

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

QUOTIENT-SPACE DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion-based generative models have reformed generative AI, and have enabled new capabilities in the science domain, for example, generating 3D structures of molecules. Due to the intrinsic problem structure of certain tasks, there is often a *symmetry* in the system, which identifies objects that can be converted by a group action as equivalent, hence the target distribution is essentially defined on the *quotient space* with respect to the group. In this work, we establish a formal framework for diffusion modeling on a general quotient space, and apply it to molecular structure generation which follows the special Euclidean group $SE(3)$ symmetry. The framework reduces the necessity of learning the component corresponding to the group action, hence simplifies learning difficulty over conventional group-equivariant diffusion models, and the sampler guarantees recovering the target distribution, while heuristic alignment strategies lack proper samplers. The arguments are empirically validated on structure generation for small molecules and proteins, indicating that the principled quotient-space diffusion model provides a new framework that outperforms previous symmetry treatments.

1 INTRODUCTION

Diffusion models have emerged as the dominant approach for modeling distributions in high-dimensional spaces. Building on their success in real-world domains such as images (Ho et al., 2020; Song et al., 2021), audios (Kong et al., 2021; Evans et al., 2024), and videos (Ho et al., 2022; Li et al., 2023), diffusion models are now increasingly adopted in scientific applications, ranging from fluid field solving (Bastek et al., 2025), electronic structure prediction (Kim et al., 2025), molecular structure generation (Xu et al., 2022; Abramson et al., 2024; Hassan et al., 2024; Geffner et al., 2025), and thermodynamic ensemble modeling (Zheng et al., 2024; Lewis et al., 2025).

Compared with general tasks, scientific applications often exhibit inherent *symmetry* structures, wherein objects that can be related through specific transformations are regarded as equivalent. Consider molecular structure generation as a representative example. A molecular structure can be represented as a vector in \mathbb{R}^{3N} by concatenating the 3D coordinates of its N atoms. However, because the choice of coordinate system is arbitrary, vectors in \mathbb{R}^{3N} that differ only by a global 3D translation or rotation of all atoms correspond to the same underlying structure. Mathematically, such transformations typically form a Lie group — for example, the special Euclidean group $SE(3)$ in the case of molecular structures, which formally characterizes the symmetry.

The common treatment is putting the target distribution in the original space but assigning the same probability to equivalent objects, resulting in a distribution that is invariant under group action. This can be implemented by augmenting training data by applying randomly chosen group actions (Abramson et al., 2024), or using a group equivariant model (Xu et al., 2022; Hoogeboom et al., 2022b), which guarantees invariance if the starting prior distribution is invariant (Köhler et al., 2020). Nevertheless, we shall show that this treatment still has room to improve, as the neural network model, which is intended for updating the sample in each diffusion simulation step, still needs to learn a *specific* movement within the equivalent class (*e.g.*, rotating a molecular structure), which is unnecessary as *any* such a movement does not update the intrinsic system state (*e.g.*, the shape of a molecular structure) hence is acceptable. In hope to remove this redundancy, there are a few heuristic treatments using alignment, *i.e.*, adjusting the prediction target within its equivalent class according to a reference to remove these equivalent degrees of freedom (Xu et al., 2022; Abramson et al., 2024). But we find that the corresponding sampling process becomes incompatible with such training strategies, even with heuristic fix attempts (Wohlwend et al., 2025).

Table 1: Comparison among different training strategies in presence of a symmetry group. Learning difficulty is measured by whether the need to predict in the equivalent degrees of freedom (DOFs), induced by the group actions, is removed, and (if not) whether the variance on the equivalent DOFs is removed. Sampling compatibility means whether there is a sampler that exactly reproduces the target distribution. The denoising form of diffusion model \mathbf{D}_θ is used to express the loss functions, where $\mathcal{A}_y(\mathbf{x})$ (Eq. (11)) represents aligning \mathbf{x} towards y , and $\bar{\theta}$ denotes treating θ as constant (*i.e.*, stop-gradient). The conclusions hold using either an equivariant architecture or a general architecture with data augmentation. See Sec. 3.4 for details.

Training strategy for \mathbf{D}_θ	Optimal solution of \mathbf{D}_θ	Reduction of learning difficulty		Sampling compatibility
		Removal of equivalent DOFs	Removal of variance on equivalent DOFs	
Conventional loss $\mathbb{E}\ \mathbf{D}_\theta(\mathbf{x}_t, t) - \mathbf{x}_t\ ^2$	$\mathbb{E}[\mathbf{x}_1 \mathbf{x}_t]$	✗	✗	✓
GeoDiff alignment loss $\mathbb{E}\ \mathbf{D}_\theta(\mathbf{x}_t, t) - \mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)\ ^2$	$\mathbb{E}[\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1) \mathbf{x}_t]$	✗	✓	✗
AF3 alignment loss $\mathbb{E}\ \mathbf{D}_\theta(\mathbf{x}_t, t) - \mathcal{A}_{\mathbf{D}_{\bar{\theta}}(\mathbf{x}_t, t)}(\mathbf{x}_1)\ ^2$	$g \cdot \mathbb{E}[\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1) \mathbf{x}_t]$ for arbitrary $g \in \mathcal{G}$	✓	✓	✗
quotient-space diffusion loss $\mathbb{E}\ P_{\mathbf{x}_t}(\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathbf{x}_1)\ ^2$	$\mathbb{E}[P_{\mathbf{x}_t}(\mathbf{x}_1) \mathbf{x}_t] + \mathbf{v}^\mathcal{V}$ for arbitrary $\mathbf{v}^\mathcal{V} \in \text{Ker}(P_{\mathbf{x}_t})$	✓	✓	✓

In this work, we develop a principled approach to building a diffusion model considering the intrinsic symmetry of the system. In particular, we leverage the concept of *quotient space*, in which a set of equivalent objects (equivalent class) are treated as one element. It is the formal mathematical construction that reflects the intrinsic variability of the system. We first derive the diffusion process on a general quotient space based on the correspondence between the Wiener processes on the two spaces. Considering that the quotient space is generally not Euclidean, hence it is hard to directly carry out a simulation on it, we further leverage the mathematical construction of horizontal lift to induce a diffusion process back in the original space that embeds¹ the quotient-space diffusion process. The resulting process effectively amounts to projecting the update vector in the original diffusion process onto the subspace that does not induce a movement within the equivalent class (*e.g.*, rotation). We show that this process *guarantees producing the correct target distribution*, meanwhile *reduces learning difficulty* by removing the necessity to learn a specific movement within an equivalent class. A visualization example in the 2-dimensional plane with $\text{SO}(2)$ symmetry is shown in Fig. 1. In this example, the lifted process only has radial movements (Fig. 1(Left)) as the quotient space $\mathbb{R}^2/\text{SO}(2)$ is isomorphic to the half real line and recovers the correct target distribution as conventional equivariant diffusion models (Fig. 1(Middle, Right)). A conceptual comparison with existing methods is shown in Table 1. The quotient-space diffusion admits either an equivariant model or a general model with data augmentation.

As a representative application, we deduce the specific training and sampling algorithms in the $\mathbb{R}^{3N}/\text{SE}(3)$ scenario for molecular structure generation, which relaxes the model from learning a translation and rotation movement, while the sampling process keeps the structure with constant position and orientation. We study the empirical performance of quotient-space diffusion models on small molecule structure generation and protein backbone design tasks. The results show that our methods can consistently improve the generation performance in these applications over conventional equivariant diffusion models and using alignment strategies. Our method achieves 9%-23% relative improvements of ET-Flow(Hassan et al., 2024) on GEOM-QM9 and GEOM-DRUGS datasets, surpassing previous heuristic alignment methods. For the protein structure generation task, our method surpasses the state-of-the-art Proteína model (Geffner et al., 2025) with the same parameter scale (60M) in a large margin and also outperforms the much larger model (200M) on most key distributional metrics.

2 BACKGROUND

2.1 DIFFUSION-BASED GENERATIVE MODELS ON EUCLIDEAN SPACE

The main idea of diffusion models is to construct a step-by-step transformation from a simple prior distribution to a complex target distribution. In this paper, we follow the Stochastic Interpolant

¹This “embedding” is meant for intuitive understanding; in the mathematical sense, the quotient space is unnecessarily able to be embedded in the original space.

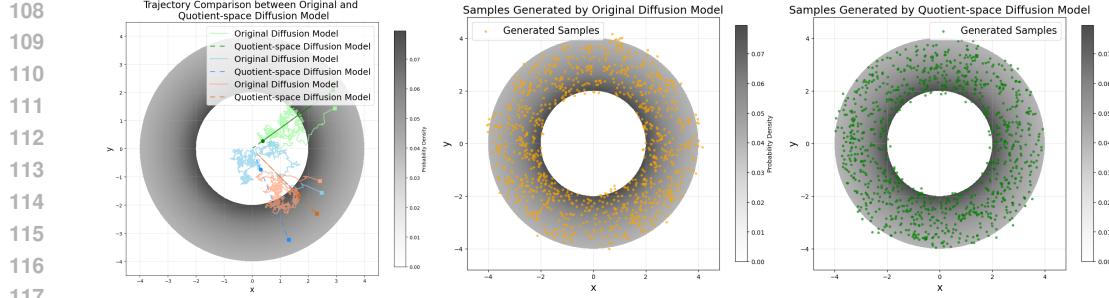


Figure 1: A visualization of the behavior of the original equivariant diffusion model and the quotient-space comparison between the original diffusion model and the quotient-space diffusion model in the $\mathcal{M} = \mathbb{R}^2, \mathcal{G} = \text{SO}(2)$ case. The data distribution is restricted in the region $r \in [2, 4]$, where r is the radius on \mathbb{R}^2 . The probability density function is shown in the color bar. **(Left)** The sampling trajectory comparison between the original diffusion model and the quotient-space diffusion model. The quotient-space diffusion model always diffuses on a straight line because the quotient space $\mathbb{R}^2/\text{SO}(2)$ is isomorphic to the half real line, while the original diffusion model diffuses on a 2-D plane. This motivates us to reduce the learning task corresponding to the movement in the equivalent class (movement on a circle in this case). **(Middle)** The samples generated by the original diffusion model. **(Right)** The samples generated by the quotient-space diffusion model, which match the data distribution as well.

framework (Albergo et al., 2023), which unifies diffusion models and flow matching models (Lipman et al., 2023; Liu et al., 2023). Let $p_{\text{target}}(\mathbf{x})$ be the target distribution. The following linear interpolation is constructed:

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \beta_t \mathbf{x}_1 + \gamma_t \boldsymbol{\epsilon}, \quad (\mathbf{x}_0, \mathbf{x}_1) \sim p_{\text{joint}}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), \quad t \in [0, 1] \quad (1)$$

where p_{joint} is a pre-defined joint distribution of $(\mathbf{x}_0, \mathbf{x}_1)$ with marginals $\mathbf{x}_0 \sim p_{\text{prior}}$ and $\mathbf{x}_1 \sim p_{\text{target}}$. The coefficients $\alpha_t, \beta_t, \gamma_t$ satisfy the boundary conditions $\alpha_0 = 1, \beta_0 = 0, \gamma_0 = 0$, and $\alpha_1 = 0, \beta_1 = 1, \gamma_1 = 0$. Under these conditions, the following ordinary differential equation (ODE) can transform p_{prior} to p_{target} (Albergo et al., 2023, Cor. 2.18):

$$d\mathbf{x}_t = \mathbf{v}(\mathbf{x}_t, t) dt, \quad \text{where } \mathbf{v}(\mathbf{x}_t, t) := \mathbb{E}[\alpha'_t \mathbf{x}_0 + \beta'_t \mathbf{x}_1 + \gamma'_t \boldsymbol{\epsilon} \mid \mathbf{x}_t]. \quad (2)$$

The velocity vector field $\mathbf{v}(\mathbf{x}_t, t)$ is typically trained with the objective: $\mathcal{L}(\theta) := \mathbb{E}_{p(t)} w(t) \mathbb{E}_{p_{\text{joint}}(\mathbf{x}_0, \mathbf{x}_1)p(\boldsymbol{\epsilon})} \|\mathbf{v}_\theta(\mathbf{x}_t, t) - (\alpha'_t \mathbf{x}_0 + \beta'_t \mathbf{x}_1 + \gamma'_t \boldsymbol{\epsilon})\|^2$, where the prime denotes the time derivative, and $p(t)$ and $w(t)$ control the sampling distribution and weighting over time. There is also a stochastic process for sample generation, given by :

$$d\mathbf{x}_t = (\mathbf{v}(\mathbf{x}_t, t) + \eta_t \mathbf{s}(\mathbf{x}_t, t)) dt + \sqrt{2\eta_t} dw_t, \quad \text{where } \mathbf{s}(\mathbf{x}_t, t) := \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) \quad (3)$$

is called the score function, and $\eta_t \geq 0$ is a non-negative smooth function (Albergo et al., 2023, Cor. 2.10). In the special case where $p_{\text{prior}} = \mathcal{N}(\mathbf{0}, \mathbf{I})$ (the *one-sided stochastic interpolant* (Albergo et al., 2023, Def. 3.4)), contributions of \mathbf{x}_0 and $\boldsymbol{\epsilon}$ can be combined as $\mathbf{x}_t = \hat{\alpha}_t \boldsymbol{\epsilon} + \beta_t \mathbf{x}_1$, where $\hat{\alpha}_t = \sqrt{\alpha_t^2 + \gamma_t^2}$, and the score function can be expressed by the velocity field: $\mathbf{s}(\mathbf{x}_t, t) = \frac{\beta'_t \mathbf{x}_t - \beta_t \mathbf{v}(\mathbf{x}_t, t)}{\hat{\alpha}_t(\hat{\alpha}_t \beta_t - \hat{\alpha}_t \beta'_t)}$.

A convenient variant to formulate the learning task is to define the $\mathbf{v}_\theta(\mathbf{x}_t, t)$ model with a neural network $\mathbf{D}_\theta(\mathbf{x}_t, t)$ which reformulates the objective:

$$\mathbf{v}_\theta(\mathbf{x}_t, t) := \frac{\hat{\alpha}'_t \mathbf{x}_t - (\hat{\alpha}'_t \beta_t - \hat{\alpha}_t \beta'_t) \mathbf{D}_\theta(\mathbf{x}_t, t)}{\hat{\alpha}_t}, \quad (4)$$

$$\mathcal{L}(\theta) := \mathbb{E}_{p(t)} w(t) \frac{(\hat{\alpha}'_t \beta_t - \hat{\alpha}_t \beta'_t)^2}{\hat{\alpha}_t^2} \mathbb{E}_{p(\mathbf{x}_1, \mathbf{x}_t)} \|\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathbf{x}_1\|^2, \quad (5)$$

where $p(\mathbf{x}_1, \mathbf{x}_t)$ is derived from Eq. (1) by integrating out \mathbf{x}_0 and $\boldsymbol{\epsilon}$. This objective conveys the intuition of recovering the clean-data sample \mathbf{x}_1 from a noisy sample \mathbf{x}_t , hence $\mathbf{D}_\theta(\mathbf{x}_t, t)$ is called a denoising model and suits prevalent architectures. We adopt this form of a diffusion model below.

2.2 FROM EUCLIDEAN SPACE TO QUOTIENT MANIFOLD

Tasks in scientific domains often involve inherent symmetry, where objects related by certain transformations are considered equivalent. A formal and inclusive description of symmetry in a system

162 requires both the geometry of the configuration space and the algebraic structure of the transformations,
 163 which leads to the concepts of manifolds and Lie groups.

164 **Manifold and Lie groups.** A (smooth) manifold is a geometric object that generalizes the Euclidean
 165 space to allow spatial heterogeneity. Typically, a manifold is endowed with a Riemannian metric,
 166 *i.e.*, an inner product in each tangent space, which leads to common concepts like curve length, dis-
 167 tance, measure, gradient, Laplacian, and Wiener process on the manifold (Appx. B.1). Symmetries
 168 are formally represented by transformations that connect equivalent (*i.e.*, symmetric) objects, which
 169 constitute a group. A continuously-parameterized group that is also a manifold is called a Lie group.
 170

171 We consider the general case where the configuration space of the system is an M -dimensional
 172 Riemannian manifold \mathcal{M} . The symmetry of the system is represented by a G -dimensional Lie
 173 group \mathcal{G} acting on \mathcal{M} . A distribution p on \mathcal{M} is said \mathcal{G} -invariant if $p(g \cdot \mathbf{x}) = p(\mathbf{x})$, $\forall g \in \mathcal{G}, \mathbf{x} \in \mathcal{M}$.
 174 This invariance implies that all equivalent points $\{g \cdot \mathbf{x} \mid g \in \mathcal{G}\}$, collectively called an equivalent
 175 class, are assigned with the same probability.

176 **Quotient space.** The symmetry group defines an equivalent relation in \mathcal{M} , *i.e.*, \mathbf{x}_1 and \mathbf{x}_2 are
 177 equivalent, if there exists a group action $g \in \mathcal{G}$ such that $g \cdot \mathbf{x}_1 = \mathbf{x}_2$, which is indeed an equivalent
 178 relation due to properties of a group. The quotient space $\mathcal{Q} := \mathcal{M}/\mathcal{G}$ treats equivalent objects under
 179 the action of \mathcal{G} as one element, hence reflects the intrinsic variability of the system. There is a
 180 natural mapping called the projection connecting the two spaces: $\pi(\mathbf{x}) := \{g \cdot \mathbf{x} \mid g \in \mathcal{G}\}$. Under
 181 appropriate conditions, the quotient space is a smooth manifold with dimension $M - G$ (Appx. C).
 182 However, defining a diffusion process on this space is non-trivial, necessitating the extension of
 183 “velocity” and Wiener process from Euclidean space to the manifold.

184 **Tangent vector.** On a manifold \mathcal{M} , the velocity of a process at a certain point \mathbf{x} is represented as
 185 a tangent vector at \mathbf{x} , intuitively representing an infinitesimal movement. All tangent vectors at \mathbf{x}
 186 constitute a linear space $T_{\mathbf{x}}\mathcal{M}$ called the tangent space at \mathbf{x} . Since a manifold is typically curved,
 187 tangent spaces at different points are regarded as different linear spaces, but with a transformation on
 188 the manifold, *e.g.*, a group action g , an associated mapping $g_{*\mathbf{x}} : T_{\mathbf{x}}\mathcal{M} \rightarrow T_{g \cdot \mathbf{x}}\mathcal{M}$ between the tan-
 189 gent spaces can be defined, which can be intuitively perceived as $g_{*\mathbf{x}}(\mathbf{v}) := \lim_{h \rightarrow 0} \frac{g \cdot (\mathbf{x} + h\mathbf{v}) - g \cdot \mathbf{x}}{h}$.
 190 With this construction, we can define that a vector field on \mathcal{M} is \mathcal{G} -equivariant if it is unchanged
 191 under the group action: $g_{*\mathbf{x}}\mathbf{v}(\mathbf{x}) = \mathbf{v}(g \cdot \mathbf{x})$. For the projection mapping π onto the quotient space,
 192 we can similarly define $\pi_{*\mathbf{x}} : T_{\mathbf{x}}\mathcal{M} \rightarrow T_{\pi(\mathbf{x})}\mathcal{Q}$ as the projection for tangent vectors.

193 **Wiener process on a manifold.** In Euclidean space, the Wiener process is generated by the Lapla-
 194 cian operator $\frac{1}{2}\Delta$. The Laplace-Beltrami operator, defined from a Riemannian metric, serves as a
 195 counterpart on a manifold, and defines the Wiener process to the manifold. Under a symmetry group
 196 \mathcal{G} , we require a meaningful stochastic process on the manifold \mathcal{M} as \mathcal{G} -invariant, meaning that its
 197 marginal distribution is \mathcal{G} -invariant at any time step. See Appx. B for details.

198 3 METHODS

200 As the quotient space represents the “essential states” of a system with symmetry, a principled dif-
 201 fusion model for the system is expected to be built on it. In this section, we unroll the development
 202 of the quotient-space diffusion model by deriving the projected diffusion process onto the quotient
 203 space, then lift it back into the total space (*i.e.*, the original space) for convenient implementation.
 204 We then derive the specialization in the $\mathbb{R}^{3N}/\text{SE}(3)$ case for molecular structure generation,
 205 followed by training and sampling algorithms. We highlight the merit of the quotient-space diffusion
 206 in reducing training difficulty and sampler soundness with a comparative analysis with existing
 207 treatments considering symmetry.

208 3.1 DIFFUSION PROCESS ON A GENERAL QUOTIENT SPACE

209 If the diffusion process in \mathcal{M} is \mathcal{G} -invariant, the distribution at any time step can be viewed as a
 210 distribution in the quotient space \mathcal{Q} , then we can view the process as a stochastic process in \mathcal{Q} . By
 211 leveraging the projection mapping $\pi : \mathcal{M} \rightarrow \mathcal{Q}$, we can map a diffusion process $\{\mathbf{x}_t\}_{t \in [0, T]}$ in \mathcal{M}

212 ²This is the understanding from a Euclidean-space perspective. In general, there are no “addi-
 213 tion/subtraction” operations on a general manifold. The formal definition is by defining tangent vectors a
 214 directional derivative operators, and the push-forward mapping $g_{*\mathbf{x}}$ is defined by function composition. See
 215 Appx. B for details.

(Eq. (3)) onto the quotient space as $\{\mathbf{y}_t := \pi(\mathbf{x}_t)\}_{t \in [0, T]}$. This is a stochastic process on \mathcal{Q} , but its expression as a diffusion process on \mathcal{Q} using specifiers defining the diffusion process of \mathbf{x}_t is desired. The following theorem gives an explicit answer.

