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ABSTRACT

Diffusion-based generative models have reformed generative AI, and have enabled
new capabilities in the science domain, for example, generating 3D structures of
molecules. Due to the intrinsic problem structure of certain tasks, there is often a
symmetry in the system, which identifies objects that can be converted by a group
action as equivalent, hence the target distribution is essentially defined on the quo-
tient space with respect to the group. In this work, we establish a formal frame-
work for diffusion modeling on a general quotient space, and apply it to molecular
structure generation which follows the special Euclidean group SE(3) symmetry.
The framework reduces the necessity of learning the component corresponding
to the group action, hence simplifies learning difficulty over conventional group-
equivariant diffusion models, and the sampler guarantees recovering the target
distribution, while heuristic alignment strategies lack proper samplers. The argu-
ments are empirically validated on structure generation for small molecules and
proteins, indicating that the principled quotient-space diffusion model provides a
new framework that outperforms previous symmetry treatments.

1 INTRODUCTION

Diffusion models have emerged as the dominant approach for modeling distributions in high-
dimensional spaces. Building on their success in real-world domains such as images (Ho et al.,
2020; Song et al., 2021), audios (Kong et al., 2021; Evans et al., 2024), and videos (Ho et al., 2022;
Li et al., 2023), diffusion models are now increasingly adopted in scientific applications, ranging
from fluid field solving (Bastek et al., 2025), electronic structure prediction (Kim et al., 2025),
molecular structure generation (Xu et al., 2022; Abramson et al., 2024; Hassan et al., 2024; Geffner
et al., 2025), and thermodynamic ensemble modeling (Zheng et al., 2024; Lewis et al., 2025).

Compared with general tasks, scientific applications often exhibit inherent symmetry structures,
wherein objects that can be related through specific transformations are regarded as equivalent.
Consider molecular structure generation as a representative example. A molecular structure can
be represented as a vector in R3N by concatenating the 3D coordinates of its N atoms. However,
because the choice of coordinate system is arbitrary, vectors in R3N that differ only by a global 3D
translation or rotation of all atoms correspond to the same underlying structure. Mathematically,
such transformations typically form a Lie group — for example, the special Euclidean group SE(3)
in the case of molecular structures, which formally characterizes the symmetry.

The common treatment is putting the target distribution in the original space but assigning the same
probability to equivalent objects, resulting in a distribution that is invariant under group action.
This can be implemented by augmenting training data by applying randomly chosen group actions
(Abramson et al., 2024), or using a group equivariant model (Xu et al., 2022; Hoogeboom et al.,
2022b), which guarantees invariance if the starting prior distribution is invariant (Köhler et al., 2020).
Nevertheless, we shall show that this treatment still has room to improve, as the neural network
model, which is intended for updating the sample in each diffusion simulation step, still needs to
learn a specific movement within the equivalent class (e.g., rotating a molecular structure), which
is unnecessary as any such a movement does not update the intrinsic system state (e.g., the shape
of a molecular structure) hence is acceptable. In hope to remove this redundancy, there are a few
heuristic treatments using alignment, i.e., adjusting the prediction target within its equivalent class
according to a reference to remove these equivalent degrees of freedom (Xu et al., 2022; Abramson
et al., 2024). But we find that the corresponding sampling process becomes incompatible with such
training strategies, even with heuristic fix attempts (Wohlwend et al., 2025).
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Table 1: Comparison among different training strategies in presence of a symmetry group. Learning
difficulty is measured by whether the need to predict in the equivalent degrees of freedom (DOFs),
induced by the group actions, is removed, and (if not) whether the variance on the equivalent DOFs
is removed. Sampling compatibility means whether there is a sampler that exactly reproduces the
target distribution. The denoising form of diffusion model Dθ is used to express the loss functions,
where Ay(x) (Eq. (11)) represents aligning x towards y, and θ̄ denotes treating θ as constant (i.e.,
stop-gradient). The conclusions hold using either an equivariant architecture or a general architec-
ture with data augmentation. See Sec. 3.4 for details.

Training strategy
for Dθ

Optimal
solution
of Dθ

Reduction of learning difficulty
Sampling

compatibilityRemoval of
equivalent DOFs

Removal of variance
on equivalent DOFs

Conventional loss
E∥Dθ(xt, t)− x1∥2 E[x1|xt] ✗ ✗ ✓

GeoDiff alignment loss
E∥Dθ(xt, t)−Axt(x1)∥2 E[Axt(x1)|xt] ✗ ✓ ✗

AF3 alignment loss
E
∥∥Dθ(xt, t)−ADθ̄(xt,t)(x1)

∥∥2 g · E[Axt
(x1)|xt]

for arbitrary g ∈ G ✓ ✓ ✗

quotient-space diffusion loss
E∥Pxt

(Dθ(xt, t)− x1)∥2
E[Pxt

(x1)|xt] + vV

for arbitrary vV∈Ker(Pxt
)

✓ ✓ ✓

In this work, we develop a principled approach to building a diffusion model considering the intrinsic
symmetry of the system. In particular, we leverage the concept of quotient space, in which a set
of equivalent objects (equivalent class) are treated as one element. It is the formal mathematical
construction that reflects the intrinsic variability of the system. We first derive the diffusion process
on a general quotient space based on the correspondence between the Wiener processes on the two
spaces. Considering that the quotient space is generally not Euclidean, hence it is hard to directly
carry out a simulation on it, we further leverage the mathematical construction of horizontal lift
to induce a diffusion process back in the original space that embeds1 the quotient-space diffusion
process. The resulting process effectively amounts to projecting the update vector in the original
diffusion process onto the subspace that does not induce a movement within the equivalent class
(e.g., rotation). We show that this process guarantees producing the correct target distribution,
meanwhile reduces learning difficulty by removing the necessity to learn a specific movement within
an equivalent class. A visualization example in the 2-dimensional plane with SO(2) symmetry is
shown in Fig. 1. In this example, the lifted process only has radial movements (Fig. 1(Left)) as
the quotient space R2/SO(2) is isomorphic to the half real line and recovers the correct target
distribution as conventional equivariant diffusion models (Fig. 1(Middle, Right)). A conceptual
comparison with existing methods is shown in Table 1. The quotient-space diffusion admits either
an equivariant model or a general model with data augmentation.

As a representative application, we deduce the specific training and sampling algorithms in the
R3N/SE(3) scenario for molecular structure generation, which relaxes the model from learning a
translation and rotation movement, while the sampling process keeps the structure with constant
position and orientation. We study the empirical performance of quotient-space diffusion models
on small molecule structure generation and protein backbone design tasks. The results show that
our methods can consistently improve the generation performance in these applications over con-
ventional equivariant diffusion models and using alignment strategies. Our method achieves 9%-
23% relative improvements of ET-Flow(Hassan et al., 2024) on GEOM-QM9 and GEOM-DRUGS
datasets, surpassing previous heuristic alignment methods. For the protein structure generation task,
our method surpasses the state-of-the-art Proteı́na model (Geffner et al., 2025) with the same pa-
rameter scale (60M) in a large margin and also outperforms the much larger model (200M) on most
key distributional metrics.

2 BACKGROUND

2.1 DIFFUSION-BASED GENERATIVE MODELS ON EUCLIDEAN SPACE

The main idea of diffusion models is to construct a step-by-step transformation from a simple prior
distribution to a complex target distribution. In this paper, we follow the Stochastic Interpolant

1This “embedding” is meant for intuitive understanding; in the mathematical sense, the quotient space is
unnecessarily able to be embedded in the original space.
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Figure 1: A visualization of the behavior of the original equivariant diffusion model and the quotient-
space comparison between the original diffusion model and the quotient-space diffusion model in
the M = R2,G = SO(2) case. The data distribution is restricted in the region r ∈ [2, 4], where r
is the radius on R2. The probability density function is shown in the color bar. (Left) The sampling
trajectory comparison between the original diffusion model and the quotient-space diffusion model.
The quotient-space diffusion model always diffuses on a straight line because the quotient space
R2/SO(2) is isomorphic to the half real line, while the original diffusion model diffuses on a 2-D
plane. This motivates us to reduce the learning task corresponding to the movement in the equivalent
class (movement on a circle in this case). (Middle) The samples generated by the original diffusion
model. (Right) The samples generated by the quotient-space diffusion model, which match the data
distribution as well.

framework (Albergo et al., 2023), which unifies diffusion models and flow matching models (Lip-
man et al., 2023; Liu et al., 2023). Let ptarget(x) be the target distribution. The following linear
interpolation is constructed:

xt = αtx0 + βtx1 + γtϵ, (x0,x1) ∼ pjoint, ϵ ∼ N (0, I), t ∈ [0, 1] (1)
where pjoint is a pre-defined joint distribution of (x0,x1) with marginals x0 ∼ pprior and x1 ∼ ptarget.
The coefficients αt, βt, γt satisfy the boundary conditions α0 = 1, β0 = 0, γ0 = 0, and α1 = 0,
β1 = 1, γ1 = 0. Under these conditions, the following ordinary differential equation (ODE) can
transform pprior to ptarget (Albergo et al., 2023, Cor. 2.18):

dxt = v(xt, t) dt, where v(xt, t) := E[α′
tx0 + β′

tx1 + γ′tϵ | xt]. (2)
The velocity vector field v(xt, t) is typically trained with the objective: L(θ) :=
Ep(t)w(t)Epjoint(x0,x1)p(ϵ)∥vθ(xt, t) − (α′

tx0 + β′
tx1 + γ′tϵ)∥2, where the prime denotes the time

derivative, and p(t) and w(t) control the sampling distribution and weighting over time. There is
also a stochastic process for sample generation, given by :

dxt = (v(xt, t) + ηts(xt, t)) dt+
√
2ηt dwt, where s(xt, t) := ∇xt log pt(xt) (3)

is called the score function, and ηt ≥ 0 is a non-negative smooth function (Albergo et al., 2023,
Cor. 2.10). In the special case where pprior = N (0, I) (the one-sided stochastic interpolant (Albergo
et al., 2023, Def. 3.4)), contributions of x0 and ϵ can be combined as xt = α̂tϵ+βtx1, where α̂t =√
α2
t + γ2t , and the score function can be expressed by the velocity field: s(xt, t) =

β′
txt−βtv(xt,t)

α̂t(α̂′
tβt−α̂tβ′

t)
.

A convenient variant to formulate the learning task is to define the vθ(xt, t) model with a neural
network Dθ(xt, t) which reformulates the objective:

vθ(xt, t) :=
α̂′
txt − (α̂′

tβt − α̂tβ
′
t)Dθ(xt, t)

α̂t
, (4)

L(θ) := Ep(t)w(t)
(α̂′

tβt − α̂tβ
′
t)

2

α̂2
t

Ep(x1,xt)∥Dθ(xt, t)− x1∥2, (5)

where p(x1,xt) is derived from Eq. (1) by integrating out x0 and ϵ. This objective conveys the
intuition of recovering the clean-data sample x1 from a noisy sample xt, hence Dθ(xt, t) is called
a denoising model and suits prevalent architectures. We adopt this form of a diffusion model below.

2.2 FROM EUCLIDEAN SPACE TO QUOTIENT MANIFOLD

Tasks in scientific domains often involve inherent symmetry, where objects related by certain trans-
formations are considered equivalent. A formal and inclusive description of symmetry in a system

3
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requires both the geometry of the configuration space and the algebraic structure of the transforma-
tions, which leads to the concepts of manifolds and Lie groups.

Manifold and Lie groups. A (smooth) manifold is a geometric object that generalizes the Euclidean
space to allow spatial heterogeneity. Typically, a manifold is endowed with a Riemannian metric,
i.e., an inner product in each tangent space, which leads to common concepts like curve length, dis-
tance, measure, gradient, Laplacian, and Wiener process on the manifold (Appx. B.1). Symmetries
are formally represented by transformations that connect equivalent (i.e., symmetric) objects, which
constitute a group. A continuously-parameterized group that is also a manifold is called a Lie group.

We consider the general case where the configuration space of the system is an M -dimensional
Riemannian manifold M. The symmetry of the system is represented by a G-dimensional Lie
group G acting on M. A distribution p on M is said G-invariant if p(g ·x) = p(x), ∀g ∈ G,x ∈ M.
This invariance implies that all equivalent points {g · x | g ∈ G}, collectively called an equivalent
class, are assigned with the same probability.

Quotient space. The symmetry group defines an equivalent relation in M, i.e., x1 and x2 are
equivalent, if there exists a group action g ∈ G such that g · x1 = x2, which is indeed an equivalent
relation due to properties of a group. The quotient space Q := M/G treats equivalent objects under
the action of G as one element, hence reflects the intrinsic variability of the system. There is a
natural mapping called the projection connecting the two spaces: π(x) := {g · x | g ∈ G}. Under
appropriate conditions, the quotient space is a smooth manifold with dimension M −G (Appx. C).
However, defining a diffusion process on this space is non-trivial, necessitating the extension of
“velocity” and Wiener process from Euclidean space to the manifold.

Tangent vector. On a manifold M, the velocity of a process at a certain point x is represented as
a tangent vector at x, intuitively representing an infinitesimal movement. All tangent vectors at x
constitute a linear space TxM called the tangent space at x. Since a manifold is typically curved,
tangent spaces at different points are regarded as different linear spaces, but with a transformation on
the manifold, e.g., a group action g, an associated mapping g∗x : TxM → Tg·xM between the tan-
gent spaces can be defined, which can be intuitively perceived as g∗x(v) := limh→0

g·(x+hv)−g·x
h .2

With this construction, we can define that a vector field on M is G-equivariant if it is unchanged
under the group action: g∗xv(x) = v(g · x). For the projection mapping π onto the quotient space,
we can similarly define π∗x : TxM → Tπ(x)Q as the projection for tangent vectors.

