
or 100 features selected. The superiority of SLM persists across different numbers of selected features.

9

Under review as submission to TMLR

Next, we conduct further experiments on the Fraud Detection dataset (Kaggle, 2022), a large-scale dataset
with many heterogeneous features. It is highly non i.i.d. (Grover et al., 2022), thus making feature selection
important given that high capacity models can be prone to overfitting and poor generalization. Table 2
shows that SLM outperforms other methods consistently for different number of selected features, and its
performance degradation with respect to reducing the number of features is much smaller. Indeed, the AUC
with 20 features out of 432, is >10% better than using all features, indicating improved generalization.

5.3 Ablation studies

Figure 2: (1) and (2) show ablation studies on the effect of MI regularization and tempering the number of
features. Both ablation studies have the same number (50) of selected features on all datasets. (3) shows the
task accuracy as a function of the number of features selected on the activity dataset. The dark line shows
the average of ten random hyperparameter trials, shown with light hue, demonstrating that task performance
can be near-optimal even with a small subset of features.

We study the utility of SLM components, particularly the effects of the MI regularizer and tempering the
number of features, which gradually decreases the number of selected features from the full feature set to the
target number. The effects are measured by randomly selecting ten hyperparameter settings and a seed, and
recording the average performance with or without either MI regularizer or tempering (without tempering
refers to keeping the number of selected features constant throughout training.). Fig 2 shows that both MI
regularization and tempering positively affect task performance. This is consistent with the theory developed
in §3: the MI regularizer encourages maximal mutual information sharing between the labels and the selected
features; and tempering allows the model to initialize learning based on all features, rather than a randomly
selected subset.

6 Discussion

Feature importance interpretability. SLM learns a sparse maskM that contains the feature selection
coefficients. We show that this approach yields superior results with end-to-end learning by allowing a smooth
transition between selecting and un-selecting features. In addition, SLM can also be used for interpretation
of global feature importance during inference, yielding the importance ranking of selected features, similar to
other commonly-used methods like SHAP (Lundberg & Lee, 2017). This can be highly desired in high-stakes
applications such as healthcare or finance, where an importance score can be more useful than simply whether
a feature is selected or not.

Feature interdependence during selection. Compared to prior MI-based feature selectors (Ding &
Peng, 2005; Fleuret, 2004; Bennasar et al., 2015), SLM accounts for feature inter-dependence by learning
inter-dependent probabilities {pj}j for the selected feature, where {pj}j jointly maximize the MI between
features and labels. Furthermore, SLM learns feature selection and the task objective in an end-to-end way,
which alleviates the selection of repetitive features that may individually be predictive, as gradient descent

10

Under review as submission to TMLR

favors increasing the probability for a non-redundant and loss decreasing but less predictive feature over an
individually predictive but redundant feature.

Improved model generalization via feature selection. Feature selection can help improve generalization
beyond the training set, especially for high capacity models like deep neural networks, which can easily overfit
patterns from spurious features that do not hold across training and test data splits (Arjovsky et al., 2019).
For instance, Table 1 shows that on some datasets, especially with SLM, prediction on a subset of features
can outperform that on all features. Furthermore, Fig 2 shows that task performance can reach near-optimum
with even a small subset of all features. Therefore, feature selection is a potential alternative for alleviating
compute cost during training and inference, without sacrificing on accuracy.

Relation to other MI estimations in deep learning. MI-based objectives have been used in other deep
learning methods, such as InfoNCE (Oord et al., 2018), InfoGAN (Chen et al., 2016), and Deep Graph
Infomax (Velickovic et al., 2019). To estimate MI, these typically train classifiers on samples drawn from
the joint distribution and the product of the marginals, whose exact distributions can be intractable. In
contrast, for feature selection, while the exact distributions of the features and the labels are known, the
computation of their mutual information and its maximization is computationally intractable. To address
this, SLM proposes a quadratic relaxation of MI optimization, applied to feature selection by converting
MI maximization to minimizing a loss function. SLM does not need to sample from the joint or marginal
distributions, a potentially computationally intensive process. Furthermore, prior works (Chen et al., 2016;
Velickovic et al., 2019) often require a contrastive term in estimation of MI with negative sampling, a process
that is not needed in SLM.