Theorem 1. Assume $\{\mathbf{x}_t\}_{t \in [0, T]}$ is a diffusion process on \mathcal{M} , specified by the following SDE:

$$d\mathbf{x}_t = \mathbf{b}_t(\mathbf{x}_t) dt + \sigma_t d\mathbf{w}_t, \quad \mathbf{x}_0 \sim p_{\text{prior}}, \quad (6)$$

where \mathbf{b}_t is a \mathcal{G} -equivariant time-dependent vector field on \mathcal{M} , \mathbf{w}_t is the Wiener process on \mathcal{M} that is also \mathcal{G} -invariant, and p_{prior} is a \mathcal{G} -invariant distribution. Then the projected process $\{\mathbf{y}_t := \pi(\mathbf{x}_t)\}_{t \in [0, T]}$ onto the quotient space $\mathcal{Q} := \mathcal{M}/\mathcal{G}$ is the solution to the following SDE:

$$d\mathbf{y}_t = \left((\pi_* \mathbf{b}_t)(\mathbf{y}_t) - \frac{\sigma_t^2}{2} \mathbf{h}(\mathbf{y}_t) \right) dt + \sigma_t d\mathbf{w}_t, \quad \mathbf{y}_0 \sim \pi_{\#} p_{\text{prior}}, \quad (7)$$

where $\pi_* \mathbf{b}_t$ is the projected vector field of \mathbf{b}_t induced by π , $\mathbf{h}(\mathbf{y}_t)$ is the mean curvature vector field of \mathcal{Q} reflecting the geometry of \mathcal{Q} , \mathbf{w}_t is the Wiener process on \mathcal{Q} , and $\pi_{\#} p_{\text{prior}}$ is the pushed-forward distribution of p_{prior} (i.e., $\mathbf{y}_0 = \pi(\mathbf{x}_0)$ where $\mathbf{x}_0 \sim p_{\text{prior}}$).

See Appx. D.1 for formal definitions of the concepts and the proof. Thm. 1 shows that the projected process is indeed a diffusion process on \mathcal{Q} , which consists of the projected vector field and corresponding Wiener diffusion process, and perhaps unexpectedly, an additional vector field reflecting the curvature of \mathcal{Q} . As the quotient space squeezes an equivalent class as one point, a process viewed on the quotient space should accommodate for the change of the volume of the equivalent class along the movement. This additional vector is the gradient (i.e., the change rates in all movement directions) of the volume of the equivalent class.

Although the diffusion process on the quotient space is defined, it is not convenient to simulate it in the quotient space directly due to the non-trivial geometric structure of \mathcal{Q} . Nevertheless, the quotient-space diffusion enables us a principled view to reduce the unnecessary movement within equivalent classes. A key observation from Thm. 1 is that if $\mathbf{b}_1 = \mathbf{v} + \mathbf{b}_2$ where $\mathbf{v}_x \in \text{Ker } \pi_{*x} := \{\mathbf{v} \in T_x \mathcal{M} \mid \pi_{*x}(\mathbf{v}) = \mathbf{0}\}, \forall x \in \mathcal{M}$, then the corresponding SDE in Eq. (13) has the same projection in the quotient space. This implies that the components in $\text{Ker } \pi_{*x}$ are not really necessary.

For better characterization of the necessary component, we focus on the tangent space of \mathcal{M} at x . The tangent space $T_x \mathcal{M}$ is a linear space with the same dimensionality as \mathcal{M} . Define the vertical space $\mathcal{V}_x := \text{Ker } \pi_{*x}$ (G -dimensional) corresponding to the infinitesimal action of the group \mathcal{G} . Since $T_x \mathcal{M}$ has an inner product (because \mathcal{M} is a Riemannian manifold), we can define the horizontal space $\mathcal{H}_x := (\text{Ker } \pi_{*x})^\perp$ as the orthogonal complement of \mathcal{V}_x . Then any tangent vector in $T_x \mathcal{M}$ has an orthonormal decomposition $\mathbf{v} = \mathbf{v}^{\mathcal{V}} + \mathbf{v}^{\mathcal{H}}$, where $\mathbf{v}^{\mathcal{V}}, \mathbf{v}^{\mathcal{H}}$ is the vertical and horizontal component respectively; see Fig. 2 for visualization. Thus $\mathbf{v}^{\mathcal{H}}$ is the necessary part of the vector field \mathbf{v} .

Thanks to the quotient structure, we can leverage a correspondence between the diffusion process on \mathcal{M} and \mathcal{Q} . For a diffusion process \mathbf{y}_t , there exists a diffusion process $\tilde{\mathbf{x}}_t$ in \mathcal{M} such that $\pi(\tilde{\mathbf{x}}_t) = \mathbf{y}_t$ and $\tilde{\mathbf{x}}_t$ only has horizontal movement, which is called the horizontal lift of \mathbf{y}_t (see Appx. D.2 for formal definitions). The horizontal lift of \mathbf{y}_t is given explicitly in the following theorem.

Theorem 2. The horizontal lift of Eq. (14) has the following explicit expression:

$$d\tilde{\mathbf{x}}_t = \left(P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)) - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}}(\tilde{\mathbf{x}}_t) \right) dt + \sigma_t d\tilde{\mathbf{w}}_t, \quad \tilde{\mathbf{x}}_0 \sim p_{\text{prior}}, \quad (8)$$

where $P_x(\mathbf{v}) = \mathbf{v}^{\mathcal{H}}$ is the horizontal projection on the tangent space of \mathcal{M} , $\tilde{\mathbf{h}}$ is the horizontal lift of the mean curvature vector \mathbf{h} in Eq. (14), $\tilde{\mathbf{w}}_t$ is the horizontal lift of the Wiener process on \mathcal{Q} .

See Appx. D.2 for the proof. Comparing the expression between Eq. (13) and Eq. (8), we can observe that the lifted process is not simply given by adding a horizontal projection P_x on each term of the SDE, and an additional term depending on the curvature of the quotient space arises. This

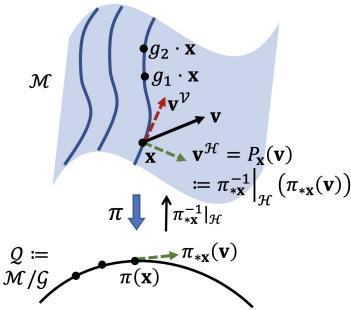


Figure 2: Illustration of the relation between the total space \mathcal{M} and the quotient space \mathcal{Q} and the correspondence of tangent vectors among them.

270 term arises in Eq. (14) and remains after the horizontal lift. The horizontal projection $P_{\mathbf{x}}$ and the
 271 mean curvature vector field can be calculated in specific cases, so Eq. (8) has explicit form when \mathcal{Q}
 272 is specified.

273 As mentioned, Eq. (8) only has horizontal movements, in other words, it does not have any movement
 274 in the equivalent class. This process reduces unnecessary movement and helps to reduce
 275 sampling trajectory length. From this viewpoint, previous methods do not reduce these unnecessary
 276 movements, although they have the equivalent diffusion process in the quotient space. The formal
 277 results are summarized in the following corollary. See Appx. D.2 for proof.

278 **Corollary 3.** $\tilde{\mathbf{x}}_1$ (defined by Eq. (8)) has the same distribution on \mathcal{Q} with \mathbf{x}_1 (defined by Eq. (13)).
 279 When $\sigma_t = 0, \forall \mathbf{x}_0 \in \mathcal{M}$, Eq. (8) has shorter trajectory length than Eq. (13).

281 3.2 SPECIAL CASE: THE SHAPE SPACE

282 The abstract results in the previous section give the direction for practical implementations. In this
 283 subsection, we focus on the special case of quotient space $\mathbb{R}^{3N}/\text{SE}(3)$. First, we need to define the
 284 quotient structure in this case (Appx. C). Let $\mathbf{x} := (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}) \in \mathbb{R}^{3N}$, with $\mathbf{x}^{(i)} \in \mathbb{R}^3$,
 285 denote a configuration (or point cloud) of N points in \mathbb{R}^3 . Let $\mathcal{M} := \{\mathbf{x} \in \mathbb{R}^{3N} \mid \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} =$
 286 $\mathbf{0}\}$ be the center-of-mass (COM) subspace of \mathbb{R}^{3N} . Let $\text{SO}(3)$ be the special orthonormal group
 287 and we construct $\mathbb{R}^{3N}/\text{SE}(3)$ as $\mathcal{M}/\text{SO}(3)$ because the translation-invariant distribution does not
 288 exist (Yim et al., 2023). An element of the $\text{SO}(3)$ group is given by a 3-dimensional rotation matrix
 289 $g \in \mathbb{R}^{3 \times 3}$. The natural action of g on \mathbf{x} is defined as $g \cdot \mathbf{x} := (g\mathbf{x}^{(1)}, g\mathbf{x}^{(2)}, \dots, g\mathbf{x}^{(N)})$, i.e.,
 290 the rotation is acted on each point of the system. Under certain conditions, the quotient space
 291 $\mathcal{Q} := \mathcal{M}/\text{SO}(3)$ is a smooth manifold. Now we can consider the correspondence between the
 292 diffusion process in \mathcal{M} (Eq. (13)) and the its horizontal lift from the quotient space projection
 293 (Eq. (8)). The results are summarized in the following theorem.

294 **Theorem 4.** Assume \mathbf{x}_t is a diffusion process in the COM subspace $\mathcal{M} \subset \mathbb{R}^{3N}$, given by the
 295 following SDE: $d\mathbf{x}_t = \mathbf{b}_t(\mathbf{x}_t) dt + \sigma_t d\mathbf{w}_t$, $\mathbf{x}_0 \sim p_{\text{prior}}$ where $\mathbf{b}_t(\mathbf{x}_t)$ is a $\text{SO}(3)$ -equivariant vector
 296 field, $\forall t \in [0, T]$, p_{prior} is the \mathcal{G} -invariant prior distribution, \mathbf{w}_t is the standard Wiener process on
 297 COM. The horizontal lift of the process $\pi(\mathbf{x}_t)$ is :

$$300 d\tilde{\mathbf{x}}_t = \left(P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)) - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}}(\tilde{\mathbf{x}}_t) \right) dt + \sigma_t P_{\tilde{\mathbf{x}}_t} d\mathbf{w}_t, \quad \tilde{\mathbf{x}}_0 \sim p_{\text{prior}}, \quad (9)$$

301 where the $P_{\mathbf{x}}$ is the horizontal projection operator at \mathbf{x} and $\tilde{\mathbf{h}}(\mathbf{x})$ is the horizontal lift of mean
 302 curvature vector. The explicit expressions of P and $\tilde{\mathbf{h}}$ are shown as follows:

$$303 P_{\mathbf{x}} \mathbf{v} = \mathbf{v} - \mathcal{I}^{-1} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} \right) \times \mathbf{x}, \quad \forall \mathbf{v} \in T_{\mathbf{x}} \mathcal{M},$$

$$305 \tilde{\mathbf{h}}(\mathbf{x}) = -(\text{tr}(\mathcal{I}^{-1}) \mathbf{I} - \mathcal{I}^{-1}) \cdot \mathbf{x}, \quad \text{where } \mathcal{I} = \left(\frac{1}{N} \sum_{i=1}^N \|\mathbf{x}^{(i)}\|^2 \mathbf{I} - \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \mathbf{x}^{(i)\top} \right).$$

307 See Appx. D.3 for proof. From the results of Thm. 4, we can deduce that $\pi(\mathbf{x}_t)$ has the same
 308 marginal distribution with $\pi(\tilde{\mathbf{x}}_t)$ in Eq. (9) (Cor. 3). If we consider the generation process in Eq. (2)
 309 or Eq. (3) as \mathbf{x}_t , we can construct the corresponding horizontal process $\tilde{\mathbf{x}}_t$ that can generated the
 310 same target distribution on the quotient space. Motivated by this fact, we can improve the training
 311 and inference method of diffusion based generative models by leveraging the quotient structure.

312 3.3 PRACTICAL IMPLEMENTATIONS

314 Previous results describe how we can construct a diffusion process in the quotient space using the
 315 coordinates in the total space. If we have a diffusion process on the total space, we can construct
 316 the horizontal lift of its projection process, which has no vertical velocity along its trajectory and
 317 the two processes are the same on quotient space. This fact implies that the vertical components of
 318 the original diffusion process are not dispensable and enables us to design a more efficient training
 319 and sampling algorithm of the diffusion model based on the quotient structure. In practice, we often
 320 set the total space as the Euclidean space. Next, we show the training and sampling methods for the
 321 special case $p_{\text{prior}} = \mathcal{N}(\mathbf{0}, \mathbf{I})$, and the general case is shown in Appx. E.

322 **Training objective.** The diffusion model on the total space \mathcal{M} is trained by the objective Eq. (5).
 323 Since the vertical components of the velocity are not strictly needed, we propose to supervise the
 324 model only on the horizontal components and allow arbitrary vertical output of the model. We lever-

age the horizontal projection operator $P_{\mathbf{x}}$ (Thm. 4) and construct the horizontal training objective:

$$\mathcal{L}(\theta) := \mathbb{E}_{p(t)} w(t) \mathbb{E}_{p(\mathbf{x}_1, \mathbf{x}_t)} \|P_{\mathbf{x}_t}(\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathbf{x}_1)\|^2. \quad (10)$$

We can see that $\mathbf{D}_\theta + \mathbf{v}^\mathcal{V}$ has the same loss value with \mathbf{D}_θ , where $\mathbf{v}^\mathcal{V}$ is an arbitrary vertical vector.

ODE sampler. After the training stage, $P_{\mathbf{x}_t}(\mathbf{D}_\theta(\mathbf{x}_t, t))$ is an approximation of the ground truth denoiser in the horizontal subspace. For the ODE sampler, we simulate the horizontal lift of the projected ODE, which is given by $\frac{d\mathbf{x}_t}{dt} = P_{\mathbf{x}_t} \mathbf{v}_\theta(\mathbf{x}_t, t) dt$, where $\mathbf{v}_\theta(\mathbf{x}_t, t)$ is given by Eq. (4). In practice, the ODE process is approximated by numerical solvers.

SDE sampler. For the stochastic sampler, the we need to simulate the horizontal lift of the projected original SDE in Eq. (3). According to Thm. 1 and Thm. 4, the lifted process is given by

$$d\mathbf{x}_t = P_{\mathbf{x}_t}(\mathbf{v}_\theta(\mathbf{x}_t, t) + g_t \mathbf{s}_\theta(\mathbf{x}_t, t)) dt + \gamma \eta_t \mathbf{h}(\mathbf{x}_t) dt + \sqrt{2\gamma\eta_t} P_{\mathbf{x}_t} d\mathbf{w}_t,$$

where $\mathbf{s}_\theta(\mathbf{x}_t, t) = -\frac{\mathbf{x}_t - \beta_t \mathbf{D}_\theta(\mathbf{x}_t, t)}{\hat{\alpha}_t^2}$ and we introduce the hyperparameter γ for protein generation following Geffner et al. (2025). The details are summarized in Algorithm 1 and 3.

3.4 ANALYSIS ON EXISTING TREATMENTS FOR SYMMETRY

In this section, we make a detailed analysis on existing methods that handle symmetry, and verify the conclusions in Table 1. In contrast to our quotient-space diffusion, we find that they either have not fully leveraged the symmetry to reduce model-learning difficulty, or do not have a proper sampler.

Conventional equivariant diffusion models and data augmentation. A common treatment is by assigning equal probability to equivalent objects, resulting in an invariant target distribution $p(\mathbf{x}_1)$. This can be implemented by augmenting data samples by applying randomly chosen group actions, mimicking sampling from the invariant distribution, or using an invariant prior distribution and an equivariant architecture securing $\mathbf{D}_\theta(g \cdot \mathbf{x}, t) = g \cdot \mathbf{D}_\theta(\mathbf{x}, t)$. The training strategy is the same as modeling a general distribution in the original space following Eq. (5), and the standard samplers by Eqs. (2, 3) remain valid. For each value of \mathbf{x}_t , this objective asks the model to minimize the average of $\|\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathbf{x}_1\|^2$ terms where \mathbf{x}_1 come from $p(\mathbf{x}_1|\mathbf{x}_t)$, so the optimal solution is the conditional expectation $\mathbb{E}[\mathbf{x}_1|\mathbf{x}_t]$.

Fig. 3 shows an example and reveals characteristics of the training strategy. The example considers generating the structure of a diatomic molecule, where the target distribution $p(\mathbf{x}_1)$ concentrates on a single structure \mathbf{x}^* up to a uniform random orientation (Left). For a given \mathbf{x}_t , samples of $p(\mathbf{x}_1|\mathbf{x}_t)$ are \mathbf{x}^* structures posed in orientations distributed around the orientation of \mathbf{x}_t (Middle). Indeed, an \mathbf{x}_1 sample more closely oriented with \mathbf{x}_t would have a higher probability to produce the given \mathbf{x}_t in the diffusion process, so there is a specific orientation correspondence between the learning target $\mathbb{E}[\mathbf{x}_1|\mathbf{x}_t]$ and \mathbf{x}_t . So the model is still asked to learn a correspondence in the equivalent degrees of freedom (DOFs) (*i.e.*, rotation of the output), in contrast to the quotient-space case in Eq. (10) where the model is unconstrained in the vertical space (*i.e.*, tangent space of the rotation group). Moreover, the \mathbf{x}_1 samples are not all posed in the orientation of \mathbf{x}_t because \mathbf{x}^* in other orientations can also generate this \mathbf{x}_t through the diffusion process. So the model learns the correspondence in the equivalent DOFs from samples with a variance, leading to another aspect of learning difficulty.

GeoDiff alignment. To reduce the learning difficulty, some heuristic treatments are proposed based on alignment. The first representative alignment used in GeoDiff (Xu et al., 2022) uses the following training loss: $\mathbb{E}_{p(\mathbf{x}_1, \mathbf{x}_t)} \|\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)\|^2$, where the alignment operation is defined as:

$$\mathcal{A}_{\mathbf{y}}(\mathbf{x}) := \operatorname{argmin}_{\mathbf{x}' \in \{g \cdot \mathbf{x} | g \in G\}} d(\mathbf{x}', \mathbf{y}), \quad (11)$$

where $d(\cdot, \cdot)$ is the distance metric on \mathcal{M} . With an illustration in Fig. 3(Right), the learning task can be understood as that for a given value of \mathbf{x}_t , the model output needs to fit $\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)$ samples, which are all posed in the orientation of \mathbf{x}_t , and they all coincide with the \mathbf{x}^* structure in the orientation of \mathbf{x}_t . This supervises the model to the target $\mathbb{E}[\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)|\mathbf{x}_t]$ from samples with no variance in the equivalent DOFs (*i.e.*, rotation of the output), hence reduces certain learning difficulty. Nevertheless, this target still requires the model to learn a specific mapping in the equivalent DOFs, hence does not enjoy the learning advantage in the quotient-space case that relaxes the learning in the DOFs.

A caveat of this alignment approach is that a proper sampler needs to be developed, as the conventional samplers still require a model targeting $\mathbb{E}[\mathbf{x}_1|\mathbf{x}_t]$, which is different from $\mathbb{E}[\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)|\mathbf{x}_t]$.

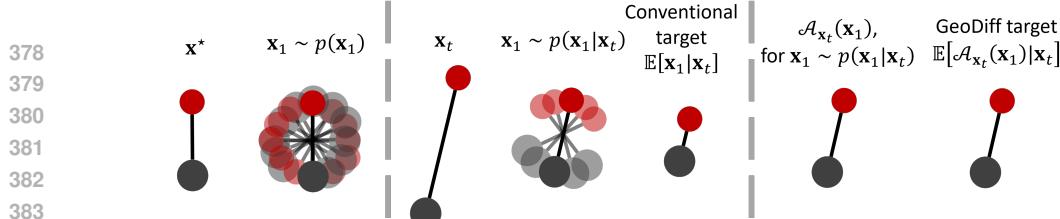


Figure 3: Illustration of denoising-model learning target using conventional training and using GeoDiff alignment. **(Left)** The example considers the structure distribution $p(\mathbf{x}_1)$ of a diatomic molecule, which concentrates on a single structure \mathbf{x}^* up to a uniform random orientation. **(Middle)** Given an \mathbf{x}_t sample, the corresponding \mathbf{x}_1 samples distribute with a variance, and their expectation $\mathbb{E}[\mathbf{x}_1|\mathbf{x}_t]$ is the conventional learning target, which is *not* equivalent to \mathbf{x}^* (the bond is shorter). **(Right)** Given an \mathbf{x}_t sample, all the \mathbf{x}_1 samples after alignment coincide with \mathbf{x}^* posed in the orientation of \mathbf{x}_t , which is also the learning target of GeoDiff $\mathbb{E}[\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)|\mathbf{x}_t]$.

Fig. 3 illustrates this difference: $\mathbb{E}[\mathbf{x}_1|\mathbf{x}_t]$ averages diversely oriented \mathbf{x}^* structures, resulting in a different shape than \mathbf{x}^* (the bond is shorter), while $\mathbb{E}[\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)|\mathbf{x}_t]$ is just \mathbf{x}^* in the orientation of \mathbf{x}_t .

AF3 alignment. Another alignment approach, which is used in AlphaFold 3 (AF3) (Abramson et al., 2024), aligns the \mathbf{x}_1 samples towards the model output: $\mathbb{E}_{p(\mathbf{x}_1, \mathbf{x}_t)} \|\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathcal{A}_{\mathbf{D}_{\bar{\theta}}(\mathbf{x}_t, t)}(\mathbf{x}_1)\|^2$, where $\bar{\theta}$ is treated constant in optimization. This loss function allows the model output to differ by an arbitrary group action (*e.g.*, rotation), hence removes the need to learn a specific target in the equivalent DOFs. Indeed, for an arbitrary group action $g_{\mathbf{x}_t, t}$, a new denoising model $g_{\mathbf{x}_t, t} \cdot \mathbf{D}_\theta(\mathbf{x}_t, t)$ achieves the same loss since $\|g_{\mathbf{x}_t, t} \cdot \mathbf{D}_\theta(\mathbf{x}_t, t) - \mathcal{A}_{g_{\mathbf{x}_t, t} \cdot \mathbf{D}_{\bar{\theta}}(\mathbf{x}_t, t)}(\mathbf{x}_1)\|^2 = \|g_{\mathbf{x}_t, t} \cdot \mathbf{D}_\theta(\mathbf{x}_t, t) - g_{\mathbf{x}_t, t} \cdot \mathcal{A}_{\mathbf{D}_{\bar{\theta}}(\mathbf{x}_t, t)}(\mathbf{x}_1)\|^2 = \|\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathcal{A}_{\mathbf{D}_{\bar{\theta}}(\mathbf{x}_t, t)}(\mathbf{x}_1)\|^2$, where the last equality holds since the group preserves metric (Appx. C). Up to this DOF, the learning target is the same as GeoDiff’s $\mathbb{E}[\mathcal{A}_{\mathbf{x}_t}(\mathbf{x}_1)|\mathbf{x}_t]$, since all the \mathbf{x}_1 samples are averaged after aligned with the same reference.