Wiener process on a manifold. In Euclidean space, the Wiener process is generated by the Lapla-
cian operator 1

2∆. The Laplace-Beltrami operator, defined from a Riemannian metric, serves as a
counterpart on a manifold, and defines the Wiener process to the manifold. Under a symmetry group
G, we require a meaningful stochastic process on the manifold M as G-invariant, meaning that its
marginal distribution is G-invariant at any time step. See Appx. B for details.

3 METHODS

As the quotient space represents the “essential states” of a system with symmetry, a principled dif-
fusion model for the system is expected to be built on it. In this section, we unroll the development
of the quotient-space diffusion model by deriving the projected diffusion process onto the quotient
space, then lift it back into the total space (i.e., the original space) for convenient implementation.
We then derive the specialization in the R3N/SE(3) case for molecular structure generation, fol-
lowed by training and sampling algorithms. We highlight the merit of the quotient-space diffusion
in reducing training difficulty and sampler soundness with a comparative analysis with existing
treatments considering symmetry.

3.1 DIFFUSION PROCESS ON A GENERAL QUOTIENT SPACE

If the diffusion process in M is G-invariant, the distribution at any time step can be viewed as a
distribution in the quotient space Q, then we can view the process as a stochastic process in Q. By
leveraging the projection mapping π : M → Q, we can map a diffusion process {xt}t∈[0,T ] in M

2This is the understanding from a Euclidean-space perspective. In general, there are no “addi-
tion/subtraction” operations on a general manifold. The formal definition is by defining tangent vectors a
directional derivative operators, and the push-forward mapping g∗x is defined by function composition. See
Appx. B for details.
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(Eq. (3)) onto the quotient space as {yt := π(xt)}t∈[0,T ]. This is a stochastic process on Q, but
its expression as a diffusion process on Q using specifiers defining the diffusion process of xt is
desired. The following theorem gives an explicit answer.
Theorem 1. Assume {xt}t∈[0,T ] is a diffusion process on M, specified by the following SDE:

dxt = bt(xt) dt+ σt dwt, x0 ∼ pprior, (6)
where bt is a G-equivariant time-dependent vector field on M, wt is the Wiener process on M
that is also G-invariant, and pprior is a G-invariant distribution. Then the projected process {yt :=
π(xt)}t∈[0,T ] onto the quotient space Q := M/G is the solution to the following SDE:

dyt =

(
(π∗bt)(yt)−

σ2
t

2
h(yt)

)
dt+ σt dωt, y0 ∼ π#pprior, (7)

where π∗bt is the projected vector field of bt induced by π, h(yt) is the mean curvature vector field
of Q reflecting the geometry of Q, ωt is the Wiener process on Q, and π#pprior is the pushed-forward
distribution of pprior (i.e., y0 = π(x0) where x0 ∼ pprior).

Figure 2: Illustration of the relation be-
tween the total space M and the quo-
tient space Q and the correspondence of
tangent vectors among them.

See Appx. D.1 for formal definitions of the concepts and
the proof. Thm. 1 shows that the projected process is
indeed a diffusion process on Q, which consists of the
projected vector field and corresponding Wiener diffusion
process, and perhaps unexpectedly, an additional vec-
tor field reflecting the curvature of Q. As the quotient
space squeezes an equivalent class as one point, a pro-
cess viewed on the quotient space should accommodate
for the change of the volume of the equivalent class along
the movement. This additional vector is the gradient (i.e.,
the change rates in all movement directions) of the vol-
ume of the equivalent class.

Although the diffusion process on the quotient space is
defined, it is not convenient to simulate it in the quotient
space directly due to the non-trivial geometric structure of
Q. Nevertheless, the quotient-space diffusion enables us
a principled view to reduce the unnecessary movement within equivalent classes. A key observation
from Thm. 1 is that if b1 = v + b2 where vx ∈ Kerπ∗x := {v ∈ TxM | π∗x(v) = 0},∀x ∈ M,
then the corresponding SDE in Eq. (13) has the same projection in the quotient space. This implies
that the components in Kerπ∗x are not really necessary.

For better characterization of the necessary component, we focus on the tangent space of M at
x. The tangent space TxM is a linear space with the same dimensionality as M. Define the
vertical space Vx := Kerπ∗x (G-dimensional) corresponding to the infinitesimal action of the group
G. Since TxM has an inner product (because M is a Riemannian manifold), we can define the
horizontal space Hx := (Kerπ∗x)

⊥ as the orthogonal complement of Vx. Then any tangent vector
in TxM has an orthonormal decomposition v = vV + vH, where vV , vH is the vertical and
horizontal component respectively; see Fig. 2 for visualization. Thus vH is the necessary part of the
vector field v.

Thanks to the quotient structure, we can leverage a correspondence between the diffusion process on
M and Q. For a diffusion process yt, there exists a diffusion process x̃t in M such that π(x̃t) = yt

and x̃t only has horizontal movement, which is called the horizontal lift of yt (see Appx. D.2 for
formal definitions). The horizontal lift of yt is given explicitly in the following theorem.
Theorem 2. The horizontal lift of Eq. (14) has the following explicit expression:

dx̃t =

(
Px̃t

(bt(x̃t))−
σ2
t

2
h̃(x̃t)

)
dt+ σtdw̃t, x̃0 ∼ pprior, (8)

where Px(v) = vH is the horizontal projection on the tangent space of M, h̃ is the horizontal lift
of the mean curvature vector h in Eq. (14), w̃t is the horizontal lift of the Wiener process on Q.

See Appx. D.2 for the proof. Comparing the expression between Eq. (13) and Eq. (8), we can
observe that the lifted process is not simply given by adding a horizontal projection Px on each term
of the SDE, and an additional term depending on the curvature of the quotient space arises. This
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term arises in Eq. (14) and remains after the horizontal lift. The horizontal projection Px and the
mean curvature vector field can be calculated in specific cases, so Eq. (8) has explicit form when Q
is specified.

As mentioned, Eq. (8) only has horizontal movements, in other words, it does not have any move-
ment in the equivalent class. This process reduces unnecessary movement and helps to reduce
sampling trajectory length. From this viewpoint, previous methods do not reduce these unnecessary
movements, although they have the equivalent diffusion process in the quotient space. The formal
results are summarized in the following corollary. See Appx. D.2 for proof.
Corollary 3. x̃1 (defined by Eq. (8)) has the same distribution on Q with x1 (defined by Eq. (13)).
When σt = 0, ∀x0 ∈ M, Eq. (8) has shorter trajectory length than Eq. (13).

3.2 SPECIAL CASE: THE SHAPE SPACE

The abstract results in the previous section give the direction for practical implementations. In this
subsection, we focus on the special case of quotient space R3N/SE(3). First, we need to define the
quotient structure in this case (Appx. C). Let x := (x(1),x(2), · · · ,x(N)) ∈ R3N ,with x(i) ∈ R3,
denote a configuration (or point cloud) of N points in R3. Let M := {x ∈ R3N | 1

N

∑N
i=1 x

(i) =

0} be the center-of-mass (COM) subspace of R3N . Let SO(3) be the special orthonormal group
and we construct R3N/SE(3) as M/SO(3) because the translation-invariant distribution does not
exist (Yim et al., 2023). An element of the SO(3) group is given by a 3-dimensional rotation matrix
g ∈ R3×3. The natural action of g on x is defined as g · x :=

(
gx(1), gx(2), · · · , gx(N)

)
, i.e.,

the rotation is acted on each point of the system. Under certain conditions, the quotient space
Q := M/SO(3) is a smooth manifold. Now we can consider the correspondence between the
diffusion process in M (Eq. (13)) and the its horizontal lift from the quotient space projection
(Eq. (8)). The results are summarized in the following theorem.
Theorem 4. Assume xt is a diffusion process in the COM subspace M ⊂ R3N , given by the
following SDE: dxt = bt(xt) dt+ σt dwt,x0 ∼ pprior where bt(xt) is a SO(3)-equivariant vector
field,∀t ∈ [0, T ], pprior is the G-invariant prior distribution, wt is the standard Wiener process on
COM. The horizontal lift of the process π(xt) is :

dx̃t =

(
Px̃t(bt(x̃t))−

σ2
t

2
h̃(x̃t)

)
dt+ σtPx̃t dwt, x̃0 ∼ pprior, (9)

where the Px is the horizontal projection operator at x and h̃(x) is the horizontal lift of mean
curvature vector. The explicit expressions of P and h̃ are shown as follows:

Pxv = v − I−1

(
1

N

∑N

i=1
x(i) × v(i)

)
× x, ∀v ∈ TxM,

h̃(x) = −(tr(I−1)I − I−1) · x, where I =

(
1

N

∑N

i=1
∥x(i)∥2I− 1

N

∑N

i=1
x(i)x(i)⊤

)
.

See Appx. D.3 for proof. From the results of Thm. 4, we can deduce that π(xt) has the same
marginal distribution with π(x̃t) in Eq. (9) (Cor. 3). If we consider the generation process in Eq. (2)
or Eq. (3) as xt, we can construct the corresponding horizontal process x̃t that can generated the
same target distribution on the quotient space. Motivated by this fact, we can improve the training
and inference method of diffusion based generative models by leveraging the quotient structure.

3.3 PRACTICAL IMPLEMENTATIONS

Previous results describe how we can construct a diffusion process in the quotient space using the
coordinates in the total space. If we have a diffusion process on the total space, we can construct
the horizontal lift of its projection process, which has no vertical velocity along its trajectory and
the two processes are the same on quotient space. This fact implies that the vertical components of
the original diffusion process are not dispensable and enables us to design a more efficient training
and sampling algorithm of the diffusion model based on the quotient structure. In practice, we often
set the total space as the Euclidean space. Next, we show the training and sampling methods for the
special case pprior = N (0, I), and the general case is shown in Appx. E.

Training objective. The diffusion model on the total space M is trained by the objective Eq. (5).
Since the vertical components of the velocity are not strictly needed, we propose to supervise the
model only on the horizontal components and allow arbitrary vertical output of the model. We lever-
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age the horizontal projection operator Px (Thm. 4) and construct the horizontal training objective:
L(θ) := Ep(t)w(t)Ep(x1,xt)∥Pxt

(Dθ(xt, t)− x1) ∥2. (10)

We can see that Dθ + vV has the same loss value with Dθ, where vV is an arbitrary vertical vector.

ODE sampler. After the training stage, Pxt
(Dθ(xt, t)) is an approximation of the ground truth

denoiser in the horizontal subspace. For the ODE sampler, we simulate the horizontal lift of the
projected ODE, which is given by dxt

dt = Pxt
vθ(xt, t)dt, where vθ(xt, t) is given by Eq. (4). In

practice, the ODE process is approximated by numerical solvers.

SDE sampler. For the stochastic sampler, the we need to simulate the horizontal lift of the projected
original SDE in Eq. (3). According to Thm. 1 and Thm. 4, the lifted process is given by

dxt = Pxt (vθ(xt, t) + gtsθ(xt, t)) dt+ γηth(xt)dt+
√
2γηtPxtdwt,

where sθ(xt, t) = −xt−βtDθ(xt,t)
α̂2

t
and we introduce the hyperparameter γ for protein generation

following Geffner et al. (2025). The details are summarized in Algorithm 1 and 3.

3.4 ANALYSIS ON EXISTING TREATMENTS FOR SYMMETRY

In this section, we make a detailed analysis on existing methods that handle symmetry, and verify the
conclusions in Table 1. In contrast to our quotient-space diffusion, we find that they either have not
fully leveraged the symmetry to reduce model-learning difficulty, or do not have a proper sampler.

Conventional equivariant diffusion models and data augmentation. A common treatment is by
assigning equal probability to equivalent objects, resulting in an invariant target distribution p(x1).
This can be implemented by augmenting data samples by applying randomly chosen group actions,
mimicking sampling from the invariant distribution, or using an invariant prior distribution and an
equivariant architecture securing Dθ(g · x, t) = g · Dθ(x, t). The training strategy is the same as
modeling a general distribution in the original space following Eq. (5), and the standard samplers
by Eqs. (2, 3) remain valid. For each value of xt, this objective asks the model to minimize the
average of ∥Dθ(xt, t)− x1∥2 terms where x1 come from p(x1|xt), so the optimal solution is the
conditional expectation E[x1|xt].

Fig. 3 shows an example and reveals characteristics of the training strategy. The example considers
generating the structure of a diatomic molecule, where the target distribution p(x1) concentrates on
a single structure x⋆ up to a uniform random orientation (Left). For a given xt, samples of p(x1|xt)
are x⋆ structures posed in orientations distributed around the orientation of xt (Middle). Indeed, an
x1 sample more closely oriented with xt would have a higher probability to produce the given xt in
the diffusion process, so there is a specific orientation correspondence between the learning target
E[x1|xt] and xt. So the model is still asked to learn a correspondence in the equivalent degrees
of freedom (DOFs) (i.e., rotation of the output), in contrast to the quotient-space case in Eq. (10)
where the model is unconstrained in the vertical space (i.e., tangent space of the rotation group).
Moreover, the x1 samples are not all posed in the orientation of xt because x⋆ in other orientations
can also generate this xt through the diffusion process. So the model learns the correspondence in
the equivalent DOFs from samples with a variance, leading to another aspect of learning difficulty.