Future work. SLM can be integrated into unsupervised or semi-supervised learning, with modified objectives.
In addition, our results indicate more significant outperformance for datasets with non i.i.d. characteristics
as feature selection can effectively reduce the feature dimensionality and reduce the risk of overfitting to the
spurious correlations of irrelevant features. Lastly, feature selection for data with structure (e.g. temporal
or graph) is an interesting extension, which might be based on modifying SLM to apply masking to entire
time-series or graph data.

7 Conclusion

We introduce SLM, a sparse learnable mask based feature selection framework that maximizes the MI between
features and labels, while optimizing the training objective end-to-end. Learning the feature masks allows
a smooth, probabilistic selection of features as well as insights on feature importance. SLM demonstrates
competitive performance against SOTA baselines, and opens door to future applications in domains such as
graph or time series representation learning.

References
Abubakar Abid, Muhammed Fatih Balin, and James Zou. Concrete autoencoders for differentiable feature

selection and reconstruction. Proceedings of the 37th International Conference on Machine Learning, 2019.

Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning, 2019.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization, 2019.
URL https://arxiv.org/abs/1907.02893.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable binary
variables. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 2963–2977, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1284. URL https://aclanthology.org/P19-1284.

Mohamed Bennasar, Yulia Hicks, and Rossitza Setchi. Feature selection using joint mutual information max-
imisation. Expert Systems with Applications, 42(22):8520–8532, 2015. URL https://www.sciencedirect.
com/science/article/pii/S0957417415004674.

11

https://arxiv.org/abs/1907.02893
https://aclanthology.org/P19-1284
https://www.sciencedirect.com/science/article/pii/S0957417415004674
https://www.sciencedirect.com/science/article/pii/S0957417415004674

Under review as submission to TMLR

Mathieu Blondel, André F. T. Martins, and Vlad Niculae. Learning with fenchel-young losses. In Journal of
Machine Learning Research, 2020.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image classifiers by
counterfactual generation. In International Conference on Learning Representations, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD, 2016. doi: 10.1145/
2939672.2939785.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. Advances in neural
information processing systems, 29, 2016.

De Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression project.
Journal of Statistics Education, 19, 2011.

Gonçalo M. Correia, Vlad Niculae, and André F. T. Martins. Adaptively sparse transformers. CoRR,
abs/1909.00015, 2019. URL http://arxiv.org/abs/1909.00015.

Gonçalo M. Correia, Vlad Niculae, Wilker Aziz, and André F. T. Martins. Efficient marginalization of discrete
and structured latent variables via sparsity. In Advances in Neural Information Processing Systems, 2020.

M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1(1):131–156, 1997. ISSN
1088-467X. doi: https://doi.org/10.1016/S1088-467X(97)00008-5. URL https://www.sciencedirect.
com/science/article/pii/S1088467X97000085.

Chris Ding and Hanchuan Peng. Minimum redundancy feature selection from microarray gene expression
data. Journal of bioinformatics and computational biology, 3(02):185–205, 2005.

Frederick J. Eggers and Fouad Moumen. American housing survey: Between-survey changes in the number
of bedrooms in a unit, 2013.

Jean Feng and Noah Simon. Sparse-input neural networks for high-dimensional nonparametric regression and
classification, 2017.

François Fleuret. Fast binary feature selection with conditional mutual information. Journal of Machine
learning research, 5(9), 2004.

Prince Grover, Zheng Li, Jianbo Liu, Jakub Zablocki, Hao Zhou, Julia Xu, and Anqi Cheng. Fdb: Fraud
dataset benchmark, 2022. URL https://arxiv.org/abs/2208.14417.

Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized fisher score for feature selection, 2012. URL
https://arxiv.org/abs/1202.3725.

Nuno Miguel Guerreiro and André F. T. Martins. Spectra: Sparse structured text rationalization, 2021.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res.,
3:1157–1182, mar 2003.

Yanjun Han, Jiantao Jiao, , and Tsachy Weissman. Adaptive estimation of shannon entropy. Information
Theory, 1372–1376, 2015.

Cho-Jui Hsieh, Inderjit Dhillon, Pradeep Ravikumar, and Mátyás Sustik. Sparse inverse covariance matrix
estimation using quadratic approximation. Advances in neural information processing systems, 24, 2011.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira. Perceiver:
General perception with iterative attention, 2021.

Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. Adaptive estimation of shannon entropy.
Transactions on Information Theory, 61, 2015.