In the sampling process, the arbitrariness in the equivalent DOFs (*e.g.*, orientation) of the learned model $\mathbf{D}_\theta(\mathbf{x}_t, t)$ leads to an arbitrariness³ in the vector field $\mathbf{v}_\theta(\mathbf{x}_t, t)$ through Eq. (4). Hence there is no guarantee of recovering the target distribution using conventional samplers. This problem is also noted by Boltz-1 (Wohlwend et al., 2025), which proposes to align the prediction $\mathbf{D}_\theta(\mathbf{x}_t, t)$ towards \mathbf{x}_t in the sampling process. As the AF3 target is the same as GeoDiff’s up to an arbitrary rotation, this amounts to using the GeoDiff model for sampling, which still cannot guarantee producing the target distribution as concluded above. These discussions are summarized in Table 1.

4 EXPERIMENTS

In this section, we study the empirical performance of our quotient-space diffusion model. We carefully conduct several experiments covering different types of data, scales and scenarios. To evaluate our quotient space diffusion model framework for real-world applications, we focus on the molecule structure generation protein backbone design tasks, in which we consider the diffusion models on $\mathbb{R}^{3N}/\text{SE}(3)$ (Sec. 3.2). The details of all experiments are shown in Appx. G.

4.1 STRUCTURE GENERATION FOR SMALL MOLECULES

Datasets. First, we evaluate our framework on the molecule structure generation task. In this scenario, our goal is to generate the 3D coordinates of a molecule given the graph structure of the molecule. We conduct the experiments on the GEOM datasets (Axelrod & Gomez-Bombarelli, 2022), which provides structure ensembles generated by metadynamics in CREST (Pracht et al., 2024) and we focus on the GEOM-QM9 and GEOM-DRUGS datasets. Following the data processing and splits from (Hassan et al., 2024), we use the random splits with train/validation/test of 243473/30433/1000 for GEOM-DRUGS and 106586/13323/1000 for GEOM-QM9. In addition, data with disconnect molecule graph are removed for GEOM-DRUGS (Hassan et al., 2024).

Setting. We primarily follow the setting in (Hassan et al., 2024). We use an equivariant graph transformer architecture from ET-Flow (Hassan et al., 2024) and set the Gaussian distribution as prior distribution on GEOM-QM9 and use the harmonic prior for GEOM-DRUGS (Volk et al., 2023). We fix the architecture as ET-Flow(SO(3)) for experiments on GEOM-QM9, and use the ET-

³This is not even an arbitrary group action (*e.g.*, rotation) since \mathbf{x}_t does not vary together with the arbitrariness of $\mathbf{D}_\theta(\mathbf{x}_t, t)$.

432
 433 Table 3: Molecule structure generation results on GEOM-DRUGS ($\delta = 0.75\text{\AA}$). We use the ET-
 434 Flow(SO(3)) and ET-Flow(O(3)) architecture. We use the same sampling steps of 50 NFEs for fair
 435 comparison. Best results are marked in **bold**. Best results for the same architecture are underlined.

	Recall				Precision			
	Coverage \uparrow		AMR \downarrow		Coverage \uparrow		AMR \downarrow	
	mean	median	mean	median	mean	median	mean	median
GeoDiff	42.10	37.80	0.835	0.809	24.90	14.50	1.136	1.090
GeoMol	44.60	41.40	0.875	0.834	43.00	36.40	0.928	0.841
Torsional Diff.	72.70	80.00	0.582	0.565	55.20	56.90	0.778	0.729
MCF - S (13M)	79.4	87.5	0.512	0.492	57.4	57.6	0.761	0.715
MCF - B (62M)	84.0	91.5	0.427	0.402	64.0	66.2	0.667	0.605
MCF - L (242M)	84.7	92.2	0.390	0.247	66.8	71.3	0.618	0.530
ET-Flow (8.3M)	79.53	84.57	0.452	0.419	74.38	81.04	0.541	0.470
+ reproduction	78.94	84.24	0.489	0.472	66.24	70.42	0.651	0.595
+ Quotient-space diffusion	<u>79.86</u>	<u>85.71</u>	<u>0.459</u>	<u>0.433</u>	72.70	79.63	0.565	0.501
ET-Flow(SO(3)) (9.1M)	78.18	83.33	0.480	0.459	67.27	71.15	0.637	0.567
+ reproduction	74.91	80.90	0.541	0.515	60.33	62.71	0.724	0.665
+ Geodiff alignment	75.11	80.74	0.545	0.526	59.58	60.48	0.734	0.678
+ AF3 alignment	71.66	76.09	0.572	0.570	52.21	50.00	0.828	0.793
+ Quotient-space diffusion	<u>78.50</u>	<u>84.20</u>	<u>0.477</u>	<u>0.455</u>	<u>67.35</u>	<u>71.42</u>	<u>0.635</u>	<u>0.563</u>

447
 448 Flow(O(3)), ET-Flow(SO(3)) architecture on the GEOM-DRUGS dataset. Following (Jing et al.,
 449 2022; Xu et al., 2022), we report the RMSD-based metrics, e.g. Coverage and Average Minimum
 450 RMSD (AMR) between the generated and ground truth structure ensembles.

451 **Results.** The results are presented
 452 in Table 2 and Table 3 for the
 453 GEOM-QM9 and GEOM-DRUGS
 454 datasets, respectively. As shown,
 455 our proposed quotient-space diffu-
 456 sion framework consistently outper-
 457 forms prior methods and alignment
 458 techniques in terms of generation
 459 quality on both datasets. Our frame-
 460 work reduces learning difficulty by
 461 removing redundant components, en-
 462 abling us to further improve the per-
 463 formance of the ET-Flow framework⁴
 464 on both datasets. **On the GEOM-
 465 QM9 dataset, our quotient-space diffu-
 466 sion model framework surpasses strong baselines such as
 467 MCF (Wang et al., 2023) and the ET-Flow framework with other heuristic alignment methods among
 468 most of the RMSD-based metrics. On the GEOM-DRUGS dataset, our framework not only signif-
 469 icantly surpasses the ET-Flow baseline with heuristic alignment methods, since these methods are
 470 incompatible with training, but also achieves competitive performance against the larger MCF-L
 471 (242M) model (Wang et al., 2023) on the Precision metrics.**

4.2 PROTEIN BACKBONE DESIGN

472 Table 2: Molecule structure generation results on GEOM-
 473 QM9 ($\delta = 0.5\text{\AA}$). We use the ET-Flow(SO(3)) architecture.
 474 We use the same sampling steps of 50 NFEs for fair com-
 475 parison.

	Recall				Precision			
	Coverage \uparrow		AMR \downarrow		Coverage \uparrow		AMR \downarrow	
	mean	median	mean	median	mean	median	mean	median
CCCF	69.47	96.15	0.425	0.374	38.20	33.33	0.711	0.695
GeoDiff	76.50	100.00	0.297	0.229	50.00	33.50	1.524	0.510
GeoMol	91.50	100.00	0.225	0.193	87.60	100.00	0.270	0.241
Torsional Diff.	92.80	100.00	0.178	0.147	92.70	100.00	0.221	0.195
MCF	95.0	100.00	0.103	0.044	93.7	100.00	0.119	0.055
ET-Flow(SO(3))	95.98	100.00	0.076	0.030	92.10	100.00	0.110	0.047
+ Geodiff alignment	95.71	100.00	0.085	0.040	95.20	100.00	0.098	0.050
+ AF3 alignment	92.67	100.00	0.131	0.070	84.38	100.00	0.205	0.146
+ Quotient-space diffusion	96.40	100.00	0.069	0.024	93.30	100.00	0.096	0.036

476 **Setting.** To demonstrate the advantage of our quotient-space diffusion model for larger and more
 477 relevant molecules, we perform a comparative analysis on the task of protein structure generation
 478 against the state-of-the-art Proteína model (Geffner et al., 2025). We select their most efficient
 479 variant $\mathcal{M}_{\text{FS}}^{\text{small}}$, a 60M parameter transformer trained on the Foldseek AFDB clusters (D_{FS}) that
 480 forgoes triangle layers and pair representation updates, as a strong and relevant baseline. We train
 481 the quotient-space diffusion model from scratch using the identical architecture on the identical
 482 dataset. For evaluation, both our model and the officially released Proteína checkpoint are sampled
 483 using 400 steps with self-conditioning. We explore the designability-diversity trade-off by testing

484 ⁴We reproduce the results using the released configurations: <https://github.com/shenoynikhil/ETFlow>. Due to changes in the data processing pipeline, our reproduced results do
 485 not exactly match those reported in the original paper.

Table 4: Performance comparison of the most efficient Proteína model against other baselines. The Proteína model is evaluated in two settings: sampling in the standard Euclidean space (\mathbb{R}^{3N}) and in our proposed quotient space ($\mathbb{R}^{3N}/\text{SE}(3)$) for both ODE and SDE sampling. Best results are marked in **bold**.

Model	Designability(%) \uparrow	FPSD vs.		fS		fJSD vs.	
		PDB \downarrow	AFDB \downarrow	(C/A/T) \uparrow	PDB \downarrow	AFDB \downarrow	
FrameDiff	65.4	194.2	258.1	2.46/5.78/23.35	1.04	1.42	
FoldFlow (base)	96.6	601.5	566.2	1.06/1.79/9.72	3.18	3.10	
FoldFlow (stoc.)	97.0	543.6	520.4	1.21/2.09/11.59	3.69	2.71	
FoldFlow (OT)	97.2	431.4	414.1	1.35/3.10/13.62	2.90	2.32	
FrameFlow	88.6	129.9	159.9	2.52/5.88/27.00	0.68	0.91	
ESM3	22.0	933.9	855.4	3.19/6.71/17.73	1.53	0.98	
Chroma	74.8	189.0	184.1	2.34/4.95/18.15	1.00	1.08	
RFDiffusion	94.4	253.7	252.4	2.25/5.06/19.83	1.21	1.13	
Proteus	94.2	225.7	226.2	2.26/5.46/16.22	1.41	1.37	
Genie2	95.2	350.0	313.8	1.55/3.66/11.65	2.21	1.70	
SDE Sampling							
Proteína $\mathcal{M}_{\text{FS}}^{\text{small}}$, $\gamma = 0.35$	96.0	386.5	378.2	1.77/4.97/17.78	2.17	1.73	
+ Quotient-space diffusion	97.6	274.7	277.1	2.24/6.69/20.99	1.68	1.55	
Proteína $\mathcal{M}_{\text{FS}}^{\text{small}}$, $\gamma = 0.45$	92.2	332.9	320.4	1.83/5.01/20.22	1.93	1.49	
+ Quotient-space diffusion	92.6	244.5	246.3	2.24/6.68/23.47	1.43	1.28	
Proteína $\mathcal{M}_{\text{FS}}^{\text{small}}$, $\gamma = 0.50$	89.2	306.2	290.8	1.86/4.92/21.15	1.81	1.36	
+ Quotient-space diffusion	90.2	228.0	228.7	2.25/6.59/25.24	1.32	1.17	
ODE Sampling							
Proteína \mathcal{M}_{FS}	19.6	85.4	21.4	2.51/5.65/27.35	0.59	0.09	
Proteína $\mathcal{M}_{\text{FS}}^{\text{small}}$	13.8	83.2	21.9	2.45/5.63/31.76	0.58	0.12	
+ AF3 alignment	3.8	229.0	82.4	2.18/4.30/14.28	1.35	0.36	
+ Quotient-space diffusion	15.6	69.9	17.6	2.57/6.40/32.14	0.41	0.11	

a range of noise scales, $\gamma \in \{0.35, 0.45, 0.5\}$ ⁵. To faithfully evaluate the distributional metrics proposed in (Geffner et al., 2025), we utilize ODE sampling.

Results. The results in Table 4 highlight the superiority of our quotient space framework, which, unlike alignment-based strategies (adapted from AF3 and Boltz-1), provides a theoretical guarantee for sampling the correct target distribution. The alignment-based methods fail to recover this distribution, with performance metrics falling short of even data-augmented, semi-equivariant baselines. We attribute this failure to a fundamental incompatibility between their samplers and the learned density. Furthermore, our formulation effectively reduces learning difficulty by removing redundant spatial transformations, enabling the model to capture key structural features more efficiently than standard semi-equivariant baselines. This advantage of efficiency leads to significant results: our 60M parameter model not only surpasses its direct baseline across both SDE at all noise scales and ODE sampling setting, but also outperforms the much larger 200M \mathcal{M}_{FS} model on most key distributional metrics. This provides compelling evidence that a quotient space framework ensuring both sampling fidelity and learning efficiency is key to advancing generative protein models.

5 CONCLUSION

In this work, we formally construct a framework for building diffusion models on the quotient space over a group, in hope for a principled approach to handle symmetry in a generative task. We explicitly give the expression of the diffusion process on the quotient space, then also construct a corresponding diffusion process in the original space for easier implementation. The resulting training algorithm reduces learning difficulty by removing the need to predict the tangent vector in the direction along group action, and the resulting sampling process guarantees producing the target distribution while removes the unnecessary movement in the group-action direction. We instantiate the method in the case of $\mathbb{R}^{3N}/\text{SE}(3)$ for molecular structure generation. Empirical results on structure sampling for small molecules from the GEOM-QM9 and GEOM-DRUGS datasets and protein backbone generation demonstrate the better generation quality and design success rate over existing conventional equivariant diffusion models and alignment-based approaches given equal or fewer training epochs, demonstrating the practical advantages from this principled framework to handling symmetry in diffusion models.

⁵Due to a known bug in a previous version of Foldseek (Daras et al., 2025, Appendix B), our comparative analysis in the main text is focused solely on the designability. More comprehensive metrics evaluating our self-sampled structures are provided in Table 6.

540

6 ETHICS STATEMENT

541
 542 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
 543 sonal data, or sensitive demographic information. All experiments are conducted on publicly avail-
 544 able benchmark datasets, which are widely used in the machine learning community. No new data
 545 collection or human/animal experimentation was performed.

546

7 REPRODUCIBILITY STATEMENT

547 To facilitate the reproducibility of our research, we provide comprehensive details throughout the
 548 paper and its supplementary materials. We begin by establishing the necessary foundational knowl-
 549 edge in Sec. 2.1 and Appx. B. For all theoretical claims and proofs presented in the main text, we
 550 offer detailed step-by-step derivations in Appx. D. Our experiments are thoroughly documented; the
 551 datasets, training procedures, and evaluation protocols are carefully described in Sec. 4 and Appx. G.
 552 Upon acceptance of this paper, we commit to making our full codebase and all model checkpoints
 553 publicly available to ensure that the community can fully reproduce our results.

554

8 THE USE OF LARGE LANGUAGE MODELS (LLMs)

555 In the preparation of this manuscript, LLMs were employed as a writing assistant to refine the
 556 language and improve the grammar. Furthermore, we utilized LLMs to assist in verifying our math-
 557 ematical formulas for notational consistency. Following this process, all textual and mathematical
 558 content was meticulously reviewed, revised, and validated by the authors, who assume full respon-
 559 sibility for the final work presented.

560

REFERENCES

561 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
 562 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
 563 prediction of biomolecular interactions with AlphaFold 3. *Nature*, pp. 1–3, 2024.

564 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 565 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

566 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 567 denoising diffusion models in discrete state-spaces. *Advances in neural information processing
 568 systems*, 34:17981–17993, 2021.

569 Simon Axelrod and Rafael Gomez-Bombarelli. GEOM, energy-annotated molecular conformations
 570 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.

571 Jan-Hendrik Bastek, WaiChing Sun, and Dennis Kochmann. Physics-informed diffusion models.
 572 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tpYeermigp>.

573 Fabrice Baudoin, Nizar Demni, and Jing Wang. *Stochastic areas, horizontal Brownian motions, and
 574 hypoelliptic heat kernels*. EMS Press, 2024.

575 Isaac Chavel. *Riemannian geometry: a modern introduction*. Number 108. Cambridge university
 576 press, 1995.

577 Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. *arXiv preprint
 578 arXiv:2302.03660*, 2023.

579 François Cornet, Federico Bergamin, Arghya Bhowmik, Juan Maria Garcia Lastra, Jes Frellsen, and
 580 Mikkel N Schmidt. Kinetic langevin diffusion for crystalline materials generation. *arXiv preprint
 581 arXiv:2507.03602*, 2025.

582 Giannis Daras, Jeffrey Ouyang-Zhang, Krithika Ravishankar, William Daspit, Costis Daskalakis,
 583 Qiang Liu, Adam Klivans, and Daniel J Diaz. Ambient proteins: Training diffusion models on
 584 low quality structures. *bioRxiv*, pp. 2025–07, 2025.

594 Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
 595 Arnaud Doucet. Riemannian score-based generative modelling. *Advances in neural information*
 596 *processing systems*, 35:2406–2422, 2022.

597

598 Zach Evans, Cj Carr, Josiah Taylor, Scott H. Hawley, and Jordi Pons. Fast timing-conditioned
 599 latent audio diffusion. In *Proceedings of the 41st International Conference on Machine Learning*,
 600 volume 235 of *Proceedings of Machine Learning Research*, pp. 12652–12665, 2024. URL
<https://proceedings.mlr.press/v235/evans24a.html>.

601

602 Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William Green,
 603 and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d conformer en-
 604 sembles. *Advances in Neural Information Processing Systems*, 34:13757–13769, 2021.

605

606 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
 607 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, and Karsten Kreis. Proteina: Scal-
 608 ing flow-based protein structure generative models. In *The Thirteenth International Confer-
 609 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=TVQLu34bdw>.

610

611 Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stärk, Stephan Thaler, and Dominique Beaini.
 612 ET-Flow: Equivariant flow-matching for molecular conformer generation. *Advances in Neural*
 613 *Information Processing Systems*, 37:128798–128824, 2024.

614

615 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*
 616 *in Neural Information Processing Systems*, volume 33, pp. 6840–6851, 2020.

617

618 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
 619 Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
 620 video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022.

621

622 Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
 623 sion for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–
 624 8887. PMLR, 2022a.

625

626 Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
 627 sion for molecule generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
 628 Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference*
 629 *on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 8867–
 630 8887. PMLR, 17–23 Jul 2022b.

631

632 Elton P Hsu. *Stochastic analysis on manifolds*. Number 38. American Mathematical Soc., 2002.

633

634 Chenqing Hua, Sitao Luan, Minkai Xu, Zhitao Ying, Jie Fu, Stefano Ermon, and Doina Precup.
 635 Mudiff: Unified diffusion for complete molecule generation. In *Learning on Graphs Conference*,
 636 pp. 33–1. PMLR, 2024.

637

638 Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron C Courville. Rie-
 639 mannian diffusion models. *Advances in Neural Information Processing Systems*, 35:2750–2761,
 2022.

640

641 Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional dif-
 642 fusion for molecular conformer generation. *Advances in Neural Information Processing Systems*,
 643 35:24240–24253, 2022.

644

645 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 646 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 2022.

647

648 Seongsu Kim, Nayoung Kim, Dongwoo Kim, and Sungsoo Ahn. High-order equivariant flow match-
 649 ing for density functional theory Hamiltonian prediction. *arXiv preprint arXiv:2505.18817*, 2025.

650

651 Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning
 652 for symmetric densities. In *International conference on machine learning*, pp. 5361–5370. PMLR,
 2020.

648 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan C. Catanzaro. DiffWave: A versatile
 649 diffusion model for audio synthesis. In *International Conference on Learning Representations*
 650 (*ICLR*), 2021. URL <https://openreview.net/forum?id=a-xFK8Ymz5J>.

651

652 John M Lee. Smooth manifolds. In *Introduction to smooth manifolds*, pp. 1–29. Springer, 2003.

653

654 John M Lee. *Introduction to Riemannian manifolds*, volume 2. Springer, 2018.

655

656 Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew Y. K. Foong,
 657 Victor García Satorras, Osama Abdin, Bastiaan S. Veeling, Iryna Zaporozhets, Yaoyi Chen, Soo-
 658 jung Yang, Adam E. Foster, Arne Schneuing, Jigyasa Nigam, Federico Barbero, Vincent Stimper,
 659 Andrew Campbell, Jason Yim, Marten Lienen, Yu Shi, Shuxin Zheng, Hannes Schulz, Usman
 660 Munir, Roberto Sordillo, Ryota Tomioka, Cecilia Clementi, and Frank Noé. Scalable emulation
 661 of protein equilibrium ensembles with generative deep learning. *Science*, 389(6761):eadv9817,
 662 2025. doi: 10.1126/science.adv9817. URL <https://www.science.org/doi/abs/10.1126/science.adv9817>.

663

664 Xin Li, Wenqing Chu, Ye Wu, Weihang Yuan, Fanglong Liu, Qi Zhang, Fu Li, Haocheng Feng,
 665 Errui Ding, and Jingdong Wang. VideoGen: A reference-guided latent diffusion approach for
 666 high definition text-to-video generation. *arXiv preprint arXiv:2309.00398*, 2023. URL <https://arxiv.org/abs/2309.00398>.

667

668 Peijia Lin, Pin Chen, Rui Jiao, Qing Mo, Cen Jianhuan, Wenbing Huang, Yang Liu, Dan Huang,
 669 and Yutong Lu. Equivariant diffusion for crystal structure prediction. In *Forty-first International
 Conference on Machine Learning*, 2024.

670

671 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 672 matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

673

674 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 675 transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.

676

677 Philipp Pracht, Stefan Grimme, Christoph Bannwarth, Fabian Bohle, Sebastian Ehlert, Gereon Feld-
 678 mann, Johannes Gorges, Marcel Müller, Tim Neudecker, Christoph Plett, et al. Crest—a program
 679 for the exploration of low-energy molecular chemical space. *The Journal of Chemical Physics*,
 680 160(11), 2024.

681

682 Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du,
 683 Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant
 684 diffusion models. *Nature Computational Science*, 4(12):899–909, 2024.

685

686 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 687 Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021.

688

689 Anton Thalmaier. Stochastic riemannian geometry. 2023.

690

691 Jos Torge, Charles Harris, Simon V Mathis, and Pietro Lio. Diffhopp: A graph diffusion model for
 692 novel drug design via scaffold hopping. *arXiv preprint arXiv:2308.07416*, 2023.