GeoDiff alignment. To reduce the learning difficulty, some heuristic treatments are proposed based
on alignment. The first representative alignment used in GeoDiff (Xu et al., 2022) uses the following
training loss: Ep(x1,xt)∥Dθ(xt, t)−Axt

(x1)∥2, where the alignment operation is defined as:

Ay(x) := argminx′∈{g·x|g∈G} d(x
′,y), (11)

where d(·, ·) is the distance metric on M. With an illustration in Fig. 3(Right), the learning task can
be understood as that for a given value of xt, the model output needs to fit Axt

(x1) samples, which
are all posed in the orientation of xt, and they all coincide with the x⋆ structure in the orientation
of xt. This supervises the model to the target E[Axt

(x1)|xt] from samples with no variance in the
equivalent DOFs (i.e., rotation of the output), hence reduces certain learning difficulty. Nevertheless,
this target still requires the model to learn a specific mapping in the equivalent DOFs, hence does
not enjoy the learning advantage in the quotient-space case that relaxes the learning in the DOFs.

A caveat of this alignment approach is that a proper sampler needs to be developed, as the con-
ventional samplers still require a model targeting E[x1|xt], which is different from E[Axt

(x1)|xt].

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of denoising-model learning target using conventional training and using
GeoDiff alignment. (Left) The example considers the structure distribution p(x1) of a diatomic
molecule, which concentrates on a single structure x⋆ up to a uniform random orientation. (Middle)
Given an xt sample, the corresponding x1 samples distribute with a variance, and their expectation
E[x1|xt] is the conventional learning target, which is not equivalent to x⋆ (the bond is shorter).
(Right) Given an xt sample, all the x1 samples after alignment coincide with x⋆ posed in the orien-
tation of xt, which is also the learning target of GeoDiff E[Axt

(x1)|xt].

Fig. 3 illustrates this difference: E[x1|xt] averages diversely oriented x⋆ structures, resulting in a
different shape than x⋆ (the bond is shorter), while E[Axt(x1)|xt] is just x⋆ in the orientation of xt.
AF3 alignment. Another alignment approach, which is used in Alphafold 3 (AF3) (Abramson et al.,
2024), aligns the x1 samples towards the model output: Ep(x1,xt)

∥∥Dθ(xt, t)−ADθ̄(xt,t)(x1)
∥∥2,

where θ̄ is treated constant in optimization. This loss function allows the model output to differ
by an arbitrary group action (e.g., rotation), hence removes the need to learn a specific target in the
equivalent DOFs. Indeed, for an arbitrary group action gxt,t, a new denoising model gxt,t ·Dθ(xt, t)
achieves the same loss since ∥gxt,t · Dθ(xt, t) − Agxt,t·Dθ̄(xt,t)(x1)∥2 = ∥gxt,t · Dθ(xt, t) −
gxt,t · ADθ̄(xt,t)(x1)∥2 = ∥Dθ(xt, t) − ADθ̄(xt,t)(x1)∥2, where the last equality holds since the
group preserves metric (Appx. C). Up to this DOF, the learning target is the same as GeoDiff’s
E[Axt(x1)|xt], since all the x1 samples are averaged after aligned with the same reference.

In the sampling process, the arbitrariness in the equivalent DOFs (e.g., orientation) of the learned
model Dθ(xt, t) leads to an arbitrariness3 in the vector field vθ(xt, t) through Eq. (4). Hence there is
no guarantee of recovering the target distribution using conventional samplers. This problem is also
noted by Boltz-1 (Wohlwend et al., 2025), which proposes to align the prediction Dθ(xt, t) towards
xt in the sampling process. As the AF3 target is the same as GeoDiff’s up to an arbitrary rotation,
this amounts to using the GeoDiff model for sampling, which still cannot guarantee producing the
target distribution as concluded above. These discussions are summarized in Table 1.

4 EXPERIMENTS

In this section, we study the empirical performance of our quotient-space diffusion model. We
carefully conduct several experiments covering different types of data, scales and scenarios. To
evaluate our quotient space diffusion model framework for real-world applications, we focus on the
molecule structure generation protein backbone design tasks, in which we consider the diffusion
models on R3N/SE(3) (Sec. 3.2). The details of all experiments are shown in Appx. G.

4.1 STRUCTURE GENERATION FOR SMALL MOLECULES

Datasets. First, we evaluate our framework on the molecule structure generation task. In this sce-
nario, our goal is to generate the 3D coordinates of a molecule given the graph structure of the
molecule. We conduct the experiments on the GEOM datasets (Axelrod & Gomez-Bombarelli,
2022), which provides structure ensembles generated by metadynamics in CREST (Pracht et al.,
2024) and we focus on the GEOM-QM9 and GEOM-DRUGS datasets. Following the data pro-
cessing and splits from (Hassan et al., 2024), we use the random splits with train/validation/test
of 243473/30433/1000 for GEOM-DRUGS and 106586/13323/1000 for GEOM-QM9. In addition,
data with disconnect molecule graph are removed for GEOM-DRUGS (Hassan et al., 2024).
Setting. We primarily follow the setting in (Hassan et al., 2024). We use an equivariant graph
transformer architecture from ET-Flow (Hassan et al., 2024) and set the Gaussian distribution as
prior distribution on GEOM-QM9 and use the harmonic prior for GEOM-DRUGS (Volk et al.,
2023). We fix the architecture as ET-Flow(SO(3)) for experiments on GEOM-QM9, and use the ET-

3This is not even an arbitrary group action (e.g., rotation) since xt does not vary together with the arbitrari-
ness of Dθ(xt, t).
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Table 3: Molecule structure generation results on GEOM-DRUGS (δ = 0.75Å). We use the ET-
Flow(SO(3)) and ET-Flow(O(3)) architecture. We use the same sampling steps of 50 NFEs for fair
comparison. Best results are marked in bold. Best results for the same architecture are underlined.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

GeoDiff 42.10 37.80 0.835 0.809 24.90 14.50 1.136 1.090
GeoMol 44.60 41.40 0.875 0.834 43.00 36.40 0.928 0.841
Torsional Diff. 72.70 80.00 0.582 0.565 55.20 56.90 0.778 0.729
MCF - S (13M) 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF - B (62M) 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF - L (242M) 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
ET-Flow (8.3M) 79.53 84.57 0.452 0.419 74.38 81.04 0.541 0.470
+ reproduction 78.94 84.24 0.489 0.472 66.24 70.42 0.651 0.595
+ Quotient-space diffusion 79.86 85.71 0.459 0.433 72.70 79.63 0.565 0.501
ET-Flow(SO(3)) (9.1M) 78.18 83.33 0.480 0.459 67.27 71.15 0.637 0.567
+ reproduction 74.91 80.90 0.541 0.515 60.33 62.71 0.724 0.665
+ Geodiff alignment 75.11 80.74 0.545 0.526 59.58 60.48 0.734 0.678
+ AF3 alignment 71.66 76.09 0.572 0.570 52.21 50.00 0.828 0.793
+ Quotient-space diffusion 78.50 84.20 0.477 0.455 67.35 71.42 0.635 0.563

Flow(O(3)), ET-Flow(SO(3)) architecture on the GEOM-DRUGS dataset. Following (Jing et al.,
2022; Xu et al., 2022), we report the RMSD-based metrics, e.g. Coverage and Average Minimum
RMSD (AMR) between the generated and ground truth structure ensembles.

Table 2: Molecule structure generation results on GEOM-
QM9 (δ = 0.5Å). We use the ET-Flow(SO(3)) architecture.
We use the same sampling steps of 50 NFEs for fair com-
parison.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

CGCF 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
GeoDiff 76.50 100.00 0.297 0.229 50.00 33.50 1.524 0.510
GeoMol 91.50 100.00 0.225 0.193 87.60 100.00 0.270 0.241
Torsional Diff. 92.80 100.00 0.178 0.147 92.70 100.00 0.221 0.195
MCF 95.0 100.00 0.103 0.044 93.7 100.00 0.119 0.055
ET-Flow(SO(3)) 95.98 100.00 0.076 0.030 92.10 100.00 0.110 0.047
+ Geodiff alignment 95.71 100.00 0.085 0.040 95.20 100.00 0.098 0.050
+ AF3 alignment 92.67 100.00 0.131 0.070 84.38 100.00 0.205 0.146
+ Quotient-space diffusion 96.40 100.00 0.069 0.024 93.30 100.00 0.096 0.036

Results. The results are presented
in Table 2 and Table 3 for the
GEOM-QM9 and GEOM-DRUGS
datasets, respectively. As shown,
our proposed quotient-space diffu-
sion framework consistently outper-
forms prior methods and alignment
techniques in terms of generation
quality on both datasets. Our frame-
work reduces learning difficulty by
removing redundant components, en-
abling us to further improve the per-
formance of the ET-Flow framework4

on both datasets. On the GEOM-
QM9 dataset, our quotient-space diffusion model framework surpasses strong baselines such as
MCF (Wang et al., 2023) and the ET-Flow framework with other heuristic alignment methods among
most of the RMSD-based metrics. On the GEOM-DRUGS dataset, our framework not only signif-
icantly surpasses the ET-Flow baseline with heuristic alignment methods, since these methods are
incompatible with training, but also achieves competitive performance against the larger MCF-L
(242M) model (Wang et al., 2023) on the Precision metrics.

4.2 PROTEIN BACKBONE DESIGN

Setting. To demonstrate the advantage of our quotient-space diffusion model for larger and more
relevant molecules, we perform a comparative analysis on the task of protein structure generation
against the state-of-the-art Proteı́na model (Geffner et al., 2025). We select their most efficient
variant Msmall

FS , a 60M parameter transformer trained on the Foldseek AFDB clusters (DFS) that
forgoes triangle layers and pair representation updates, as a strong and relevant baseline. We train
the quotient-space diffusion model from scratch using the identical architecture on the identical
dataset. For evaluation, both our model and the officially released Proteı́na checkpoint are sampled
using 400 steps with self-conditioning. We explore the designability-diversity trade-off by testing

4We reproduce the results using the released configurations: https://github.com/
shenoynikhil/ETFlow. Due to changes in the data processing pipeline, our reproduced results do
not exactly match those reported in the original paper.
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Table 4: Performance comparison of the most efficient Proteı́na model against other baselines. The
Proteı́na model is evaluated in two settings: sampling in the standard Euclidean space (R3N ) and
in our proposed quotient space (R3N/SE(3)) for both ODE and SDE sampling. Best results are
marked in bold.

Model Designability(%)↑ FPSD vs. fS fJSD vs.

PDB↓ AFDB↓ (C/A/T)↑ PDB↓ AFDB↓
FrameDiff 65.4 194.2 258.1 2.46/5.78/23.35 1.04 1.42
FoldFlow (base) 96.6 601.5 566.2 1.06/1.79/9.72 3.18 3.10
FoldFlow (stoc.) 97.0 543.6 520.4 1.21/2.09/11.59 3.69 2.71
FoldFlow (OT) 97.2 431.4 414.1 1.35/3.10/13.62 2.90 2.32
FrameFlow 88.6 129.9 159.9 2.52/5.88/27.00 0.68 0.91
ESM3 22.0 933.9 855.4 3.19/6.71/17.73 1.53 0.98
Chroma 74.8 189.0 184.1 2.34/4.95/18.15 1.00 1.08
RFDiffusion 94.4 253.7 252.4 2.25/5.06/19.83 1.21 1.13
Proteus 94.2 225.7 226.2 2.26/5.46/16.22 1.41 1.37
Genie2 95.2 350.0 313.8 1.55/3.66/11.65 2.21 1.70

SDE Sampling
Proteı́na Msmall

FS , γ = 0.35 96.0 386.5 378.2 1.77/4.97/17.78 2.17 1.73
+ Quotient-space diffusion 97.6 274.7 277.1 2.24/6.69/20.99 1.68 1.55
Proteı́na Msmall

FS , γ = 0.45 92.2 332.9 320.4 1.83/5.01/20.22 1.93 1.49
+ Quotient-space diffusion 92.6 244.5 246.3 2.24/6.68/23.47 1.43 1.28
Proteı́na Msmall

FS , γ = 0.50 89.2 306.2 290.8 1.86/4.92/21.15 1.81 1.36
+ Quotient-space diffusion 90.2 228.0 228.7 2.25/6.59/25.24 1.32 1.17

ODE Sampling
Proteı́na MFS 19.6 85.4 21.4 2.51/5.65/27.35 0.59 0.09
Proteı́na Msmall

FS 13.8 83.2 21.9 2.45/5.63/31.76 0.58 0.12
+ AF3 alignment 3.8 229.0 82.4 2.18/4.30/14.28 1.35 0.36
+ Quotient-space diffusion 15.6 69.9 17.6 2.57/6.40/32.14 0.41 0.11

a range of noise scales, γ ∈ {0.35, 0.45, 0.5}5. To faithfully evaluate the distributional metrics
proposed in (Geffner et al., 2025), we utilize ODE sampling.
Results. The results in Table 4 highlight the superiority of our quotient space framework, which,
unlike alignment-based strategies (adapted from AF3 and Boltz-1), provides a theoretical guarantee
for sampling the correct target distribution. The alignment-based methods fail to recover this distri-
bution, with performance metrics falling short of even data-augmented, semi-equivariant baselines.
We attribute this failure to a fundamental incompatibility between their samplers and the learned
density. Furthermore, our formulation effectively reduces learning difficulty by removing redundant
spatial transformations, enabling the model to capture key structural features more efficiently than
standard semi-equivariant baselines. This advantage of efficiency leads to significant results: our
60M parameter model not only surpasses its direct baseline across both SDE at all noise scales and
ODE sampling setting, but also outperforms the much larger 200M MFS model on most key distri-
butional metrics. This provides compelling evidence that a quotient space framework ensuring both
sampling fidelity and learning efficiency is key to advancing generative protein models.