12

http://arxiv.org/abs/1909.00015
https://www.sciencedirect.com/science/article/pii/S1088467X97000085
https://www.sciencedirect.com/science/article/pii/S1088467X97000085
https://arxiv.org/abs/2208.14417
https://arxiv.org/abs/1202.3725

Under review as submission to TMLR

Kaggle. IEEE-CIS fraud detection, 2022. URL https://www.kaggle.com/c/ieee-fraud-detection.

A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information. Phys. Rev. E, 69, 2004.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions, 2016.

Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: A neural network with
feature sparsity. arXiv:1907.12207, 2019.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, and Huan
Liu. Feature selection: A data perspective. ACM Comput. Surv., 50(6), dec 2017. ISSN 0360-0300. doi:
10.1145/3136625. URL https://doi.org/10.1145/3136625.

Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. Feature selection using principal feature analysis. In
Proceedings of the 15th ACM international conference on Multimedia, pp. 301–304, 2007a.

Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. Feature selection using principal feature analysis. In
Proceedings of the 15th ACM International Conference on Multimedia, MM ’07, pp. 301–304, New York, NY,
USA, 2007b. Association for Computing Machinery. ISBN 9781595937025. doi: 10.1145/1291233.1291297.
URL https://doi.org/10.1145/1291233.1291297.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc., 2017. URL http:
//papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label
classification. In International conference on machine learning, pp. 1614–1623. PMLR, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding,
2018. URL https://arxiv.org/abs/1807.03748.

Jing Pan, Vincent Pham, Mohan Dorairaj, Huigang Chen, and Jeong-Yoon Lee. Adversarial validation
approach to concept drift problem in automated machine learning systems. CoRR, abs/2004.03045, 2020.
URL https://arxiv.org/abs/2004.03045.

Liam Paninski. Estimation of entropy and mutual information. Neural Computation, 15, 2003.

Bhargavi Paranjape, Mandar Joshi, John Thickstun, Hannaneh Hajishirzi, and Luke Zettlemoyer. An
information bottleneck approach for controlling conciseness in rationale extraction. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1938–1952, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.153. URL
https://aclanthology.org/2020.emnlp-main.153.

Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse sequence-to-sequence models, 2019.

B. C. Ross. Mutual information between discrete and continuous data sets. PLoS ONE, 9, 2014.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why overparameteri-
zation exacerbates spurious correlations. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 8346–8356. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/sagawa20a.html.

Robert E Shafer. On quadratic approximation. SIAM Journal on Numerical Analysis, 11(2):447–460, 1974.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating
activation differences. International Conference on Machine Learning, 2017.

Dinesh Singh, Héctor Climente-González, Mathis Petrovich, Eiryo Kawakami, and Makoto Yamada. Fsnet:
Feature selection network on high-dimensional biological data. 2020.

13

https://www.kaggle.com/c/ieee-fraud-detection
https://doi.org/10.1145/3136625
https://doi.org/10.1145/1291233.1291297
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2004.03045
https://aclanthology.org/2020.emnlp-main.153
https://proceedings.mlr.press/v119/sagawa20a.html

Under review as submission to TMLR

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288, 1996.

Gregory Valiant and Paul Valiant. Estimating the unseen: an n/ log(n)-sample estimator for entropy and
support size, shown optimal via new CLTs. Proceedings of the forty-third annual ACM symposium on
Theory of computing, 685–694, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. ICLR, 2(3):4, 2019.

Yihong Wu and Pengkun Yang. Minimax rates of entropy estimation on large alphabets via best polynomial
approximation. IEEE Transactions on Information Theory, 62, 2016.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi Sugiyama. High-dimensional
feature selection by feature-wise kernelized lasso. Neural Computation, 26(1):185–207, jan 2014. doi:
10.1162/neco_a_00537.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using stochastic
gates. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 10648–10659. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/yamada20a.html.

Sepehr Abbasi Zadeh, Mehrdad Ghadiri, Vahab Mirrokni, and Morteza Zadimoghaddam. Scalable feature
selection via distributed diversity maximization. In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, Qi Su, and Xu Sun. Explicit sparse
transformer: Concentrated attention through explicit selection, 2019.

Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network decisions:
Prediction difference analysis. International Conference on Learning Representations, 2017.