692

693 Amanda A Volk, Robert W Epps, Daniel T Yonemoto, Benjamin S Masters, Felix N Castellano,
 694 Kristofer G Reyes, and Milad Abolhasani. AlphaFlow: autonomous discovery and optimization
 695 of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. *Nature
 Communications*, 14(1):1403, 2023.

696

697 Yuyang Wang, Ahmed A Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Angel
 698 Bautista. Swallowing the bitter pill: Simplified scalable conformer generation. *arXiv preprint
 699 arXiv:2311.17932*, 2023.

700

701 Jeremy Wohlwend, Gabriele Corso, Saro Passaro, Noah Getz, Mateo Reveiz, Ken Leidal, Wojtek
 702 Swiderski, Liam Atkinson, Tally Portnoi, Itamar Chinn, et al. Boltz-1 democratizing biomolecular
 703 interaction modeling. *BioRxiv*, pp. 2024–11, 2025.

702 Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
703 generation with informative prior bridges. *Advances in neural information processing systems*,
704 35:36533–36545, 2022.

705 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. GeoDiff: A geo-
706 metric diffusion model for molecular conformation generation. In *International Conference on*
707 *Learning Representations*, 2022.

708 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
709 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
710 pp. 38592–38610. PMLR, 2023.

711 Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
712 and Tommi Jaakkola. SE(3) diffusion model with application to protein backbone generation. In
713 *International Conference on Machine Learning*, pp. 40001–40039, 2023.

714 Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng, Fusong Ju, Jiaxi Wang,
715 Jianwei Zhu, Yaosen Min, He Zhang, Shidi Tang, Hongxia Hao, Peiran Jin, Chi Chen, Frank
716 Noé, Haiguang Liu, and Tie-Yan Liu. Predicting equilibrium distributions for molecular sys-
717 tems with deep learning. *Nature Machine Intelligence*, 2024. ISSN 2522-5839. doi: 10.1038/
718 s42256-024-00837-3.

719 Yuchen Zhu, Tianrong Chen, Lingkai Kong, Evangelos A Theodorou, and Molei Tao. Triv-
720 ialized momentum facilitates diffusion generative modeling on lie groups. *arXiv preprint*
721 *arXiv:2405.16381*, 2024.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

The organization of the appendix are as follows. In Appx. A, we briefly discuss the related work relevant to our research. In Appx. B, we review some background knowledge of Riemannian geometry and stochastic calculus on the manifold. In Appx. C, we give the details of the Riemannian structures of the quotient space. In Appx. D, we give all the proofs of the theorems in the main text. In Appx. E, we show our methods for the general case. In Appx. F, we give some additional results and discussions. Finally, the details of the experiments are given in Appx. G.

A RELATED WORK

Diffusion models on Riemannian manifolds. As the quotient has the Riemannian manifold structure, several previous works construct the diffusion model on the Riemannian manifolds. De Bortoli et al. (2022) constructs diffusion models using different overlapping local coordinate systems of the manifold and requires geodesic random walk to simulate the forward process. Huang et al. (2022); Chen & Lipman (2023) construct diffusion models in an embedding space which allows a global representation but requires explicit geodesic formula of the manifold. Zhu et al. (2024) constructs the reverse of kinetic Langevin dynamics on a Lie group to perform generative modeling. In this framework, the Brownian motion term is added only on the tangent space of the Lie group, which is trivialized as an Euclidean space. In our quotient space case, the specialty with a quotient structure enables us to construct diffusion models using the coordinate systems of the total space without relying on an embedding of the quotient in the total space (unnecessarily an embedding space), which is more practical to implement yet still general.

Geometric diffusion models. To ensure physical symmetry in the generation process, a main-stream strategy integrates fundamental physical constraints, such as SE(3) equivariance, directly into the diffusion model’s architecture. This approach, pioneered by models like EDM (Hoogeboom et al., 2022a), typically employs an EGNN to operate directly on atomic coordinates, using techniques like zero center of mass adjustments to guarantee translational invariance. This foundational concept was subsequently extended in several directions. For instance, the approach was adapted for Diffusion Bridges in models like EDM-Bridge (Wu et al., 2022) and for diffusion in a latent space in models like GeoLDM (Xu et al., 2023). These equivariant diffusion techniques have been successfully applied across a range of molecular tasks. For structure generation, models like GeoDiff (Xu et al., 2022) predict 3D structures from molecular graphs. In molecular optimization, methods such as DiffHopp (Torge et al., 2023) refine existing molecules to enhance desired properties. For de novo design, a key advancement has been to combine discrete diffusion models (D3PM) (Austin et al., 2021) for 2D topology with continuous equivariant diffusion for 3D geometry, enabling joint generation as seen in models like DiffSBDD (Schneuing et al., 2024) and MUDiff (Hua et al., 2024). A similar problem is also considered in crystalline structure generation, where the intrinsic periodic translation symmetry is crucial for generative modeling. Lin et al. (2024) highlighted the intrinsic periodic translation symmetry that has been omitted for a long time in the field of periodic crystalline structure generation. The work designed a modified diffusion process that induces a transition kernel that is invariant under periodic translation. The resulting optimization problem, while keeping the simplicity of no data augmentation, leads to a learning target for the score model that is invariant under periodic translation. Cornet et al. (2025) proposes a novel method that generalizes the Trivialized Diffusion Model framework for fractional coordinates to model the intrinsic periodic translation symmetry using flat coordinates. The proposed method considers the process with the velocity restricted to the mean-free linear subspace. Although considering different generation tasks, both of these works have a similar motivation to reduce the learning difficulty of the model using the intrinsic symmetry of the data distribution.

Learning with alignment To reduce learning difficulty, some heuristic treatments (learning with alignment) have been proposed to reduce the degrees of freedom corresponding to the symmetry group action. The alignment strategy used in GeoDiff (Xu et al., 2022) aligns the target structure with the noisy input by finding an optimal rigid transformation that minimizes the distance between them. Another approach, used in AlphaFold 3 (AF3) (Abramson et al., 2024), aligns the target samples towards the model’s output. However, such alignment-based training frameworks can be incompatible with the sampling process and lack a mathematical guarantee for recovering the correct

target distribution. Boltz-1 (Wohlwend et al., 2025), an open-source version of AF3, in an attempt to improve performance, introduces an input-alignment step as a sampling technique.

B BACKGROUND IN RIEMANNIAN GEOMETRY AND STOCHASTIC CALCULUS

B.1 RIEMANNIAN GEOMETRY

In this section, we review some background on differential geometry and Riemannian geometry. For a systematic treatment of the subject, please refer to standard textbooks Lee (2003; 2018).

First, we give the formal definition of the smooth manifold. A manifold is a general topological space that locally has a Euclidean structure.

Definition 5. An M -dimensional topological manifold is a topological space \mathcal{M} such that:

- \mathcal{M} is locally Euclidean, i.e. locally homeomorphic to \mathbb{R}^M . Formally, $\forall p \in \mathcal{M}$, there exists an open neighborhood $p \in \mathcal{U} \subset \mathcal{M}$ that is homeomorphic to some open set $\mathcal{V} \subset \mathbb{R}^M$. We call the homeomorphism $\phi : \mathcal{U} \rightarrow \mathcal{V} \subset \mathbb{R}^M$ a **coordinate system** or a chart.
- \mathcal{M} is a Hausdorff topological space.
- \mathcal{M} has a countable basis for its topology.

A smooth manifold is a topological manifold with an additional smooth structure, which is defined as follows.

Definition 6. A smooth structure on a M -dimensional topological space \mathcal{M} is a collection of coordinate systems $C = \{(\mathcal{U}_\alpha, \phi_\alpha) : \alpha \in A\}$ which satisfies the following properties:

- The collection C covers \mathcal{M} : $\bigcup_{\alpha \in A} \mathcal{U}_\alpha = \mathcal{M}$;
- For any $\alpha, \beta \in A$, the transition function $\phi_\alpha \circ \phi_\beta^{-1}$ is a smooth map;
- C is a maximal collection, i.e. if (\mathcal{U}, ϕ) is a coordinate system such that for all $\alpha \in A$ that the maps $\phi \circ \phi_\alpha^{-1}$ and $\phi_\alpha \circ \phi^{-1}$ are smooth, then $(\mathcal{U}, \phi) \in C$.

The pair (\mathcal{M}, C) is called a **smooth manifold** of dimension M .

With the smooth structure, we can define a smooth function on the manifold and a smooth mapping between smooth manifolds.

Definition 7. Let \mathcal{M}, \mathcal{N} be smooth manifolds with dimensions M, N respectively.

- A function $f : \mathcal{M} \rightarrow \mathbb{R}$ is called a **smooth function** if $f \circ \phi^{-1} : \phi^{-1}(\mathcal{U}) \rightarrow \mathbb{R}$ is smooth on $\phi^{-1}(\mathcal{U}) \subset \mathbb{R}^m$ for all smooth coordinate systems (\mathcal{U}, ϕ) of \mathcal{M} . Denote all the smooth functions on \mathcal{M} as $C^\infty(\mathcal{M})$.
- A map $\Phi : \mathcal{M} \rightarrow \mathcal{N}$ is called a **smooth map** if $\psi \circ \Phi \circ \phi^{-1} : \phi^{-1}(\mathcal{U}) \rightarrow \psi(\mathcal{V})$ is smooth for all smooth coordinate systems (\mathcal{U}, ϕ) of \mathcal{M} and (\mathcal{V}, ψ) .

A smooth map $\Phi : \mathcal{M} \rightarrow \mathcal{N}$ which is invertible and whose inverse is smooth is called a diffeomorphism. In this case we say that \mathcal{M} and \mathcal{N} are diffeomorphic manifolds.

To define movement on a smooth manifold \mathcal{M} , we need to define tangent vectors on the manifold.

Definition 8. Let \mathcal{M} be a smooth manifold, and $p \in \mathcal{M}$ is a point. A linear map $\mathbf{v}_p : C^\infty(\mathcal{M}) \rightarrow \mathbb{R}$ is called a derivative at p if it satisfies

$$\mathbf{v}_p(fg) = f(p)\mathbf{v}_p(g) + g(p)\mathbf{v}_p(f), \quad \forall f, g \in C^\infty(\mathcal{M}).$$

The set of all the derivations of $C^\infty(\mathcal{M})$ in p , denoted by $T_p \mathcal{M}$, is a vector space called the **tangent space** to \mathcal{M} at p . An element of $T_p \mathcal{M}$ is called a **tangent vector** at p .

The **tangent bundle** $T\mathcal{M}$ is the union of the tangent spaces of each points, i.e. $T\mathcal{M} := \bigsqcup_{p \in \mathcal{M}} T_p \mathcal{M}$. Similar to the total derivative of the smooth map in Euclidean space, the differential of a smooth map between smooth manifolds is a linear map between tangent spaces.

864 **Definition 9.** Let \mathcal{M}, \mathcal{N} be smooth manifolds and $F : \mathcal{M} \rightarrow \mathcal{N}$ be a smooth map. The **differential**
 865 **of F at $p \in \mathcal{M}$** , denoted by $F_{p*} : T_p \mathcal{M} \rightarrow T_{F(p)} \mathcal{N}$, is defined as
 866

$$867 \quad F_{p*}(\mathbf{v}_p) f = \mathbf{v}_p(f \circ F), \quad \forall f \in C^\infty(\mathcal{N}), \mathbf{v}_p \in T_p \mathcal{M}.$$

868 A **vector field** \mathbf{v} on a smooth manifold \mathcal{M} is a correspondence that associates to each point $p \in \mathcal{M}$
 869 a vector $\mathbf{v}_p \in T_p \mathcal{M}$. The vector field is smooth if the mapping $\mathbf{v} : \mathcal{M} \rightarrow T \mathcal{M}$ is smooth. Denote
 870 all the smooth vector fields on \mathcal{M} by $\mathcal{X}(\mathcal{M})$. With the definition of a vector field, we can define
 871 the solution of ordinary differential equation (ODE) on the manifold. The idea is similar to the
 872 definition in Euclidean space, the solution of the ODE is a curve whose velocity at each point is the
 873 same as the vector field.

874 **Definition 10.** Let \mathbf{v} be a smooth vector field on the smooth manifold \mathcal{M} . An **integral curve of \mathbf{v}**
 875 is a differentiable curve $\gamma : [0, T] \rightarrow \mathcal{M}$ whose velocity at each point is equal to the value of \mathbf{v} at
 876 that point:

$$877 \quad \gamma'(t) = \mathbf{v}_{\gamma(t)}, \quad \forall t \in [0, T].$$

879 Let $T_p^* \mathcal{M}$ be the dual space of $T_p \mathcal{M}$, which is called the cotangent space of \mathcal{M} at p . The **cotangent**
 880 **bundle** $T^* \mathcal{M}$ is the union of the cotangent space of each points, i.e. $T^* \mathcal{M} := \bigsqcup_{p \in \mathcal{M}} T_p^* \mathcal{M}$.

881 **Definition 11.** A **1-form** Θ on smooth manifold \mathcal{M} is a correspondence that associates to each point
 882 $p \in \mathcal{M}$ a covector $\Theta_p \in T_p^* \mathcal{M}$. The 1-form is smooth if the mapping $\Theta : \mathcal{M} \rightarrow T^* \mathcal{M}$ is smooth.

884 With the definition of a smooth manifold, we can define a continuous group with good properties.

885 **Definition 12.** A **Lie group** is a smooth manifold \mathcal{G} that is also a group with the property that the
 886 multiplication map $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}, (g, h) \mapsto g \cdot h$ and the inversion map $\mathcal{G} \rightarrow \mathcal{G}, g \mapsto g^{-1}$ are both
 887 smooth.

889 Define the left multiplication mapping $L_g(h) = gh$. A vector field \mathbf{v} on \mathcal{G} is said to be left-invariant
 890 if it's invariant under all left multiplications, i.e. $(L_{g*})_{g'}(\mathbf{v}_{g'}) = \mathbf{v}_{gg'}$.

891 **Definition 13.** A Lie algebra is a real vector space \mathfrak{g} endowed with a map called the bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ that satisfies the following properties for all $X, Y, Z \in \mathfrak{g}$:

- 894 • Bilinearity: $\forall a, b \in \mathbb{R}$,

$$895 \quad [aX + bY, Z] = a[X, Z] + b[Y, Z], [Z, aX + bY] = a[Z, X] + b[Z, Y];$$

- 897 • Antisymmetry: $[X, Y] = -[Y, X]$;

- 898 • Jacobi Identity: $[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$.

900 The Lie algebra of all smooth left-invariant vector fields on a Lie group \mathcal{G} is called the **Lie algebra**
 901 of \mathcal{G} , which has the same dimension with \mathcal{G} .

902 **Example 14.** The Lie algebra of the group $SO(3)$, denoted by $\mathfrak{so}(3)$, is given by all the 3-
 903 dimensional antisymmetric matrices $\mathfrak{so}(3) = \{A \in \mathbb{R}^{3 \times 3} | A + A^T = 0\}$.

905 Smooth manifold is a topological structure. If we want to define the "length of the velocity" and
 906 distance between two points on the manifold, a metric on the tangent space is required. Such a metric
 907 endows the metric with an additional geometry structure. The formal definitions are as follows.

908 **Definition 15.** A **Riemannian metric** on a smooth manifold is a correspondence which associates
 909 to each point p of \mathcal{M} an inner product $\langle \cdot, \cdot \rangle_p^{\mathcal{M}}$ that varies smoothly on \mathcal{M} . In other words, for any
 910 two smooth vector fields \mathbf{u}, \mathbf{v} , $\langle \mathbf{u}, \mathbf{v} \rangle^{\mathcal{M}}$ is a smooth function on \mathcal{M} . A smooth manifold with a given
 911 Riemannian metric is called a **Riemannian manifold**.

913 To define the "difference" between tangent space at different points, we need to introduce a concept
 914 called affine connection.

915 **Definition 16.** An **affine connection** ∇ on a Riemannian manifold is a mapping

$$916 \quad \nabla : \mathcal{X}(\mathcal{M}) \times \mathcal{X}(\mathcal{M}) \rightarrow \mathcal{X}(\mathcal{M})$$

917 which is denoted by $(\mathbf{u}, \mathbf{v}) \rightarrow \nabla_{\mathbf{u}} \mathbf{v}$ which satisfies the following properties:

918 • $\nabla_{\mathbf{u}} \mathbf{v}$ is linear over $C^\infty(\mathcal{M})$ in \mathbf{u} : $\forall f_1, f_2 \in C^\infty(\mathcal{M})$ and $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{X}(\mathcal{M})$,
919
$$\nabla_{f_1 \mathbf{u}_1 + f_2 \mathbf{u}_2} \mathbf{v} = f_1 \nabla_{\mathbf{u}_1} \mathbf{v} + f_2 \nabla_{\mathbf{u}_2} \mathbf{v};$$

920
921 • $\nabla_{\mathbf{u}} \mathbf{v}$ is linear over \mathbb{R} in \mathbf{v} : $\forall a_1, a_2 \in \mathbb{R}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{X}(\mathcal{M})$,
922
$$\nabla_{\mathbf{u}_1} (a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2) = a_1 \nabla_{\mathbf{u}} \mathbf{v}_1 + a_2 \nabla_{\mathbf{u}} \mathbf{v}_2;$$

923
924 • ∇ satisfies the following product rule: $\forall f \in C^\infty(\mathcal{M})$,
925
$$\nabla_{\mathbf{u}} (f \mathbf{v}) = f \nabla_{\mathbf{u}} \mathbf{v} + (\mathbf{u} f) \mathbf{v}.$$

927 A connection is called the **Levi-Civita connection** if satisfies the following additional properties:
928

929 • ∇ is compatible with metric: $\nabla_{\mathbf{u}} \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \nabla_{\mathbf{u}} \mathbf{v}_1, \mathbf{v}_2 \rangle + \langle \mathbf{v}_1, \nabla_{\mathbf{u}} \mathbf{v}_2 \rangle$;
930
931 • ∇ is torsion-free: $\nabla_{\mathbf{u}} \mathbf{v} - \nabla_{\mathbf{v}} \mathbf{u} = \mathbf{u}(\mathbf{v}(\cdot)) - \mathbf{v}(\mathbf{u}(\cdot))$.

932 The Levi-Civita connection is the connection with nice properties. Its existence and uniqueness is a
933 fundamental result of Riemannian geometry.
934

935 **Theorem 17.** (*Fundamental Theorem of Riemannian Geometry (Lee, 2018, Thm. 5.10)*) Assume
936 $(\mathcal{M}, \langle \cdot, \cdot \rangle^{\mathcal{M}})$ is a Riemannian manifold. Then there exists a unique Levi-Civita connection.

938 As the end of this subsection, we introduce the Laplace-Beltrami operator on the manifold, which is
939 used to define the Wiener process on the manifold.

940 **Definition 18.** Let ∇ be the Levi-Civita connection on \mathcal{M} . The Hessian of $f \in C^\infty(\mathcal{M})$ is defined
941 by

$$\text{Hess}(f)(\mathbf{u}, \mathbf{v}) := \mathbf{v}(\mathbf{u}(f)) - (\nabla_{\mathbf{v}} \mathbf{u})f, \quad \forall \mathbf{u}, \mathbf{v} \in \mathcal{X}(\mathcal{M}).$$

943 The Laplace-Beltrami operator $\Delta^{\mathcal{M}}$ is defined as the trace of Hessian. In other words, $\Delta^{\mathcal{M}} f :=$
944 $\sum_{i=1}^M \text{Hess}(e_i, e_i)$ where $\{e_1, \dots, e_M\}$ is some orthonormal basis for $T_x \mathcal{M}$.

946 B.2 STOCHASTIC CALCULUS ON A MANIFOLD

948 With the Riemannian structure defined in the previous section, we can consider the definition of
949 stochastic differential equations (SDE) and diffusion processes on the manifold. For a systematic
950 treatment of the subject, please refer to standard textbooks Hsu (2002); Thalmaier (2023). First, we
951 recall the definition of SDE and diffusion process in Euclidean space.

952 **Definition 19.** (Generator of a Process) The infinitesimal generator \mathcal{A}_t of a stochastic process (\mathbf{x}_t)
953 for a function $\phi(x)$ is

$$\mathcal{L}_t \phi(x) = \lim_{s \rightarrow 0^+} \frac{\mathbb{E}[\phi(\mathbf{x}_{t+s}) | \mathbf{x}_t = x] - \phi(x)}{s},$$

956 where ϕ is a suitably regular function. For an Itô process defined as the solution to the SDE $d\mathbf{x}_t =$
957 $\mathbf{f}(\mathbf{x}_t, t)dt + \Sigma(\mathbf{x}_t, t)d\mathbf{w}_t$, the generator is

$$\mathcal{L}_t = \sum_{i=1}^d \mathbf{f}^i(x, t) \frac{\partial}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^d (\Sigma(\mathbf{x}_t, t) \Sigma(\mathbf{x}_t, t)^\top)_{i,j} \frac{\partial^2}{\partial x_i \partial x_j}.$$

962 On the other hand, the diffusion process can also be defined by its generator.

963 **Definition 20.** A d -dimensional stochastic process \mathbf{x}_t with continuous sample path defined on a
964 probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is called a diffusion process generated by a smooth second-order elliptic
965 operator \mathcal{L}_t if the following hold: $\forall f \in C^\infty(\mathbb{R}^d)$, the process

$$M_t^f = f(\mathbf{x}_t) - f(\mathbf{x}_0) - \int_0^t \mathcal{L}_s f(\mathbf{x}_s) ds$$

969 is a \mathcal{F}_t -martingale.