5 CONCLUSION

In this work, we formally construct a framework for building diffusion models on the quotient space
over a group, in hope for a principled approach to handle symmetry in a generative task. We ex-
plicitly give the expression of the diffusion process on the quotient space, then also construct a
corresponding diffusion process in the original space for easier implementation. The resulting train-
ing algorithm reduces learning difficulty by removing the need to predict the tangent vector in the
direction along group action, and the resulting sampling process guarantees producing the target
distribution while removes the unnecessary movement in the group-action direction. We instantiate
the method in the case of R3N/SE(3) for molecular structure generation. Empirical results on struc-
ture sampling for small molecules from the GEOM-QM9 and GEOM-DRUGS datasets and protein
backbone generation demonstrate the better generation quality and design success rate over exist-
ing conventional equivariant diffusion models and alignment-based approaches given equal or fewer
training epochs, demonstrating the practical advantages from this principled framework to handling
symmetry in diffusion models.

5Due to a known bug in a previous version of Foldseek (Daras et al., 2025, Appendix B), our comparative
analysis in the main text is focused solely on the designability. More comprehensive metrics evaluating our
self-sampled structures are provided in Table 6.
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This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
sonal data, or sensitive demographic information. All experiments are conducted on publicly avail-
able benchmark datasets, which are widely used in the machine learning community. No new data
collection or human/animal experimentation was performed.

7 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our research, we provide comprehensive details throughout the
paper and its supplementary materials. We begin by establishing the necessary foundational knowl-
edge in Sec. 2.1 and Appx. B. For all theoretical claims and proofs presented in the main text, we
offer detailed step-by-step derivations in Appx. D. Our experiments are thoroughly documented; the
datasets, training procedures, and evaluation protocols are carefully described in Sec. 4 and Appx. G.
Upon acceptance of this paper, we commit to making our full codebase and all model checkpoints
publicly available to ensure that the community can fully reproduce our results.

8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, LLMs were employed as a writing assistant to refine the
language and improve the grammar. Furthermore, we utilized LLMs to assist in verifying our math-
ematical formulas for notational consistency. Following this process, all textual and mathematical
content was meticulously reviewed, revised, and validated by the authors, who assume full respon-
sibility for the final work presented.
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APPENDIX

The organization of the appendix are as follows. In Appx. A, we briefly discuss the related work
relevant to our research. In Appx. B, we review some background knowledge of Riemannian ge-
ometry and stochastic calculus on the manifold. In Appx. C, we give the details of the Riemannian
structures of the quotient space. In Appx. D, we give all the proofs of the theorems in the main text.
In Appx. E, we show our methods for the general case. In Appx. F, we give some additional results
and discussions. Finally, the details of the experiments are given in Appx. G.

A RELATED WORK

Diffusion models on Riemannian manifolds. As the quotient has the Riemannian manifold struc-
ture, several previous works construct the diffusion model on the Riemannian manifolds. De Bortoli
et al. (2022) constructs diffusion models using different overlapping local coordinate systems of the
manifold and requires geodesic random walk to simulate the forward process. Huang et al. (2022);
Chen & Lipman (2023) construct diffusion models in an embedding space which allows a global
representation but requires explicit geodesic formula of the manifold. Zhu et al. (2024) constructs
the reverse of kinetic Langevin dynamics on a Lie group to perform generative modeling. In this
framework, the Brownian motion term is added only on the tangent space of the Lie group, which is
trivialized as an Euclidean space. In our quotient space case, the specialty with a quotient structure
enables us to construct diffusion models using the coordinate systems of the total space without re-
lying on an embedding of the quotient in the total space (unnecessarily an embedding space), which
is more practical to implement yet still general.

Geometric diffusion models. To ensure physical symmetry in the generation process, a main-
stream strategy integrates fundamental physical constraints, such as SE(3) equivariance, directly
into the diffusion model’s architecture. This approach, pioneered by models like EDM (Hoogeboom
et al., 2022a), typically employs an EGNN to operate directly on atomic coordinates, using tech-
niques like zero center of mass adjustments to guarantee translational invariance. This foundational
concept was subsequently extended in several directions. For instance, the approach was adapted for
Diffusion Bridges in models like EDM-Bridge (Wu et al., 2022) and for diffusion in a latent space in
models like GeoLDM (Xu et al., 2023). These equivariant diffusion techniques have been success-
fully applied across a range of molecular tasks. For structure generation, models like GeoDiff (Xu
et al., 2022) predict 3D structures from molecular graphs. In molecular optimization, methods such
as DiffHopp (Torge et al., 2023) refine existing molecules to enhance desired properties. For de
novo design, a key advancement has been to combine discrete diffusion models (D3PM) (Austin
et al., 2021) for 2D topology with continuous equivariant diffusion for 3D geometry, enabling joint
generation as seen in models like DiffSBDD (Schneuing et al., 2024) and MUDiff (Hua et al., 2024).
A similar problem is also considered in crystalline structure generation, where the intrinsic periodic
translation symmetry is crucial for generative modeling. Lin et al. (2024) highlighted the intrinsic
periodic translation symmetry that has been omitted for a long time in the field of periodic crystalline
structure generation. The work designed a modified diffusion process that induces a transition ker-
nel that is invariant under periodic translation. The resulting optimization problem, while keeping
the simplicity of no data augmentation, leads to a learning target for the score model that is in-
variant under periodic translation. Cornet et al. (2025) proposes a novel method that generalizes
the Trivialized Diffusion Model framework for fractional coordinates to model the intrinsic peri-
odic translation symmetry using flat coordinates. The proposed method considers the process with
the velocity restricted to the mean-free linear subspace. Although considering different generation
tasks, both of these works have a similar motivation to reduce the learning difficulty of the model
using the intrinsic symmetry of the data distribution.

Learning with alignment To reduce learning difficulty, some heuristic treatments (learning with
alignment) have been proposed to reduce the degrees of freedom corresponding to the symmetry
group action. The alignment strategy used in GeoDiff (Xu et al., 2022) aligns the target structure
with the noisy input by finding an optimal rigid transformation that minimizes the distance between
them. Another approach, used in AlphaFold 3 (AF3) (Abramson et al., 2024), aligns the target
samples towards the model’s output. However, such alignment-based training frameworks can be
incompatible with the sampling process and lack a mathematical guarantee for recovering the correct
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target distribution. Boltz-1 (Wohlwend et al., 2025), an open-source version of AF3, in an attempt
to improve performance, introduces an input-alignment step as a sampling technique.

B BACKGROUND IN RIEMANNIAN GEOMETRY AND STOCHASTIC CALCULUS

B.1 RIEMANNIAN GEOMETRY

In this section, we review some background on differential geometry and Riemannian geometry. For
a systematic treatment of the subject, please refer to standard textbooks Lee (2003; 2018).

First, we give the formal definition of the smooth manifold. A manifold is a general topological
space that locally has a Euclidean structure.
Definition 5. An M -dimensional topological manifold is a topological space M such that:

• M is locally Euclidean, i.e. locally homeomorphic to RM . Formally, ∀p ∈ M, there exists
an open neighborhood p ∈ U ⊂ M that is homeomorphic to some open set V ⊂ M. We
call the homeomorphism ϕ : U → V ⊂ RM a coordinate system or a chart.

• M is a Hausdorff topological space.

• M has a countable basis for its topology.

A smooth manifold is a topological manifold with an additional smooth structure, which is defined
as follows.
Definition 6. A smooth structure on a M -dimensional topological space M is a collection of coor-
dinate systems C = {(Uα, ϕα) : α ∈ A} which satisfies the following properties:

• The collection C covers M:
⋃

α∈A Uα = M;

• For any α, β ∈ A, the transition function ϕα ◦ ϕ−1
β is a smooth map;

• C is a maximal collection, i.e. if (U , ϕ) is a coordinate system such that for all α ∈ A that
the maps ϕ ◦ ϕ−1

α and ϕα ◦ ϕ−1 are smooth, then (U , ϕ) ∈ C.

The pair (M, C) is called a smooth manifold of dimension M .

With the smooth structure, we can define a smooth function on the manifold and a smooth mapping
between smooth manifolds.
Definition 7. Let M,N be smooth manifolds with dimensions M,N respectively.

• A function f : M → R is called a smooth function if f ◦ ϕ−1 : ϕ−1(U) → R is smooth
on ϕ−1(U) ⊂ Rm for all smooth coordinate systems (U , ϕ) of M. Denote all the smooth
functions on M as C∞(M).

• A map Φ : M → N is called a smooth map if ψ ◦ Φ ◦ ϕ−1 : ϕ−1(U) → ψ(V) is smooth
for all smooth coordinate systems (U , ϕ) of M and (V, ψ).

A smooth map Φ : M → N which is invertible and whose inverse is smooth is called a diffeomor-
phism. In this case we say that M and N are diffeomorphic manifolds.

To define movement on a smooth manifold M, we need to define tangent vectors on the manifold.
Definition 8. Let M be a smooth manifold, and p ∈ M is a point. A linear map vp : C∞(M) → R
is called a derivative at p if it satisfies

vp(fg) = f(p)vp(g) + g(p)vp(f), ∀f, g ∈ C∞(M).

The set of all the derivations of C∞(M) in p, denoted by TpM, is a vector space called the tangent
space to M at p. An element of TpM is called a tangent vector at p.

The tangent bundle TM is the union of the tangent spaces of each points, i.e. TM :=⊔
p∈M TpM. Similar to the total derivative of the smooth map in Euclidean space, the differen-

tial of a smooth map between smooth manifolds is a linear map between tangent spaces.
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Definition 9. Let M,N be smooth manifolds and F : M → N be a smooth map. The differential
of F at p ∈ M, denoted by Fp∗ : TpM → TF (p)N , is defined as

Fp∗(vp)f = vp(f ◦ F ), ∀f ∈ C∞(N ),vp ∈ TpM.

A vector field v on a smooth manifold M is a correspondence that associates to each point p ∈ M
a vector vp ∈ TpM. The vector field is smooth if the mapping v : M → TM is smooth. Denote
all the smooth vector fields on M by X (M). With the definition of a vector field, we can define
the solution of ordinary differential equation (ODE) on the manifold. The idea is similar to the
definition in Euclidean space, the solution of the ODE is a curve whose velocity at each point is the
same as the vector field.
Definition 10. Let v be a smooth vector field on the smooth manifold M. An integral curve of v
is a differentiable curve γ : [0, T ] → M whose velocity at each point is equal to the value of v at
that point:

γ′(t) = vγ(t), ∀t ∈ [0, T ].

Let T ∗
pM be the dual space of TpM, which is called the cotangent space of M at p. The cotangent

bundle T ∗M is the union of the cotangent space of each points, i.e. T ∗M :=
⊔

p∈M T ∗
pM.

Definition 11. A 1-form Θ on smooth manifold M is a correspondence that associates to each point
p ∈ M a covector Θp ∈ T ∗

pM. The 1-form is smooth if the mapping Θ : M → T ∗M is smooth.

With the definition of a smooth manifold, we can define a continuous group with good properties.
Definition 12. A Lie group is a smooth manifold G that is also a group with the property that the
multiplication map G × G → G, (g, h) 7→ g · h and the inversion map G → G, g 7→ g−1 are both
smooth.

Define the left multiplication mapping Lg(h) = gh. A vector field v on G is said to be left-invariant
if it’s invariant under all left multiplications, i.e. (Lg∗)g′(vg′) = vgg′ .
Definition 13. A Lie algebra is a real vector space g endowed with a map called the bracket [·, ·] :
g× g → g that satisfies the following properties for all X,Y, Z ∈ g:

• Bilinearity: ∀a, b ∈ R,
[aX + bY, Z] = a[X,Z] + b[Y,Z], [Z, aX + bY ] = a[Z,X] + b[Z, Y ];

• Antisymmetry: [X,Y ] = −[Y,X];

• Jacobi Identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The Lie algebra of all smooth left-invariant vector fields on a Lie group G is called the Lie algebra
of G, which has the same dimension with G.
Example 14. The Lie algebra of the group SO(3), denoted by so(3), is given by all the 3-
dimensional antisymmetric matrices so(3) = {A ∈ R3×3|A+AT = 0}.

Smooth manifold is a topological structure. If we want to define the ”length of the velocity” and
distance between two points on the manifold, a metric on the tangent space is required. Such a metric
endows the metric with an additional geometry structure. The formal definitions are as follows.
Definition 15. A Riemannian metric on a smooth manifold is a correspondence which associates
to each point p of M an inner product ⟨·, ·⟩Mp that varies smoothly on M. In other words, for any

two smooth vector fields u,v, ⟨u,v⟩M is a smooth function on M. A smooth manifold with a given
Riemannian metric is called a Riemannian manifold.

To define the ”difference” between tangent space at different points, we need to introduce a concept
called affine connection.
Definition 16. An affine connection ∇ on a Riemannian manifold is a mapping

∇ : X (M)× X (M) → X (M)

which is denoted by (u,v) → ∇uv which satisfies the following properties:
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• ∇uv is linear over C∞(M) in u: ∀f1, f2 ∈ C∞(M) and u1,u2 ∈ X (M),
∇f1u1+f2u2

v = f1∇u1
v + f2∇u2

v;

• ∇uv is linear over R in v: ∀a1, a2 ∈ R and v1,v2 ∈ X (M),
∇u1

(a1v1 + a2v2) = a1∇uv1 + a2∇uv2;

• ∇ satisfies the following product rule: ∀f ∈ C∞(M),
∇u(fv) = f∇uv + (uf)v.

A connection is called the Levi-Civita connection if satisfies the following additional properties:

• ∇ is compatible with metric: ∇u⟨v1,v2⟩ = ⟨∇uv1,v2⟩+ ⟨v1,∇uv2⟩;

• ∇ is torsion-free: ∇uv −∇vu = u(v(·))− v(u(·)).