14

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v119/yamada20a.html

Under review as submission to TMLR

A Appendix

A.1 Dataset Details

This section provides additional details on the experimental data. We first consider the real-world benchmark
datasets in (Lemhadri et al., 2019). Mice consists of protein expression levels measured in the cortex of
normal and trisomic mice who had been exposed to different experimental conditions. Each feature is the
expression level of one protein. MNIST and Fashion-MNIST consist of 28-by-28 grayscale images of
hand-written digits and clothing items, respectively. The images are converted to tabular data by treating
each pixel as a separate feature. Isolet consists of preprocessed speech data of people speaking the names
of the letters in the English alphabet with each feature being one of the preprocessed quantities, including
spectral coefficients and sonorant features. Coil-20 consists of centered gray-scale images of 20 objects taken
at certain pose intervals, hence the features are image pixels. Activity consists of sensor data collected from
a smartphone mounted on subjects while they performed several activities such as walking or standing. For
these datasets, we use the exact same data splits and preprocessing approaches with (Lemhadri et al., 2019)
for fair comparison, as well as the same model hyperparameter search space.1 In addition, we consider the
Ames housing dataset (Cock, 2011), with the goal of predicting residential housing prices based on each
home’s features; as well as the IEEE-CIS Fraud Detection dataset (Kaggle, 2022), with the goal of identifying
fraudulent transactions from numerous transaction and identity dependent features. Table 3 summarizes the
characteristics of the datasets used in the experiments.

Dataset Number of samples Number of features Number of classes
Mice 1080 77 8
MNIST 10000 784 10
Fashion 10000 784 10
Isolet 7797 617 26
Coil-20 1440 400 20
Activity 5744 561 6
Ames 1460 81 N/A
IEEE Fraud 590540 681 2

Table 3: Attributes of datasets used in experiments.

A.2 Experimental details

As described, we use hyperparameter tuning based on the validation accuracy for all cases. We use the
Adam optimizer for training, with exponential decay. For benchmarks from (Lemhadri et al., 2019), for a fair
comparison, our hyperparameter search space is same as the original paper. For Fraud, which is larger and
more complex, we extend the search space as in Table 4.

Hyperparameter Search space
Batch size [512, 1024, 2048, 4096]

Learning rate [0.001, 0.003, 0.01]
Decay steps [1000, 10000]
Decay rate [0.7, 0.9, 0.95, 0.99]

Number of epochs [30, 100, 200]
Number of hidden units [50, 100, 200]

Number of layers [1, 2, 3, 4]

Table 4: Hyperparameter tuning search space for experiments on the Fraud dataset.

1We use a single layer multi-layer perceptron (MLP) as the predictor, where the number of units is chosen from
[M/3, 2M/3, M, 4M/3].

15

Under review as submission to TMLR

For baselines such as LassoNet, we tune additional method-specific hyperparameters. For instance, for
LassoNet, in addition to the hyperparameters, we also tune the `2 penalization on the skip connection, the
hierarchy parameter, and the dropout rate. For XGBoost, we also tune the number of estimators and the
maximum tree depth.

A.3 Proof of Lemma 3.2

Lemma 3.2. Given a nonuniform vector v ∈ RK , to obtain F nonzero elements in sparsemax(v), v should
be multiplied with the scalar

m =


(∑F+1

i=1 v(i) − (F + 1) ∗ v(F+1)

)−1
if |sparsemax(v) > 0| > F(∑F

i=1 v(i) − F ∗ vF
)−1

if |sparsemax(v) > 0| < F,
(11)

where v(1) ≥ v(2) . . . ≥ v(K) denote sorted elements of v in descending order.

Proof. We first show the case when |sparsemax(v) > 0| > F , i.e. the sparsity needs to be increased (the case
where sparsity needs to be decreased works analogously). By (Martins & Astudillo, 2016), the projection of v
onto ∆K−1 in Eq 1 takes the form sparsemax(v) = [v − τ(v)]+, where [x]+ = max{0, x}, and τ takes the

form τ =

(∑
i≤k(v)

v(i)

)
−1

k(v) with k(v) defined as the index

k(v) := max
{
k ∈ {1, . . . ,K} | 1 + kv(k) >

∑
i≤k

v(i)

}
. (12)

Hence, increasing the sparsity such that sparsemax outputs only F nonzero elements, i.e. decreasing the
index k(v) to F , requires finding the smallest m such that 1 + (F + 1)mv(F+1) >

∑
i≤(F+1) mv(i) does not

hold, i.e. F + 1 must be the first k to fail the condition 1 + kv(k) >
∑
i≤k v(i). Rewriting this condition in

terms of F we obtain:

1 + (F + 1)mv(F+1) >
∑

i≤(F+1)
mv(i)

implies 1 > m

(∑
i≤(F+1)

v(i) − (F + 1)v(F+1)

)
(13)

The smallest m such that condition Eq. 13 does not hold is m =
((∑F+1

i=1 v(i)

)
− (F + 1) ∗ v(F+1)

)−1
, which

given Eq 12 implies mv has F nonzero elements. Analogously, to derive the multiplier for v to decrease
sparsemax(v) sparsity, we need to increase the index k(v) to F . This requires finding the largest m such
that 1 + F (mvF) >

∑
i≤F mv(i) holds, which implies: m =

(∑F
i=1 v(i) − F ∗ v(F)

)−1
.

A.4 Proof of Theorem 4.1

Theorem 4.1. Let X and Y denote the random variables representing the features and labels, respectively,
and Y the value space for Y , then minimizing the optimum error E(X,Y) in the model space {f : X → Y }
is equivalent to maximizing the quadratic relaxation of mutual information Iq(X,Y). More specifically,

min
f :X→Y

E(X,Y) = 1−
∑

y∈Y
PY (y)2 − Iq(X,Y)

Proof. During training, the model seeks to produce the optimal predictions R(x, y) that minimize E(X,Y),
while satisfying the constraint

∑
y∈Y R(x, y) = 1. Hence we can apply Lagrange multipliers to solve for the

optimal R(x, y). Taking the derivatives of E(X,Y) and the constraint g(X,Y) =
∑
x∈X ,y∈Y R(x, y)− |X |

with respect to R(x, y):

E′(X,Y) =
∑

x∈X ,y∈Y
−2PX,Y (x, y) + 2PX(x)R(x, y) (14)

g′(X,Y) =
∑

x∈X ,y∈Y
1

16

Under review as submission to TMLR

Marginalizing E′(X,Y) over Y yields:

E′(X,Y) =
∑

x∈X
−2PX(x) + 2PX(x) = 0 / Since

∑
y∈Y

R(x, y) = 1

By Lagrange multiplier theory, for an optimum set of model predictions R∗(X,Y), there exists some λ such
that E′(X,Y)|R(X,Y)=R∗(X,Y) = λg′(X,Y). Since E′(X,Y)|R(X,Y)=R∗(X,Y) = 0, λ = 0.

Therefore, by Eq 14, R∗(x, y) = PX,Y (x, y)/PX(x). Plugging this into Eq 7, we obtain an expression relating
the mutual information Iq(X,Y) and the optimum error E(X,Y):

min
f :X→Y

E(X,Y) = 1− 2
∑

x∈X ,y∈Y
PX,Y (x, y)R∗(x, y) +

∑
x∈X ,y∈Y

PX(x)R∗(x, y)2

= 1− 2
∑

x∈X ,y∈Y
PX,Y (x, y)PX,Y (x, y)

PX(x) +
∑

x∈X ,y∈Y

PX,Y (x, y)2

PX(x)

= 1−
∑

x∈X ,y∈Y

PX,Y (x, y)2

PX(x)
= 1−

∑
y∈Y

PY (y)2 − Iq(X,Y) / By Eq 6

Since PY (y) is fixed for a given dataset, minimizing E(X,Y) across the model space is equivalent to maximizing
Iq(X,Y).

Continuous label space. For the case with continuous labels (as occur for regression problems), the
quadratic relaxation analogue of Eq 6 becomes:

Ĩq(X,Y) :=
(∑

x∈X

∫
y∈Y

PX,Y (x, y)2/PX(x)
)
−
∫
y∈Y

PY (y)2. (15)

Let Yk be a discretization of the continuous labeling space Y with k intervals, i.e. we are turning the
continuous labeling function X → Y into a piecewise constant one with k steps. Then, discretizing followed
by taking the limit as k →∞ (and all bin sizes tend to 0) yields, analogous to Eq 7:

Ẽ(X,Y) := lim
k→∞

∑
x∈X ,y∈Yk

PX,Y (x, y)
(

(1−R(x, y))2 +
∑

y′∈Yk\y
R(x, y′)2

)
= 1− 2

∑
x∈X

∫
y∈Y

PX,Y (x, y)R(x, y) +
∑

x∈X

∫
y′∈Y

PX(x)R(x, y′)2

Therefore following the same logic as in the proof above:

min
f :X→Y

Ẽ(X,Y) = 1−
∑

x∈X

∫
y∈Y

PX,Y (x, y)2

PX(x)

Plugging Eq 15 into this equation thus gives:

min
f :X→Y

Ẽ(X,Y) = 1−
∫
y∈Y

PY (y)2 − Ĩq(X,Y),

as desired. Thus, minimizing the optimum objective Ẽ(X,Y) across the model space {f : X → Y } is
equivalent to maximizing Iq(X,Y).