971 To generalize the definition of SDE to a Riemannian manifold \mathcal{M} , we need to define the second-
972 order differential operator on the manifold. Let \mathcal{M} be an M -dimensional Riemannian manifold. A

972 second order partial differential operator (PDO) on \mathcal{M} is of the form
 973

$$974 \quad \mathcal{L} = \mathbf{v}_0 + \sum_{i=1}^r \mathbf{v}_i^2, \quad \text{where } \mathbf{v}_i \in \mathcal{X}(\mathcal{M}), r \in \mathbb{N}^+.$$

975 The square of a vector field is understand by the decomposition of derivatives, i.e.
 976

$$977 \quad \mathbf{v}_i^2(f) = \mathbf{v}_i(\mathbf{v}_i(f)), \quad \forall f \in C^\infty(\mathcal{M}).$$

978 \mathbf{v} can also be generalized to a time-dependent vector field. Now we can define the diffusion process
 979 on the manifold.
 980

981 **Definition 21.** (Thalmaier, 2023, Def. 1.1.3) Let $(\Omega, \mathcal{F}, \mathbb{P}; (\mathcal{F})_{t \geq 0})$ be a probability space equipped
 982 with increasing sequence of sub- σ -algebra $\mathcal{F}_y \subset \mathcal{F}$. An adapted continuous process \mathbf{x}_t taking
 983 values in \mathcal{M} , is called \mathcal{L}_t -diffusion if for all test functions $f \in C_c^\infty(\mathcal{M})$, the process

$$984 \quad N_t^f := f(\mathbf{x}_t) - f(\mathbf{x}_0) - \int_0^t (\mathcal{L}_s f)(\mathbf{x}_s) ds, \quad t \geq 0,$$

985 is a martingale, i.e. $\mathbb{E}[N_t^f - N_s^f \mid \mathcal{F}_s] = 0, \quad \forall s \leq t$.
 986

987 For a special case, we can define the Wiener process on the Riemannian manifold \mathcal{M} .
 988

989 **Definition 22.** A Wiener process \mathbf{w}_t on \mathcal{M} is a diffusion process with generator $\frac{1}{2}\Delta^{\mathcal{M}}$, where $\Delta^{\mathcal{M}}$
 990 is the Laplace-Beltrami operator of \mathcal{M} , i.e. \mathbf{w}_t is a continuous stochastic process on \mathcal{M} such that
 991 for any $f \in C^\infty(\mathcal{M})$,

$$992 \quad f(\mathbf{x}_t) - \frac{1}{2} \int_0^t \Delta^{\mathcal{M}} f(\mathbf{w}_s) ds, \quad 0 \leq t < e,$$

993 is a local martingale, where e is the lifetime of \mathbf{w}_t on \mathcal{M} .
 994

995 For stochastic differential geometry, the Stratonovitch integral is more useful than the Itô Integral,
 996 because it satisfies the ordinary chain rule of calculus. This property enables a clear correspondence
 997 between the diffusion process under a diffeomorphism between Riemannian manifolds. Next, we
 998 give the definition of the Stratonovitch integral on the Euclidean space and its generalization to
 999 Riemannian manifolds.
 1000

1001 **Definition 23.** For continuous real-valued semimartingales \mathbf{x} and \mathbf{y} , let $\mathbf{x} \circ \mathbf{y} := \mathbf{x}d\mathbf{y} + \frac{1}{2}d[\mathbf{x}, \mathbf{y}]$
 1002 be the Stratonovitch differential. Here $\mathbf{x}d\mathbf{y}$ is the usual Itô differential and $d[\mathbf{x}, \mathbf{y}] = d\mathbf{x}d\mathbf{y}$ is the
 1003 quadratic covariation of \mathbf{x} and \mathbf{y} . The integral
 1004

$$1005 \quad \int_0^t \mathbf{x} \circ \mathbf{y} = \int_0^t \mathbf{x}d\mathbf{y} + \frac{1}{2}[\mathbf{x}, \mathbf{y}]_t$$

1006 is called Stratonovitch integral of \mathbf{x} with respect to \mathbf{y} . The Stratonovitch integral satisfies the fol-
 1007 lowing properties:
 1008

- 1009 • Associativity: $\mathbf{x} \circ (\mathbf{y} \circ d\mathbf{z}) = (\mathbf{x}\mathbf{y}) \circ d\mathbf{z}$;
- 1010 • Product rule: $d(\mathbf{x}\mathbf{y}) = \mathbf{x} \circ d\mathbf{y} + \mathbf{y} \circ d\mathbf{x}$.

1011 **Proposition 24.** (Itô-Stratonovitch formula (Thalmaier, 2023, Prop. 1.2.10)). Let \mathbf{x} be a continuous
 1012 \mathbb{R}^d -valued semimartingale and $f \in C^\infty(\mathbb{R}^d)$. Then $\langle \nabla f(\mathbf{x}), \circ d\mathbf{x} \rangle$.
 1013

1014 **Proposition 25.** (Thalmaier, 2023, Prop. 1.2.11) Solutions to the Stratonovitch SDE
 1015

$$1016 \quad d\mathbf{x}_t = \mathbf{b}(\mathbf{x}_t, t)dt + \Sigma(\mathbf{x}_t, t) \circ d\mathbf{w}_t$$

1017 define \mathcal{L}_t -diffusions for the operator
 1018

$$1019 \quad \mathcal{L}_t = \mathbf{v}_0 + \frac{1}{2} \sum_{i=1}^d \mathbf{v}_i^2, \quad \text{where } \mathbf{v}_0 = \sum_{i=1}^d \mathbf{b}^i \frac{\partial}{\partial x_i}, \quad \mathbf{v}_k = \sum_{i=1}^d \Sigma_{ik} \frac{\partial}{\partial x_i}.$$

1020 Now we can generalize the definition of SDE to the Riemannian manifold case. A SDE on manifold
 1021 \mathcal{M} is defined by vector fields $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_d$ on \mathcal{M} . Let \mathbf{w} be the \mathbb{R}^d -valued Wiener process and
 1022 \mathbf{x}_0 be a \mathcal{M} -valued random variable serving as the initial value of the solution. The equation is
 1023

1026 symbolically written as
 1027

$$1028 \quad \mathrm{d}\mathbf{x}_t = \mathbf{v}_0(\mathbf{x}_t, t)dt + \sum_{i=1}^d \mathbf{v}_i(\mathbf{x}_t, t) \circ \mathrm{d}\mathbf{w}_i(t). \quad (12)$$

1029
 1030 **Definition 26.** An \mathcal{M} -valued semimartingale \mathbf{x} defined up to a stopping time τ is a solution of SDE
 1031 Eq. (12) up to τ if for all $f \in C^\infty(\mathcal{M})$,

$$1033 \quad f(\mathbf{x}_t) = f(\mathbf{x}_0) + \int_0^t \left(\mathbf{v}_0(f)(\mathbf{x}_s, s)ds + \sum_{i=1}^d \mathbf{v}_i(f)(\mathbf{x}_s, s) \circ \mathrm{d}\mathbf{w}_i \right), \quad 0 \leq t < \tau.$$

1034
 1035 **Proposition 27.** (Thalmaier, 2023, Cor. 1.2.19) Let $\mathcal{L}_t = \mathbf{v}_0 + \frac{1}{2} \sum_{i=1}^d \mathbf{v}_i^2$, and \mathbf{x}_t be the solution
 1036 of SDE Eq. (12). Then for all $f \in C^\infty(\mathcal{M})$,

$$1037 \quad N_t^f := f(\mathbf{x}_t) - f(\mathbf{x}_0) - \int_0^t (\mathcal{L}_s f)(\mathbf{x}_s)ds, \quad t \geq 0,$$

1038
 1039 is a martingale. In other words, the solution of SDE Eq. (12) is a \mathcal{L}_t diffusion to the operator
 1040
 1041 $\mathcal{L}_t = \mathbf{v}_0 + \frac{1}{2} \sum_{i=1}^d \mathbf{v}_i^2$.

1042 C CONSTRUCTION OF QUOTIENT SPACE

1043
 1044 In this section, we give the rigorous construction of the quotient space and endow it with the man-
 1045 ifold structure. Please refer to the standard textbooks Lee (2018) for the systematic treatments.
 1046 Assume that the total space \mathcal{M} is a Riemannian manifold and \mathcal{G} is a compact Lie group. First we
 1047 give the formal definition of the group action.

1048
 1049 **Definition 28.** Let \mathcal{G} be a group and \mathcal{M} is a Riemannian manifold. A left action of \mathcal{G} on \mathcal{M} is a map
 1050 $\mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$, $(g, \mathbf{x}) \mapsto g \cdot \mathbf{x}$, satisfying $g_1 \cdot (g_2 \cdot \mathbf{x}) = (g_1 g_2) \cdot \mathbf{x}$ and $id \cdot \mathbf{x} = \mathbf{x}$, $\forall g_1, g_2 \in \mathcal{G}, \mathbf{x} \in \mathcal{M}$.
 1051 An action is smooth if its defining map $\mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$ is smooth.

1052
 1053 **Definition 29.** A smooth action is said to be free if $g \cdot \mathbf{x} = \mathbf{x}$ for some $g \in \mathcal{G}, \mathbf{x} \in \mathcal{M}$, then
 1054 $g = e$. A smooth action is said to be proper if the map $\mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M} \times \mathcal{M}, (g, \mathbf{x}) \mapsto (g \cdot \mathbf{x}, \mathbf{x})$
 1055 is a proper map, meaning that the preimage of every compact set is compact. The action is said to
 1056 be an isometric action if the map $L_g : \mathcal{M} \rightarrow \mathcal{M}, \mathbf{x} \mapsto g \cdot \mathbf{x}$ is an isometry for any $g \in \mathcal{G}$, i.e.
 1057 $\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{x}} = \langle L_{g*} \mathbf{u}, L_{g*} \mathbf{v} \rangle_{g \cdot \mathbf{x}}$.

1058
 1059 The proper property is a technical assumption to ensure the topological structure of the quotient
 1060 space. The following technical characterization is usually the easiest way to prove that a given
 1061 action is proper.

1062
 1063 **Proposition 30.** (Lee, 2018, Prop. C.15) Assume \mathcal{G} is a Lie group acting smoothly on the smooth
 1064 manifold \mathcal{M} . The action is proper if and only if the following condition is satisfied: if (p_i) is
 1065 a sequence in \mathcal{M} and (g_i) is a sequence in \mathcal{G} such that both (p_i) and $(g_i \cdot p_i)$ converge, then a
 1066 subsequence of (g_i) converges. Thus every smooth action by a compact Lie group on a smooth
 1067 manifold is proper.

1068
 1069 We define a equivalence relation \sim on \mathcal{M} by $\mathbf{x}_1 \sim \mathbf{x}_2$ if and only if $\exists g \in \mathcal{G}, \mathbf{x}_1 = g \cdot \mathbf{x}_2$. The
 1070 quotient space $\mathcal{Q} := \mathcal{M} / \sim$ is defined as the set of equivalence classes under the relation \sim . The
 1071 quotient space inherits the Riemannian structure of the total space under certain conditions.

1072
 1073 **Theorem 31.** (Lee, 2018, Cor. 2.29) Let \mathcal{M} be a Riemannian manifold, and \mathcal{G} is a Lie group acting
 1074 smoothly, freely, properly, and isometrically on \mathcal{M} . Then the orbit \mathcal{M}/\mathcal{G} has a unique smooth
 1075 manifold structure and Riemannian metric such that π is a Riemannian submersion.

1076
 1077 With the Riemannian submersion structure, we can define two subspaces of the tangent space $T_{\mathbf{x}}\mathcal{M}$
 1078 as follows. The vertical tangent space $\mathcal{V}_{\mathbf{x}} := \mathrm{Ker} \pi_{*\mathbf{x}}$, and the horizontal tangent space is its
 1079 orthogonal complement $\mathcal{H}_{\mathbf{x}} := (\mathrm{Ker} \pi_{*\mathbf{x}})^\perp$. A vector field on \mathcal{M} is said to be a horizontal vector
 1080 field if its value at each point lies in the horizontal subspace at that point, a vertical vector field is
 1081 defined similarly.

1082
 1083 **Definition 32.** Given a vector field \mathbf{v} on \mathcal{Q} , a vector field \mathbf{u} on \mathcal{M} is called a **horizontal lift** of
 1084 \mathbf{v} if \mathbf{u} is a horizontal vector field and \mathbf{u} is π -related to \mathbf{v} , where the latter property means that
 1085 $\pi_{*\mathbf{x}} \mathbf{u}_{\mathbf{x}} = \mathbf{v}_{\pi(\mathbf{x})}$.

1080 The horizontal lift is unique and always exists. We summarized the properties of horizontal vector
 1081 fields in the following proposition.
 1082

1083 **Proposition 33.** (Lee, 2018, Prop. 2.25) *Assume $\pi : \mathcal{M} \rightarrow \mathcal{Q}$ is a smooth submersion, then we
 1084 have:*

- 1085 • *Every smooth vector field \mathbf{u} on \mathcal{M} can be expressed uniquely in the form $\mathbf{u} = \mathbf{u}^{\mathcal{H}} + \mathbf{v}^{\mathcal{V}}$,
 1086 where $\mathbf{u}^{\mathcal{H}}$ is horizontal and $\mathbf{u}^{\mathcal{V}}$ is vertical and both $\mathbf{u}^{\mathcal{H}}$ and $\mathbf{u}^{\mathcal{V}}$ are smooth;*
- 1088 • *Every smooth vector field on \mathcal{Q} has a unique smooth horizontal lift to \mathcal{M} .*
- 1089
- 1090 • *For every $\mathbf{x} \in \mathcal{M}$ and $\mathbf{v} \in \mathcal{H}_{\mathbf{x}}$, there is a vector field $\mathbf{u} \in \mathcal{X}(\mathcal{Q})$ whose horizontal lift $\tilde{\mathbf{u}}$
 1091 satisfies $\tilde{\mathbf{u}}_{\mathbf{x}} = \mathbf{v}$.*

1093 According to the first property of Prop. 33 we can define the horizontal projection within $T_{\mathbf{x}}\mathcal{M}$ itself:
 1094 $P_{\mathbf{x}}(\mathbf{v}) := \mathbf{v}^{\mathcal{H}}$ and P is a smooth mapping. The result of Thm. 31 shows that π is a Riemannian
 1095 submersion, i.e. the Riemannian metric of \mathcal{Q} can be pulled back from total space \mathcal{M} using $\pi_{*\mathbf{x}}^{-1}|_{\mathcal{H}}$,
 1096 i.e. $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle_{\mathbf{y}}^{\mathcal{Q}} := \langle \pi_{*\mathbf{x}}^{-1}|_{\mathcal{H}}(\mathbf{u}_1), \pi_{*\mathbf{x}}^{-1}|_{\mathcal{H}}(\mathbf{u}_2) \rangle_{\mathbf{x}}^{\mathcal{M}}$, which is the same for any $\mathbf{x} \in \pi^{-1}(\mathbf{y})$ (due to the
 1097 isometry property of the group action).

1098 **Proposition 34.** (Lee, 2018, Exercise. 5.6) *Let $\nabla^{\mathcal{M}}$ and $\nabla^{\mathcal{Q}}$ denote the Levi-Civita connection of
 1099 \mathcal{M}, \mathcal{Q} respectively. Then for any $\mathbf{u}, \mathbf{v} \in \mathcal{Q}$, let $\tilde{\mathbf{u}}, \tilde{\mathbf{v}}$ be the horizontal lift of \mathbf{u}, \mathbf{v} . Then we have*

$$1101 \widetilde{\nabla_{\mathbf{u}}^{\mathcal{Q}} \mathbf{v}} = (\nabla_{\tilde{\mathbf{u}}}^{\mathcal{M}} \tilde{\mathbf{v}})^{\mathcal{H}}.$$

1103 For a concrete example, we consider the example of shape space, i.e. the total space \mathbb{R}^{3n} with the
 1104 $\text{SE}(3)$ symmetry. Let

$$1105 \mathbf{x} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}) \in \mathbb{R}^{3N}, \quad \text{with } \mathbf{x}^{(i)} \in \mathbb{R}^3,$$

1107 denote a configuration (or point cloud) of N points in \mathbb{R}^3 . Since the translation group is not compact
 1108 thus there does not exist a probability distribution that is translation invariant. To solve this issue,
 1109 we first let $\bar{\mathcal{M}}$ be the center of mass subspace (COM) and consider the $\text{SO}(3)$ action on it. Formally,
 1110 let $\bar{\mathcal{M}} := \{\mathbf{x} \in \mathbb{R}^{3n} \mid \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i = \mathbf{0}\}$. \mathcal{M} is a linear subspace of \mathbb{R}^{3n} , so obviously it is a
 1111 Riemannian manifold. We endow $\bar{\mathcal{M}}$ with the standard inner product of \mathbb{R}^{3n} . An element of the
 1112 $\text{SO}(3)$ group is given by a 3-dimensional rotation matrix $g \in \mathbb{R}^{3 \times 3}$. The natural action of g on \mathbf{x} is
 1113 defined as $g \cdot \mathbf{x} = (g\mathbf{x}^{(1)}, g\mathbf{x}^{(2)}, \dots, g\mathbf{x}^{(N)})$, i.e. the rotation is acted on each point of the system.

1114 Unfortunately, $\text{SO}(3)$ does not act freely on $\bar{\mathcal{M}}$ in some degenerate cases, e.g. all the coordinates
 1115 of the points are in a straight line. So we define the subset $\mathcal{D} \subset \bar{\mathcal{M}}$ that $\text{SE}(3)$ does not have free
 1116 action on it. $\bar{\mathcal{M}} \setminus \mathcal{D}$ is a smooth manifold as \mathcal{D} is a low dimensional subspace of $\bar{\mathcal{M}}$. Now $\text{SO}(3)$
 1117 acts freely and smoothly on $\mathcal{M} := \bar{\mathcal{M}} \setminus \mathcal{D}$, and it's obvious that the $\text{SE}(3)$ action is isometric in
 1118 the Euclidean space. Since $\text{SO}(3)$ is a compact group, by Prop. 30, the action is proper and we
 1119 have checked that the action is smooth, proper, isometric and free. Then by Thm. 31, the quotient
 1120 space $\mathcal{Q} := \mathcal{M}/\text{SO}(3)$ is a Riemannian manifold and the projection $\pi : \mathcal{M} \rightarrow \mathcal{Q}$ is a Riemannian
 1121 submersion. Again, we denote $\pi : \mathcal{M} \rightarrow \mathcal{Q}$ as the projection operator, $\pi(\mathbf{x}) = [\mathbf{x}]$, where $[\mathbf{x}] \in \mathcal{Q}$
 1122 is the equivalent class that $\mathbf{x} \in \mathcal{M}$ belongs to.

1123 Since \mathcal{M} is a Riemannian manifold with standard Euclidean inner product, we can uniquely decom-
 1124 pose the tangent space of \mathcal{M} as the orthogonal direct sum of the horizontal subspace and the vertical
 1125 subspace, i.e. $T_{\mathbf{x}}\mathcal{M} = \mathcal{V}_{\mathbf{x}} \oplus \mathcal{H}_{\mathbf{x}}$. The vertical space $\mathcal{V}_{\mathbf{x}} := \text{Ker } \pi_{*\mathbf{x}}$ captures the infinitesimal move-
 1126 ment of the group action, which is defined by the Lie algebra of the Lie group \mathcal{G} (Appx. B). For
 1127 $\mathcal{G} = \text{SO}(3)$, the Lie algebra $\mathfrak{so}(3)$ is given by the antisymmetric matrices in $\mathbb{R}^{3 \times 3}$. So the vertical
 1128 tangent space is given by:

$$1129 \mathcal{V}_{\mathbf{x}} = \{(\mathbf{A}\mathbf{x}^{(1)}, \mathbf{A}\mathbf{x}^{(2)}, \dots, \mathbf{A}\mathbf{x}^{(N)}) \mid \mathbf{A} \in \mathfrak{so}(3)\}.$$

1130 The horizontal space, which is the orthogonal complement of the vertical space, is given by

$$1132 \mathcal{H}_{\mathbf{x}} = \left\{ \mathbf{v} = (\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(N)}) \in \mathbb{R}^{3N} : \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} = 0 \right\},$$

1133 where “ \times ” denotes the cross product on \mathbb{R}^3 .

1134 For any tangent vector $\mathbf{u} \in T_{[\mathbf{x}]} \mathcal{Q}$, there is a unique horizontal lift of it given by $\hat{\mathbf{u}} = \pi_{*\mathbf{x}}^{-1}|_{\mathcal{H}}(\mathbf{u})$.
 1135 Then we can define the Riemannian metric on the quotient space using the inner product on \mathbb{R}^{3n} and
 1136 the horizontal lift: $\langle \mathbf{u}, \mathbf{v} \rangle_{[\mathbf{x}]}^{\mathcal{Q}} := \langle \hat{\mathbf{u}}, \hat{\mathbf{v}} \rangle_{\mathbf{x}}^{\mathbb{R}^{3n}}, \forall \mathbf{u}, \mathbf{v} \in T_{[\mathbf{x}]} \mathcal{Q}$.
 1137

1138 Let \mathbf{x}_t be a diffusion process on $\mathcal{M} = \bar{\mathcal{M}} \setminus \mathcal{D}$, we can still view it as a process on the Euclidean space
 1139 \mathbb{R}^{3n} with a slight modification. We can define a stopping time $\tau_{\mathcal{D}} = \inf\{t \in [0, \infty] \mid \mathbf{x}_t \in \mathcal{D}\}$,
 1140 which is the first time point that \mathbf{x}_t hit the "boundary". Define
 1141

$$\mathbf{x}_{\tau} = \begin{cases} \mathbf{x}_t, & \text{if } t \leq \tau, \\ 0, & \text{if } t \geq \tau. \end{cases}$$

1144 Then \mathbf{x}_{τ} is also a diffusion process with the same generator, however, \mathbf{x}_{τ} stops at the boundary.
 1145

D PROOFS

D.1 PROOF OF THEOREM 1

1149 **Theorem 35.** Assume $\{\mathbf{x}_t\}_{t \in [0, T]}$ is a diffusion process on \mathcal{M} , specified by the following SDE:

$$d\mathbf{x}_t = \mathbf{b}_t(\mathbf{x}_t) dt + \sigma_t d\mathbf{w}_t, \quad \mathbf{x}_0 \sim p_{\text{prior}}, \quad (13)$$

1150 where \mathbf{b}_t is a \mathcal{G} -equivariant time-dependent vector field on \mathcal{M} , \mathbf{w}_t is the Wiener process on \mathcal{M}
 1151 that is also \mathcal{G} -invariant, and p_{prior} is a \mathcal{G} -invariant distribution. Then the projected process $\{\mathbf{y}_t := \pi(\mathbf{x}_t)\}_{t \in [0, T]}$ onto the quotient space $\mathcal{Q} := \mathcal{M}/\mathcal{G}$ is the solution to the following SDE:

$$d\mathbf{y}_t = \left((\pi_* \mathbf{b}_t)(\mathbf{y}_t) - \frac{\sigma_t^2}{2} \mathbf{h}(\mathbf{y}_t) \right) dt + \sigma_t d\boldsymbol{\omega}_t, \quad \mathbf{y}_0 \sim \pi_{\#} p_{\text{prior}}, \quad (14)$$

1152 where $\pi_* \mathbf{b}_t$ is the pushed-forward vector field of \mathbf{b}_t induced by π , $\mathbf{h}(\mathbf{y}_t) := \pi_* (\sum_{i=M-G+1}^M \nabla_{\mathbf{e}_i} \mathbf{e}_i)$
 1153 is the mean curvature vector at \mathbf{y}_t ($\{\mathbf{e}_i\}$ is a local orthonormal basis of $T_{\mathbf{x}_t} \mathcal{M}$ and $\mathcal{V}_{\mathbf{x}} =$
 1154 $\text{span}\{\mathbf{e}_{M-G+1}, \dots, \mathbf{e}_M\}$), $\boldsymbol{\omega}_t$ is the Wiener process on \mathcal{Q} , and $\pi_{\#} p_{\text{prior}}$ is the pushed-forward
 1155 distribution of p_{prior} (i.e., $\mathbf{y}_0 = \pi(\mathbf{x}_0)$ where $\mathbf{x}_0 \sim p_{\text{prior}}$).