The Levi-Civita connection is the connection with nice properties. Its existence and uniqueness is a
fundamental result of Riemannian geometry.

Theorem 17. (Fundamental Theorem of Riemannian Geometry (Lee, 2018, Thm. 5.10)) Assume
(M, ⟨·, ·⟩M) is a Riemannian manifold. Then there exists a unique Levi-Civita connection.

As the end of this subsection, we introduce the Laplace-Beltrami operator on the manifold, which is
used to define the Wiener process on the manifold.

Definition 18. Let ∇ be the Levi-Civita connection on M. The Hessian of f ∈ C∞(M) is defined
by

Hess(f)(u,v) := v(u(f))− (∇vu)f, ∀u,v ∈ X (M).

The Laplace-Beltrami operator ∆M is defined as the trace of Hessian. In other words, ∆Mf :=∑M
i=1 Hess(ei, ei) where {e1, ..., eM} is some orthonormal basis for TxM.

B.2 STOCHASTIC CALCULUS ON A MANIFOLD

With the Riemannian structure defined in the previous section, we can consider the definition of
stochastic differential equations (SDE) and diffusion processes on the manifold. For a systematic
treatment of the subject, please refer to standard textbooks Hsu (2002); Thalmaier (2023). First, we
recall the definition of SDE and diffusion process in Euclidean space.

Definition 19. (Generator of a Process) The infinitesimal generator At of a stochastic process (xt)
for a function ϕ(x) is

Ltϕ(x) = lim
s→0+

E[ϕ(xt+s)|xt = x]− ϕ(x)

s
,

where ϕ is a suitably regular function. For an Itô process defined as the solution to the SDE dxt =
f(xt, t)dt+Σ(xt, t)dwt, the generator is

Lt =

d∑
i=1

f i(x, t)
∂

∂xi
+

1

2

d∑
i,j=1

(
Σ(xt, t)Σ(xt, t)

⊤)
i,j

∂2

∂xi∂xj
.

On the other hand, the diffusion process can also be defined by its generator.

Definition 20. A d-dimensional stochastic process xt with continuous sample path defined on a
probability space (Ω,F ,P) is called a diffusion process generated by a smooth second-order elliptic
operator Lt if the following hold: ∀f ∈ C∞(Rd), the process

Mf
t = f(xt)− f(x0)−

∫ t

0

Lsf(xs) ds

is a Ft-martingale.

To generalize the definition of SDE to a Riemannian manifold M, we need to define the second-
order differential operator on the manifold. Let M be an M -dimensional Riemannian manifold. A
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second order partial differential operator (PDO) on M is of the form

L = v0 +

r∑
i=1

v2
i , where vi ∈ X (M), r ∈ N+.

The square of a vector field is understand by the decomposition of derivatives, i.e.
v2
i (f) = vi(vi(f)), ∀f ∈ C∞(M).

v can also be generalized to a time-dependent vector field. Now we can define the diffusion process
on the manifold.

Definition 21. (Thalmaier, 2023, Def. 1.1.3) Let (Ω,F ,P; (F)t≥0) be a probability space equipped
with increasing sequence of sub-σ-algebra Fy ⊂ F . An adapted continuous process xt taking
values in M, is called Lt-diffusion if for all test functions f ∈ C∞

c (M), the process

Nf
t := f(xt)− f(x0)−

∫ t

0

(Lsf)(xs)ds, t ≥ 0,

is a martingale, i.e. E[Nf
t −Nf

s | Fs] = 0, ∀s ≤ t.

For a special case, we can define the Wiener process on the Riemannian manifold M.

Definition 22. A Wiener process wt on M is a diffusion process with generator 1
2∆

M, where ∆M

is the Laplace-Beltrami operator of M, i.e. wt is a continuous stochastic process on M such that
for any f ∈ C∞(M),

f(xt)−
1

2

∫ t

0

∆Mf(wt)ds, 0 ≤ t < e,

is a local martingale, where e is the lifetime of wt on M.

For stochastic differential geometry, the Stratonovitch integral is more useful than the Itô Integral,
because it satisfies the ordinary chain rule of calculus. This property enables a clear correspondence
between the diffusion process under a diffeomorphism between Riemannian manifolds. Next, we
give the definition of the Stratonovitch integral on the Euclidean space and its generalization to
Riemannian manifolds.

Definition 23. For continuous real-valued semimartingales x and y, let x ◦ y := xdy + 1
2d[x,y]

be the Stratonovitch differential. Here xdy is the usual Itô differential and d[x,y] = dxdy is the
quadratic covariation of x and y. The integral∫ t

0

x ◦ y =

∫ t

0

xdy +
1

2
[x,y]t

is called Stratonovitch integral of x with respect to y. The Stratonovitch integral satisfies the fol-
lowing properties:

• Associativity: x ◦ (y ◦ dz) = (xy) ◦ dz;

• Product rule: d(xy) = x ◦ dy + y ◦ dx.

Proposition 24. (Itô-Stratonovitch formula (Thalmaier, 2023, Prop. 1.2.10)). Let x be a continuous
Rd-valued semimartingale and f ∈ C∞(Rd). Then ⟨∇f(x), ◦dx⟩.

Proposition 25. (Thalmaier, 2023, Prop. 1.2.11) Solutions to the Stratonovitch SDE

dxt = b(xt, t)dt+Σ(xt, t) ◦ dwt

define Lt-diffusions for the operator

Lt = v0 +
1

2

d∑
i=1

v2
i , where v0 =

d∑
i=1

bi ∂

∂xi
, vk =

d∑
i=1

Σik
∂

∂xi
.

Now we can generalize the definition of SDE to the Riemannian manifold case. A SDE on manifold
M is defined by vector fields v0,v1, ...,vd on M. Let w be the Rd-valued Wiener process and
x0 be a M-valued random variable serving as the initial value of the solution. The equation is

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

symbolically written as

dxt = v0(xt, t)dt+

d∑
i=1

vi(xt, t) ◦ dwi(t). (12)

Definition 26. An M-valued semimartingale x defined up to a stopping time τ is a solution of SDE
Eq. (12) up to τ if for all f ∈ C∞(M),

f(xt) = f(x0) +

∫ t

0

(
v0(f)(xs, s)ds+

d∑
i=1

vi(f)(xs, s) ◦ dxi

)
, 0 ≤ t < τ.

Proposition 27. (Thalmaier, 2023, Cor. 1.2.19) Let Lt = v0 +
1
2

∑d
i=1 v

2
i , and xt be the solution

of SDE Eq. (12). Then for all f ∈ C∞(M),

Nf
t := f(xt)− f(x0)−

∫ t

0

(Lsf)(xs)ds, t ≥ 0,

is a martingale. In other words, the solution of SDE Eq. (12) is a Lt diffusion to the operator
Lt = v0 +

1
2

∑d
i=1 v

2
i .

C CONSTRUCTION OF QUOTIENT SPACE

In this section, we give the rigorous construction of the quotient space and endow it with the man-
ifold structure. Please refer to the standard textbooks Lee (2018) for the systematic treatments.
Assume that the total space M is a Riemannian manifold and G is a compact Lie group. First we
give the formal definition of the group action.
Definition 28. Let G be a group and M is a Riemannian manifold. A left action of G on M is a map
G×M → M, (g,x) 7→ g ·x, satisfying g1 ·(g2 ·x) = (g1g2)·x and id·x = x,∀g1, g2 ∈ G,x ∈ M.
An action is smooth if its defining map G ×M → M is smooth.
Definition 29. A smooth action is said to be free if g · x = x for some g ∈ G,x ∈ M, then
g = e. A smooth action is said to be proper if the map G × M → M × M, (g,x) 7→ (g · x,x)
is a proper map, meaning that the preimage of every compact set is compact. The action is said to
be an isometric action if the map Lg : M → M,x 7→ g · x is an isometry for any g ∈ G, i.e.
⟨u,v⟩x = ⟨Lg∗u, Lg∗v⟩g·x.

The proper property is a technical assumption to ensure the topological structure of the quotient
space. The following technical characterization is usually the easiest way to prove that a given
action is proper.
Proposition 30. (Lee, 2018, Prop. C.15) Assume G is a Lie group acting smoothly on the smooth
manifold M. The action is proper if and only if the following condition is satisfied: if (pi) is
a sequence in M and (gi) is a sequence in G such that both (pi) and (gi · pi) converge, then a
subsequence of (gi) converges. Thus every smooth action by a compact Lie group on a smooth
manifold is proper.

We define a equivalence relation ∼ on M by x1 ∼ x2 if and only if ∃g ∈ G,x1 = g · x2. The
quotient space Q := M/ ∼ is defined as the set of equivalence classes under the relation ∼. The
quotient space inherits the Riemannian structure of the total space under certain conditions.
Theorem 31. (Lee, 2018, Cor. 2.29) Let M be a Riemmanian manifold, and G is a Lie group acting
smoothly, freely, properly, and isometrically on M. Then the orbit M/G has a unique smooth
manifold structure and Riemannian metric such that π is a Riemannian submersion.

With the Riemannian submersion structure, we can define two subspaces of the tangent space TxM
as follows. The vertical tangent space Vx := Ker π∗x, and the horizontal tangent space is its
orthogonal complement Hx := (Kerπ∗x)

⊥. A vector field on M is said to be a horizontal vector
field if its value at each point lies in the horizontal subspace at that point, a vertical vector field is
defined similarly.
Definition 32. Given a vector field v on Q, a vector field u on M is called a horizontal lift of
v if u is a horizontal vector field and u is π-related to v, where the latter property means that
π∗xux = vπ(x).
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The horizontal lift is unique and always exists. We summarized the properties of horizontal vector
fields in the following proposition.

Proposition 33. (Lee, 2018, Prop. 2.25) Assume π : M → Q is a smooth submersion, then we
have:

• Every smooth vector field u on M can be expressed uniquely in the form u = uH + vV ,
where uH is horizontal and uV is vertical and both uH and uV are smooth;

• Every smooth vector field on Q has a unique smooth horizontal lift to M.

• For every x ∈ M and v ∈ Hx, there is a vector field u ∈ X (Q) whose horizontal lift ũ
satisfies ũx = v.

According to the first property of Prop. 33 we can define the horizontal projection within TxM itself:
Px(v) := vH and P is a smooth mapping. The result of Thm. 31 shows that π is a Riemannian
submersion, i.e. the Riemannian metric of Q can be pulled back from total space M using π−1

∗x |H,
i.e. ⟨u1,u2⟩Qy :=

〈
π−1
∗x |H(u1), π

−1
∗x |H(u2)

〉M
x

, which is the same for any x ∈ π−1(y) (due to the
isometry property of the group action).

Proposition 34. (Lee, 2018, Exercise. 5.6) Let ∇M and ∇Q denote the Levi-Civita connection of
M,Q respectively. Then for any u,v ∈ Q, let ũ, ṽ be the horizontal lift of u,v. Then we have

∇̃Q
u v = (∇M

ũ ṽ)H.

For a concrete example, we consider the example of shape space, i.e. the total space R3n with the
SE(3) symmetry. Let

x = (x(1),x(2), · · · ,x(N)) ∈ R3N , with x(i) ∈ R3,

denote a configuration (or point cloud) ofN points in R3. Since the translation group is not compact
thus there does not exist a probability distribution that is translation invariant. To solve this issue,
we first let M̄ be the center of mass subspace (COM) and consider the SO(3) action on it. Formally,
let M̄ := {x ∈ R3n | 1

N

∑N
i=1 xi = 0}. M is a linear subspace of R3n, so obviously it is a

Riemmannian manifold. We endow M̄ with the standard inner product of R3n. An element of the
SO(3) group is given by a 3-dimensional rotation matrix g ∈ R3×3. The natural action of g on x is
defined as g ·x =

(
gx(1), gx(2), · · · , gx(N)

)
, i.e. the rotation is acted on each point of the system.

Unfortunately, SO(3) does not act freely on M̄ in some degenerate cases, e.g. all the coordinates
of the points are in a straight line. So we define the subset D ⊂ M̄ that SE(3) does not have free
action on it. M̄\D is a smooth manifold as D is a low dimensional subspace of M̄. Now SO(3)
acts freely and smoothly on M := M̄\D, and it’s obvious that the SE(3) action is isometric in
the Euclidean space. Since SO(3) is a compact group, by Prop. 30, the action is proper and we
have checked that the action is smooth, proper, isometric and free. Then by Thm. 31, the quotient
space Q := M/SO(3) is a Riemannian manifold and the projection π : M → Q is a Riemannian
submersion. Again, we denote π : M → Q as the projection operator, π(x) = [x], where [x] ∈ Q
is the equivalent class that x ∈ M belongs to.

Since M is a Riemannian manifold with standard Euclidean inner product, we can uniquely decom-
pose the tangent space of M as the orthogonal direct sum of the horizontal subspace and the vertical
subspace, i.e. TxM = Vx⊕Hx. The vertical space Vx := Kerπ∗x captures the infinitesimal move-
ment of the group action, which is defined by the Lie algebra of the Lie group G (Appx. B). For
G = SO(3), the Lie algebra so(3) is given by the antisymmetric matrices in R3×3. So the vertical
tangent space is given by:

Vx = {(Ax(1), Ax(2), · · · , Ax(N)) | A ∈ so(3)}.
The horizontal space, which is the orthogonal complement of the vertical space, is given by

Hx =
{
v = (v(1), · · · ,v(N)) ∈ R3N :

∑N

i=1
x(i) × v(i) = 0

}
,

where “×” denotes the cross product on R3.
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For any tangent vector u ∈ T[x]Q, there is a unique horizontal lift of it given by û = π−1
∗x |H(u).