A.5 Properties of sparsemax for SLM

This section further details the key aspects of utilizing sparsemax for SLM, in terms of how it compares with
softmax with thresholding for feature selection, as well as how SLM avoids the sparsemax support collapse
problem.

17

Under review as submission to TMLR

A.5.1 Sparsemax vs softmax with thresholding

Softmax is the commonly used nonlinear normalization function. An alternative method for learning the
sparse maskMsp would be to apply softmax normalization, followed by a top-k operation, and an additional
normalization to render it a probability mask. This method is not only unwieldy with additional steps, but
because the softmax-top-k normalization normalizes with respect to the absolute value of v, whereas sparsemax
normalizes with respect to its relative values (by subtracting a v-dependent threshold), sparsemax(v) is more
equi-distributed over the interval [0, 1] than softmax-top-k normalization (i.e. sparsemax(v) has lower entropy
than softmax-top-k normalization), making it more discriminatory for feature selection. Furthermore, one
gradient computation advantage of sparsemax(v) is that it allows a faster computation of the Jacobian-vector
product – which typically suffices for backpropagation – in O(S(v)) time, S(v) being the support of v
(Martins & Astudillo, 2016), compared with linear time (with respect to the size of v) for softmax.

A.5.2 SLM avoids sparsemax support collapse

In practice, since the gradient of sparsemax is zero for elements outside its support (Martins & Astudillo,
2016), an element that initially falls outside its support would stay so throughout training. This would lead
to sparsemax support collapse, i.e. the size of the support dwindles during training.

SLM avoids the sparsemax support collapse problem, due to its sparsemax argument scaling (Lemma 3.2).
In vanilla sparsemax, as the support of sparsemax is determined by the distances between the top-ranking
elements, having non-zero gradients only for the elements in the support of sparsemax causes only those
elements to drift. As the inputs to sparsemax can vary without bound, this drift becomes larger over time,
i.e. the distance between the top elements, which are in sparsemax’s support, becomes larger, making the
sparsemax support smaller, and blocking new elements from entering the support. However, when the input
to sparsemax is scaled as in Lemma 3.2, this drift is controlled, and can shorten the distances (in addition
to lengthening them) between the top elements, hence the sparsemax support can acquire new elements,
avoiding the collapse.

A.5.3 Experimental analysis of the number of features in support

Experimentally, when training SLM feature selection with a single-layer MLP architecture, on a dataset of
1000 samples with 100 features each, using sparsemax with scaling to select 30 features consistently yields 30
features in the sparsemax support. In contrast, without scaling, the sparsemax support consistently dwindles
to well below 10 features within 15 epochs.

A.6 Feature Interpretability Results

While SLM optimizes feature selection for the task metric, the fact that the selected features are global readily
opens the door for feature importance interpretability applications, as the chosen features can give insights
about the task. To this end, we focus on the Ames housing dataset (Cock, 2011), as its features are easily
understandable. As mentioned in §A.1, the features in the Ames dataset consist of characteristics of houses,
and the prediction target is the house price. We use the model parameters found in the best validation trial
reported in Table 1, and select the top ten out of the 81 features. To obtain importance scores of the selected
features, we study the selection probabilities learned in the feature mask. Using this, the ten highest-probability
features in terms of determining a house’s prices are, with learned feature probabilities: ‘OverallQual’ (0.211),
‘FullBath’ (0.182), ‘GarageCars’ (0.124), ‘BsmtFullBath’ (0.0795), ‘MSSubClass’ (0.0758), ‘GarageFinish’
(0.0739), ‘HalfBath’ (0.0718), ‘PoolArea’ (0.0562), ‘Fireplaces’ (0.0473), ‘HouseStyle’ (0.0403).