1156 **Proof.** As \mathbf{x}_t is a diffusion process on \mathcal{M} given by the SDE $d\mathbf{x}_t = \mathbf{b}_t(\mathbf{x}_t) dt + \sigma_t d\mathbf{w}_t$, by
 1157 Prop. 27, \mathbf{x}_t is a \mathcal{L}_t -diffusion and the generator is

$$\mathcal{L}_t = \mathbf{b}_t + \frac{\sigma_t^2}{2} \Delta^{\mathcal{M}}.$$

1158 Assume $\mathbf{e}_1, \dots, \mathbf{e}_M$ is a local orthonormal basis of \mathcal{M} and $\mathcal{H}_{\mathbf{x}} = \text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_{M-G}\}$, $\mathcal{V}_{\mathbf{x}} =$
 1159 $\text{span}\{\mathbf{e}_{M-G+1}, \dots, \mathbf{e}_M\}$. Then by the Riemannian submersion construction of $\pi : \mathcal{M} \rightarrow \mathcal{Q}$ (see
 1160 Appx. C), $\{\tilde{\mathbf{e}}_i := \pi_* \mathbf{e}_i\}_{i=1,2,\dots,M-G}$ is a local orthonormal basis of \mathcal{Q} . Let $\nabla^{\mathcal{M}}$ and $\nabla^{\mathcal{Q}}$ be the
 1161 Levi-Civita connection on \mathcal{M} , \mathcal{Q} , respectively. Using the local expression of the Laplace-Beltrami
 1162 operator (Def. 18), the generator is given by
 1163

$$\begin{aligned} \mathcal{L}_t &= \mathbf{b}_t + \frac{\sigma_t^2}{2} \Delta^{\mathcal{M}} \\ &= \mathbf{b}_t + \frac{\sigma_t^2}{2} \sum_{i=1}^M (\mathbf{e}_i(\mathbf{e}_i) - \nabla_{\mathbf{e}_i}^{\mathcal{M}} \mathbf{e}_i) \\ &= \left(\mathbf{b}_t - \frac{\sigma_t^2}{2} \sum_{i=1}^M \nabla_{\mathbf{e}_i}^{\mathcal{M}} \mathbf{e}_i \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^M \mathbf{e}_i^2. \end{aligned}$$

1164 Then the process is the solution of the Stratonovitch SDE
 1165

$$d\mathbf{x}_t = \mathbf{v}_0(\mathbf{x}_t, t) dt + \sum_{i=1}^M \mathbf{v}_i(\mathbf{x}_t, t) \circ d\mathbf{w}_i, \quad \text{where } \mathbf{v}_0 = \mathbf{b}_t - \frac{\sigma_t^2}{2} \sum_{i=1}^M \nabla_{\mathbf{e}_i}^{\mathcal{M}} \mathbf{e}_i, \quad \mathbf{v}_i = \sigma_t \mathbf{e}_i.$$

1166 By Def. 26, for all $f \in C^{\infty}(\mathcal{M})$,

$$f(\mathbf{x}_t) = f(\mathbf{x}_0) + \int_0^t \left(\mathbf{v}_0(f)(\mathbf{x}_s, s) ds + \sum_{i=1}^d \mathbf{v}_i(f)(\mathbf{x}_s, s) \circ d\mathbf{x}_i \right).$$

1188 Let $\tilde{f} \in C^\infty(\mathcal{Q})$, then $f = \tilde{f} \circ \pi \in C^\infty(\mathcal{M})$, then
 1189
 1190 $f(\mathbf{x}_t) = \tilde{f}(\pi(\mathbf{x}_t))$
 1191 $= \tilde{f}(\pi(\mathbf{x}_0)) + \int_0^t \left(\mathbf{v}_0(\tilde{f} \circ \pi)(\mathbf{x}_s, s) ds + \sum_{i=1}^d \mathbf{v}_i(\tilde{f} \circ \pi)(\mathbf{x}_s, s) \circ d\mathbf{x}_i \right)$
 1192
 1193 $= \tilde{f}(\pi(\mathbf{x}_0)) + \int_0^t \left((\pi_* \mathbf{v}_0)(\tilde{f})(\pi(\mathbf{x}_s), s) ds + \sum_{i=1}^d (\pi_* \mathbf{v}_i)(\tilde{f})(\pi(\mathbf{x}_s), s) \circ d\mathbf{x}_i \right), \text{ by Def. 9.}$
 1194
 1195
 1196

1197 Since \tilde{f} is arbitrary, by Def. 26, $\mathbf{y}_t := \pi(\mathbf{x}_t)$ is the solution of

1198
 1199 $d\mathbf{y}_t = \pi_* \mathbf{v}_0(\mathbf{y}_t, t) dt + \sum_{i=1}^M \pi_* \mathbf{v}_i(\mathbf{y}_t, t) \circ d\mathbf{w}_i.$
 1200

1201 We first need to check that the projected vector field is well defined. In fact, we only need to check
 1202 that $\pi_* \mathbf{b}$ is well defined. Since \mathbf{b} is \mathcal{G} -equivariant, then for any $g \in \mathcal{G}$, $g_* \mathbf{b}_t(\mathbf{x}) = \mathbf{b}_t(g \cdot \mathbf{x})$.
 1203 Then $\pi_*(\mathbf{b}_t(g \cdot \mathbf{x})) = \pi_*(g_* \mathbf{b}_t(\mathbf{x})) = (\pi \circ g)_*(\mathbf{b}_t(\mathbf{x}))$, where we use the chain rule of differential
 1204 calculus in the last step. Thus $\pi_*(\mathbf{b}_t(\mathbf{x}))$ is the same in the fiber $\mathbf{x} \in \pi^{-1}(\pi(\mathbf{x}))$, which implies that
 1205 the projected vector field is well defined.

1206 Next, we calculate the expression of the projected vector field. Since $\mathcal{H}_\mathbf{x} = \text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_{M-G}\}$,
 1207 $\mathcal{V}_\mathbf{x} = \text{span}\{\mathbf{e}_{M-G+1}, \dots, \mathbf{e}_M\}$, we have

1208
 1209 $\pi_* \mathbf{e}_i = \begin{cases} \tilde{\mathbf{e}}_i, & \text{if } i \leq M-G, \\ 0, & \text{if } i \geq M-G+1, \end{cases}$
 1210

1211 and $\pi_* \mathbf{v}_i = \sigma_t \pi_* \mathbf{e}_i$. For the drift term, using Prop. 34, we have

1212
 1213 $\pi_* \mathbf{v}_0(\mathbf{x}, t) = \pi_* \mathbf{b}_t(\mathbf{x}) - \frac{\sigma_t^2}{2} \sum_{i=1}^M \pi_*(\nabla_{\mathbf{e}_i}^{\mathcal{M}} \mathbf{e}_i)$
 1214
 1215 $= \pi_* \mathbf{b}_t(\mathbf{x}) - \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \pi_*(\nabla_{\mathbf{e}_i}^{\mathcal{M}} \mathbf{e}_i) - \frac{\sigma_t^2}{2} \sum_{i=M-G+1}^M \pi_*(\nabla_{\mathbf{e}_i}^{\mathcal{M}} \mathbf{e}_i)$
 1216
 1217
 1218 $= \pi_* \mathbf{b}_t(\mathbf{x}) - \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \nabla_{\tilde{\mathbf{e}}_i}^{\mathcal{Q}} \tilde{\mathbf{e}}_i - \frac{\sigma_t^2}{2} \sum_{i=M-G+1}^M \pi_*(\nabla_{\mathbf{e}_i}^{\mathcal{M}} \mathbf{e}_i)$
 1219
 1220
 1221 $= \pi_* \mathbf{b}_t(\mathbf{x}) - \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \nabla_{\tilde{\mathbf{e}}_i}^{\mathcal{Q}} \tilde{\mathbf{e}}_i - \frac{\sigma_t^2}{2} \mathbf{h}(\mathbf{x}).$
 1222
 1223

1224 So the generator of the process \mathbf{y}_t is

1225
 1226 $\tilde{\mathcal{L}}_s = \pi_* \mathbf{b}_t - \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \nabla_{\tilde{\mathbf{e}}_i}^{\mathcal{Q}} \tilde{\mathbf{e}}_i - \frac{\sigma_t^2}{2} \mathbf{h} + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \tilde{\mathbf{e}}_i^2$
 1227
 1228
 1229 $= \left(\pi_* \mathbf{b}_t - \frac{\sigma_t^2}{2} \mathbf{h} \right) + \frac{\sigma_t^2}{2} \left(\sum_{i=1}^{M-G} \tilde{\mathbf{e}}_i^2 - \sum_{i=1}^{M-G} \nabla_{\tilde{\mathbf{e}}_i}^{\mathcal{Q}} \tilde{\mathbf{e}}_i \right)$
 1230
 1231
 1232 $= \left(\pi_* \mathbf{b}_t - \frac{\sigma_t^2}{2} \mathbf{h} \right) + \frac{\sigma_t^2}{2} \Delta^{\mathcal{Q}}.$
 1233

1234 Then we can conclude that the projected process $\mathbf{y}_t := \pi(\mathbf{x}_t)$ is the solution of the following SDE

1235
 1236 $d\mathbf{y}_t = \left((\pi_* \mathbf{b}_t)(\mathbf{y}_t) - \frac{\sigma_t^2}{2} \mathbf{h}(\mathbf{y}_t) \right) dt + \sigma_t d\omega_t,$

1237 where $\pi_* \mathbf{b}_t$ is the push-forward vector field, $\mathbf{h}(\mathbf{y}_t)$ is the mean curvature vector at \mathbf{y}_t and ω_t is the
 1238 standard Wiener process on the quotient space \mathcal{Q} .
 1239

□

1240
 1241

1242 D.2 PROOF OF THEOREM 2
1243

1244 In Def. 32, we define the horizontal lift of a vector field that generates a deterministic flow. In fact,
1245 for a stochastic process on \mathcal{Q} , we can define the horizontal lift for it similarly. First, we need to
1246 define the stochastic line integral, which is the integration of a one-form along the trajectory of a
1247 stochastic process.

1248
1249 **Definition 36.** (Hsu, 2002, Prop. 2.4.2) Let Θ be a 1-form (Def. 11) on \mathcal{M} and \mathbf{x}_t the solution of
1250 the equation

$$1251 \quad \mathbf{d}\mathbf{x}_t = \mathbf{v}_0(\mathbf{x}_t, t)dt + \sum_{i=1}^d \mathbf{v}_i(\mathbf{x}_t, t) \circ d\mathbf{w}_i(t).$$

1254 Then

$$1255 \quad \int_{\mathbf{x}_{[0,t]}} \Theta = \int_0^t \sum_{i=0}^d \Theta(\mathbf{v}_i)(\mathbf{x}_s) \circ d\mathbf{w}_i(s).$$

1258 **Definition 37.** (Baudoin et al., 2024, Def. 3.1.9) A semimartingale \mathbf{x}_t on \mathcal{M} is called horizontal if
1259 for every 1-form Θ on \mathcal{M} whose kernel contains the horizontal space \mathcal{H} , one has $\int_{\mathbf{x}_{[0,t]}} \Theta = 0$, $\forall t \geq$
1260 0. Let \mathbf{y}_t be a semimartingale on \mathcal{Q} such that \mathbf{y}_0 is a point of \mathcal{Q} . Let $\mathbf{x}_0 \in \pi^{-1}(\mathbf{y}_0)$. Then there exists
1261 a unique horizontal semimartingale \mathbf{x}_t on \mathcal{M} such that \mathbf{x}_t starts from \mathbf{x}_0 and $\pi(\mathbf{x}_t) = \mathbf{y}_t$, $\forall t \geq 0$.
1262 \mathbf{x}_t is called the horizontal lift of \mathbf{y}_t at \mathbf{x}_0 .

1264 **Theorem 38.** *The horizontal lift of Eq. (14) has the following explicit expression:*

$$1266 \quad d\tilde{\mathbf{x}}_t = \left(P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)) - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}}(\tilde{\mathbf{x}}_t) \right) dt + \sigma_t d\tilde{\mathbf{w}}_t, \quad \tilde{\mathbf{x}}_0 \sim p_{\text{prior}}, \quad (15)$$

1268 where $P_{\mathbf{x}}(\mathbf{v}) = \mathbf{v}^{\mathcal{H}}$ is the horizontal projection on the tangent space of \mathcal{M} , $\tilde{\mathbf{h}}$ is the horizontal lift
1269 of the mean curvature vector; $\tilde{\mathbf{w}}_t$ is the horizontal lift of the Wiener process on \mathcal{Q} .

1271 **Proof.** We only need to check the definition of the horizontal lift (Def. 37). Again, as-
1272 sume $\mathbf{e}_1, \dots, \mathbf{e}_M$ is a local orthonormal basis of \mathcal{M} and $\mathcal{H}_{\mathbf{x}} = \text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_{M-G}\}$, $\mathcal{V}_{\mathbf{x}} =$
1273 $\text{span}\{\mathbf{e}_{M-G+1}, \dots, \mathbf{e}_M\}$. Then by the Riemannian submersion construction of $\pi : \mathcal{M} \rightarrow \mathcal{Q}$ (see
1274 Appx. C), $\{\tilde{\mathbf{e}}_i := \pi_* \mathbf{e}_i\}_{i=1,2,\dots,M-G}$ is a local orthonormal basis of \mathcal{Q} . Let $\nabla^{\mathcal{M}}$ and $\nabla^{\mathcal{Q}}$ be the
1275 Levi-Civita connection on \mathcal{M} , \mathcal{Q} , respectively.

1276 Now we calculate the generator of the SDE in Eq. (15):

$$1277 \quad \tilde{\mathcal{L}}_t = \left(P\mathbf{b}_t - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^M P(e_i)^2 - P\nabla_{e_i}^{\mathcal{M}} e_i \quad (16)$$

$$1280 \quad = \left(\mathbf{b}_t^{\mathcal{H}} - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} e_i^2 - (\nabla_{e_i}^{\mathcal{M}} e_i)^{\mathcal{H}}.$$

1283 Its projection under π_* is given by

$$1285 \quad \mathcal{L}_t = \left(\pi_* \mathbf{b}_t - \frac{\sigma_t^2}{2} \mathbf{h} \right) + \sum_{i=1}^{M-G} \tilde{e}_i^2 - (\nabla_{\tilde{e}_i}^{\mathcal{M}} \tilde{e}_i)^{\mathcal{H}},$$

1287 which is the generator of Eq. (14). So we have $\pi(\tilde{\mathbf{x}}_t) = \mathbf{y}_t$ defined in Eq. (14).

1288 For an 1-form Θ on \mathcal{M} whose kernel contains the horizontal space \mathcal{H} . From Eq. (16), $\tilde{\mathbf{x}}_t$ is the
1289 following SDE

$$1291 \quad \mathbf{d}\mathbf{x}_t = \mathbf{v}_0(\mathbf{x}_t, t)dt + \sum_{i=1}^M \mathbf{v}_i(\mathbf{x}_t, t) \circ d\mathbf{w}_i,$$

$$1294 \quad \text{where } \mathbf{v}_0 = \left(\mathbf{b}_t^{\mathcal{H}} - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) - \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} (\nabla_{e_i}^{\mathcal{M}} e_i)^{\mathcal{H}}, \quad \mathbf{v}_i = \sigma_t \mathbf{e}_i.$$

1296 Then the line integral
 1297

$$\int_{\tilde{\mathbf{x}}_{[0,t]}} \Theta = \int_0^t \sum_{i=0}^M \Theta(\mathbf{v}_i)(\tilde{\mathbf{x}}_s) \circ d\mathbf{w}_i(s) = 0,$$

1300 since $\mathbf{v}_i \in \mathcal{H}$, $\Theta(\mathbf{v}_i) = 0$. So we can conclude that $\tilde{\mathbf{x}}_t$ is the horizontal lift of \mathbf{y}_t . \square
 1301

1302 **Corollary 39.** $\tilde{\mathbf{x}}_1$ (defined by Eq. (8)) has the same distribution on \mathcal{Q} with \mathbf{x}_1 (defined by Eq. (13)).
 1303 When $\sigma_t = 0$, $\forall \mathbf{x}_0 \in \mathcal{M}$, Eq. (8) has shorter trajectory length than Eq. (13):

$$\int_0^1 \langle P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)), P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)) \rangle^{\mathcal{M}} dt \leq \int_0^1 \langle \mathbf{b}_t(\mathbf{x}_t), \mathbf{b}_t(\mathbf{x}_t) \rangle^{\mathcal{M}} dt.$$

1307 **Proof.** By definition of horizontal lift, $\pi(\tilde{\mathbf{x}}_t) = \mathbf{y}_t = \pi(\mathbf{x}_t)$, $\forall t \in [0, 1]$, then $\tilde{\mathbf{x}}_1$ (defined by
 1308 Eq. (8)) has the same distribution on \mathcal{Q} with \mathbf{x}_1 (defined by Eq. (13)). Since $\pi(\tilde{\mathbf{x}}_t) = \pi(\mathbf{x}_t)$, then
 1309 $\mathbf{x}_t = g_t \tilde{\mathbf{x}}_t$, $g_t \in \mathcal{G}$. Then by the \mathcal{G} -equivariant property of \mathbf{b} , we have

$$\begin{aligned} \int_0^1 \langle \mathbf{b}_t(\mathbf{x}_t), \mathbf{b}_t(\mathbf{x}_t) \rangle^{\mathcal{M}} dt &= \int_0^1 \langle \mathbf{b}_t(g_t \tilde{\mathbf{x}}_t), \mathbf{b}_t(g_t \tilde{\mathbf{x}}_t) \rangle^{\mathcal{M}} dt \\ &= \int_0^1 \langle g_{t*} \mathbf{b}_t(\tilde{\mathbf{x}}_t), \mathbf{b}_t(g_{t*} \tilde{\mathbf{x}}_t) \rangle^{\mathcal{M}} dt \\ &= \int_0^1 \langle \mathbf{b}_t(\tilde{\mathbf{x}}_t), \mathbf{b}_t(\tilde{\mathbf{x}}_t) \rangle^{\mathcal{M}} dt \\ &= \int_0^1 \left(\langle \mathbf{b}_t(\tilde{\mathbf{x}}_t)^{\mathcal{H}}, \mathbf{b}_t(\tilde{\mathbf{x}}_t)^{\mathcal{H}} \rangle^{\mathcal{M}} + \langle \mathbf{b}_t(\tilde{\mathbf{x}}_t)^{\mathcal{V}}, \mathbf{b}_t(\tilde{\mathbf{x}}_t)^{\mathcal{V}} \rangle^{\mathcal{M}} \right) dt \\ &\geq \int_0^1 \langle \mathbf{b}_t(\tilde{\mathbf{x}}_t)^{\mathcal{H}}, \mathbf{b}_t(\tilde{\mathbf{x}}_t)^{\mathcal{H}} \rangle^{\mathcal{M}} dt \\ &= \int_0^1 \langle P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)), P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)) \rangle^{\mathcal{M}} dt. \end{aligned}$$

\square

1326 D.3 PROOF OF THEOREM 3

1327 For the calculation of the mean curvature vector, we can embed the fiber $\pi^{-1}(\mathbf{y})$ into the total space
 1328 where $\mathbf{y} \in \mathcal{Q}$. Thus, we can define the embedding $\Phi^{\mathbf{x}} : \mathcal{G} \rightarrow \mathcal{M}$ by $\Phi^{\mathbf{x}}(g) = g \cdot \mathbf{x}$. For $\mathbf{x} \in \pi^{-1}(\mathbf{y})$
 1329 the horizontal lift of mean curvature vector is defined by $\tilde{\mathbf{h}}(\mathbf{x}) := (\sum_{i=M-G+1}^M \nabla_{e_i} e_i)^{\mathcal{H}}$, where
 1330 $\{e_i\}$ is a local orthonormal basis of $T_{\mathbf{x}} \mathcal{M}$ and $\mathcal{V}_{\mathbf{x}} = \text{span}\{\mathbf{e}_{M-G+1}, \dots, \mathbf{e}_M\}$. The mean curvature
 1331 vector has a nice geometric relation to the volume of the fiber that helps us to calculate it.

1332 **Definition 40.** Let $\Phi : \mathcal{G} \rightarrow \mathcal{M}$ be an immersion. A smooth variation of Φ is a smooth mapping
 1333 $F : \mathcal{P} \times (-\epsilon, \epsilon) \rightarrow \mathcal{M}$ satisfying:

- 1336 • For any $t \in (-\epsilon, \epsilon)$, $\Phi_t = F(\cdot, t)$ is an immersion;
- 1337 • $\Phi_0 = F(\cdot, 0) = \Phi$;
- 1338 • $\Phi_t|_{\partial\mathcal{G}} = \Phi|_{\partial\mathcal{G}}$, $\forall t \in (-\epsilon, \epsilon)$, where $\partial\mathcal{G}$ is the boundary of \mathcal{G} .