Then we can define the Riemannian metric on the quotient space using the inner product on R3n and
the horizontal lift: ⟨u,v⟩Q[x] := ⟨û, v̂⟩R

3n

x ,∀u,v ∈ T[x]Q.

Let xt be a diffusion process on M = M̄\D, we can still view it as a process on the Euclidean space
R3n with a slight modification. We can define a stopping time τD = inf{t ∈ [0,∞] | xt ∈ D},
which is the first time point that xt hit the ”boundary”. Define

xτ =

{
xt, if t ≤ τ,

0, if t ≥ τ.

Then xτ is also a diffusion process with the same generator, however, xτ stops at the boundary.

D PROOFS

D.1 PROOF OF THEOREM 1

Theorem 35. Assume {xt}t∈[0,T ] is a diffusion process on M, specified by the following SDE:

dxt = bt(xt) dt+ σt dwt, x0 ∼ pprior, (13)
where bt is a G-equivariant time-dependent vector field on M, wt is the Wiener process on M
that is also G-invariant, and pprior is a G-invariant distribution. Then the projected process {yt :=
π(xt)}t∈[0,T ] onto the quotient space Q := M/G is the solution to the following SDE:

dyt =

(
(π∗bt)(yt)−

σ2
t

2
h(yt)

)
dt+ σt dωt, y0 ∼ π#pprior, (14)

where π∗bt is the pushed-forward vector field of bt induced by π, h(yt) := π∗(
∑M

i=M−G+1 ∇ei
ei)

is the mean curvature vector at yt ({ei} is a local orthonormal basis of TxtM and Vx =
span{eM−G+1, · · · , eM}), ωt is the Wiener process on Q, and π#pprior is the pushed-forward
distribution of pprior (i.e., y0 = π(x0) where x0 ∼ pprior).

Proof. As xt is a diffusion process on M given by the the SDE dxt = bt(xt) dt + σt dwt, by
Prop. 27, xt is a Lt-diffusion and the generator is

Lt = bt +
σ2
t

2
∆M.

Assume e1, ..., eM is a local orthonormal basis of M and Hx = span{e1, · · · , eM−G}, Vx =
span{eM−G+1, · · · , eM}. Then by the Riemannian submersion construction of π : M → Q (see
Appx. C), {ẽi := π∗ei}i=1,2,...,M−G is a local orthonormal basis of Q. Let ∇M and ∇Q be the
Levi-Civita connection on M,Q, respectively. Using the local expression of the Laplace-Beltrami
operator (Def. 18), the generator is given by

Lt = bt +
σ2
t

2
∆M

= bt +
σ2
t

2

M∑
i=1

(ei(ei)−∇M
ei
ei)

=

(
bt −

σ2
t

2

M∑
i=1

∇M
ei
ei

)
+
σ2
t

2

M∑
i=1

e2i .

Then the process is the solution of the Stratonovitch SDE

dxt = v0(xt, t)dt+

M∑
i=1

vi(xt, t) ◦ dwi, where v0 = bt −
σ2
t

2

M∑
i=1

∇M
ei
ei, vi = σtei.

By Def. 26, for all f ∈ C∞(M),

f(xt) = f(x0) +

∫ t

0

(
v0(f)(xs, s)ds+

d∑
i=1

vi(f)(xs, s) ◦ dxi

)
.
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Let f̃ ∈ C∞(Q), then f = f̃ ◦ π ∈ C∞(M), then

f(xt) = f̃(π(xt))

= f̃(π(x0)) +

∫ t

0

(
v0(f̃ ◦ π)(xs, s)ds+

d∑
i=1

vi(f̃ ◦ π)(xs, s) ◦ dxi

)

= f̃(π(x0)) +

∫ t

0

(
(π∗v0)(f̃)(π(xs), s)ds+

d∑
i=1

(π∗vi)(f̃)(π(xs), s) ◦ dxi

)
, by Def. 9.

Since f̃ is arbitrary, by Def. 26, yt := π(xt) is the solution of

dyt = π∗v0(yt, t)dt+

M∑
i=1

π∗vi(yt, t) ◦ dwi.

We first need to check that the projected vector field is well defined. In fact, we only need to check
that π∗b is well defined. Since b is G-equivariant, then for any g ∈ G, g∗bt(x) = bt(g · x).
Then π∗(bt(g · x)) = π∗(g∗bt(x)) = (π ◦ g)∗(bt(x)), where we use the chain rule of differential
calculus in the last step. Thus π∗(bt(x)) is the same in the fiber x ∈ π−1(π(x)), which implies that
the projected vector field is well defined.

Next, we calculate the expression of the projected vector field. Since Hx = span{e1, · · · , eM−G},
Vx = span{eM−G+1, · · · , eM}, we have

π∗ei =

{
ẽi, if i ≤M −G,

0, if i ≥M −G+ 1,

and π∗vi = σtπ∗ei. For the drift term, using Prop. 34, we have

π∗v0(x, t) = π∗bt(x)−
σ2
t

2

M∑
i=1

π∗(∇M
ei
ei)

= π∗bt(x)−
σ2
t

2

M−G∑
i=1

π∗(∇M
ei
ei)−

σ2
t

2

M∑
i=M−G+1

π∗(∇M
ei
ei)

= π∗bt(x)−
σ2
t

2

M−G∑
i=1

∇Q
ẽi
ẽi −

σ2
t

2

M∑
i=M−G+1

π∗(∇M
ei
ei)

= π∗bt(x)−
σ2
t

2

M−G∑
i=1

∇Q
ẽi
ẽi −

σ2
t

2
h(x).

So the generator of the process yt is

L̃s = π∗bt −
σ2
t

2

M−G∑
i=1

∇Q
ẽi
ẽi −

σ2
t

2
h+

σ2
t

2

M−G∑
i=1

ẽ2i

=

(
π∗bt −

σ2
t

2
h

)
+
σ2
t

2

(
M−G∑
i=1

ẽ2i −
M−G∑
i=1

∇Q
ẽi
ẽi

)

=

(
π∗bt −

σ2
t

2
h

)
+
σ2
t

2
∆Q.

Then we can conclude that the projected process yt := π(xt) is the solution of the following SDE

dyt =

(
(π∗bt)(yt)−

σ2
t

2
h(yt)

)
dt+ σt dωt,

where π∗bt is the push-forward vector field, h(yt) is the mean curvature vector at yt and ωt is the
standard Wiener process on the quotient space Q.
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D.2 PROOF OF THEOREM 2

In Def. 32, we define the horizontal lift of a vector field that generates a deterministic flow. In fact,
for a stochastic process on Q, we can define the horizontal lift for it similarly. First, we need to
define the stochastic line integral, which is the integration of a one-form along the trajectory of a
stochastic process.

Definition 36. (Hsu, 2002, Prop. 2.4.2) Let Θ be a 1-form (Def. 11) on M and xt the solution of
the equation

dxt = v0(xt, t)dt+

d∑
i=1

vi(xt, t) ◦ dwi(t).

Then ∫
x[0,t]

Θ =

∫ t

0

d∑
i=0

Θ(vi)(xs) ◦ dwi(s).

Definition 37. (Baudoin et al., 2024, Def. 3.1.9) A semimartingale xt on M is called horizontal if
for every 1-form Θ on M whose kernel contains the horizontal space H, one has

∫
x[0,t]

Θ = 0, ∀t ≥
0. Let yt be a semimartingale on Q such that y0 is a point of Q. Let x0 ∈ π−1(y0). Then there exists
a unique horizontal semimartingale xt on M such that xt starts from x0 and π(xt) = yt,∀t ≥ 0.
xt is called the horizontal lift of yt at x0.

Theorem 38. The horizontal lift of Eq. (14) has the following explicit expression:

dx̃t =

(
Px̃t

(bt(x̃t))−
σ2
t

2
h̃(x̃t)

)
dt+ σtdw̃t, x̃0 ∼ pprior, (15)

where Px(v) = vH is the horizontal projection on the tangent space of M, h̃ is the horizontal lift
of the mean curvature vector, w̃t is the horizontal lift of the Wiener process on Q.

Proof. We only need to check the definition of the horizontal lift (Def. 37). Again, as-
sume e1, ..., eM is a local orthonormal basis of M and Hx = span{e1, · · · , eM−G}, Vx =
span{eM−G+1, · · · , eM}. Then by the Riemannian submersion construction of π : M → Q (see
Appx. C), {ẽi := π∗ei}i=1,2,...,M−G is a local orthonormal basis of Q. Let ∇M and ∇Q be the
Levi-Civita connection on M,Q, respectively.

Now we calculate the generator of the SDE in Eq. (15):

L̃t =

(
Pbt −

σ2
t

2
h̃

)
+
σ2
t

2

M∑
i=1

P (ei)
2 − P∇M

ei ei (16)

=

(
bH
t − σ2

t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

e2i − (∇M
ei ei)

H.

Its projection under π∗ is given by

Lt =

(
π∗bt −

σ2
t

2
h

)
+

M−G∑
i=1

ẽ2i − (∇M
ẽi ẽi)

H,

which is the generator of Eq. (14). So we have π(x̃t) = yt defined in Eq. (14).

For an 1-form Θ on M whose kernel contains the horizontal space H. From Eq. (16), x̃t is the
following SDE

dxt = v0(xt, t)dt+

M∑
i=1

vi(xt, t) ◦ dwi,

where v0 =

(
bH
t − σ2

t

2
h̃

)
− σ2

t

2

M−G∑
i=1

(∇M
ei ei)

H, vi = σtei.
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Then the line integral ∫
x̃[0,t]

Θ =

∫ t

0

M∑
i=0

Θ(vi)(x̃s) ◦ dwi(s) = 0,

since vi ∈ H, Θ(vi) = 0. So we can conclude that x̃t is the horizontal lift of yt.

Corollary 39. x̃1 (defined by Eq. (8)) has the same distribution on Q with x1 (defined by Eq. (13)).
When σt = 0, ∀x0 ∈ M, Eq. (8) has shorter trajectory length than Eq. (13):∫ 1

0

⟨Px̃t(bt(x̃t)), Px̃t(bt(x̃t))⟩Mdt ≤
∫ 1

0

⟨bt(xt),bt(xt))⟩Mdt.

Proof. By definition of horizontal lift, π(x̃t) = yt = π(xt),∀t ∈ [0, 1], then x̃1 (defined by
Eq. (8)) has the same distribution on Q with x1 (defined by Eq. (13)). Since π(x̃t) = π(xt), then
xt = gtx̃t, gt ∈ G. Then by the G-equivariant property of b, we have∫ 1

0

⟨bt(xt),bt(xt))⟩Mdt =

∫ 1

0

⟨bt(gtx̃t),bt(gtx̃t))⟩Mdt

=

∫ 1

0

⟨gt∗bt(x̃t),bt(gt∗x̃t))⟩Mdt

=

∫ 1

0

⟨bt(x̃t),bt(x̃t))⟩Mdt

=

∫ 1

0

(〈
bt(x̃t)

H,bt(x̃t)
H)
〉M

+
〈
bt(x̃t)

V ,bt(x̃t)
V)
〉M)

dt

≥
∫ 1

0

〈
bt(x̃t)

H,bt(x̃t)
H)
〉M

dt

=

∫ 1

0

⟨Px̃t(bt(x̃t)), Px̃t(bt(x̃t))⟩Mdt.

D.3 PROOF OF THEOREM 3

For the calculation of the mean curvature vector, we can embed the fiber π−1(y) into the total space
where y ∈ Q. Thus, we can define the embedding Φx : G → M by Φx(g) = g ·x. For x ∈ π−1(y)

the horizontal lift of mean curvature vector is defined by h̃(x) := (
∑M

i=M−G+1 ∇eiei)
H, where

{ei} is a local orthonormal basis of TxM and Vx = span{eM−G+1, · · · , eM}. The mean curvature
vector has a nice geometric relation to the volume of the fiber that helps us to calculate it.

Definition 40. Let Φ : G → M be an immersion. A smooth variation of Φ is a smooth mapping
F : P × (−ϵ, ϵ) → M satisfying:

• For any t ∈ (−ϵ, ϵ), Φt = F (·, t) is an immersion;

• Φ0 = F (·, 0) = Φ;

• Φt |∂G= Φ |∂G ,∀t ∈ (−ϵ, ϵ), where ∂G is the boundary of G.

Proposition 41. (First variation of volume (Chavel, 1995, Exercise. III.14)) The mean curvature
vector h̃(x) satisfies the following formula:

d

dt
|t=0 Vol(G) = −

∫
G

〈
h̃,v

〉
dVol(G),

where v = F∗(
∂
∂t ).

In local orthonormal frame {ēi} of G, the volume of G is defined by

Vol(G) :=
∫
G

√
det(G)dw1 ∧ · · · ∧ wG,
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where Gij = ⟨Φ∗ēi,Φ∗ēj⟩M, wi is the dual form of ei, i.e. wi(ēj) = 1 if i = j and wi(ēj) ̸= 1 if
i ̸= j.

Theorem 42. Assume xt is a diffusion process in the COM subspace M ⊂ R3n, given by the
following SDE:

dxt = bt(xt)dt+ σtdwt,

where bt(xt) is a SO(3)-equivariant vector field ∀t ∈ [0, T ], wt is the standard Wiener process on
COM. The horizontal lift of the process π(xt) is given by the following SDE:

dx̃t =

(
Px̃t

(bt(x̃t))−
σ2
t

2
h̃(x̃t)

)
dt+ σtPx̃t

dwt,

where the Px is the horizontal projection operator at x and h̃(x) is the horizontal lift of mean
curvature vector. The explicit expressions of P and h̃ are shown as follows:

Pxv = v − I−1

(
1

N

N∑
i=1

x(i) × v(i)

)
× x,∀v ∈ TxM

h̃(x) = −(tr(I−1)I − I−1)x, where I =

(
1

N

N∑
i=1

∥x(i)∥2I− 1

N

N∑
i=1

x(i)x(i)⊤
)
.