Some aspects of this selection conform to common sense – the overall quality of the property, the number
of bathrooms, and the size of the garage or pool are good predictors of housing value. Other aspects are
more surprising, for instance the feature ’BedroomAbvGr’ – the number of bedrooms above ground – is not
selected, even though one would expect the number of bedrooms to be an important selling factor. However,
on further thought, as the number of bedrooms is positively correlated with the number of bathrooms (Eggers
& Moumen, 2013), SLM is avoiding feature redundancy by only selecting one of the correlated features. The

18

Under review as submission to TMLR

same reasoning applies for the features ’OverallQual’, the overall quality, which is selected, and ’OverallCond’,
the overall condition, which is not selected.

A.7 Computational Complexity Experiments

As stated in § 4.4, let F0 be the total number of features, and n the number of samples, SLM has O(nF0 logF0)
dependence on F0. To test that this low complexity in theory translates to actual fast feature selection
in practice, we present the wall clock timing of SLM. We compare specifically against LassoNet, a strong
baseline that also selects features end-to-end. Table 5 shows the timing results for one epoch on the Mice
dataset, demonstrating that SLM’s low complexity in theory also translates to fast execution in practice.

Feature Selection Method Timing (s)
SLM 1.21 ± 0.016

LassoNet 19.62 ± 0.796

Table 5: Timing results for one epoch on the mice dataset between SLM and LassoNet, a strong baseline that
also selects features end-to-end. This comparison is down under the exact same settings for both methods:
hidden dimension of 64, batch size of 256, one MLP predictor layer, selecting 50 features, run on a single V100
GPU. The result statistics are collected over five different runs. Only the training component is measured,
not including data splitting and processing.

Furthermore, we discuss the computation of the MI objective in Eq 9. In particular, the consistency term
rcs in Eq 10, which ensures that if two samples have the same values in their selected features, their model
predictions are the same as well. In theory, if we imagine giving rcs a weight coefficient α in Eq. 9, with the
interpretation that in the limit where α→∞, this consistency is strictly enforced; and in the limit where
α → 0, not at all. In practice, given that they have the same orders on terms such as model predictions
R(X,Y) by design, rcs and the remaining term in Eq 9 have the same order of magnitude. Furthermore, rcs
indeed is the most compute-intensive part in Eq 9, as rcs requires pairwise comparisons within the batch (for
each pair Xi1, Xi2 it is computed over the feature indices j where X(j)

i1 6= X
(j)
i2). Experimentally, on the Ames

dataset with a batch size of 128, the rcs computation takes up 1.51 ± 0.012 ms, out of 1.94 ± 0.017 ms for
the entire MI regularizer computation in Eq 9. This reveals an interesting accuracy-compute trade-off, where
users may want to skip the rcs computation for an even faster, approximate MI regularizer computation.

A.8 Synthetic Data Experiments

We demonstrate the performance of SLM on a synthetic dataset that is specifically constructed such that only
a small subset of features affect the output value while the vast majority are not useful for the task. All input
features Xi,j are sampled from the uniform distribution U [−1, 1] and the noise at the end εi,j are sampled
from standard Gaussian random variable with zero mean and unit variance. The input-output relationship
are governed by the equations shown below:

T(1)
i,j = 1

L

L∑
i=1

exp(Xi,j), (16)

T(2)
i,j = exp(1

L

2L∑
i=L+1

| sin(2πXi,j|), (17)

T(3)
i,j = 1

L

3L∑
i=2L+1

− log(1.1 + Xi,j)), (18)

T(4)
i,j = 1

L

4L∑
i=3L+1

Xi,j, (19)

19

Under review as submission to TMLR

T(5)
i,j = 1/(1 + 1

L

5L∑
i=4L+1

| tanh(Xi,j)|), (20)

Yi,j =
{

1, if (T(1)
i,j + T(2)

i,j + T(3)
i,j + T(4)

i,j + T(5)
i,j − 3 + 0.2εi,j) > 0,

0, otherwise
. (21)

As can be seen, the function is highly nonlinear in dependence to the input features, and in total 5L features
are salient.

Hyperparameter Search space
Batch size [128, 256, 512]

Learning rate [0.001, 0.003, 0.01]
Decay steps [1000, 10000]
Decay rate [0.7, 0.9, 0.95, 0.99]

Number of epochs [30, 100, 200]
Number of hidden units [30, 50, 100]

Number of layers [1, 2, 3,]

Table 6: Hyperparameter tuning search space for experiments on the Synthetic dataset.