1339 **Proposition 41.** (First variation of volume (Chavel, 1995, Exercise. III.14)) The mean curvature
 1340 vector $\tilde{\mathbf{h}}(\mathbf{x})$ satisfies the following formula:

$$\frac{d}{dt} \Big|_{t=0} \text{Vol}(\mathcal{G}) = - \int_{\mathcal{G}} \langle \tilde{\mathbf{h}}, \mathbf{v} \rangle d\text{Vol}(\mathcal{G}),$$

1345 where $\mathbf{v} = F_*\left(\frac{\partial}{\partial t}\right)$.

1347 In local orthonormal frame $\{\bar{e}_i\}$ of \mathcal{G} , the volume of \mathcal{G} is defined by

$$\text{Vol}(\mathcal{G}) := \int_{\mathcal{G}} \sqrt{\det(\mathbf{G})} dw^1 \wedge \dots \wedge w^G,$$

1350 where $\mathbf{G}_{ij} = \langle \Phi_* \bar{e}_i, \Phi_* \bar{e}_j \rangle^{\mathcal{M}}$, w^i is the dual form of e_i , i.e. $w^i(\bar{e}_j) = 1$ if $i = j$ and $w^i(\bar{e}_j) \neq 1$ if $i \neq j$.
1351
1352

1353
1354 **Theorem 42.** Assume \mathbf{x}_t is a diffusion process in the COM subspace $\mathcal{M} \subset \mathbb{R}^{3n}$, given by the
1355 following SDE:
1356

$$d\mathbf{x}_t = \mathbf{b}_t(\mathbf{x}_t)dt + \sigma_t d\mathbf{w}_t,$$

1357 where $\mathbf{b}_t(\mathbf{x}_t)$ is a $SO(3)$ -equivariant vector field $\forall t \in [0, T]$, \mathbf{w}_t is the standard Wiener process on
1358 COM. The horizontal lift of the process $\pi(\mathbf{x}_t)$ is given by the following SDE:
1359

$$d\tilde{\mathbf{x}}_t = \left(P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)) - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}}(\tilde{\mathbf{x}}_t) \right) dt + \sigma_t P_{\tilde{\mathbf{x}}_t} d\mathbf{w}_t,$$

1360 where the $P_{\mathbf{x}}$ is the horizontal projection operator at \mathbf{x} and $\tilde{\mathbf{h}}(\mathbf{x})$ is the horizontal lift of mean
1361 curvature vector. The explicit expressions of P and $\tilde{\mathbf{h}}$ are shown as follows:
1362

$$P_{\mathbf{x}} \mathbf{v} = \mathbf{v} - \mathcal{I}^{-1} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} \right) \times \mathbf{x}, \forall \mathbf{v} \in T_{\mathbf{x}} \mathcal{M}$$

$$\tilde{\mathbf{h}}(\mathbf{x}) = -(\text{tr}(\mathcal{I}^{-1})I - \mathcal{I}^{-1})\mathbf{x}, \quad \text{where} \quad \mathcal{I} = \left(\frac{1}{N} \sum_{i=1}^N \|\mathbf{x}^{(i)}\|^2 \mathbf{I} - \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \mathbf{x}^{(i)\top} \right).$$

1363
1364 **Proof.** Again, assume $\mathbf{e}_1, \dots, \mathbf{e}_M$ is a local orthonormal basis of \mathcal{M} and $\mathcal{H}_{\mathbf{x}} =$
1365 $\text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_{M-G}\}$, $\mathcal{V}_{\mathbf{x}} = \text{span}\{\mathbf{e}_{M-G+1}, \dots, \mathbf{e}_M\}$. Then by the Riemannian submersion construction of $\pi : \mathcal{M} \rightarrow \mathcal{Q}$ (see Appx. C), $\{\tilde{\mathbf{e}}_i := \pi_* \mathbf{e}_i\}_{i=1,2,\dots,M-G}$ is a local orthonormal basis of \mathcal{Q} . Let $\nabla^{\mathcal{M}}$ and $\nabla^{\mathcal{Q}}$ be the Levi-Civita connection on \mathcal{M}, \mathcal{Q} , respectively. As shown in the Appx. D.2, the horizontal lift of Eq. (8) has the generator
1366

$$\mathcal{L}_t = \left(\mathbf{b}_t^{\mathcal{H}} - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} e_i^2 - (\nabla_{e_i}^{\mathcal{M}} e_i)^{\mathcal{H}}.$$

1367 By Prop. 34, $\sum_{i=1}^{M-G} (\nabla_{e_i}^{\mathcal{M}} e_i)^{\mathcal{V}} = 0$, then
1368

$$\mathcal{L}_t = \left(\mathbf{b}_t^{\mathcal{H}} - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} e_i^2 - (\nabla_{e_i}^{\mathcal{M}} e_i).$$

1369 Since \mathcal{M} is a Euclidean space, then $\nabla_{e_i}^{\mathcal{M}} e_i = \sum_{j=1}^M e_i(e_i^j) \partial_j$, where e_i^j is the j -th component of e_i
1370 and $\partial_j = \partial/\partial x_j$. Since $\mathbf{b}_t^{\mathcal{H}}(\mathbf{x}) = P_{\mathbf{x}} \mathbf{b}_t(\mathbf{x})$, then the generator becomes
1371

$$\begin{aligned} \mathcal{L}_t &= \left(\mathbf{b}_t^{\mathcal{H}} - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} e_i^2 - (\nabla_{e_i}^{\mathcal{M}} e_i) \\ &= \left(P \mathbf{b}_t - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \sum_{j,k=1}^M e_i^j (\partial_j e_i^k) \partial_k + e_i^j e_i^k \partial_j \partial_k - e_i^j (\partial_j e_i^k) \partial_k \\ &= \left(P \mathbf{b}_t - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \sum_{j,k=1}^M e_i^j e_i^k \partial_j \partial_k \\ &= \left(P \mathbf{b}_t - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \sum_{j,k=1}^M (P)_{jk} \partial_j \partial_k \\ &= \left(P \mathbf{b}_t - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}} \right) + \frac{\sigma_t^2}{2} \sum_{i=1}^{M-G} \sum_{j,k=1}^M (PP^T)_{jk} \partial_j \partial_k, \end{aligned}$$

1372 where we use $P_{\mathbf{x}} = \sum_{i=1}^{M-G} e_i e_i^T$ is a projection operator. Then \mathcal{L}_t is the generator of
1373

$$d\tilde{\mathbf{x}}_t = \left(P_{\tilde{\mathbf{x}}_t}(\mathbf{b}_t(\tilde{\mathbf{x}}_t)) - \frac{\sigma_t^2}{2} \tilde{\mathbf{h}}(\tilde{\mathbf{x}}_t) \right) dt + \sigma_t P_{\tilde{\mathbf{x}}_t} d\mathbf{w}_t.$$

1404 For the explicit calculation, recall that in this case, the tangent space $T_{\mathbf{x}}\mathcal{M}$ of \mathcal{M} at \mathbf{x} has the
 1405 following decomposition:

1406 • The vertical tangent space $\mathcal{V}_{\mathbf{x}}$:

$$1408 \quad \mathcal{V}_{\mathbf{x}} = \{(\mathbf{1} \times \mathbf{x}^{(1)}, \mathbf{1} \times \mathbf{x}^{(2)}, \dots, \mathbf{1} \times \mathbf{x}^{(N)}) \mid \mathbf{1} \times \in \mathbb{R}^3\}.$$

1410 • The horizontal space $\mathcal{H}_{\mathbf{x}}$, which is the orthogonal complement of the vertical space:

$$1411 \quad \mathcal{H}_{\mathbf{x}} = \left\{ \mathbf{v} = (\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(N)}) \in \mathbb{R}^{3N} : \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} = 0 \right\}.$$

1414 The horizontal projection mapping is defined by $P_{\mathbf{x}}(\mathbf{v}) = \mathbf{v}^{\mathcal{H}} = \mathbf{v} - \mathbf{v}^{\mathcal{V}}$, $\forall \mathbf{v} \in T_{\mathbf{x}}\mathcal{M}$, and we can
 1415 find an explicit form of it. By definition, $\sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{\mathcal{H}(i)} = 0$, then
 1416

$$1417 \quad \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} = \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{\mathcal{V}(i)}.$$

1420 Assume $\mathbf{v}^{\mathcal{V}} = (\mathbf{1} \times \mathbf{x}^{(1)}, \mathbf{1} \times \mathbf{x}^{(2)}, \dots, \mathbf{1} \times \mathbf{x}^{(N)})$, then

$$\begin{aligned} 1422 \quad \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} &= \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{\mathcal{V}(i)} \\ 1424 \quad &= \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times (\mathbf{1} \times \mathbf{x}^{(i)}) \\ 1426 \quad &= \frac{1}{N} \sum_{i=1}^N \langle \mathbf{x}^{(i)}, \mathbf{x}^{(i)} \rangle \mathbf{1} - \langle \mathbf{x}^{(i)}, \mathbf{1} \rangle \mathbf{x}^{(i)} \\ 1428 \quad &= \left(\frac{1}{N} \sum_{i=1}^N \|\mathbf{x}^{(i)}\|^2 \mathbf{I} - \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \mathbf{x}^{(i)\top} \right) \mathbf{1}, \end{aligned}$$

1433 where we use the identity $\mathbf{x}^{(i)} \times (\mathbf{1} \times \mathbf{x}^{(i)}) = \langle \mathbf{x}^{(i)}, \mathbf{x}^{(i)} \rangle \mathbf{1} - \langle \mathbf{x}^{(i)}, \mathbf{1} \rangle \mathbf{x}^{(i)}$. Denote

$$1435 \quad \mathcal{I} := \left(\frac{1}{N} \sum_{i=1}^N \|\mathbf{x}^{(i)}\|^2 \mathbf{I} - \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \mathbf{x}^{(i)\top} \right).$$

1438 And we have $\mathbf{1} = \mathcal{I}^{-1}(\frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)})$, and

$$\begin{aligned} 1439 \quad \mathbf{v}^{\mathcal{V}} &= (\mathbf{1} \times \mathbf{x}^{(1)}, \mathbf{1} \times \mathbf{x}^{(2)}, \dots, \mathbf{1} \times \mathbf{x}^{(N)}) \\ 1441 \quad &= \mathcal{I}^{-1} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} \right) \times \mathbf{x}. \end{aligned}$$

1443 Then

$$1445 \quad P_{\mathbf{x}} \mathbf{v} = \mathbf{v}^{\mathcal{H}} = \mathbf{v} - \mathcal{I}^{-1} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \times \mathbf{v}^{(i)} \right) \times \mathbf{x}, \forall \mathbf{v} \in T_{\mathbf{x}}\mathcal{M}.$$

1448 For the calculations of the mean curvature vector $\tilde{\mathbf{h}}$, we can use Prop. 41. As $\mathcal{G} = \text{SO}(3)$, its local
 1449 frame (the norm of each vector is $\sqrt{2}$) is given by the following matrices:

$$1450 \quad \tilde{e}_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad \tilde{e}_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad \tilde{e}_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

1453 Then the Gram matrix \mathbf{G} is defined by $\mathbf{G}_{ij} := \langle \tilde{e}_i \mathbf{x}, \tilde{e}_j \mathbf{x} \rangle$. By direct calculations, we have $\mathbf{G} =$
 1454 $2N\mathcal{I}$. Then by Prop. 41,

$$1455 \quad \tilde{\mathbf{h}}(\mathbf{x}) = -\nabla \log \sqrt{\det \mathbf{G}}.$$

1456

1457

1458

Using Jacobi's formula in matrix calculus, $d \log \det \mathbf{G} = \text{tr}(\mathcal{I}^{-1} d\mathcal{I})$. Then by

1459

1460

1461

1462

1463

$$\mathcal{I} := \frac{1}{N} \sum_{i=1}^N \|\mathbf{x}^{(i)}\|^2 \mathbf{I} - \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{(i)} \mathbf{x}^{(i)\top}, \quad \frac{\partial \mathcal{I}}{\partial \mathbf{x}_j^{(i)}} = \left(\frac{1}{N} \sum_{i=1}^N 2\mathbf{x}_j^{(i)} \mathbf{I} - \frac{1}{N} \sum_{i=1}^N (\delta_j \mathbf{x}^{(i)\top} + \mathbf{x}^{(i)} \delta_j^\top) \right),$$

where $\delta_j \in \mathbb{R}^3$ is a one-hot vector at j . Then

1464

1465

1466

$$\text{tr}(\mathcal{I}^{-1} \frac{\partial \mathcal{I}}{\partial \mathbf{x}_j^{(i)}}) = 2 \text{tr}(\mathcal{I}^{-1}) \mathbf{x}_j^{(i)} - 2\delta_j^\top \mathcal{I}^{-1} \mathbf{x}_j^{(i)}.$$

Then we have

1467

1468

1469

1470

1471

1472

1473

$$\tilde{\mathbf{h}}(\mathbf{x}) = -\frac{1}{2} \nabla \log \det \mathbf{G} = -(\text{tr}(\mathcal{I}^{-1}) \mathbf{I} - \mathcal{I}^{-1}) \mathbf{x}.$$

□

E TRAINING AND SAMPLING METHOD IN GENERAL CASE

Training Objective The diffusion model on the total space \mathcal{M} is trained by the denoising score matching objective. Since the vertical components of the velocity are not strictly needed, we propose to supervise the model only on the horizontal components and allow arbitrary vertical output of the model. Recall that the horizontal projection operator $P_{\mathbf{x}}$ projects a vector to its horizontal component, i.e. $P_{\mathbf{x}}(\mathbf{v}) = \mathbf{v}^{\mathcal{H}}$. Thus the improved training objective is given by

1480

1481

1482

1483

1484

1485

$$\mathcal{L}(\theta) := \mathbb{E}_{p(t)} w(t) \mathbb{E}_{(\mathbf{x}_0, \mathbf{x}_1) \sim p_{\text{joint}}, \epsilon \sim \mathcal{N}(0, \mathbf{I})} \|P_{\mathbf{x}_t}(\mathbf{v}_\theta(\mathbf{x}_t, t) - (\alpha'_t \mathbf{x}_0 + \beta'_t \mathbf{x}_1 + \gamma'_t \epsilon))\|^2.$$

1486

1487

1488

ODE Sampler After the training stage, $P_{\mathbf{x}_t}(\mathbf{v}_\theta(\mathbf{x}_t, t))$ is an approximation of the ground truth vector field in the horizontal subspace. For the deterministic sampler, we need to simulate the horizontal lift of the projected ODE, which is given by

1489

1490

1491

1492

$$\frac{d\mathbf{x}_t}{dt} = P_{\mathbf{x}_t} \mathbf{v}(\mathbf{x}_t, t) dt.$$

In practice, the ODE process is approximated by numerical solvers, e.g. the Euler method and Runge-Kutta methods.

1493

1494

1495

SDE Sampler For the stochastic sampler, we need to simulate the horizontal lift of the projected original SDE in Eq. (3). According to Thm. 1 and Thm. 4, the lifted process is given by

1496

1497

1498

1499

$$d\mathbf{x}_t = P_{\mathbf{x}_t}(\mathbf{v}_\theta(\mathbf{x}_t, t) + g_t \mathbf{s}_\theta(\mathbf{x}_t, t)) dt + \gamma \eta_t \mathbf{h}(\mathbf{x}_t) dt + \sqrt{2\gamma\eta_t} P_{\mathbf{x}_t} d\mathbf{w}_t,$$

where we introduce the hyperparameter γ for protein generation following Geffner et al. (2025). The training and sampling algorithm is summarized in Algorithm 2 and 3.

1500

1501

1502

1503

1504

Algorithm 1 Training for $p_{\text{prior}} = \mathcal{N}(0, \mathbf{I})$

1505

1506

1507

1508

1509

1510

1511

1: **repeat**

2: $(\mathbf{x}_0, \mathbf{x}_1) \sim p_{\text{joint}}$

3: $t \sim p_t$

4: $\mathbf{x}_t = \hat{\alpha}_t \mathbf{x}_0 + \beta_t \mathbf{x}_1$

5: Take a gradient descent step on

$$\nabla_\theta w(t) \|P_{\mathbf{x}_t}(\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathbf{x}_1)\|^2$$

6: **until** converged

Algorithm 2 Training for general p_{prior}

1: **repeat**

2: $(\mathbf{x}_0, \mathbf{x}_1) \sim p_{\text{joint}}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

3: $t \sim p_t$

4: $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \beta_t \mathbf{x}_1 + \gamma_t \epsilon$

5: $\mathbf{v}_t = \alpha'_t \mathbf{x}_0 + \beta'_t \mathbf{x}_1 + \gamma'_t \epsilon$

6: Take a gradient descent step on

$$\nabla_\theta w(t) \|P_{\mathbf{x}_t}(\mathbf{v}_\theta(\mathbf{x}_t, t) - \mathbf{v}_t)\|^2$$

7: **until** converged

1512

Algorithm 3 Sampling

1513
1514 1: $\mathbf{x}_0 \sim p_{\text{prior}}$
1515 2: **for** $i = 0$ **to** $K - 1$ **do**
1516 3: $\Delta t_i = t_{i+1} - t_i$
1517 4: **if** ODE sampling **then**
1518 5: $\mathbf{x}_{t_{i+1}} = \mathbf{x}_{t_i} + P_{\mathbf{x}_{t_i}} \mathbf{v}_\theta(\mathbf{x}_{t_i}, t_i) \Delta t_i$
1519 6: **end if**
1520 7: **if** SDE sampling **then**
1521 8: $\mathbf{d}_i = P_{\mathbf{x}_{t_i}} (\mathbf{v}_\theta(\mathbf{x}_{t_i}, t_i) + \eta_{t_i} \mathbf{s}_\theta(\mathbf{x}_{t_i}, t_i)) + \gamma g_{t_i} \mathbf{h}(\mathbf{x}_{t_i})$
1522 9: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
1523 10: $\mathbf{x}_{t_{i+1}} = \mathbf{x}_{t_i} + \mathbf{d}_i \Delta t_i + \sqrt{2\gamma\eta_{t_i}\Delta t_i} P_{\mathbf{x}_{t_i}} \epsilon$
1524 11: **end if**
1525 12: **end for**

1524

1525

F ADDITIONAL EXPERIMENTAL RESULTS**F.1 EFFICIENCY AND COMPLEXITY ANALYSIS**

Complexity analysis. In this subsection, we give a detailed discussion on the computational cost of our method. As mentioned in Thm. 4, we need to compute the inversion of the matrix \mathcal{I} and the cross product for the horizontal projection operator $P_{\mathbf{x}}$ and the mean curvature vector $\tilde{\mathbf{h}}(\mathbf{x})$. For the calculation of \mathcal{I}^{-1} , notice that \mathcal{I} is always a 3×3 matrix, so construction cost of \mathcal{I}^{-1} is only linear $O(N)$, where N is the number of atoms (linear $O(N)$ cost for constructing \mathcal{I} , and constant $O(1)$ cost for inversion). The cross product is conducted atom-wise, so its computational cost is also linear $O(N)$. So we can conclude that the overall computational complexity is $O(N)$ for both $P_{\mathbf{x}}$ and $\tilde{\mathbf{h}}(\mathbf{x})$.

We would like to mention that the alignment operation adopted in the heuristic alignment-based diffusion strategies also has the same complexity. To see this, for aligning $\mathbf{x} \in \mathbb{R}^{3 \times N}$ towards $\mathbf{y} \in \mathbb{R}^{3 \times N}$, the Kabsch-Umeyama algorithm constructs the optimal rotation matrix as $(\mathbf{H}^T \mathbf{H})^{\frac{1}{2}} \mathbf{H}^{-1}$, where $\mathbf{H} := \mathbf{y} \mathbf{x}^T \in \mathbb{R}^{3 \times 3}$ requires a linear $O(N)$ cost. In practice, the $O(N)$ computational cost is negligible compared to the cost of gradient back-propagation through the neural network. A comparison of practical training times is shown in the following table.

1544

Methods	Original diffusion	GeoDiff-alignment	Af3 alignment	Quotient-space diffusion
training speed (iters/s)	4.19	4.07	4.08	4.10

1549

All the results are tested on a single Nvidia A100 GPU. From the results, we can see that the additional computational cost brought by the alignment and projection is negligible.

1552

Numerical stability. In our quotient-space diffusion model framework, we need to calculate the matrix inversion of \mathcal{I} , which may have numerical issues for near-collinear systems of points. In practice, we add an $\epsilon \mathbf{I}$ term before conducting matrix inversion, that is, we calculate $(\epsilon \mathbf{I} + \mathcal{I})^{-1}$ in practice, where \mathbf{I} is the 3×3 identity matrix. This treatment is widely adopted in algorithms facing similar situations, e.g., the practical implementation of the Kabsch-Umeyama algorithm for alignment. Our typical choice of ϵ is $1e-8$, and we found that the training process is stable under this setting. We have shown the training curve of the model on the protein backbone generation task in Fig. 4, which indicates no numerical issues arise during the training process.

1561

F.2 THE IMPLEMENTATION OF \mathcal{G} -EQUIVARIANT VECTOR FIELD

1562

In Thm. 4, we require that the vector field is $\text{SO}(3)$ -equivariant. In practice, this can be implemented by using a $\text{SO}(3)$ -equivariant network architecture or applying data augmentation. In this subsection, we justify that both of these choices are valid, such that the diffusion model can generate a $\text{SO}(3)$ -invariant distribution.



Figure 4: Training loss vs. training epochs. We find that our training is stable in practice.