Proof. Again, assume e1, ..., eM is a local orthonormal basis of M and Hx =
span{e1, · · · , eM−G}, Vx = span{eM−G+1, · · · , eM}. Then by the Riemannian submersion con-
struction of π : M → Q (see Appx. C), {ẽi := π∗ei}i=1,2,...,M−G is a local orthonormal basis
of Q. Let ∇M and ∇Q be the Levi-Civita connection on M,Q, respectively. As shown in the
Appx. D.2, the horizontal lift of Eq. (8) has the generator

Lt =

(
bH
t − σ2

t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

e2i − (∇M
ei ei)

H.

By Prop. 34,
∑M−G

i=1 (∇M
ei ei)

V = 0, then

Lt =

(
bH
t − σ2

t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

e2i − (∇M
ei ei).

Since M is a Euclidean space, then ∇M
ei ei =

∑M
j=1 ei(e

j
i )∂j , where eji is the j-th component of ei

and ∂j = ∂/∂xj . Since bH
t (x) = Pxbt(x), then the generator becomes

Lt =

(
bH
t − σ2

t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

e2i − (∇M
ei ei)

=

(
Pbt −

σ2
t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

M∑
j,k=1

eji (∂je
k
i )∂k + ejie

k
i ∂j∂k − eji (∂je

k
i )∂k

=

(
Pbt −

σ2
t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

M∑
j,k=1

ejie
k
i ∂j∂k

=

(
Pbt −

σ2
t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

M∑
j,k=1

(P )jk∂j∂k

=

(
Pbt −

σ2
t

2
h̃

)
+
σ2
t

2

M−G∑
i=1

M∑
j,k=1

(PPT )jk∂j∂k,

where we use Px =
∑M−G

i=1 eie
T
i is a projection operator. Then Lt is the generator of

dx̃t =

(
Px̃t

(bt(x̃t))−
σ2
t

2
h̃(x̃t)

)
dt+ σtPx̃t

dwt.
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For the explicit calculation, recall that in this case, the tangent space TxM of M at x has the
following decomposition:

• The vertical tangent space Vx:

Vx = {(l× x(1), l× x(2), · · · , l× x(N)) | l× ∈ R3}.

• The horizontal space Hx, which is the orthogonal complement of the vertical space:

Hx =
{
v = (v(1), · · · ,v(N)) ∈ R3N :

N∑
i=1

x(i) × v(i) = 0
}
.

The horizontal projection mapping is defined by Px(v) = vH = v − vV ,∀v ∈ TxM, and we can
find an explicit form of it. By definition,

∑N
i=1 x

(i) × vH(i) = 0, then
N∑
i=1

x(i) × v(i) =

N∑
i=1

x(i) × vV(i).

Assume vV = (l× x(1), l× x(2), · · · , l× x(N)), then

1

N

N∑
i=1

x(i) × v(i) =
1

N

N∑
i=1

x(i) × vV(i)

=
1

N

N∑
i=1

x(i) × (l× x(i))

=
1

N

N∑
i=1

〈
x(i),x(i)

〉
l−
〈
x(i), l

〉
x(i)

=

(
1

N

N∑
i=1

∥x(i)∥2I− 1

N

N∑
i=1

x(i)x(i)⊤
)
l,

where we use the identity x(i) × (l× x(i)) =
〈
x(i),x(i)

〉
l−
〈
x(i), l

〉
x(i). Denote

I :=

(
1

N

N∑
i=1

∥x(i)∥2I− 1

N

N∑
i=1

x(i)x(i)⊤
)
.

And we have l = I−1( 1
N

∑N
i=1 x

(i) × v(i)), and

vV = (l× x(1), l× x(2), · · · , l× x(N))

= I−1

(
1

N

N∑
i=1

x(i) × v(i)

)
× x .

Then

Pxv = vH = v − I−1

(
1

N

N∑
i=1

x(i) × v(i)

)
× x,∀v ∈ TxM.

For the calculations of the mean curvature vector h̃, we can use Prop. 41. As G = SO(3), its local
frame (the norm of each vector us

√
2) is given by the following matrices:

ẽ1 =

[
0 0 0
0 0 −1
0 1 0

]
, ẽ2 =

[
0 0 1
0 0 0
−1 0 0

]
, ẽ3 =

[
0 −1 0
1 0 0
0 0 0

]
.

Then the Gram matrix G is defined by Gij := ⟨ẽix, ẽjx⟩. By direct calculations, we have G =
2NI. Then by Prop. 41,

h̃(x) = −∇ log
√
detG.
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Using Jacobi’s formula in matrix calculus, d log detG = tr(I−1dI). Then by

I :=
1

N

N∑
i=1

∥x(i)∥2I− 1

N

N∑
i=1

x(i)x(i)⊤,
∂I
∂x

(i)
j

=

(
1

N

N∑
i=1

2x
(i)
j I− 1

N

N∑
i=1

(δjx
(i)⊤ + x(i)δ⊤j )

)
,

where δj ∈ R3 is a one-hot vector at j. Then

tr(I−1 ∂I
∂x

(i)
j

) = 2 tr(I−1)x
(i)
j − 2δ⊤j I−1x

(i)
j .

Then we have

h̃(x) = −1

2
∇ log detG = −(tr(I−1)I − I−1)x.

E TRAINING AND SAMPLING METHOD IN GENERAL CASE

Training Objective The diffusion model on the total space M is trained by the denoising score
matching objective. Since the vertical components of the velocity are not strictly needed, we pro-
pose to supervise the model only on the horizontal components and allow arbitrary vertical output
of the model. Recall that the horizontal projection operator Px projects a vector to its horizontal
component, i.e. Px(v) = vH. Thus the improved training objective is given by

L(θ) := Ep(t)w(t)E(x0,x1)∼pjoint,ϵ∼N (0,I)∥Pxt
(vθ(xt, t)− (α′

tx0 + β′
tx1 + γ′tϵ)) ∥2.

ODE Sampler After the training stage, Pxt(vθ(xt, t)) is an approximation of the ground truth
vector field in the horizontal subspace. For the deterministic sampler, we need to simulate the
horizontal lift of the projected ODE, which is given by

dxt

dt
= Pxt

v(xt, t)dt.

In practice, the ODE process is approximated by numerical solvers, e.g. the Euler method and
Runge-Kutta methods.

SDE Sampler For the stochastic sampler, we need to simulate the horizontal lift of the projected
original SDE in Eq. (3). According to Thm. 1 and Thm. 4, the lifted process is given by

dxt = Pxt (vθ(xt, t) + gtsθ(xt, t)) dt+ γηth(xt)dt+
√
2γηtPxtdwt,

where we introduce the hyperparameter γ for protein generation following Geffner et al. (2025).
The training and sampling algorithm is summarized in Algorithm 2 and 3.

Algorithm 1 Training for pprior = N (0, I)

1: repeat
2: (x0,x1) ∼ pjoint
3: t ∼ pt
4: xt = α̂tx0 + βtx1

5: Take a gradient descent step on
∇θ w(t) ∥Pxt (Dθ(xt, t)− x1)∥2

6: until converged

Algorithm 2 Training for general pprior

1: repeat
2: (x0,x1) ∼ pjoint, ϵ ∼ N (0, I)
3: t ∼ pt
4: xt = αtx0 + βtx1 + γtϵ
5: vt = α′

tx0 + β′
tx1 + γ′

tϵ
6: Take a gradient descent step on

∇θ w(t) ∥Pxt (vθ(xt, t)− vt)∥2
7: until converged
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Algorithm 3 Sampling
1: x0 ∼ pprior
2: for i = 0 to K − 1 do
3: ∆ti = ti+1 − ti
4: if ODE sampling then
5: xti+1 = xti + Pxti

vθ(xti , ti)∆ti
6: end if
7: if SDE sampling then
8: di = Pxti

(vθ(xti , ti) + ηtisθ(xti , ti)) + γgtih(xti)

9: ϵ ∼ N (0, I)

10: xti+1 = xti + di∆ti +
√

2γηti∆tiPxti
ϵ

11: end if
12: end for

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EFFICIENCY AND COMPLEXITY ANALYSIS

Complexity analysis. In this subsection, we give a detailed discussion on the computational cost
of our method. As mentioned in Thm. 4, we need to compute the inversion of the matrix I and the
cross product for the horizontal projection operator Px and the mean curvature vector h̃(x). For
the calculation of I−1, notice that I is always a 3 × 3 matrix, so construction cost of I−1 is only
linear O(N), where N is the number of atoms (linear O(N) cost for constructing I, and constant
O(1) cost for inversion). The cross product is conducted atom-wise, so its computational cost is also
linear O(N). So we can conclude that the overall computational complexity is O(N) for both Px

and h̃(x).

We would like to mention that the alignment operation adopted in the heuristic alignment-based
diffusion strategies also has the same complexity. To see this, for aligning x ∈ R3×N towards y ∈
R3×N , the Kabsch-Umeyama algorithm constructs the optimal rotation matrix as (HTH)

1
2H−1,

where H := yxT ∈ R3×3 requires a linear O(N) cost. In practice, the O(N) computational
cost is negligible compared to the cost of gradient back-propagation through the neural network. A
comparison of practical training times is shown in the following table.

Methods Original
diffusion

GeoDiff
alignment

Af3 align-
ment

Quotient-
space
diffusion

training speed (iters/s) 4.19 4.07 4.08 4.10

All the results are tested on a single Nvidia A100 GPU. From the results, we can see that the addi-
tional computational cost brought by the alignment and projection is negligible.

Numerical stability. In our quotient-space diffusion model framework, we need to calculate the
matrix inversion of I, which may have numerical issues for near-collinear systems of points. In
practice, we add an ϵI term before conducting matrix inversion, that is, we calculate (ϵI + I)−1

in practice, where I is the 3 × 3 identity matrix. This treatment is widely adopted in algorithms
facing similar situations, e.g., the practical implementation of the Kabsch-Umeyama algorithm for
alignment. Our typical choice of ϵ is 1e-8, and we found that the training process is stable under this
setting. We have shown the training curve of the model on the protein backbone generation task in
Fig. 4, which indicates no numerical issues arise during the training process.

F.2 THE IMPLEMENTATION OF G-EQUIVARIANT VECTOR FIELD

In Thm. 4, we require that the vector field is SO(3)-equivariant. In practice, this can be implemented
by using a SO(3)-equivariant network architecture or applying data augmentation. In this subsec-
tion, we justify that both of these choices are valid, such that the diffusion model can generate a
SO(3)-invariant distribution.
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Figure 4: Training loss vs. training epochs. We find that our training is stable in practice.

Diffusion model with data augmentation. The optimal solution of the Euclidean diffusion model
is given by D∗

θ(xt) = E[x1|xt](Song et al., 2021; Karras et al., 2022). When the data distribution
is augmented by random rotation, the data distribution becomes SO(3)-invariant. Thus, the opti-
mal diffusion model can recover the SO(3)-invariant data distribution. When the transition den-
sity p(xt|x1) is SO(3)-equivariant, i.e. p(xt|x1) = p(g · xt|g · x1),∀g ∈ SO(3), the optimal
network is SO(3)-equivariant. To see this, let g ∈ SO(3) be an arbitrary rotation matrix. Since
D∗

θ(g · xt) = E[x1|g · xt], by the Bayes formula,

E[x1|g · xt] =
Eptarget(x1)[x1p(g · xt|x1)]

Eptarget(x1)[p(g · xt|x1)]

=
Eptarget(x1)[x1p(xt|g−1 · x1)]

Eptarget(x1)[p(xt|g−1x1)]

=
g · Eptarget(g−1x1)[g

−1x1p(xt|g−1 · x1)]

Eptarget(g−1x1)[p(xt|g−1x1)]

= g · E[x1|xt],

where we use the equivariance property of the transition density to get the second equality and
the invariance property of ptarget to get the third equality. Thus, we can conclude that the optimal
solution under these conditions is SO(3)-equivariant. Geffner et al. (2025) also gives an empirical
validation that a well-trained neural network becomes nearly equivariant even if its architecture is
not equivariant.

Equivariant architecture. When the model is required to be SO(3)-equivariant, the optimal so-
lution of the diffusion model is not E[x1|xt]. To figure out the optimal solution, we consider the
training loss at time t. The loss function at t is given by

Lt(θ) = E∥Dθ(xt, t)− x1∥2

=

∫
d3Nx1

∫
d3Nxt p(x1,xt)

(
∥Dθ(xt, t)∥2 + ∥x1∥2 − 2⟨Dθ(xt, t),x1⟩

)
.

The optimal solution satisfies
D∗

θ(xt, t) = argmin
Dθ is SO(3) equivariant

Lt(θ).

The training loss can be simplified using the equivariant constraint:

Lt(θ) =

∫
d3Nx1

∫
d3Nxt p(x1,xt)

(
∥Dθ(xt)∥2 + ∥x1∥2 − 2⟨Dθ(xt),x1⟩

)
=

∫
R3N/SO(3)

drt

∫
SO(3)

dg

∫
d3Nx1 p(x1, g · rt)

(
∥Dθ(g · rt)∥2 + ∥x1∥2 − 2⟨Dθ(g · rt),x1⟩

)
.