We construct the dataset with 3000 features among which only 100 or 300 are salient, i.e. L = 20 or L = 60 for
two different training dataset size values, 35000 and 14000 training samples respectively. Train-validation-test
are split with 0.7-0.1-0.2 ratio, similar to all other experiments and hyperparameter tuning is done with the
search space presented in 6. We compare SLM with other feature selection methods, when they are used to
select the 300 features. Table 7 and 8 highlight the superior performance of SLM compared to the alternative
methods for challenging datasets with a very large number of features.

Feature selection method Test accuracy (%)
SLM 71.5
Anova 67.9
RF 62.6

Linear 67.0
MI 63.0

Table 7: Test accuracy (%) on the Synthetic dataset with 300 salient features (L = 60) and 14000 training
samples.

Feature selection method Test accuracy (%)
SLM 73.9
Anova 69.0
RF 69.9

Linear 69.7
MI 61.2

Table 8: Test accuracy (%) on the Synthetic dataset with 100 salient features (L = 20) and 35000 training
samples.

A.9 Further Comparison with End-to-end Baselines

One of SLM’s strengths is end-to-end feature selection along with task learning, which allows the model to
incorporate inductive biases from the task directly into feature selection. Therefore, we specifically focus on

20

Under review as submission to TMLR

comparing SLM with additional end-to-end feature selection methods, beyond the results in Table 1. As
discussed in §2, Concrete Autoencoder (Abid et al., 2019) proposes an unsupervised feature selector based on
using a concrete selector layer as the encoder and using a deep neural network as the decoder. FsNet (Singh
et al., 2020) uses a concrete random variable for discrete feature selection in a selector layer and a supervised
deep neural network regularized with the reconstruction loss, with a focus on biological data, which are
often high-dimensional with limited sample size. STG (Yamada et al., 2020) develops a fully embedded
supervised method that learns stochastic gates with a probabilistic relaxation of the count of the number of
selected features. While all these works selects features and learns task prediction end-to-end, given that
SLM is a supervised model, with a general focus beyond the high-dimensionality and low-sample-size setting,
STG (Yamada et al., 2020) is the strongest, most related baseline to compare SLM with. Table 9 shows the
comparison between SLM and STG on the Isolet and Activity datasets with 50 selected features. There
are certain similarities between how SLM and STG control which feature to select: SLM learns a sparse
probability mask m for the features, whereas STG learns learn the parameters of the approximate Bernoulli
distributions via gradient descent for each feature. While STG learns the parameters for each Bernoulli
variable independently, one advantage SLM has is accounting for interdependence amongst selected features,
through both the fact that the probabilities in m are interdependent, and through the MI regularizer (further
details discussed in §6).

Feature Selection Method Isolet ↑ Activity ↑
SLM 92.49 ± 0.20 93.35 ± 0.82
STG 84.50 ± 1.98 91.81 ± 0.71

Table 9: Test accuracy (%) comparison between SLM with a closely related, end-to-end feature selection
baseline STG, which controls feature selection via learned stochastic gates, on the Isolet and Activity datasets
with 50 features selected. The two methods are compared under the exact same conditions to the largest
extent possible: using the same hidden dimension, number of epochs, batch size, learning rate, etc., all
randomly generated from within a feasible range. The non-shared hyperparameters are also generated from
random within a feasible range. The results are averaged over ten different runs. SLM is able to account for
interdependence amongst selected features, through the learned mask m and the MI regularizer.

21

	Introduction
	Related work
	Methods
	Mask sparsity via projection onto probability simplex
	Mask scaling to yield desired number of selected features
	Tempering feature sparsity to facilitate convergence

	Mutual information maximization
	Quadratic relaxation
	Relating MI Iq(X,Y) to model error E(X,Y)
	Application to feature selection
	SLM Computational complexity

	Experiments
	Datasets and Settings
	Task performance with feature selection
	Ablation studies

	Discussion
	Conclusion
	Appendix
	Dataset Details
	Experimental details
	Proof of Lemma 3.2
	Proof of Theorem 4.1
	Properties of sparsemax for SLM
	Sparsemax vs softmax with thresholding
	SLM avoids sparsemax support collapse
	Experimental analysis of the number of features in support

	Feature Interpretability Results
	 Computational Complexity Experiments
	Synthetic Data Experiments
	 Further Comparison with End-to-end Baselines