Diffusion model with data augmentation. The optimal solution of the Euclidean diffusion model is given by $\mathbf{D}_\theta^*(\mathbf{x}_t) = \mathbb{E}[\mathbf{x}_1 | \mathbf{x}_t]$ (Song et al., 2021; Karras et al., 2022). When the data distribution is augmented by random rotation, the data distribution becomes $\text{SO}(3)$ -invariant. Thus, the optimal diffusion model can recover the $\text{SO}(3)$ -invariant data distribution. When the transition density $p(\mathbf{x}_t | \mathbf{x}_1)$ is $\text{SO}(3)$ -equivariant, i.e. $p(\mathbf{x}_t | \mathbf{x}_1) = p(g \cdot \mathbf{x}_t | g \cdot \mathbf{x}_1), \forall g \in \text{SO}(3)$, the optimal network is $\text{SO}(3)$ -equivariant. To see this, let $g \in \text{SO}(3)$ be an arbitrary rotation matrix. Since $\mathbf{D}_\theta^*(g \cdot \mathbf{x}_t) = \mathbb{E}[\mathbf{x}_1 | g \cdot \mathbf{x}_t]$, by the Bayes formula,

$$\begin{aligned} \mathbb{E}[\mathbf{x}_1 | g \cdot \mathbf{x}_t] &= \frac{\mathbb{E}_{p_{\text{target}}(\mathbf{x}_1)}[\mathbf{x}_1 p(g \cdot \mathbf{x}_t | \mathbf{x}_1)]}{\mathbb{E}_{p_{\text{target}}(\mathbf{x}_1)}[p(g \cdot \mathbf{x}_t | \mathbf{x}_1)]} \\ &= \frac{\mathbb{E}_{p_{\text{target}}(\mathbf{x}_1)}[\mathbf{x}_1 p(\mathbf{x}_t | g^{-1} \cdot \mathbf{x}_1)]}{\mathbb{E}_{p_{\text{target}}(\mathbf{x}_1)}[p(\mathbf{x}_t | g^{-1} \cdot \mathbf{x}_1)]} \\ &= \frac{g \cdot \mathbb{E}_{p_{\text{target}}(g^{-1} \cdot \mathbf{x}_1)}[g^{-1} \mathbf{x}_1 p(\mathbf{x}_t | g^{-1} \cdot \mathbf{x}_1)]}{\mathbb{E}_{p_{\text{target}}(g^{-1} \cdot \mathbf{x}_1)}[p(\mathbf{x}_t | g^{-1} \cdot \mathbf{x}_1)]} \\ &= g \cdot \mathbb{E}[\mathbf{x}_1 | \mathbf{x}_t], \end{aligned}$$

where we use the equivariance property of the transition density to get the second equality and the invariance property of p_{target} to get the third equality. Thus, we can conclude that the optimal solution under these conditions is $\text{SO}(3)$ -equivariant. Geffner et al. (2025) also gives an empirical validation that a well-trained neural network becomes nearly equivariant even if its architecture is not equivariant.

Equivariant architecture. When the model is required to be $\text{SO}(3)$ -equivariant, the optimal solution of the diffusion model is not $\mathbb{E}[\mathbf{x}_1 | \mathbf{x}_t]$. To figure out the optimal solution, we consider the training loss at time t . The loss function at t is given by

$$\begin{aligned} \mathcal{L}_t(\theta) &= \mathbb{E}\|\mathbf{D}_\theta(\mathbf{x}_t, t) - \mathbf{x}_1\|^2 \\ &= \int d^{3N} \mathbf{x}_1 \int d^{3N} \mathbf{x}_t p(\mathbf{x}_1, \mathbf{x}_t) (\|\mathbf{D}_\theta(\mathbf{x}_t, t)\|^2 + \|\mathbf{x}_1\|^2 - 2\langle \mathbf{D}_\theta(\mathbf{x}_t, t), \mathbf{x}_1 \rangle). \end{aligned}$$

The optimal solution satisfies

$$\mathbf{D}_\theta^*(\mathbf{x}_t, t) = \underset{\mathbf{D}_\theta \text{ is } \text{SO}(3) \text{ equivariant}}{\operatorname{argmin}} \mathcal{L}_t(\theta).$$

The training loss can be simplified using the equivariant constraint:

$$\begin{aligned} \mathcal{L}_t(\theta) &= \int d^{3N} \mathbf{x}_1 \int d^{3N} \mathbf{x}_t p(\mathbf{x}_1, \mathbf{x}_t) (\|\mathbf{D}_\theta(\mathbf{x}_t)\|^2 + \|\mathbf{x}_1\|^2 - 2\langle \mathbf{D}_\theta(\mathbf{x}_t), \mathbf{x}_1 \rangle) \\ &= \int_{\mathbb{R}^{3N}/\text{SO}(3)} d\mathbf{r}_t \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \cdot \mathbf{r}_t) (\|\mathbf{D}_\theta(g \cdot \mathbf{r}_t)\|^2 + \|\mathbf{x}_1\|^2 - 2\langle \mathbf{D}_\theta(g \cdot \mathbf{r}_t), \mathbf{x}_1 \rangle). \end{aligned}$$

Since \mathbf{D}_θ is $\text{SO}(3)$ -equivariant, $\mathbf{D}_\theta(g \cdot \mathbf{r}_t) = g \cdot \mathbf{D}_\theta(\mathbf{r}_t)$, then we have

$$\mathcal{L}_t(\theta) = \int_{\mathbb{R}^{3N}/\text{SO}(3)} d\mathbf{r}_t \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \cdot \mathbf{r}_t) (\|\mathbf{D}_\theta(\mathbf{r}_t)\|^2 + \|\mathbf{x}_1\|^2 - 2\langle g \cdot \mathbf{D}_\theta(\mathbf{r}_t), \mathbf{x}_1 \rangle).$$

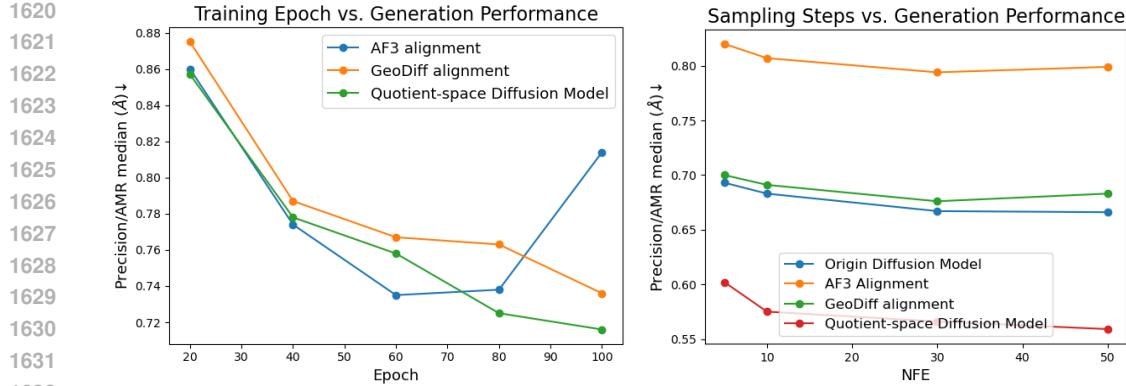


Figure 5: Training and sampling convergence speed comparison on GEOM-DRUGS. **(Left)** The relationship between training epochs and generation performance measured by the precision AMR median metric. **(Right)** The relationship between the number of function evaluations (NFE) for sampling and generation performance measured by the precision AMR median metric.

Define $p(\mathbf{r}_t) = \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \cdot \mathbf{r}_t)$, and $p(\mathbf{x}_1, g \mid \mathbf{r}_t) = \frac{p(\mathbf{x}_1, g \cdot \mathbf{r}_t)}{p(\mathbf{r}_t)}$. Then we have

$$\begin{aligned} \mathcal{L}_t(\theta) &= \int_{\mathbb{R}^{3N}/\text{SO}(3)} d\mathbf{r}_t \left[p(\mathbf{r}_t) \|\mathbf{D}_\theta(\mathbf{r}_t)\|^2 - 2 \langle \mathbf{D}_\theta(\mathbf{r}_t), \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \cdot \mathbf{r}_t) g^{-1} \cdot \mathbf{x}_1 \rangle \right] \\ &\quad + \int_{\mathbb{R}^{3N}/\text{SO}(3)} d\mathbf{r}_t \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \cdot \mathbf{r}_t) \|\mathbf{x}_1\|^2. \end{aligned}$$

So we can conclude that

$$\begin{aligned} \mathbf{D}_\theta^*(\mathbf{r}_t, t) &= \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \mid \mathbf{r}_t) g^{-1} \cdot \mathbf{x}_1, \\ \mathbf{D}_\theta^*(g' \cdot \mathbf{r}_t) &= \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \mid \mathbf{r}_t) g' \cdot g^{-1} \cdot \mathbf{x}_1, \forall g \in \text{SO}(3). \end{aligned}$$

Notice that

$$\begin{aligned} \mathbf{D}_\theta^*(\mathbf{r}_t) &= \int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(\mathbf{x}_1, g \mid \mathbf{r}_t) g^{-1} \cdot \mathbf{x}_1 \\ &= \frac{\int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(g \cdot \mathbf{x}_1) p(g \cdot \mathbf{r}_t \mid g \cdot \mathbf{x}_1) \mathbf{x}_1}{\int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(g \cdot \mathbf{x}_1) p(g \cdot \mathbf{r}_t \mid g \cdot \mathbf{x}_1)} \\ &= \frac{\int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(g \cdot \mathbf{x}_1) p(\mathbf{r}_t \mid \mathbf{x}_1) \mathbf{x}_1}{\int_{\text{SO}(3)} dg \int d^{3N} \mathbf{x}_1 p(g \cdot \mathbf{x}_1) p(\mathbf{r}_t \mid \mathbf{x}_1)}, \end{aligned}$$

which is equivalent to the case $p_{\text{data}} = \int_{\text{SO}(3)} dg p(g \cdot \mathbf{x}_1)$, i.e. using the augmentation by random $\text{SO}(3)$ rotation.

F.3 TRAINING AND SAMPLING ACCELERATION

In this subsection, we study the training and sampling convergence speed of different methods. For the training convergence speed comparison, we plot the generation performance measured by the precision AMR median metric with respect to the training epochs for previous heuristic alignment methods and our quotient-space diffusion model in Fig. 5(Left). We only focus on the first 100 epochs for all the methods. These models are trained with the same architecture ET-Flow($\text{SO}(3)$) and training configurations on the GEOM-DRUGS dataset. The results indicate that our method achieves a similar convergence speed to the AF3 heuristic method, because both methods reduce the learning difficulty of the model, as shown in Table 1. This theoretical benefit leads to faster convergence than the GeoDiff alignment method. We also notice that the AF3 alignment method starts to get worse generation performance after 80 training epochs. This happens due to the incompatibility

1674 between the training loss and the generation performance metric, as the AF3 method is originally
 1675 designed for the protein structure prediction task, which is not evaluated by distributional metrics.
 1676

1677 For the sampling convergence speed comparison, we plot the generation performance measured by
 1678 the precision AMR median metric with respect to the number of function evaluations (NFE) for the
 1679 sampling process in Fig. 5(Right). For all these methods trained on the GEOM-DRUGS dataset,
 1680 we use the Flow Matching ODE sampler (Lipman et al., 2023) with Euler discretization. From
 1681 the results, we can observe that models trained with different strategies exhibit similar convergence
 1682 trends (performance gradually degrades as NFE decreases), our quotient-space diffusion framework
 1683 consistently outperforms all baselines across every NFE setting.

1684 F.4 QUOTIENT SPACE BEYOND $\mathbb{R}^{3N}/\text{SE}(3)$

1685 Our framework can generalize to quotient spaces generated by symmetry groups beyond the special
 1686 Euclidean group $\text{SE}(3)$. Possible examples include the $U(1)$ symmetry in quantum wavefunctions,
 1687 the $SU(2)$ symmetry in particle physics, and the $SO(3)$ symmetry in higher (> 3) representation
 1688 spaces for tasks including the mean-field electron Hamiltonian matrix prediction. In this work, we
 1689 focus on the $\text{SE}(3)$ case for its significant relevance to scientific research (Abramson et al., 2024).
 1690 Applications of our framework on the mentioned more diverse systems above are left as future work.

1691 G EXPERIMENTS

1692 G.1 MOLECULE GENERATION

1693 This appendix summarizes our experimental setup, which strictly follows that of Eflow (Hassan
 1694 et al., 2024). We detail the datasets, model architecture, training, sampling, and evaluation. For a
 1695 more comprehensive discussion of each component, we refer the reader to the appendices of their
 1696 original paper.

1697 **Dataset.** First, we evaluate our framework on the molecule structure generation task. In this sce-
 1698 nario, our goal is to generate the 3D coordinates of a molecule given the graph structure of the
 1699 molecule. We conduct the experiments on the GEOM datasets (Axelrod & Gomez-Bombarelli,
 1700 2022), which provide structure ensembles generated by metadynamics in CREST (Pracht et al.,
 1701 2024), and we focus on the GEOM-QM9 and GEOM-DRUGS datasets. Following the data pro-
 1702 cessing and splits from (Hassan et al., 2024), we use the random splits with train/validation/test
 1703 of 243473/30433/1000 for GEOM-DRUGS and 106586/13323/1000 for GEOM-QM9. In addition,
 1704 data with disconnected molecule graphs are removed for GEOM-DRUGS (Hassan et al., 2024). Our
 1705 reproduction is based on the modified data-processing pipeline following the released configs thus
 1706 different from the results reported in the original paper.

1707
 1708
 1709
 1710
 1711
 1712 **Settings.** We primarily follow the setting in (Hassan et al., 2024). We set the Gaussian distribution
 1713 as the prior distribution on GEOM-QM9 and use the harmonic prior for GEOM-DRUGS (Volk
 1714 et al., 2023). Following (Jing et al., 2022; Xu et al., 2022), we report the RMSD-based metrics,
 1715 e.g. Coverage and Average Minimum RMSD (AMR) between generated and ground truth structure
 1716 ensembles. We parameterize v_θ by using equivariant graph transformer architectures from ET-Flow
 1717 (Hassan et al., 2024), including the $O(3)$ and $SO(3)$ equivariant variants, which also serves as a
 1718 verification that our framework is compatible with different backbone models. For training, we use
 1719 AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8 and (β_1, β_2) to (0.9, 0.999). We use
 1720 the dynamic gradient clipping as (Hassan et al., 2024; Hoogeboom et al., 2022b). The peak learning
 1721 rate is set to 5e-4 for GEOM-DRUGS and 7e-4 for GEOM-QM9. The batch size is set to 48 for
 1722 GEOM-DRUGS and 128 for GEOM-QM9. The weight decay is set to 1e-8. The model is trained
 1723 for 1000 epochs for both datasets. The noise scale σ is set to 0.1. We also use 50 time steps with the
 1724 Euler solver for sampling. All models are trained on 8 NVIDIA A100 GPUs.

1725 **Baselines.** Following (Hassan et al., 2024), we choose strong baselines trained on GEOM-DRUGS
 1726 and GEOM-QM9 for a challenging comparison. We report the performance of GeoMol (Ganea
 1727 et al., 2021), GeoDiff (Xu et al., 2022), Torsional Diffusion (Jing et al., 2022), and MCF (Wang
 1728 et al., 2023).

1728 G.2 PROTEIN
1729

1730 This appendix summarizes our experimental setup, which strictly follows that of Proteína (Geffner
1731 et al., 2025). We detail the datasets, model architecture, training, sampling, and evaluation. For a
1732 more comprehensive discussion of each component, we refer the reader to the appendices of their
1733 original paper.

1734 G.2.1 DATASET
1735

1736 For training, we utilize the Foldseek AFDB clusters (D_{FS}) dataset as curated and described in
1737 the Proteína. This dataset is a high-quality, non-redundant subset of the AlphaFold Database
1738 (AFDB), containing 588,318 cluster-representative protein structures with lengths between 32 and
1739 256 residues. The dataset is annotated with hierarchical CATH labels, which are leveraged during
1740 training. Our data processing and handling strictly follow the pipeline detailed in Appendix M
1741 of (Geffner et al., 2025).

1742 G.2.2 MODEL ARCHITECTURE AND TRAINING
1743

1744 Our model architecture is the same as the efficient, non-equivariant transformer proposed
1745 by (Geffner et al., 2025). Specifically, we adopt the variant that forgoes the use of computationally
1746 expensive triangle update layers. The model is trained using the conditional flow matching (CFM)
1747 objective. Key aspects of the training protocol from Proteína are preserved, including their novel
1748 Beta-Uniform mixture for the time-sampling distribution $p(t)$, the use of self-conditioning, and data
1749 augmentation with random rotations. All model and training hyperparameters, such as embedding
1750 dimensions, number of layers, attention heads, and optimizer settings, are kept consistent with
1751 hyperparameters saved in their released checkpoint \mathcal{M}_{FS}^{small} . The hyperparameters for the \mathcal{M}_{FS}^{small} model
1752 are detailed in Table 5, in comparison with the larger models from the original Proteína paper.

1753 Table 5: Hyperparameters for Proteína model.

1754 Hyperparameter	1755 \mathcal{M}_{FS}	1756 $\mathcal{M}_{FS}^{no-tri}$	1757 \mathcal{M}_{FS}^{small}
1758 Proteína Architecture			
1759 sequence repr dim	1760 768	1761 768	1762 512
1763 # registers	1764 10	1765 10	1766 10
1767 sequence cond dim	1768 512	1769 512	1770 128
1771 t sinusoidal enc dim	1772 256	1773 256	1774 196
1775 idx. sinusoidal enc dim	1776 128	1777 128	1778 196
1779 fold emb dim	1780 256	1781 256	1782 196
1783 pair repr dim	1784 512	1785 512	1786 196
1787 seq separation dim	1788 128	1789 128	1790 128
1791 pair distances dim (x_t)	1792 64	1793 64	1794 64
1795 pair distances dim ($\tilde{x}(x_t)$)	1796 128	1797 128	1798 128
1799 pair distances min (Å)	1800 1	1801 1	1802 1
1803 pair distances max (Å)	1804 30	1805 30	1806 30
1807 # attention heads	1808 12	1809 12	1810 12
1811 # transformer layers	1812 15	1813 15	1814 12
1815 # triangle layers	1816 5	1817 —	1818 —
1819 # trainable parameters	1820 200M	1821 200M	1822 60M
1823 Proteína Training			
1824 # steps	1825 200K	1826 360K	1827 150K
1828 batch size per GPU	1829 4	1830 10	1831 5
1832 # GPUs	1833 128	1834 96	1835 16
1836 # grad. acc. steps	1837 1	1838 1	1839 1

1788 G.2.3 SAMPLING
1789

1790 To facilitate a direct comparison with the publicly available Proteína checkpoints, we trained our
1791 model with an identical hierarchical fold class conditioning mechanism. However, to ensure a fair
1792 assessment of foundational generative capabilities, all experiments reported in our main text were

performed in a strictly unconditional setting. We applied the same sampling protocol across all models, using 400 sampling steps and enabling self-conditioning, which consistently improved performance. No other guidance techniques, such as autoguidance, were utilized. We use deterministic ODE sampling to assess distributional fidelity and SDE sampling to explore the designability-diversity trade-off. We adapt the SDE formulation and its Euler-Maruyama numerical scheme, detailed in Appendix I of (Geffner et al., 2025), for our quotient space framework, while retaining all other configurations, such as the sampling scheduler and $g(t)$, from the original paper.

G.2.4 EVALUATION

We evaluate our models rigorously adheres to the metrics established and validated in the Proteína paper. We assess model performance using the standard suite of metrics in protein design:

- **Designability.** Quantified by the self-consistency RMSD (scRMSD) protocol, using ProteinMPNN for inverse folding and ESMFold for structure prediction, with a success threshold of scRMSD less than 2Å.
- **Diversity.** Measured in two ways: by the average pairwise TM-score among designable samples, and by the number of distinct structural clusters identified by Foldseek at a TM-score threshold of 0.5.
- **Novelty.** Assessed by calculating the maximum TM-score of each designable sample against reference structures in the PDB and AFDB databases.

We also adopt the novel probabilistic metrics introduced by (Geffner et al., 2025), to measure how well our model captures the true distribution of protein structures:

- **FPSD.** Measured the distributional similarity between generated and reference structures in the feature space of a pre-trained fold class predictor.
- **fS.** Evaluated both the quality and diversity of samples based on the confidence and entropy of fold class predictions.
- **fJSD.** Quantified the similarity between the categorical fold class distributions of generated and reference sets.

It is noteworthy that we have omitted the Diversity and Novelty metrics from our main text to avoid comparisons with potentially inaccurate results in the literature. This decision is based on a bug recently identified in the alntmscore output of FoldSeek versions prior to v10 (release 10-941cd33), which renders many previously reported TM-based metrics incorrect (also found in (Daras et al., 2025)). To provide a controlled and accurate benchmark, we conducted our own analysis using the FoldSeek v10 (release 10-941cd33). We limited this re-evaluation to the released small Proteína model and our corresponding model trained in the quotient space. The full results of this comparison are summarized in Table 6.

Table 6: Complete performance comparison of the released Proteína checkpoints against our version in the quotient space. Best results are marked in **bold**.

Model	Designability (%)	Diversity		Novelty vs.		FPSD vs.		fS (C/A/T)↑	fJSD vs.	
		Cluster↑	TM-Sc.↓	PDB↓	AFDB↓	PDB↓	AFDB↓		PDB↓	AFDB↓
SDE Sampling										
$\mathcal{M}_{\text{FS}}^{\text{small}}, \gamma = 0.35$	96.0	0.44 (209)	0.50	0.86	0.91	386.5	378.2	1.77/4.97/17.78	2.17	1.73
$\mathcal{M}_{\text{FS}}^{\text{small}}, \gamma = 0.35 + \text{ours}$	97.6	0.40 (197)	0.48	0.86	0.91	274.7	277.1	2.24/6.69/20.99	1.68	1.55
$\mathcal{M}_{\text{FS}}^{\text{small}}, \gamma = 0.45$	92.2	0.55 (253)	0.49	0.84	0.90	332.9	320.4	1.83/5.01/20.22	1.93	1.49
$\mathcal{M}_{\text{FS}}^{\text{small}}, \gamma = 0.45 + \text{ours}$	92.6	0.51 (253)	0.47	0.85	0.90	244.5	246.3	2.24/6.68/23.47	1.43	1.28
$\mathcal{M}_{\text{FS}}^{\text{small}}, \gamma = 0.50$	89.2	0.57 (255)	0.48	0.83	0.89	306.2	290.8	1.86/4.92/21.15	1.81	1.36
$\mathcal{M}_{\text{FS}}^{\text{small}}, \gamma = 0.50 + \text{ours}$	90.2	0.51 (231)	0.47	0.84	0.90	228.0	228.7	2.25/6.59/25.24	1.32	1.17
ODE Sampling										
$\mathcal{M}_{\text{FS}}^{\text{small}}$	13.8	0.90 (62)	0.43	0.80	0.87	83.18	21.93	2.45/5.63/31.76	0.58	0.12
$\mathcal{M}_{\text{FS}}^{\text{small}} + \text{ours}$	15.6	0.87 (68)	0.43	0.80	0.86	69.94	17.56	2.57/6.40/32.14	0.41	0.11