Since Dθ is SO(3)-equivariant, Dθ(g · rt) = g ·Dθ(rt), then we have

Lt(θ) =

∫
R3N/SO(3)

drt

∫
SO(3)

dg

∫
d3Nx1 p(x1, g · rt)

(
∥Dθ(rt)∥2 + ∥x1∥2 − 2⟨g ·D1θ(rt),x1⟩

)
.
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Figure 5: Training and sampling convergence speed comparison on GEOM-DRUGS. (Left) The
relationship between training epochs and generation performance measured by the precision AMR
median metric. (Right) The relationship between the number of function evaluations (NFE) for
sampling and generation performance measured by the precision AMR median metric.

Define p(rt) =
∫
SO(3)

dg
∫
d3Nx1 p(x1, g · rt), and p(x1, g | rt) = p(x1,g·rt)

p(rt)
. Then we have

Lt(θ) =

∫
R3N/SO(3)

drt

[
p(rt)∥Dθ(rt)∥2 − 2⟨Dθ(rt),

∫
SO(3)

dg

∫
d3Nx1 p(x1, g · rt)g−1 · x1⟩

]

+

∫
R3N/SO(3)

drt

∫
SO(3)

dg

∫
d3Nx1 p(x1, grt)∥x1∥2.

So we can conclude that

D∗
θ(rt, t) =

∫
SO(3)

dg

∫
d3Nx1 p(x1, g | rt) g−1 · x1,

D∗
θ(g

′ · rt) =
∫
SO(3)

dg

∫
d3Nx1 p(x1, g | rt) g′ · g−1 · x1,∀g ∈ SO(3).

Notice that

D∗
θ(rt) =

∫
SO(3)

dg

∫
d3Nx1 p(x1, g | rt) g−1 · x1

=

∫
SO(3)

dg
∫
d3Nx1 p(g · x1)p(g · rt | g · x1)x1∫

SO(3)
dg
∫
d3Nx1 p(g · x1)p(g · rt | g · x1)

=

∫
SO(3)

dg
∫
d3Nx1 p(g · x1)p(rt | x1)x1∫

SO(3)
dg
∫
d3Nx1 p(g · x1)p(rt | x1)

,

which is equivalent to the case pdata =
∫
SO(3)

dg p(g · x1), i.e. using the augmentation by random
SO(3) rotation.

F.3 TRAINING AND SAMPLING ACCELERATION

In this subsection, we study the training and sampling convergence speed of different methods. For
the training convergence speed comparison, we plot the generation performance measured by the
precision AMR median metric with respect to the training epochs for previous heuristic alignment
methods and our quotient-space diffusion model in Fig. 5(Left). We only focus on the first 100
epochs for all the methods. These models are trained with the same architecture ET-Flow(SO(3))
and training configurations on the GEOM-DRUGS dataset. The results indicate that our method
achieves a similar convergence speed to the AF3 heuristic method, because both methods reduce the
learning difficulty of the model, as shown in Table 1. This theoretical benefit leads to faster conver-
gence than the GeoDiff alignment method. We also notice that the AF3 alignment method starts to
get worse generation performance after 80 training epochs. This happens due to the incompatibility
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between the training loss and the generation performance metric, as the AF3 method is originally
designed for the protein structure prediction task, which is not evaluated by distributional metrics.

For the sampling convergence speed comparison, we plot the generation performance measured by
the precision AMR median metric with respect to the number of function evaluations (NFE) for the
sampling process in Fig. 5(Right). For all these methods trained on the GEOM-DRUGS dataset,
we use the Flow Matching ODE sampler (Lipman et al., 2023) with Euler discretization. From
the results, we can observe that models trained with different strategies exhibit similar convergence
trends (performance gradually degrades as NFE decreases), our quotient-space diffusion framework
consistently outperforms all baselines across every NFE setting.

F.4 QUOTIENT SPACE BEYOND R3N/SE(3)

Our framework can generalize to quotient spaces generated by symmetry groups beyond the special
Euclidean group SE(3). Possible examples include the U(1) symmetry in quantum wavefunctions,
the SU(2) symmetry in particle physics, and the SO(3) symmetry in higher (> 3) representation
spaces for tasks including the mean-field electron Hamiltonian matrix prediction. In this work, we
focus on the SE(3) case for its significant relevance to scientific research (Abramson et al., 2024).
Applications of our framework on the mentioned more diverse systems above are left as future work.

G EXPERIMENTS

G.1 MOLECULE GENERATION

This appendix summarizes our experimental setup, which strictly follows that of Etflow (Hassan
et al., 2024). We detail the datasets, model architecture, training, sampling, and evaluation. For a
more comprehensive discussion of each component, we refer the reader to the appendices of their
original paper.

Dataset. First, we evaluate our framework on the molecule structure generation task. In this sce-
nario, our goal is to generate the 3D coordinates of a molecule given the graph structure of the
molecule. We conduct the experiments on the GEOM datasets (Axelrod & Gomez-Bombarelli,
2022), which provide structure ensembles generated by metadynamics in CREST (Pracht et al.,
2024), and we focus on the GEOM-QM9 and GEOM-DRUGS datasets. Following the data pro-
cessing and splits from (Hassan et al., 2024), we use the random splits with train/validation/test
of 243473/30433/1000 for GEOM-DRUGS and 106586/13323/1000 for GEOM-QM9. In addition,
data with disconnected molecule graphs are removed for GEOM-DRUGS (Hassan et al., 2024). Our
reproduction is based on the modified data-processing pipeline following the released configs thus
different from the results reported in the original paper.

Settings. We primarily follow the setting in (Hassan et al., 2024). We set the Gaussian distribution
as the prior distribution on GEOM-QM9 and use the harmonic prior for GEOM-DRUGS (Volk
et al., 2023). Following (Jing et al., 2022; Xu et al., 2022), we report the RMSD-based metrics,
e.g. Coverage and Average Minimum RMSD (AMR) between generated and ground truth structure
ensembles. We parameterize vθ by using equivariant graph transformer architectures from ET-Flow
(Hassan et al., 2024), including the O(3) and SO(3) equivariant variants, which also serves as a
verification that our framework is compatible with different backbone models. For training, we use
AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to (0.9,0.999). We use
the dynamic gradient clipping as (Hassan et al., 2024; Hoogeboom et al., 2022b). The peak learning
rate is set to 5e-4 for GEOM-DRUGS and 7e-4 for GEOM-QM9. The batch size is set to 48 for
GEOM-DRUGS and 128 for GEOM-QM9. The weight decay is set to 1e-8. The model is trained
for 1000 epochs for both datasets. The noise scale σ is set to 0.1. We also use 50 time steps with the
Euler solver for sampling. All models are trained on 8 NVIDIA A100 GPUs.

Baselines. Following (Hassan et al., 2024), we choose strong baselines trained on GEOM-DRUGS
and GEOM-QM9 for a challenging comparison. We report the performance of GeoMol (Ganea
et al., 2021), GeoDiff (Xu et al., 2022), Torsional Diffusion (Jing et al., 2022), and MCF (Wang
et al., 2023).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G.2 PROTEIN

This appendix summarizes our experimental setup, which strictly follows that of Proteı́na (Geffner
et al., 2025). We detail the datasets, model architecture, training, sampling, and evaluation. For a
more comprehensive discussion of each component, we refer the reader to the appendices of their
original paper.

G.2.1 DATASET

For training, we utilize the Foldseek AFDB clusters (DFS) dataset as curated and described in
the Proteı́na. This dataset is a high-quality, non-redundant subset of the AlphaFold Database
(AFDB), containing 588,318 cluster-representative protein structures with lengths between 32 and
256 residues. The dataset is annotated with hierarchical CATH labels, which are leveraged dur-
ing training. Our data processing and handling strictly follow the pipeline detailed in Appendix M
of (Geffner et al., 2025).

G.2.2 MODEL ARCHITECTURE AND TRAINING

Our model architecture is the same as the efficient, non-equivariant transformer proposed
by (Geffner et al., 2025). Specifically, we adopt the variant that forgoes the use of computationally
expensive triangle update layers. The model is trained using the conditional flow matching (CFM)
objective. Key aspects of the training protocol from Proteı́na are preserved, including their novel
Beta-Uniform mixture for the time-sampling distribution p(t), the use of self-conditioning, and data
augmentation with random rotations. All model and training hyperparameters, such as embedding
dimensions, number of layers, attention heads, and optimizer settings, are kept consistent with hy-
perparameters saved in their released checkpoint Msmall

FS . The hyperparameters for the Msmall
FS model

are detailed in Table 5, in comparison with the larger models from the original Proteı́na paper.

Table 5: Hyperparameters for Proteı́na model.

Hyperparameter MFS Mno-tri
FS Msmall

FS

Proteı́na Architecture
sequence repr dim 768 768 512
# registers 10 10 10
sequence cond dim 512 512 128
t sinusoidal enc dim 256 256 196
idx. sinusoidal enc dim 128 128 196
fold emb dim 256 256 196
pair repr dim 512 512 196
seq separation dim 128 128 128
pair distances dim (xt) 64 64 64
pair distances dim (x̃(xt)) 128 128 128
pair distances min (Å) 1 1 1
pair distances max (Å) 30 30 30
# attention heads 12 12 12
# tranformer layers 15 15 12
# triangle layers 5 — —
# trainable parameters 200M 200M 60M

Proteı́na Training
# steps 200K 360K 150K
batch size per GPU 4 10 5
# GPUs 128 96 16
# grad. acc. steps 1 1 1

G.2.3 SAMPLING

To facilitate a direct comparison with the publicly available Proteı́na checkpoints, we trained our
model with an identical hierarchical fold class conditioning mechanism. However, to ensure a fair
assessment of foundational generative capabilities, all experiments reported in our main text were
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performed in a strictly unconditional setting. We applied the same sampling protocol across all
models, using 400 sampling steps and enabling self-conditioning, which consistently improved per-
formance. No other guidance techniques, such as autoguidance, were utilized. We use determinis-
tic ODE sampling to assess distributional fidelity and SDE sampling to explore the designability-
diversity trade-off. We adapt the SDE formulation and its Euler-Maruyama numerical scheme, de-
tailed in Appendix I of (Geffner et al., 2025), for our quotient space framework, while retaining all
other configurations, such as the sampling scheduler and g(t), from the original paper.

G.2.4 EVALUATION

We evaluate our models rigorously adheres to the metrics established and validated in the Proteı́na
paper. We assess model performance using the standard suite of metrics in protein design:

• Designability. Quantified by the self-consistency RMSD (scRMSD) protocol, using Pro-
teinMPNN for inverse folding and ESMFold for structure prediction, with a success thresh-
old of scRMSD less than 2Å.

• Diversity. Measured in two ways: by the average pairwise TM-score among designable
samples, and by the number of distinct structural clusters identified by Foldseek at a TM-
score threshold of 0.5.

• Novelty. Assessed by calculating the maximum TM-score of each designable sample
against reference structures in the PDB and AFDB databases.

We also adopt the novel probabilistic metrics introduced by (Geffner et al., 2025), to measure how
well our model captures the true distribution of protein structures:

• FPSD. Measured the distributional similarity between generated and reference structures
in the feature space of a pre-trained fold class predictor.

• fS. Evaluated both the quality and diversity of samples based on the confidence and entropy
of fold class predictions.

• fJSD. Quantified the similarity between the categorical fold class distributions of generated
and reference sets.

It is noteworthy that we have omitted the Diversity and Novelty metrics from our main text to avoid
comparisons with potentially inaccurate results in the literature. This decision is based on a bug
recently identified in the alntmscore output of FoldSeek versions prior to v10 (release 10-941cd33),
which renders many previously reported TM-based metrics incorrect (also found in (Daras et al.,
2025)). To provide a controlled and accurate benchmark, we conducted our own analysis using
the FoldSeek v10 (release 10-941cd33). We limited this re-evaluation to the released small Proteı́na
model and our corresponding model trained in the quotient space. The full results of this comparison
are summarized in Table 6.

Table 6: Complete performance comparison of the released Proteı́na checkpoints against our version
in the quotient space. Best results are marked in bold.

Model Designability (%) Diversity Novelty vs. FPSD vs. fS fJSD vs.

Cluster↑ TM-Sc.↓ PDB↓ AFDB↓ PDB↓ AFDB↓ (C/A/T)↑ PDB↓ AFDB↓
SDE Sampling
Msmall

FS , γ = 0.35 96.0 0.44 (209) 0.50 0.86 0.91 386.5 378.2 1.77/4.97/17.78 2.17 1.73
Msmall

FS , γ = 0.35 + ours 97.6 0.40 (197) 0.48 0.86 0.91 274.7 277.1 2.24/6.69/20.99 1.68 1.55
Msmall

FS , γ = 0.45 92.2 0.55 (253) 0.49 0.84 0.90 332.9 320.4 1.83/5.01/20.22 1.93 1.49
Msmall

FS , γ = 0.45 + ours 92.6 0.51 (253) 0.47 0.85 0.90 244.5 246.3 2.24/6.68/23.47 1.43 1.28
Msmall

FS , γ = 0.50 89.2 0.57 (255) 0.48 0.83 0.89 306.2 290.8 1.86/4.92/21.15 1.81 1.36
Msmall

FS , γ = 0.50 + ours 90.2 0.51 (231) 0.47 0.84 0.90 228.0 228.7 2.25/6.59/25.24 1.32 1.17

ODE Sampling
Msmall

FS 13.8 0.90 (62) 0.43 0.80 0.87 83.18 21.93 2.45/5.63/31.76 0.58 0.12
Msmall

FS + ours 15.6 0.87 (68) 0.43 0.80 0.86 69.94 17.56 2.57/6.40/32.14 0.41 0.11
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